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‘Abstract

A controlled random walk model is presented for managing a
product development project which proceeds stochastically through
intermediate states of progress. The problems of optimally under-
taking, continuing and stopping the development process are in-
tegrated into the single problem of finding an optimal dynamic
resource allocation strategy as a function of the worth of the
product developed so far. The strategy is shown to be monotone in
product worth and characterizes the convex optimal stopping region
for not undertaking or discontinuing the project short of completion.
Implications for the multiple project comparison and selection

problems are indicated.
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OPTIMAL STOCHASTIC DEVELOPMENT STRATEGY

1. INTRODUCTION

. Coﬁsidér the following general framework encompassing a wide
class of problems of dynamic resource allocation under uncertainty.
We have an activity to which effort is allocated through time. A
state variable (or a vector) represents the progress of that activity
at any particular time. Often the activity is pursued with a view
towards reaching a certain goal as specified for a given target state.
The effect of an allocation of effort on the progress toward the
target is stochastic due to inherent and environmental uncertainties.
Thus allocating a large amount of effort costs more but also yields
a greater progress on average, though perhaps at a decreasing mar-
ginal rate. On the other hand, allocating too small an effort,
though economical in short run, may lead to negative progress due
to stochastic deterioration and obsolescence. Once the allocation
of effort isrstopped, a reward is collected, whose value depends
on the terminal state.

Three interrelated problems facing the manager in charge
of such an activity are: (1) given the initial state of the activity,
determine whether or not it is worthwhile undertaking its further
development, (2) given that we choose to undertake the activity,
determine an 6pﬁimal strategy for allocating effort through time,
and (3) given that the allocation is on its way, determine the optimal
poinf in time at which the activity should be discontinued and the
reward collected if the goal has been reached.
Some problems where the above framework applies can be

briefly described as follows. Improvement in a product's market

share to a desired level can be obtained through advertising



expenditures, effect of which upon the buyer behavior is uncertain due
to lack of brand loyalty, changes in consumer tastes, new competing
products, etc. The problem of determining optimal advertising
expenditure plan would then correspond to a stochastic version of
the optimal control model considered by Sasieni [20], Sethi [21] and
others. Similarly, the machine replacement model of Derman [7]
could be generalized to provide another example for our framework.
The state of a machine can be improved and maintained at a desired
level of performance through maintenance expenditures, whose effec-
tiveness is probabilistic in counteracting the stochastic deterior-
ation due to wear out and aging. As a third example, in optimal
stopping problems ( e.g. see Breiman [3], Chow-Robbins-Siegmund [5])
the usual stop or continue actions may be generalized to include
the amount of effort to be expended in searching (for a house, a
job or a secfetary) to attain a certain specified acceptable quality.
In this paper we shall consider in detail in the above frame-
work the specific problem of optimal resource allocation to a re-
search and development project. In section 2 we describe the
model along with the assumptions used to prove subsequent results
and show how it generalizes currently available models of the
R and D project management. In section 3 we analyze the structure
of the optimal allocation strategy and its implications. In the
fourth section we indicate the implications of this model to the
problem of comparison and resource allocation among different pro-

jects. The final section concludes the paper with a summary.



2, THE MODEL

Consider the problem of developing a product of a specified
target quality before introducing it into the market. Often, such
a development project evolves through a series of identifiable
intermediate states of progress towards the target. The state of
the project at any point in time may be summarized by the worth
of the product quality developed so far, evaluated with respect to
the existing environmental factors such as other similar products,
competitor's actions, consumer tastes and other market conditions
affecting the product demand and hence its price. The progress
of the project is reviewed in stages at discrete points in time and
its state at the n» stage is denoted by x_ € [0,x], n=0,1,2...,
where x is the worth of the product having the desired target
quality. Upon successful compleition of the project the product
of worth x will be produced and then introduced into the market,
yielding a given terminal reward R. For example, R may be the
expected value of the net profit stream collected from. the comple-
tion date onwards, discounted to the completion date. The de-
velopment process requires allocation of resources at each stage,
which may be aggregated into the monetary expenditure a, € [0,B],
n=0,1,2,..., where B denotes the maximum amount available. The
terminal reward as well as the interim development expenditures
are discounted at rate B €[0,1), i.e. B is the present value of a
unit income to be earned in the next period. Inclusion of the
discount factor provides, among other things, an incentive to reach

the target at an early date.
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During the development process the worth of the product changes
stochastically from one stage to the next due to two types of uncer-
tainties. Internal uncertainties form an integral feature of any
research and development program, which involves activities of un-
certain nature, such as generation of new ideas, formation of theories.
their experimental verification and technological implementation.
External uncertainties, on the other hand, stem from random changes
in economic conditions such as introduction of new competing products,
shifts in consumer tastes, changes in availability of factors of
production, etc. At any stage of the development process, an expen-
diture of resources counteracts these uncertainties either success-
fully, thereby increasing the product worth, or unsuccessfully, re-
sulting in its decrease. A higher expenditure in any stage will be
assumed to result in a greater chance of success, though at a de-
creasing rate, thus reflecting decreasing marginal returns to scale.
Let p(a) be the probability of success in a stage as a result of an
allocation a, where p(-) is a continuous, twice differentiable,
concave and nondecreasing function with p(0) = 0, implying necessity
of effort to achieve success in face of an unfavorable environment.

If success (failure) occurs at any stage, the magnitude of
increase (decrease) in the worth of the product may depend upon its
current worth x and will be denoted by U(x) (L(x)), a continuous
twice differentiable function on (0,x). If the current product worth
is too low, there is a large scope for its improvement and hence a
success will result in a high increase in the product worth. On the
other hand, a product of superior initial quality can not be further

improved significantly, due to technological limitations and



saturation effects. Similarly, loss due to an unsuccessful alloca-
tion is likely to be high in case of a product of high worth, because
of losing a portion of a large market share to a competitor, say,
while a low worth product has little to lose in spite of failure.
Furthermore, it is reasonable to assume that improvement (reduction)
in the worth is decreasing (increasing) at a decreasing rate due to
enhanced saturation effects. Thus, U(*) (L(-)) is assumed to be non-
negative, nonincreasing (nondecreasing) and convex (concave) on
(0,x). Also we assume that x + U(x) and x - L(x) are nondecreasing
in x, so that starting a stage with a higher worth yields a higher
worth at the end of the stage both in case of a success or a failure
in that stage, i.e. %y > X, implies x; + U(xl) > x2 + U(xz) and

Xq - L(xl) > x,y - L(xz). Finally we assume:that U(x) + L(x) =

[x + U(x)] - [x - L(x)] is nondecreasing in x. Thus, the opportunity
loss in the product worth due to suffering a deterioration rather
than an improvement can not decrease as we get closer to the target,
so that the nearer we are to the target the more the success in

each stage of the development counts. The components of the con-
trolled random walk model and the intuitively meaningful assumptions
described above are stated below and will be needed to obtain sub-
sequent results.

For any x, €[0,x], a, €[0,B], n=0,1,2,...,

x, + U(x_) with probability p(an)
(2.1) X 1= n ~

L x, - L(x)) with probability [1 - p(an)]

where

(2.2) 0 <pa) <1, p0) =0, p’(a) >0, p“(ay) <0



(2.3) 0 < U(xy), 0 < L(x,), 0=0(0) =L(0) = U(x) = L(x)
(2.4) 0 <-U'(x)) < L,(Xn)-f 1, X €(0,x)
(2.5) 0 =U"(x)), 0 > L(x) s X, €(0,x)

An immediate consequence of these conditions is that, development
here refers to improving upon a product of some positive worth and
that starting with such a product and spending a positive amount
in each stage of the development process, there is a positive proba-
bility that a product of the desired worth x will be developed in
a finite number of stages, at the end of which the process terminates.
A simple example where (2.1) - (2.5) are satisfied can be obtained
by taking p(g) =1 - e-ka, U(x) = k(x - x), and L(x) = kx, where
A >0, k €0,1), x €(0,x) and U(0) = L(x) = 0.

An allocation strategy I is a sequence of (possibly randomized)
decision rules {Hn :n=0,1,2,...} which specifies an expenditure
a, €[0,B] in each stage n of the development process, as a Borel
measurable function of its previous history hn = (Xo’ao""xn-l’
a .1 xn), n=20,1,2,... i.e. Hn(- lhn) is a regular conditional
probability measure on [0,B]. A strategy @I is said to be (non-
randomized) Markov if @I = {an : n=0,1,2,...} where o: [0,x] — [0,B]

is Borel; such a policy specifies an allocation ah(xn) at the nth

stage if the product worth then is X . A (nonrandomized) stationary
strategy is given by a single Borel map « : [0,x] = [0,B], so that
at any stage of the development process if the current product worth

is x, the allocation o(x) is specified by the strategy.

Starting in an initial state x_ and following an allocation



strategy II let
(2.6) N(x,,I) = Inf{n : x = x, n=0,1,2,...}

be the random stopping time (possibly infinite) at which the develop-
ment process successfully terminates, thereby yielding a reward R.
The net expected discounted return, starting in X and following I,
may then be denoted by

N(XO,H)-l

N(XO,H)

(2.7) W(x,,0)= E[p R - Z " a_|x_,11].

n=0

Finally, denote the optimal value function

(2.8) V(x,) = Sup W(XO,H), X €[0,x]
II

From the above definitions and conditions it clearly follows that

(2.9) V(x) =R, v(0) = 0.

L.

A strategy I is said to be optimal at x if W(XO,H*) = V(xo) and
is said to be optimal if it is optimal at x_ for alllx0 elo,x].

The objective of a development manager is to select an optimal
strategy. This problem can be analyzed naturally in the framework
of Markovian decision processes with discounting (see, for example,
B8lackwell [2], Strauch [22] and Ross [19]. The optimal value function
V : [0,x] » R is known to be (universally) measurable and satisfies
the dynamic programming functional equation (see Strauch [22],

Theorem 8.2), which in our case becomes



(2.10) V(x) = Sup {-a + Bp(a5 V(x + U(x))f+
a€f0,B] pll-p(a)] V{x - L(x))},

x € [0,x].

It can be easily verified that the topological and measurability
conditions of the selection theorem of Maitra [17] are satisfied in
our model, so that, according to his results, there exists an optimal
stationary strategy a* : [(0,x] = [0,B], which, when in state x,
chooses an action a*(x) attaining the supremum in the functional
equation (2.10). We shall characterize the structure of the optimal
value function V(-) and the optimal stationary strategy a*(-) in the
next sction. We close this section by indicating the relationship
of our model to other related R and D resource allocation models
in the literature.

In the area of dynamic resource allocation in an R and D
project, Lucas [16] and Kamien and Schwartz [14] have obtained
forms of optimal expenditures as functions of time, using control
theory, while Hess [12] and Aldrich and Morton [1] have used the
dynamic programming methodology. The corresponding problem of
optimally distributing resources among several projects has been
considered by Gittins [9,10,11] and Laska, Meisner and Siegel [15].
In these and other related models, the state of the project at any
time is classified as either being (completely) successful or not,
partial success during its progress being inconsequential. Success
of the project may occur instantaneously at any time, the proba-
bility of success being a function of the total effort accumulated

till that time, thereby reflecting the internal uncertainty regarding
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the total effort required for successful completion of the project.
Such a model may be applicable in the development of, for example, a
desired chemical compound or a cure for a disease, or, more
frivolously, in solving a jig-saw puzzle.

Our model, on the other hand, may be applicable in the de-
velopment of, for example, a more efficient energy saving device,
a consumer product of improved quality, etc., where the interim
progress (partial success) of the project can be meaningfully
evaluated in terms of the current product quality developed and its
worth under current economic conditions; reaching the target worth
then corresponds to the total success. Thus, total success of
the project is a cumulative result of a series of interim partial
successes and failures. An interim success or a failure depends
on both the internal and the external uncertainties and is partially
controlled by current resource expenditure, the cumulative effort
being of importance only insofar as its past effectiveness as re-
flected in the present worth. As a consequence, the optimal alloca-
tion strategy is a function only of the currently achieved progress,
so that we have an adaptive feedback control strategy, rather than
an expediture plan which may have to be revised at each stage of the
project. Finally, it may be noted that our model may be specialized
to the discrete time version of the above mentioned models by taking
a binary valued state space, appropriately selecting U(*) and L(-)

and modifying p(*) to be a function of the cumulative effort.
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3. STRUCTURE OF THE OPTIMAL POLICY

As a finite horizon version of (2.10) consider the sequence of
[=-]

functions {Vn(-)} defined recursively by
n=o

0 if0 <x <X
V (x) = {
o —_—
R ifx=x
(3.1)
V() = alg?}(;,B] {-a+ g pa) V(x +U(x))

+ 8L - p(a)] V_(x - L(x))}

Vn(X) may be interpreted as the maximum expected return from the
project starting with the product of worth x if we are allowed to
continue for no more than n periods. It follows (e.g. see Ross [19])
that 1lim Vn(x) = V(x) uniformly in x. This fact will be used in

n—-ec
the proof of the following proposition.

Proposition 1. The optimal value function is nonnegative, bounded,

nondecreasing and convex for all x €[0,x], i.e.

(3.2) (1) R=V(x) 2V(x) >2V(0) =0

(3.3) (1)  x; > x, implies V(xq) 2 V(x,)

(3.4) (iii) V(g + (1-0)%y) < A V(xg) + (1-1) V(x,) if r €[0,1],

xl’ Xz GEO,X] ]

Proof: We prove monotonicity and convexity of each Vh(') by induction
on n, whereupon noting that these properties are preserved in the limit

as n + », (ii) and (iii) follow, from which (i) easily follows
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upon using (2.9). Clearly from (3.1), Vo(-) is nondecreasing and
convex, Suﬁposé Vh(') is nondecfeasing and convex. Since x + U(x)
and x - L(x) are nondecreasing and convex in x by assumptions (2.4)
and (2.5), it can be checked that Vn(x + U(x)) and Vn(x - L(x)) are
nondecreasing and convex in x. Hence the maximand in (3.1) is non-
decreasing and convex in x for each a; hence Vn+1(') is nondecreasing
and convex, completing the induction argument. Q.E.D.

Thus, optimally developing the target quality never yields
losses, while it is clearly best to have the desired quality product
on hand to be marketed. Also starting the development with a product
of higher work and continuing optimally will always yield a higher net
return, and, moreover, this advantage increases as we get closer to
the target. Next, we examine the form of an optimal stationary

strategy « (°) as a function of the state variable x.

Proposition 2. The optimal stationary strategy aa(') is nondecreasing

in x €(0,%) with o (0) = o (%) = O.

al

Proof: As remarked in section 2, an optimal allocation aﬁ(x) maximizes
the right hand side of the functional equation (2.10) for each x.
A necessary condition for aﬁ(x) in (0,B) to maximize this right hand

side is -1 + 8 p’(a (x)) V(x + U®)) = B p’(a (x)) V(x - L(x)) = 0, i-e.

(3.5)

;. x _ 1
P'(a (%)) = BLV(x+U(x)) -V (x-L(x)) ]

Since,by Proposition 1,V(-) is nondecreasing and convex and U(x) + L(x)
is nondecreasing by assumption (2.4), it can be shown that the tight

hand side of (3.5) is nonincreasing in x. Now, using concavity of

p(-), it follows that o(x) is nondecreasing in x. The maximand in
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(2.10) is concave in a since V(x + U(x)) > V(x ~ L(x)) (by Proposition 1),

hence (3.5) is also sufficient for an interior maximum. For a boundary

solution of ah(x) = 0 to be optimal (3.5) is replaced by

, 1
P'(O) = gIVGFTE) ) VELE) T

and if this holds for some x’, then,again using Proposition 1 and
that U(x) + L(x) is nondecreasing, it also holds for all x < x’.

Similarly for ah(x) = B to be optimal, we have

, 1
p’(B) > BlV(x+U(x))-V(x-L(x)) ]

and if this holds for some x”, then it will also hold for all x > x”.

Define x, = Sup {x' : ah(x’) = 0} and

%" = Inf {x” : w(x’) = B}

Then a*(x) is 0 for all x €[0,x,] and B for all x E[X*,§] and is

nondecreasing for intermediate values of x. Finally, upon reaching

the worth 0 or the target x the process is absorbed, by assumptions

(2.3), and yields O or R regardless of a, and hence a*(E) = a*(O) = 0.
Q.E.D.

Thus, the closer we get to the target, the more optimistic

our outlook becomes and the more we are encouraged to strive harder.

On the other hand, if at some stage we fall too far away from the

goal (i.e. below x.), the terminal reward is not lucrative enough

in relation to the expected effort required to attain it, hence it

is not optimal to continue the development, regardless of the

effort expended in the past. Thus, at any stage of the development

we may stop either because we have completed the project (i.e. x = X)



- 13 -

or because it is not worthwhile completing it (i.e. x < x,). As a
special case, if the initial worth of the product is X 5’2*, it is
optimal not to undertake the development at all, while if X, = X,
then the development effort is unnecessary. Allowing for this dis-
continuation possibility is in contrast with the optimal "pursuit"
and the "first passage' problems considered by Eaton and Zadeh [8]
and Derman [7], where reaching the target is compulsory and is en-
sured, in the case of finite state and action spaces, by imposing
conditions on the transition probabilities and interim costs. Also
these models concentrate on the problems of existence of an optimal
strategy and its computation, rather thanon its form under specific
structural assumptions.

A useful consequence of the results obtained so far is that,
in search for an optimal development strategy under the stated
assumptions one may restrict attention to the class & of stationary
strategies which are monotone nondecreasing in the state variable.
Theoretically, for any o € ¢ we may, in principle, compute the net
expected discounted return Va(x) from following such a strategy by

solving the system of equations

V,(x) = - alx) + 8 p(a(x)) V (x +U(x)) +

B[]—-P(Q(X))] VQ(X‘L(X)), X E[O,X]

and then we may select o(°) maximizing Va('). If the state and
action spaces are finite, the policy improvement routine (Howard L137])
can be used to yield the optimal strategy. Otherwise, from the
practical point of view, one may select a set @’ of strategies in

¢ and, as in Marschak-Yahav [18] implement them simultaneously to
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obtain better estimates of Va(-), « € ¢’, in each period. As the
development proceeds, strategies with low estimates are sequenti-
ally abandoned, finally ending up with the most attractive strategy
in ¢’ with an estimate of V(-). The selection of the initial set
¢’ in the Marschak-Yahav approach is thus simplified by knowing the
form of the optimal strategy.

Monotonicity and nonnegativity of a"(-) and V(+) enable us

to write
(3.6) [0,x,] = {x €X : o (x) = 0]
(3.7) [0,x, 1= {x €X : V() =0}

wlaals
FACAY

The following proposition relates these two sets.

Proposition 3. x, < x,.,, with equality holding if p“(0) < O.

Proof: Suppose x ¢[0,x.], i.e. a%(x) = 0. Since a*(-) must satisfy
the functional equation (2.10) and since p(0) = 0 we have V(x) =

B V(x - L(x)) whenever a*(x) = 0. Since V(*) is nonnegative, non-
decreasing and L(x) >0 and g < 1l,this equality is satisfied only

if V(x) = V(x - L(x)) = 0, hence x < x,,. Next, suppose V(x) =0
(and hence V(x - L(x)) = 0). The optimality equation (2.10) now

becomes

(3.8) 0 = Max {-a + gp(a) V(x + U(x))}.
. a€l0,B]

Since the maximand is O at a = 0 and is concave in a, it is necessary

and sufficient that it be nonincreasing in a at a = 0 in order that
1

——— . In that case the
gp “(0)

(3.8) be satisfied, i.e. V(x + U(x)) <
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set of a's attaining the maximum in (3.8) constitute an interval

[0,a] with a*(x) €[0,3]. This interval reduces to a singleton set
{0}if p”(0) < 0 (so that the maximand in (3.8) is strictly decreasing)
in which case a*(x) = 0 and thus x, = X... Q.E.D.

Thus, if we start in (or reach) a state in [x,,X,.] we may
pursue the project, though the expected return will exactly balance
the expected cost of attaining it. 1In this region, if we are a
risk averter we may choose the sure thing ¢ = 0 (i.e. abandon the
project) yielding the same expected return of zero. On the other
hand, if we are a risk lover, we may follow the non-null policy
yielding zero net expected return. If p”(0) < O and the current
quality is x,, or worse, the only optimal strategy is to discontinue.
From now on we will assume this to be the case, so that, for a

given project, the optimal stopping region becomes [0,x,] y {x}.

4. COMPARISON OF DEVELOPMENT PROJECTS

A development project & is characterized QZ the initial
worth of the product X the desired worth X, the;Qalue R of
completing the project, the inherent and environmental uncertain-
ties in the development process as controlled by effort and sum-
marized in p(+) and the maximum effort B available to-be expended.
Thus, we may denote the project by & = (xo,g,R,p(-),B), while its
value VQ(') is the net expected discounted return function as a
result of conducting this project according to the optimal sta-
tionary strategy a;(') as in section 3.

As in Proposition 1, Vg(xo) is nondecreasing convex in X
so that, other things being equal, a project with a better initial

quality product is more profitable in the long run as well.
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Similarly, it easily follows from the definitions

— N(x,m,x)-1
(4.1) V,(x) = Sup E{R~BN(X’H’X) - Y gla_ |x,}
H Z—l
n=1
(4.2) N(x,I,%X) = Inf{n : x_ = x|x,0}

n

that, for all x, VQ(X) is nondecreasing and convex in the terminal
return R for a given target state X so that it is better to under-
take a project with a higher terminal reward. Analogously, for a
given terminal reward R, we prefer a project with lower required
target quality. Similarly, increasing the budget B enlarges the
class of admissible strategies over which the supremium-is taken

in (4.1), so that VQ(X) is nondecreasing in B. Finally, if the
effectiveness of effort p(a) is higher for all a, the corresponding
stopping time in (4.2) will be lower (a.s.) under all policies and
hence V@(') will increase. These intuitively appealing observa-

tions regarding the value of a project are summarized as

Proposition 4. The value VQ(XO) of a project # is convex and
nondecreasing in X and R, nondecreasing in p(:) and B and non-

increasing in x.

Combining Propositions 1 and 4 we get

Proposition 5. Let x,.(#) = Sup{x : V@(x) = aZ(x) = 0}. Then

x,(#) and hence the optimal stopping region [b,é*(g)]ll{§} is

noénincreasing in R, p(-) and B, and nondecreasing in Xx.
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Thus a higher terminal reward or a lower desired quality provide a
greater inducement for undertaking the development of a lower initial
quality product.

The above remarks can serve as useful guidelines to the solution
of the general problem of R and D project evaluation and selection
treated extensively in the literature (see, for example, the survey
paper by Cetron, Martino and Roepcke [4]). Thus, if a total budget
B is to be distributed among n activities in each period, the allo-

cation B; i=1,2,...,n with

n
.B B, <B yields projects B1seeesfps
l=

where 6& = (in,xi,Ri,pi(’), Bi)’ with values Véi(xoi)’ i=1,2,...,n.
Conceptually this problem of selecting an optimal subset of projects

then becomes

n
'.\_‘f
Max ). VQ (x )

w0

Tt
i~ 3

[w]

fA

[w]

B. >0 i=l,...,n

which may be approximately solved if the estimates of V@ (xO ) are
i ti

obtained as indicated in section 3.

Finally, we indicate the relevance of our model in the con-
text of optimal dynamic resource allocation among multiple projects
as considered by Gittins [9,10,11], Laska, Meisner and Siegel [15]
and others. In our version of the model the states of progress of
n (possibly interrelated) projects proceeding simultaneously may

be described by an n-vector, the terminal reward being a function
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of the n-vector of the desired target levels. The optimal station-
ary strategy would then specify in each period the distribution of
a total budget among these n activities as a function of the current

progress state vector. This problem will be treated elsewhere.

5. SUMMARY

Thus, we have analyzed the problem of optimal dynamic
resource allocation in management of a research and development
project within the framework of Markov decision processes. We have
characterized an optimal stochastic feedback control strategy which
is time invariant and specifies the resource allocation in any
stage of the project as a function of the current state of its
progress. ILf the current product worth is too low, it prescribes
terminating the project short of its successful completion. If the
overall progress of the project so far has been satisfactory,
resulting in a reasonably good product, then it is optimal to con-
tinue its further development; the better the current product the
greater should be the effort to develop it further until its cul-
mination in a successful conclusion. Thus, the problems of optimal
starting, continuing and stopping of a development project, as
indicated in section 1, have been integrated into a single problem

of finding an optimal strategy.
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