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Abstract

This paper establishes a new probability result: Fix η ∈ (0, 1/2] and let {Xi}i∈N denote a

family of independent random variables such that Pr(Xi = 1) = 1−Pr(Xi = 0) = pi ∈ [η, 1−η].

For any K > 0, ε > 0, and function f : {0, 1}n → [0,K],

|{i : E[f(X1, . . . , Xn)|Xi = 1]− E[f(X1, . . . , Xn)|Xi = 0] > ε}| ≤ N(ε,K, η) + 1 (1)

where N(ε,K, η) = K2

2πε2η2 .

In many environments, a dependent variable potentially depends on a large number of indepen-

dent binary variables. In economics, an agent’s utility may depend on a large number of stochastic

consumption events, a market price can depend on a large number of individual decisions, a produc-

tion function may depend on many stochastic factors, etc. In econometrics, the dependent variable

in a nonlinear regression can potentially depend on many independent variables. In genomics, the

occurrence of disease can potentially depend on a large number of genes. In quantum mechanics,

the realization of a phenomenon can depend on the spin positions of large number of particles,

etc. This paper shows, however, that if the variable of interest is bounded, it can only depend

significantly on at most a fixed number of independent variables. This number depends only on

the significance level of interest and on the probability range taken by the independent variables.

Lemma 1 Let {Xi}i∈N denote a family of independent random variables such that Pr(Xi = 1) =

Pr(Xi = 0) = 1/2. For any K > 0, ε > 0, and function f : {0, 1}n → [0,K],

|{i ∈ {1, . . . , n} : E[f(X1, . . . , Xn)|Xi = 1]− E[f(X1, . . . , Xn)|Xi = 0] > ε}| ≤ N(ε,K) + 1

where N(ε,K) = 2
π
K2

ε2
.

This implies in particular that the fraction of independent random variables whose positive influence

exceeds ε goes to zero as n gets large, at rate 1/n. Obviously, a symmetric statement with the

same bound holds for negative influence.
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Proof. Fix some K,ε,n, and f , and let Nf = {i : E[f(X1, . . . , Xn)|Xi = 1]−E[f(X1, . . . , Xn)|Xi =

0] > ε} and nf = |Nf |. We will derive an upper bound N on nf . Any bound N obtained for the

parameters (ε,K) is also a bound for the parameters (αε, αK), for any α > 0. Therefore, we focus

on K = 1.

By relabeling coordinates, we can assume without loss of generality that Nf = {1, . . . , nf}. By

letting g(X1, . . . , Xnf
) = E[f(X1, . . . , Xn)|(X1, . . . Xnf

)], the law of iterated expectations implies

that for i ∈ {1, . . . , nf}, E[g(X1, . . . , Xnf
)|Xi = 1]−E[g(X1, . . . , Xnf

)|Xi = 0] = E[f(X1, . . . , Xn)|Xi =

1] − E[f(X1, . . . , Xn)|Xi = 0] > ε and hence ng = nf . Therefore we may focus without loss on

functions like g for which the influence of each variable exceeds ε.

Thus suppose that nf = n and let X = {0, 1}n. Note that any bound N obtained when n

is even implies a bound N + 1 for n odd. To economize on notation, we focus on n even. By

assumption, we have for each i ∈ {1, . . . , n}∑
x∈X :xi=1

f(x)−
∑

x∈X :xi=0

f(x) > ε2n−1

Notice that if x has j zeros and n − j ones, the term f(x) is counted positively in n − j of the

previous inequalities and negatively in the j remaining ones. Summing up the n inequalities and

rearranging the terms therefore yields

n∑
j=0

(n− 2j)
∑
x∈X j

f(x) > εn2n−1,

where X j denotes the set of all elements of {0, 1}n with exactly j zeros. Since f(x) is nonnegative

and bounded above by 1, this implies that

n/2∑
i=0

(n− 2i)

(
n

i

)
> εn2n−1. (2)

Because
(
n
i

)
=
(
n
n−i
)

and
∑n

i=0

(
n
i

)
= 2n, the left-hand side of (2) is equal

n

n/2∑
i=0

(
n

i

)
− 2

n/2∑
i=1

i

(
n

i

)
=
n

2

(
(2n +

(
n

n/2

))
− 2

n/2∑
i=1

i

(
n

i

)
.

Since i
(
n
i

)
= n

(
n−1
i−1
)

and
(
n−1
i

)
=
(
n−1
n−1−i

)
, the last term of the previous expression equals

2n

n/2−1∑
j=0

(
n− 1

j

)
= n

n−1∑
j=0

(
n− 1

j

)
= n2n−1

Therefore, (2) implies that
n

2

(
n

n/2

)
> εn2n−1,
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or
n!

(n/2)!2
> ε2n.

Using Stirling’s formula,1 this implies that √
2

πn
> ε

or

n <
2

πε2
.

This shows the lemma for

N(ε,K) =
2

π

K2

ε2
.

Lemma 2 Fix q ∈ N++ and η ∈ (0, 1/2], and let {Xi}i∈N denote a family of independent random

variables such that Pr(Xi = 1) = 1 − Pr(Xi = 0) = ai2
−q for some integer ai such that ai2

−q ∈
[η, 1− η]. For any K > 0, ε > 0, and function f : {0, 1}n → [0,K],

|{i : E[f(X1, . . . , Xn)|Xi = 1]− E[f(X1, . . . , Xn)|Xi = 0] > ε}| ≤ N(ε,K, η) + 1

where N(ε,K, η) = K2

2πε2η2
.

Proof. As with Lemma 1, we can focus on K = 1 and n even and obtain the result for general

K > 0 by jointly rescaling K and ε and adding 1 to the upper bound to allow for n odd. Fix some

integer n and function f : X = {0, 1}n → [0, 1]. For each i ∈ {1, . . . , n} we will decompose Xi

into q binary variables {X̃k
i }k=1,...,q which are i.i.d. with Pr(X̃k

i = 1) = Pr(X̃k
i = 1) = 1/2. For

each i ≤ n, let Ai denote a subset of {0, 1}q with ai elements, containing all elements such that

X1
i = 1 if ai ≥ 2q−1, and covered by these elements otherwise. Letting X̃i = (X̃1

i , . . . , X̃
q
i ), notice

that Pr(X̃i ∈ Ai) = ai/2
q. We now show that

Pr(X̃i ∈ Ai|X̃1
i = 1)− Pr(X̃i ∈ Ai|X̃1

i = 0) ≥ 2η. (3)

Suppose first that ai ≥ 2q−1. In this case, by construction X̃i surely belongs to Ai if X̃1
i = 1. Let

δ = Pr(X̃i ∈ Ai|X̃1
i = 0). We have 1/2 + δ/2 = ai/2

q. By assumption, ai/2
q ≤ 1− η. Combining

this yields 1 − δ ≥ 2η, as desired. If instead ai < 2q−1, X̃i cannot belong to Ai if X̃1
i = 0, and

belongs to it with probability ai/2
q−1 ≥ 2η if X̃1

i = 1, which yields again (3).

Let f̃ : {0, 1}np → [0, 1] be defined by

f̃(x̃1, . . . , x̃n) = f(1x̃1∈A1 , . . . , 1x̃n∈An).

1While Stirling’s formula is an approximation, the bound obtained here is exact: from Robbins (1955), we

have
√

2πnn+1/2e−ne1/(12n+1) < n! <
√

2πnn+1/2e−ne1/12n. This implies that n!/((n/2)!)2 is bounded above by

(2πn)−1/22n+1e1/(12n)−2/(6n+1). The last factor is less than one for all n ≥ 1 and can thus be dropped from the

upper bound.
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By construction, the random variable f̃(X̃) has the same distribution as f(X). Moreover,

E[f(X)|Xi = 1] = E[f(X̃)|X̃i ∈ Ai]

and

E[f(X)|Xi = 0] = E[f(X̃)|X̃i /∈ Ai].

The function f̃ depends on nq iid symmetric Bernoulli variables. Lemma 1 can thus be applied to

f̃ , and shows that

E[f̃(X̃)|X̃k
i = 1]− E[f̃(X̃)|X̃k

i = 0] ≤ ε

except for at most N = d2/πε2e of these np variables. If n > N , this implies that there is a subset

N of {1, . . . , n} with at least n−N elements such that for all i ∈ N

∆k
i = E[f̃(X̃)|X̃k

i = 1]− E[f̃(X̃)|X̃k
i = 0] ≤ ε

for all k ∈ {1, . . . , q}, and in particular for k = 1. Notice that for r ∈ {0, 1},

E[f̃(X̃)|X̃k
i = r] = Pr(X̃i ∈ Ai|X̃1 = r)E[f(X)|Xi = 1]+(1−Pr(X̃i ∈ Ai|X̃1 = r))E[f(X)|Xi = 0].

This implies that

∆i = (E[f(X)|Xi = 1]− E[f(X)|Xi = 0])(Pr(X̃i ∈ Ai|X1
i = 1)− Pr(X̃i ∈ Ai|X1

i = 0))

Since the left-hand side is less than ε for i ∈ N and the probability difference on the right-hand

side exceeds η, we conclude that

E[f(X)|Xi = 1]− E[f(X)|Xi = 0] ≤ ε/2η.

Setting ε′ = ε/2η, this proves the lemma withN(ε′, 1, η) = 1/2πε′2η2 and, by rescaling, N(ε,K, η) =

K2/2πε2η2.

Theorem 1 Fix η ∈ (0, 1/2] and let {Xi}i∈N denote a family of independent random variables

such that Pr(Xi = 1) = 1 − Pr(Xi = 0) = pi ∈ [η, 1 − η]. For any K > 0, ε > 0, and function

f : {0, 1}n → [0,K],

|{i : E[f(X1, . . . , Xn)|Xi = 1]− E[f(X1, . . . , Xn)|Xi = 0] > ε}| ≤ N(ε,K, η) + 1 (4)

where N(ε,K, η) = K2

2πε2η2
.

Proof. Fix some n even, function f : {0, 1} → [0,K] and n-dimensional vector p such that

pi ∈ [η, 1− η] for all i. For each q ∈ N++, let pq denote an dimensional vector taking values in the

set {1/2p, 2/2p, . . . , 1− 1/2p} such that pqi ∈ [η, 1− η] and |pqi − pi| ≤ 1/2q for all i. Let Eq denote
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the expectation taken with respect to the probability vector pq. From Lemma 2 applied to pq, we

have

Eq[f(X)|Xi = 1]− Eq[f(X)|Xi = 0] ≤ ε (5)

for all i, except for a subset Nq of {1, . . . , n} which contains at most N(ε,K, η) = K2/(2πε2η2)

elements. Since the set {1, . . . , n} is finite, there exists an infinite subsequence of {Nq}q≥1 which is

constant, equal to some set N of cardinality at most N(ε,K, η).

The conditional expectations entering (5) are polynomial and, hence, continuous in q. Therefore,

Eq[f(X)|Xi = 1] − Eq[f(X)|Xi = 0] converges to E[f(X)|Xi = 1] − E[f(X)|Xi = 0] for all i as

q → +∞. Applying this observation to i ∈ N for the converging subsequence proves the result.
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