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Abstract

We explore when it is optimal in Bayesian persuasion environments for senders to

commit to signal structures which induce the receiver to take higher actions when the

underlying state is higher. Building on the literature on monotone comparative statics,

we provide a technique to compute the optimal monotone signal structure. We also

identify primitive conditions that guarantee that these are optimal among all (possibly

non-monotone) signal structures. When the action space is binary, supermodularity of

the sender’s and receiver’s preferences suffices for the optimal signal to have a monotone

structure. With a continuum of actions, the conditions are more intriguing. We identify

a novel single-crossing condition using a virtual utility representation of the sender’s

payoff. Applications are given to quadratic loss functions with biases and to credit

ratings.
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1 Introduction

A prominent problem in economic literature is that of inducing one party, the “receiver,” to

take the action desired by another party, the “sender,” by influencing the receiver’s beliefs.

One angle from which to analyze this problem is found in the literature on persuasion, where

the sender is given commitment power in designing the signal structure. In an influential

paper, Kamenica and Gentzkow (2011) (henceforth KG) show that, when the sender’s payoff

is convex in the receiver’s beliefs and signal design is costless, it is optimal to reveal all

information to the receiver; this result was extended by Kamenica and Gentzkow (2014) to

environments where signals’ costs are increasing in their informativeness. More generally,

the optimal signal structure generates a payoff to the sender from the concave closure of his

possible payoffs over all possible posteriors for the receiver.

One can think of many environments that fit into the persuasion framework in which the

structure of signals is monotone, in the sense that a higher realization of the underlying state

leads to a “higher” message being sent in that it induces the receiver to take a higher action.

There are two reasons why this may be so. First, as in the signaling literature, there may

be complementarities between the underlying state and the action chosen by the receiver.

Second, there may just be an exogenous constraint that forces the signal structure to be

monotone. For instance, Goldstein and Leitner (2015) consider a model of credit ratings, in

the optimal ratings are often not monotone in the creditworthiness of the banks. However,

due to legal and/or incentive compatibility constraints, such non-monotone credit ratings

may be difficult to enforce. Another environment in which monotone signal structures seem

appropriate is that of recommendations: a better candidate for a job receives a better review,

in the sense that it leads to the better candidate getting better offers. One may also consider

a school administrator placing students in courses of the optimal level of difficulty, where

teachers (once the students are placed) set the difficulty level based on their own criteria.1

In this paper, we develop a technique of solving for optimal monotone signal structures

that applies to both of the scenarios described in the previous paragraph. We take a first-

order approach to the persuasion problem, examining the effects on the sender’s payoff of

“swapping” states between posteriors, by placing slightly more weight on a given state for a

given posterior while simultaneously subtracting that weight from a different posterior. By

doing so, we can find the boundary conditions at the optimal monotone structure. This first

step permits us to characterize optimal signal structures when they are constrained to be

monotone. The same approach also enables us to identify appropriate primitive conditions

1Though technically not a persuasion problem, this can be analyzed using the same techniques.
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that guarantee that the signal structure that maximizes the sender’s payoff within the family

of monotone structures also maximizes his payoff among all possible ones.

While KG demonstrate the existence of an optimal signal structure, their approach does

not address the issue of whether these is monotone. Indeed, by their techniques, it is quite

possible that one wish to pool states that are not within a connected interval, or to send

multiple possible messages with positive probability for the same state. Furthermore, while

the approach of KG is practical for low-dimensional state spaces, it is often intractable when

the state space is large. Importantly, the difficulty with the approach in KG arises even for

state spaces with at least three elements. Additional methods are often needed in practice

to simplify the problem.

Our approach permits one to bypass some of these difficulties by focusing on partitional

structures. Specifically, if the state space Ω is a subset of the real line, then each message

translates into a posterior that consists of the prior restricted to a subinterval of Ω. We char-

acterize the optimal partition structure via a novel single crossing property: more specifically,

if the support for two messages overlap, the single-crossing property we identify implies that

it is optimal to “swap” elements of the support from one to the other to remove the overlap.

This “swap” consists of a Gâteaux derivative in the direction of the change of the conditional

distribution. The resulting method is similar to that in Bergemann and Pesendorfer (2007),

who consider the simultaneous problem of providing information and designing an optimal

auction for bidders with independent private values. They show that the optimal information

structure is generated by partitioning each player’s value space into a finite set of intervals

by showing that for any non-monotone partition, there exists a local improvement via swap-

ping for some state. Our results can be viewed as a generalization of theirs by identifying

a single-crossing condition that guarantees improvements over non-monotone structures via

swapping.

It has been noted in the signaling literature that, whenever the sender’s and receiver’s pref-

erences are supermodular, there is a monotone partitional equilibrium, in which higher types

send higher messages, which in turn induce higher actions by the receivers. For instance,

the seminal papers of Spence (1973) about costly job-market signalling, and Crawford and

Sobel (1982) on cheap talk, hinge on supermodularity for the sender’s payoffs between the

underlying state on one hand, and the respective actions chosen by the sender and the re-

ceiver. More recent papers by Kartik (2009) and Mensch (2016) extend the conditions under

which there exists an equilibrium in which the sender’s signalling action is increasing in the

underlying state. The intuition is that, when there is no commitment, in equilibrium, the

receiver’s beliefs are specified for any action that the sender may take. A receiver therefore
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cannot detect that a type has deviated, but only the choice of message, for which the equi-

librium specifies her belief. The sender must therefore take the receiver’s beliefs and hence

her response as given when considering a potential deviation. So, a deviation by the sender

does not change the action that the receiver will take, and single-crossing is determined as if

the receiver is choosing an action for an exogenously specified belief.

In persuasion environments, single-crossing becomes more complicated. When the receiver

has two actions available, supermodularity of the receiver’s and sender’s preferences in the

action and state remains sufficient to guarantee that, under the optimal signal structure,

the induced action is higher when the state is higher, though the reasoning is somewhat

different. Consider a pair of posteriors in which, conditional on one of them, the receiver

takes the higher of the two possible actions, and takes the lower of the two conditional on the

other. If the sender increases the weight of a high state in the former posterior, the receiver

is even more inclined to take a high action; similarly, by decreasing the weight of a high

state conditional on the latter posterior, the receiver will be even more inclined to take a

low action. Rather than looking at the change in sender’s payoff from shifting an individual

state, though (as in the case of no commitment), one must verify that the payoff from pairing

a high action with a high state, along with a low action with a low state, is an improvement

over pairing the high action with the low state and vice versa.

However, when the receiver has more than two actions available, supermodularity of the

sender’s payoffs no longer suffices. This is because, when the sender can commit to a certain

signal structure, the sender can no longer take the beliefs of the receiver as given when

optimizing: since the sender directly chooses the posterior, any deviation will change the

beliefs of the receiver. Perturbing the beliefs of the receiver by swapping weight on a state

between two posteriors therefore changes what action the receiver takes for those posteriors.2

Complementarities between the resulting action and the underlying state matter no longer

guarantee optimality of a monotone signal structure: one must also consider the effect that

changing a signal has on the action chosen by the receiver given that her beliefs have been

perturbed.

To account for this difference in the specified beliefs of the receiver, we introduce a novel

complementarity condition on the “virtual utility” of the sender: namely, his payoff, adjusted

by a term compensating for the requirements of incentive compatibility on the part of the

receiver. This notion is analogous to the concept of virtual utility in the mechanism design

literature (for example, in the analysis of optimal auctions in Myerson, 1981), in which the

2While the beliefs will be perturbed in the same way in the case of two actions, supermodularity still
suffices because there is no third action to which the receiver can deviate.
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principal adds a handicap to the agent’s utility to account for the cost of leaving the agents

informational rents necessary to incentivize them to report truthfully.

Interestingly, if we reintroduce supermodularity of the receiver’s payoffs between action and

state, then it is optimal to fully reveal all information, in which case the optimal signal struc-

ture is trivially monotone. Nevertheless, if it is costly to reveal all information (specifically, if

the cost is increasing in the number of posteriors), then the optimal signal structure remains

monotone, but different from full disclosure.

The first-order technique introduced in this paper allows for characterization of first-order

conditions for the optimal signal structure. Specifically, there cannot be an improving swap

(given by the virtual utility function) at the boundaries of the intervals. This greatly simplifies

the conditions that must be checked for optimization as compared to the general persuasion

problem.

In a closely related paper, Ivanov (2015) examines Bayesian persuasion environments in

which the optimal signal structure is monotone partitional. There are several key differences

between our two papers. First, the approach he uses (Schur convexity and majorization)

differs from ours, which is much closer to the monotone comparative statics and mechanism

design literatures. Second, the first-order technique in this paper simplifies finding the opti-

mal partitional structure. Third, our approach is usable in environments where the solution

is exogenously constrained to be monotone, while his is not. Lastly, he considers a broader

range of environments, which allow for incorporation of an additional mediator, as well as

commitment to a strategy by the mediator and/or receiver. While this allows additional

applicability of his results, it may obscure the intuition in the narrower environment of KG,

which we consider here. Due to the differing approaches and goals, our papers should be

considered complementary.

We apply our new approach to some of the classic signalling problems which did not assume

commitment on the part of the sender. Specifically, we examine the implications of our results

for the model of quadratic losses with biases of Crawford and Sobel (1982). We show that

the standard examples of this model satisfy the single-crossing conditions identified in this

paper, and so it remains optimal to partition the state space even under full commitment.

We also provide an example of a constrained solution when signaling is costly. Finally, we

solve for a constrained optimal monotone signal structure in the credit ratings environment

of Goldstein and Leitner (2015).
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2 Setup

For convenience, we use the notation as in KG;3 this will allow for easy cross-reference

and comparison of results. There are two players, a sender (S) and a receiver (R); we will

occasionally refer to the sender as “he” and the receiver as “she.” There is an underlying

compact state space Ω ⊂ R, with an associated prior over the states µ0 taken from the set of

Borel probabilities on Ω, which we denote by (∆(Ω)), that is common to both parties. Prior

to the realization of ω ∈ Ω, the sender can choose a signal structure (π,S), where S is a

compact metric space representing the set of possible realizations of the signal, and

π : [0, 1]→ Ω× S

x→ (π1(x), π2(x))

is a measurable function defined so that the realization of π2(x) = s ∈ S is correlated with

π1(x) = ω ∈ Ω. We assume that x is uniformly distributed over [0, 1]. The interpretation

of this structure is as follows. There is a random variable x which signifies the correlation

between the signal realization observed (s ∈ S) and the underlying state variable ω. To

explain the correlation, there is a function π1(·) which signifies the underlying state, and

π2(·) corresponds to the realized signal. Thus the random variable s ∈ S is generated from

ω via the probability integral transform as modelled by x through the mapping π.4

Example 1: To give an example as to how this would work in the more familiar environment

of a binary state space, suppose that µ0 places equal weight on ω = ω1 and ω = ω2. To

generate two signal realizations {s1, s2} which each occur with probability 1
2

and such that

s1 induces conditional probability 2
3

on ω1 while s2 induces conditional probability 2
3

on ω2,

we would set

π1(x) =

ω1, x < 0.5

ω2, x ≥ 0.5

π2(x) =

s1, x ∈ [0, 1
3
) ∪ [1

2
, 2

3
)

s2, x ∈ [1
3
, 1

2
) ∪ [2

3
, 1]

3While the published edition of KG deals with environments with a finite number of states, they address
the possibility of a continuum of states in their online appendix, and show that the main results extend to
such an environemnt as well. We refer the reader there for a discussion of how to extend their proofs to this
environment.

4This approach, as opposed to the more standard one in which there is a conditional probability π(·|ω)
by which the realized signal is generated, is necessary due to measurability issues that arise when the state
space is uncountably infinite.
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Upon receiving signal realization s, the receiver, using Bayesian reasoning from the signal

structure and the prior µ0, forms conditional probability assessment µ(·|s). The receiver

then chooses some action a from some compact set A ⊂ R. The utility function for the

receiver is given by uR(a, ω), which is bounded and measurable in ω. The sender has utility

function vS(a, ω, π,S) = uS(a, ω) − c(π,S), where uS represents the payoff to the sender

from the action chosen by the receiver, while c(π,S) represents the cost of implementing the

signal structure. Thus uS is the portion of the payoff dependent on a particular realization

of the state and action, while c is the portion that depends on implementing the entire signal

structure. Assume that uS is bounded and measurable in ω, and that c(·, ·) is increasing in

the informativeness of the (π,S) in the sense of Blackwell (1951).

Upon observing s, the receiver’s problem is then

max
a∈A

∫
uR(a, ω)dµ(ω|s)

Define a distribution of posteriors by τ ∈ ∆(∆((Ω)), so that π induces τ , i.e. if π2(x) ∈ S ′ ⊂ S
for exactly some measurable set X ⊂ [0, 1], then∫

S′
dτ(µ(·|s)) =

∫ 1

0

1[π2(x) ∈ S ′]dx

In order to be consistent via Bayes’ Theorem, we must have for all measurable Ψ ⊂ Ω that∫
∆(Ω)

µ(Ψ)dτ(µ) = µ0(Ψ)

Define the choice of action by the receiver, conditional on posterior µ, to be a∗(µ). The

sender’s problem is then, since (π,S) pins down τ ,

max
(π,S)

∫ ∫
uS(a∗(µ), ω)dµ(ω|s)dτ(µ)− c(π,S)

s.t.

∫
∆(Ω)

µdτ(µ) = µ0

A perfect Bayesian equilibrium of this game will consist of a vector (π,S, µ, a∗) such that

(i) µ is Bayes-consistent with the signal structure (π,S), (ii) a∗ is optimal for the receiver

given µ, and (iii) (π,S) is optimal for the sender given a∗. KG showed that in such an

environment, the set of perfect Bayesian equilibria is non-empty as long as c = 0 for all

(π,S); Kamenica and Gentzkow (2014) extended this result to environments in which Ω is

finite and c is increasing in the informativeness of the signal.
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3 Preliminary Definitions

Our central question is to analyze when the optimal signal structure is monotone, in that it

partitions the state space into subintervals of Ω. Before we can identify precisely what this

will mean, we first introduce several preliminary definitions. Suppose that |S| is finite;5 in

this case, τ(µ(·|s)) > 0 for all s ∈ S. Consider any two conditional distributions µ, µ′ ∈ ∆(Ω),

and assign them the probabilities τ(µ) and τ(µ′), respectively. Then we define an addition

operation between µ and µ′ so that µ + µ′ yields a new conditional distribution which is

generated with probability τ(µ+ µ′) = τ(µ) + τ(µ′), where, for any measurable Ψ ⊂ Ω,

(µ+ µ′)(Ψ) =
µ(Ψ)τ(µ) + µ′(Ψ)τ(µ′)

τ(µ) + τ(µ′)

Analogously, we define a subtraction operation which inverts the addition operation, i.e. if

µ̂ = µ−µ′, then µ′+ µ̂ = µ, assuming the posteriors from each such conditional are between

0 and 1 for all such Ψ.

In tandem with the above operations, we allow for scaling of signal realizations. Thus,

δ · µ+ ε · µ′ is defined so that τ(δ · µ+ ε · µ′) = δτ(µ) + ετ(µ′)

(δ · µ+ ε · µ′)(Ψ) =
δµ(Ψ)τ(µ) + εµ′(Ψ)τ(µ′)

δτ(µ) + ετ(µ′)

In much of the ensuing analysis, we examine the effects to µ that adding a conditional

distribution that occurs with probability ε which places conditional probability 1 on the

state ω′; with a slight abuse of notation, we label this by εω′, so that τ(εω′) = ε.

Next, we define an ordering over conditional distributions. This will allow for comparisons

to show that, if a signal structure that is not monotone, there exists a signal structure that

is “more monotone” in the sense of the ordering that will be a local improvement.

Definition 1: A binary relation �σ is an ordering over conditional distributions if the

following two properties hold:

(i) Completeness : For any µ1, µ2, either µ1 �σ µ2 or µ2 �σ µ1

(ii) Transitivity : For any µ1, µ2, µ3, if µ1 �σ µ2 and µ2 �σ µ3, then µ1 �σ µ3. Furthermore,

if one of the orderings is strict, then µ1 �σ µ3.

The ordering of the conditional distributions will be useful to essentially “summarize” the

information contained therein. In particular, we will be interested in the case where higher

5By Proposition 4 in the online appendix of KG, such S is guaranteed to be optimal whenever
min{|A|, |Ω|} <∞.
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distributions induce higher actions on the part of the receiver.

Assumption 1 (Action Monotonicity): µ1 �σ µ2 ⇐⇒ a∗(µ1) ≥ a∗(µ2).

While this assumption may seem restrictive, one should note that for any game that fits into

our model, there will always exist such an ordering �σ: one can simply define the ordering

to be that induced by the action chosen by the receiver upon believing µ.

To relate Assumption 1 to the underlying preferences of the receiver, we introduce the fol-

lowing property that posteriors may hold.

Definition 2: The ordering �σ is FOSD-consistent if µ1((−∞, ω]) ≤ µ2((−∞, ω]) for all

ω ∈ Ω, then µ1 �σ µ2.

The following lemma characterizes the relationship between action monotonicity and the

FOSD-consistency condition. If the induced beliefs from µ1 first-order stochastically domi-

nated those from µ2, we write this as µ1 �FOSD µ2. This will be useful for our later results,

since there will be occasions where we will need to construct an improvement over a given

signal structure through a multi-step perturbation, each step of which preserves first-order

stochastic dominance. We will then be able to preserve ordering of the signals through each

step.

Lemma 1: Suppose that there is a unique optimal action a∗(µ), and that uR is supermodular

in (a, ω). Let �σ be a complete and transitive ordering. Then it is FOSD-consistent if it

satisfies action monotonicity (strictly so if uR is strictly supermodular and either a∗(µ1) ∈
int(A) or a∗(µ2) ∈ int(A)).

The proofs of all lemmas and propositions are contained in the appendix.

The above result shows that, when the receiver has supermodular preferences, it is only pos-

sible to have the optimal action by the receiver be increasing in the conditional distribution

if the ordering ranks the induced distribution higher when it first-order stochastically dom-

inates the other. In this sense, the ordering �σ is a completion of the ordering induced by

first-order stochastic dominance. There are many possible methods of ranking that fall into

this latter category; an important one is by the conditional mean.

Example 2: Suppose that signal realizations are ranked by the conditional mean of the

distribution, i.e. µ1 �σ µ2 ⇐⇒ Eµ1 [ω] ≥ Eµ2 [ω]. This is a complete and transitive

ordering. To see that it is FOSD-consistent, note that Eµ[ω] =
∫
ωdµ(ω). Since f(ω) = ω is

an increasing function, it follows that if µ1 �FOSD µ2, then Eµ1 [ω] ≥ Eµ2 [ω]. �

We can see from here how changing a conditional distribution affects its ordering. Specifically,

if we consider adding more weight to the highest portion of the support of a distribution,
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then it will increasing its ranking in the ordering �σ. Similarly, subtracting weight from the

highest portion will decrease the distribution.

Now that we have defined an ordering over conditional distributions, we can present our

definition of monotone signal structures.

Definition 3: A signal structure (π,S) is monotone if, for all ω1, ω2 ∈ Ω, if ω1 > ω2 and

µ(·|s1) �σ µ(·|s2), then

ω1 ∈ supp(µ(·|s2)) =⇒ ω2 /∈ supp(µ(·|s1))

The following lemma will be useful for our results, stating that without loss of generality, it is

possible to merge realizations which are ranked equally under �σ.6 The intuition is that they

result in the same action chosen by the receiver, and so the sender is indifferent to combining

the two realizations into one. We can therefore assume without loss of generality that, for

every s1, s2 ∈ S, either µ(·|s1) �σ µ(·|s2) or µ(·|s2) �σ µ(·|s1).

Lemma 2: Suppose that the optimal signal (π,S) generates some measurable family of

subsets {S∗(a)} ⊂ S, where |S∗(a)| ≥ 2 and
∫⋃
{S∗(a)} dτ(µ(·|s)) > 0 such that, for all

s1, s2 ∈ S∗(a), a∗(µ(·|s1)) = a∗(µ(·|s2)) = a. Then the signal (π′,S ′) is also optimal, where

S = S ′ except that each S∗(a) is replaced by a single realization s′(a), i.e.

1. S \
⋃
{S∗(a)} = S ′ \

⋃
{s′(a)};

2. If π2(x) ∈ S \
⋃
{S∗(a)}, then π′2(x) = π2(x);

3. If π2(x) ∈ S∗(a), then π′2(x) = s′(a); and

4. π1(x) = π′1(x), ∀x

Using the previous lemma, it is easy to see that any monotone signal structure partitions the

state space into intervals (though there may be some overlap in supports at the boundaries

if there is an atom at a particular ω in the prior µ0). We formalize this in the following

proposition.

Proposition 1: If a signal structure is monotone, then:

(a) For any two states ω1, ω2 ∈ supp(µ(·|s)), any ω′ ∈ Ω∩(ω1, ω2) is contained in supp(µ(·|s)).

(b) If ω ∈ supp(µ(·|s)) and there exist ω1 < ω and ω2 > ω such that ω1, ω2 ∈ supp(µ(·|s)) (i.e.

ω is in the “interior” of the support of s), then for all s′ such that either µ(·|s′) �σ µ(·|s) or

µ(·|s) �σ µ(·|s′), ω /∈ supp(µ(·|s′)).

6This is analogous to Proposition 1 in KG.
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(c) |supp(µ(·|s)) ∩ (supp(µ(·|s′))| ≤ 1.

If the signal structure is monotone, then it is quite easy to define the posteriors µ(·|s) using

Bayes’ theorem: they will just be the prior µ0 restricted to the interval of states in the

support of µ given s. If there is an atom at some ω that is at the boundary of the support of

the posterior induced by s, then we may need to scale it by the probability that ω generates

s. If there is just a single ω in the support of s, then µ(ω|s) = 1.

4 Two Actions

There are many relevant situations in which a sender must convince a receiver to take one of

two actions. In many cases, there is complementarity between the state and the decision to

be taken. For instance, in the well-known example of KG, a prosecutor wishes to convince a

judge to convict a defendant. The judge is more inclined to convict the defendant if there is

a greater likelihood that he is guilty, and so there is complementarity between the state (the

guilt of the defendant) and the action (the verdict). As shown in their two-state example,

the optimal structure is monotone: one realization has only in its support one of the states

(in their case, that the defendant is innocent), while the other is supported by both of the

states (that the defendant is guilty, as well as, with some probability, that he is innocent).

We extend this reasoning more generally to environments with complementarities.

Consider an environment in which A = {a1, a2}, with a1 < a2. By Lemma 2, one can restrict

attention to |S| ≤ 2, and so τ(µ(·|s)) > 0 for each s ∈ S.

Suppose that the preferences of both the sender and the receiver are weakly supermodular

in (a, ω). Assuming that the induced action a does not change for sufficiently small ε, the

marginal change in payoff to the sender from adding εµ′ to µ in the limit as ε→ 0 is

d(µ;µ′) ≡ lim
ε→0

τ(µ)
∫
uS(a∗(µ), ω)dµ+ ετ(µ′)

∫
uS(a∗(µ), ω)dµ′ − τ(µ)

∫
uS(a∗(µ), ω)dµ

ετ(µ′)

=

∫
uS(a∗(µ), ω)dµ′ (1)

This is the Gâteaux derivative of the payoff of the sender from conditional distribution µ

in the direction of µ′. If we define a posterior µ′ and assign it the value τ(µ′), then at the

optimal signal structure (π, {s1, s2}), if it is feasible to subtract ε · µ′ (for some small enough

ε > 0) from µ(·|s1) and add it to µ(·|s2), then

d(µ(·|s2);µ′)− d(µ(·|s1);µ′) ≤ 0 (2)
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If not, then for small enough ε, there would exist an improvement from such a swap, i.e.

subtracting ε · µ′ from µ(·|s1) and adding it to µ(·|s2). This enables us to characterize a

condition for monotone persuasion in the case of binary action spaces.

Definition 4: The restriction of a signal realization s to some measurable subset Ψ ⊂ R
such that Ψ ∩ Ω 6= ∅, sΨ, assigns

µ(B|sΨ) =
µ(B ∩Ψ|s)
µ(Ψ|s)

for any measurable B ⊂ Ω, and

τ(µ(·|sΨ)) = τ(µ(·|s)) · µ(Ψ|s)

The concept of a restriction will allow us to find a “swap” that forms an improvement from

a non-monotone signal structure.

Theorem 2: If both uR and uS are supermodular in (a, ω), then a monotone signal structure

is optimal.

The intuition for Theorem 2 is straightforward: due to the complementarity between actions

and states, the sender would like to align the higher states with higher actions. If a signal

structure is not monotone, he can always increase the level of alignment by swapping some

of the support from the lower conditional distribution to the higher. This will not affect

incentive compatibility of the receiver, as now the receiver is even more inclined to choose

the higher action conditional on the higher signal realization.

One might be tempted to extend Theorem 2 to environments in which the sender’s payoff

is submodular to show that it is optimal to reveal no information. Similarly, one might be

tempted to show that a monotone signal structure is optimal when |A| > 2 as well. However,

this cannot be assumed, as once the posteriors are modified, the incentive compatibility con-

straints no longer need hold. Thus the critical condition that the changes in the conditional

distributions do not change the induced actions by the receiver will not necessarily hold,

either. For instance, when uS is submodular, transferring a high state ω to the distribu-

tion of the lower of the two signal realizations, µ(·|s1), will increase the latter’s conditional

distribution, and so may induce the receiver to instead take action a2. This may be bad

for the sender (especially if he always prefers a1). Similarly, for |A| > 2, increasing µ(·|s2)

may lead to the receiver taking an even higher action, which may or may not be beneficial

to the sender. In Section 5, we will extend our analysis to an environment in which A is a

continuum (specifically, an interval) in which a different but related condition will allow for
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monotonicity.

In tandem with the inequality (2), one can observe that the optimal cutoff state ω∗ for the

signal structure, such that ω > ω∗ ∈ supp(µ(·|s2)) and ω < ω∗ ∈ supp(µ(·|s1)), must satisfy

the following first-order condition.

Corollary 3: Let (π,S) be an optimal (monotone) signal structure such that µ(·|s2) �σ
µ(·|s1). Then at least one of the following conditions must hold:

(a)
∫
uR(a1, ω)dµ(ω|s1) =

∫
uR(a2, ω)dµ(ω|s1)

(b)
∫
uR(a1, ω)dµ(ω|s2) =

∫
uR(a2, ω)dµ(ω|s2)

(c) If ω̄1 ≡ sup{ω ∈ supp(µ(·|s1))} < inf{ω ∈ supp(µ(·|s2))} ≡ ω2, then uS(a2, ω2) ≥
uS(a1, ω2) and uS(a2, ω̄1) ≤ uS(a1, ω̄1). In particular, if uS is continuous in ω and ω̄1 = ω2 ≡
ω∗, then uS(a2, ω

∗) = uS(a1, ω
∗).

Note that the first two scenarios of Corollary 3 are incentive compatibility constraints for the

receiver: one must check to see if, from a small perturbation in the posterior, the receiver

would jump to a different action. If they are not binding, then on the margin, the sender

can shift some weight at the margin to the sender’s preferred action at state ω∗. Thus the

problem to find the optimal signal structure is simple: one checks the incentive compatibility

constraints, and if they are not binding, one finds the value of ω∗ are which the sender is

indifferent between the actions taken.

5 Continuum of Actions

We now explore the case where A is an interval, [a, ā]. As alluded to above, one may have the

intuition to attempt to align the higher states with higher actions as in the environment with

a binary action space. However, one must consider here an additional effect: by perturbing

the posteriors, one also changes the action that the receiver takes. Thus, one must incorporate

this effect as well when checking if such an alignment is an improvement for the sender.

To proceed with our analysis, we make a few additional smoothness assumptions. Assume

that uR is twice continuously differentiable with ∂2uR
∂a2

< 0, so that there will exist a unique

optimal action for the receiver for each posterior µ. Assume that uS is continuously differ-

entiable in a and both uS and ∂uS
∂a

are continuous in ω.

As indicated in the introduction, we take a first-order approach to the optimization prob-

lem. Suppose that there are two signal realizations s1, s2 such that µ(·|s1) �σ µ(·|s2) that

have overlapping distributions, so that there exists ω∗ such that µ((−∞, ω∗]|s1) > 0 but
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µ((ω∗,∞)|s2) > 0 as well. We want to show that there exists a local improvement by swap-

ping some weight of the distribution µ(·|s2) above ω∗ from the support of µ(·|s2) with some

of the distribution below ω∗ from that of µ(·|s1); since such a swap is possible whenever

there are overlapping conditional distributions, this will imply that the signal structure was

not optimal. To precisely define what such a swap would entail, define the marginal change

in payoff from adding two conditional distributions µ and µ′ for which τ(µ) and τ(µ′) are

positive by D(µ, µ′) (if we subtract µ′ from µ, this change is D(µ,−µ′)). Thus, if one adds

µ and ε · µ′, D(·, ·) is defined to be

D(µ, ε · µ′) ≡ 1

ετ(µ′)
{τ(µ)[

∫
uS(a∗(µ+ ε · µ′), ω)dµ−

∫
uS(a∗(µ), ω)dµ]

+ετ(µ′) ·
∫
uS(a∗(µ+ ε · µ′), ω)dµ} (3)

This illustrates two effects of adding µ′ to µ on the payoff of the sender. First, this will

perturb µ, and so perturb the optimal action for the receiver, a∗(µ). Second, there will now

be an additional measure of state ω′ which will now have the action associated with µ chosen

for it as well.

For the case where we add εω′ to µ, the marginal change in payoff to the sender can be

written as

D(µ, εω′) =
1

ε
{τ(µ)[

∫
uS(a∗(µ+εω′), ω)dµ−

∫
uS(a∗(µ), ω)dµ]+ε ·uS(a∗(µ+εω′), ω′)} (4)

Before this can be applied directly to form the single-crossing condition, one must note that,

in order to maintain Bayes-consistency, adding some weight ε · µ′ to µ1 requires subtracting

the same amount from the other posteriors. It is not immediately clear that these effects are

symmetric, i.e. subtracting εµ′ from µ yields the same marginal change in the sender’s payoff

as adding it to µ, with the signs of course reversed. Fortunately, due to the assumptions on

the preferences of the receiver, the best-reply a∗(µ) is well-behaved. To see the intuition for

this symmetry, note that if the receiver were completely certain of the state, then by taking

the second derivative with respect to ω, we have

∂2uR
∂a∂ω

(a∗(ω), ω) +
∂2uR
∂a2

(a∗(ω), ω) · da
∗(ω)

dω
= 0
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and so the implicit function a∗(ω) is differentiable with derivative

da∗(ω)

dω
= −

∂2uR
∂a∂ω

(a∗(ω), ω)
∂2uR
∂a2

(a∗(ω), ω)

Note that the marginal effects of increasing or decreasing the underlying state are the same;

since it is the receiver’s reaction that affects the payoff of the sender, the marginal effect is

symmetric for the sender as well. A similar idea holds in showing that the effect of shifting

the conditional distribution up or down is symmetric in its marginal effects on the payoff of

the sender. To do so, as in the previous section, we define

d(µ;µ′) ≡ lim
ε→0

D(µ, ε · µ′)

to be the Gâteaux derivative of the payoff of the sender from conditional distribution µ in

the direction of µ′.

Lemma 3: (a) For all µ such that a∗(µ) ∈ (a, ā),

d(µ;µ′) = −
∫

∂uS
∂a

(a∗(µ), ω)dµ ·
∫

∂uR
∂a

(a∗(µ), ω)dµ′∫
∂2uR
∂a2

(a∗(µ), ω)dµ
+

∫
uS(a∗(µ), ω)dµ′ (5)

Otherwise, if a∗(µ) = a∗(µ+εµ′) ∈ {a, ā} for small enough ε, then d(µ;µ′) =
∫
uS(a∗(µ), ω)dµ′.

(b) Suppose that, in either case described in (a), it is feasible to subtract ε · µ′ from µ for

small enough ε. Then

d(µ;−µ′) = −d(µ;µ′)

Lemma 3 provides a formula for the effects of adding an infinitessimally small amount of µ′

to µ. For the special case of adding εω′ to µ in the limit as ε→ 0, this is given by

d(µ;ω′) = uS(a∗(µ), ω′)−
∂uR
∂a

(a∗(µ), ω′)
∫

∂uS
∂a

(a∗(µ), ω)dµ∫
∂2uR
∂a2

(a∗(µ), ω)dµ
(6)

Hence we can write d(µ;µ′) as

d(µ;µ′) =

∫
d(µ;ω′)dµ′ (7)

Interestingly, d(µ;µ′) does not depend on τ , so we do not need to take account of the proba-

bility of a given posterior occuring in our ordering. This is due to the inverse proportionality

of the size of the effects from perturbing the distribution: if τ(µ) is larger, then the posterior

will change less from adding ε · µ′, and so the induced action will shift less; on the other
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hand, there is a greater proportion of states (with respect to the prior) that are affected by

this change in posterior. These two effects will exactly cancel out.

An economic interpretation of the expression for d(µ;ω′) is in order. As mentioned above,

there are two effects from changing the posterior. First, the action taken at the particular

states will change, since the action taken at the old posterior is now taken at the new posterior.

Second, there is an effect of changing the action taken at the old posterior, since the receiver

will change his action as the posterior has changed. For marginal changes in the distribution,

only these two first-order effects matter. Thus, the first term in the expression, uS(a∗(µ), ω′),

is the effect of having action a∗(µ) taken when the state is ω′, since that is how the distribution

was perturbed. The second term is the marginal effect on the payoff of the sender from the

receiver changing her action from that taken at posterior µ. Thus
∫

∂uS
∂a

(a∗(µ), ω)dµ is the

marginal utility of the sender from the change in action of the receiver at posterior µ, while

−
∂uR
∂a

(a∗(µ),ω′)∫ ∂2uR
∂a2

(a∗(µ),ω)dµ
is the marginal amount by which a∗(µ) is perturbed by placing more weight

on ω∗. These two effects are combined additively for a readily interpretable expression.

In this sense, the expression d(µ;ω′) can be viewed in a similar spirit to the “virtual utility”

concept found in the mechanism design literature, such as in Myerson (1981). In mechanism

design, the principal wants to maximize the surplus that is available to be extracted, but

is constrained by incentive compatibility to leave a certain amount to the agent. Here, the

sender maximizes the surplus (his utility) subject to the incentive compatibility of the agent

(the receiver). To show this, we must incorporate a second term that accounts for these

incentive compatibility constraints.

The definition of d will extend naturally to distributions µ which do not arise as posteriors

from (π,S), as long as we assign such µ a positive value of τ . As seen in the previous section,

if (π,S) is optimal, then for any s1, s2 ∈ S for which τ(µ(·|s1)), τ(µ(·|s2)) > 0 such that it is

feasible to subtract ε · µ′ from µ(·|s1), it must be that

d(µ(·|s2);µ′)− d(µ(·|s1);µ′) ≤ 0 (8)

or else there would exist an improvement by swapping ε·µ′ from µ(·|s1) to µ(·|s2). This is also

in the same spirit as in mechanism design, where the problem of the principal is equivalent

to maximizing the virtual utility.

To illustrate how the first-order approach can be used to find the optimal signal structure,

we present the following simple example.

Example 3: Let uR(a, ω) = −1
2
a2+2aω−aω2 and uS = aω. The state space is Ω = {1

2
, 1, 3

2
}.
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Then

d(µ;ω′) = a(µ)ω′ + (

∫
ωdµ)(−a+ 2ω′ − (ω′)2)

Note that

a(µ) = µ(1) +
3

4
(µ(

1

2
) + µ(

3

2
)) =

1

4
µ(1) +

3

4∫
ωdµ = µ(1) +

1

2
µ(

1

2
) +

3

2
µ(

3

2
)

We use equation (8) to find the optimal signal structure. First, for µ′ �σ µ, d(µ′; 3
2
) −

d(µ′; 1
2
) > d(µ; 3

2
) − d(µ; 1

2
). Therefore it will not be the case that in the optimal signal

structure, 1
2
∈ supp(µ′) and 3

2
∈ supp(µ), as the sender can always increase his payoff by

transferring some weight on either ω = 1
2

or ω = 3
2

from one posterior to the other.

Next, suppose that µ(ω|s) > 0 for all ω for a given realization s. Consider an alternative

signal structure (π′,S ′) which is the same as (π,S) except that s is replaced with s1, s2, so

that π′1(x) = π1(x) but, whenever π2(x) = s, we set π′2(x) equal to either s1 or s2. Note

that the receiver’s choice of action a∗ only depends on µ(ω = 1). Thus we can split into two

posteriors µ(·|s1), µ(·|s2) such that µ(1|si) is the same in both, but µ(3
2
|s1) > µ(3

2
|s2) while

inducing

a∗(µ(·|s1)) = a∗(µ(·|s)) = a∗(µ(·|s2))

But then d(µ(·|s1); 1) > d(µ(·|s2); 1), so this cannot be optimal, and so there is no such µ in

the optimal signal structure.

Suppose there is a posterior with µ(3
2
|s) = 0. Then d(µ(·|s); 1

2
) = 3

8
− 1

8
(µ(1|s))2 which is

decreasing in µ(1|s). So, one could split this posterior into two identical posteriors µ1, µ2

and add weight ε > 0 of ω = 1
2

from µ1 to µ2. By the fundamental theorem of calculus, this

results in a change in payoff of∫ ε

0

(d(µ2 + β · ω;ω)− d(µ1 − β · ω;ω))dβ

where ω = 1
2
. Since µ1 − β · ω �σ µ2 + β · ω (and so the conditional probability of ω = 1

is higher given the former), this is strictly positive, and so this cannot be optimal. Hence

without loss of generality, we can assume that ω = 1
2

is placed in its own posterior, i.e. there

exists some s such that µ(1
2
|s) = 1 and for all other s′ ∈ S, µ(1

2
|s′) = 0.

Lastly, suppose that 1
2
/∈ supp(µ(·|s)) ∪ supp(µ(·|s′)), but µ(1|s′) > µ(1|s). Then since

d(µ(·|s); 3
2
) = 9

8
+ 1

8
(µ(1|s))2 is increasing in µ(1|s), this cannot be optimal since 3

2
∈ supp(µ|s).

Hence the optimal signal structure pools ω = 1 and ω = 3
2

in one signal realization, and

reveals ω = 1
2

in the other. �
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This first-order approach will greatly ease our definitions for our single-crossing conditions,

which we now present.

Definition 5: The payoffs for the sender are d-supermodular if, for ω′ > ω and µ′ �σ µ,

d(µ′;ω′)− d(µ′;ω) > d(µ;ω′)− d(µ;ω) (9)

Similarly, the payoffs to the sender are d-submodular if

d(µ′;ω′)− d(µ′;ω) < d(µ;ω′)− d(µ;ω) (10)

Definition 6: The payoffs for the sender are d-quasisupermodular if

d(µ′;ω)− d(µ;ω) ≥ 0 =⇒ d(µ;ω′)− d(µ;ω′) > 0 (11)

The payoffs to the sender are d-quasisubmodular if

d(µ′;ω)− d(µ;ω) ≤ 0 =⇒ d(µ;ω′)− d(µ;ω′) < 0 (12)

The intuition for these single-crossing conditions is that, if the sender could choose which

action to induce once the state was realized, he would want to choose a higher action when

the state was higher if his preferences were quasisupermodular; this follows from the standard

analysis of Milgrom and Shannon (1994). This justifies the reasoning in signaling games where

the sender cannot precommit to a signal structure (such as cheap talk), since in a perfect-

Bayesian equilibrium, the sender takes the receiver’s beliefs conditional on any message as

given, and so the sender will not change the induced action by deviating to a particular

message. In our environment, though, the sender will change the action taken following a

particular message (i.e. when the posterior is perturbed), since a different action will now be

optimal for the receiver. Thus we must combine this effect as well into the problem of the

sender, and only then check for single-crossing in the posterior (and hence the action) that

the sender wants to induce given the state.

We now present our main results for this section.

Theorem 4: Suppose that the sender’s preferences are d-quasisupermodular. Then there

exists an optimal signal structure that is monotone.

The basic intuition for Theorem 4 is simple: if there were a (finite) signal structure that

was non-monotone, then there would exist an improvement through swapping some weight

on states between two posteriors that violated monotonicity. That is, one could add some
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weight on higher states to the higher posterior by subtracting from the lower posterior, or

add weight on lower states to the lower posterior by subtracting from the higher posterior.

By d-quasisupermodularity, one of these operations must be an improvement. To extend the

result to signal structures with |S| = ∞, one shows that one can approximate such signal

structures by a sequence of finite ones {(πk,Sk)}∞k=1, and then take the limit to show that

monotone signal structures remain optimal.

Remark: It is possible to weaken the conditions in Theorem 4 as follows. The argument

in the proof shows that, under d-quasisupermodularity, there always exists an improvement

through the method described in the previous paragraph. However, this is stronger than

needed, since it implies that swapping any two states in which the higher of the two is

in the support of the higher posterior, and the lower is in the support of the lower, is an

improvement. It would be sufficient to show that, for any two such posteriors, there exists

such a pair of states. Since this would be complicated to analyze and distract from the main

point, we leave this observation as a remark. �

One can get even stronger results when one assumes complementarity in the receiver’s pref-

erences. This is natural in many applications, and is a feature of both the models of Spence

(1973) and Crawford and Sobel (1982). It turns out that complementarity leads to extremal

information structures: it is either optimal to reveal all or no information.

Theorem 5: Let c = 0 for all (π,S) and ∂2uR
∂a∂ω

≥ 0.

(i) If the sender’s preferences are d-quasisupermodular, then it is optimal for the sender to

reveal all information.

(ii) Conversely, if his preferences are d-quasisubmodular, then it is optimal to reveal no

information, i.e. the posterior beliefs for the receiver will just be µ0.

The intuition for the proof of Theorem 5(i) is that, if there is a posterior µ with more than

one state in the support, then we can duplicate the posterior to form µ1, µ2, and perturb

them so that a little more weight is placed at the top of the support of, say, µ2, or a little

less weight at the bottom, while the opposite is done for µ1. After this perturbation, µ2 will

be ranked higher than µ1 due to FOSD-consistency, and so it will be a strict improvement

to swap even more of the support. Since this initial perturbation can be arbitrarily small,

it turns out that there will be a strict improvement over this initial posterior. Thus there

cannot be any posteriors which have more than one state in the support, implying that full

separation is optimal.

The intuition for Theorem 5(ii) is that, if there were two posteriors µ2 �σ µ1 that induced

different actions, then by FOSD-consistency, there must be some pair of states for which a
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higher action a∗(µ2) is taken for the higher of the two states, while a∗(µ1) is taken for the

latter. It will then be an improvement to swap either the higher state or the lower state, and

so this could not be optimal. All realizations must therefore lead to the same action in the

optimal signal structure, and so by Lemma 2 one can just as well reveal nothing.

A key element of the proof of Theorem 4 was the absence of costs of implementing a signal.

However, in many cases of interest, this assumption is not reasonable. This may arise from

physical costs of providing additional information, which may make it optimal to only par-

tially reveal the information to the receiver. A notable paper in the literature in which similar

costs arise is that of Cremer, Garicano and Prat (2007), in which they examine the breadth

of words in languages to describe a given situation. On the one hand, words that cover more

states are more difficult to parse; on the other, given their bounded rationality assumptions

which limit the ability of the sender to describe the situation, there is a maximum number

of words that can be used. Their model has more recenty been applied by Sobel (2015) to

settings in which one would expect an “interval property” to apply to the language used,

which, as we have seen, is a consequence of monotone persuasion. We therefore include the

following result for the case where it is not optimal to reveal all information.

Theorem 6: Assume that c(π,S) is increasing in |S| and lim|S|→∞ c(π,S) =∞.

(i) Suppose that c(π,S) is solely a (continuous) function of the vector of probabilities {τ(µ)}
irrespective of the posteriors that they induce. That is, consider any two signal structures

(π,S), (π′,S ′) which induce respective posteriors µ, µ′ and distributions over posteriors τ and

τ ′; there exists a one-to-one correspondence between S and S ′ so that if s ∈ S corresponds

to s′ ∈ S ′, then c(π,S) = c(π′,S ′). Then if the sender’s payoffs are d-supermodular, then the

optimal signal structure is monotone.

(ii) If c(π,S) is solely a function of the number of posteriors generated (i.e. |S|) and the

sender’s payoffs are d-quasisupermodular, then the optimal signal structure is monotone.

Moreover, if |Ω| =∞, then full disclosure is not optimal.

In addition to the obvious economic interpretation of it being costly to the sender to generate

the signal, one can apply this result to the provision of incentives in a non-persuasion context.

Recall that in Lemma 2, we saw that without loss of generality, we could merge signal

realizations if they resulted in the same outcome. Suppose that the receiver will choose to

implement N actions, and the sender can only influence what those N actions are. One

possible instance in which this might apply is in tracked courses: a school may offer a fixed

number of tracked classes in a certain subject, and teach them at a difficulty level determined

by the students in the respective classes. The school principal’s optimal course difficulty level
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may differ from that of the teachers, as the must take into account the preferences of the

students’ parents; however, the teachers are the ones who have control over their classrooms.

The principal’s problem would then be to optimize the distribution of students so as to induce

the most favorable incidence of student quality and course difficulty level. Alternatively, one

could view the capacity as regarding class size: the school can only fit a fixed number of

students in each class, and so the sender must optimize with the constraint that the vector

of class sizes remains constant. Assuming that the number of students is large, this can be

viewed as fixing the proportion of students in each class. We summarize these results in the

following corollary.

Corollary 7: Let c(π,S) = 0.

(i) Suppose that the receiver has a capacity constraint on the number of actions that it can

implement, so that it is costless for the receiver to implement up to N different actions, but

for any n > N , it is infinitely costly for the receiver. Then if the sender’s preferences are

d-quasisupermodular, the optimal signal structure is monotone.

(ii) Suppose that the receiver has a fixed capacity τ̂(n) for each action an ∈ A, where n ∈
{1, ..., N} such that

∑N
n=1 τ̂(n) = 1 (i.e. each of the N actions taken must be taken with

a fixed probability, but which action to choose is up to the receiver) Then if the sender’s

preferences are d-supermodular, the optimal signal structure is monotone.

Remark: As we saw in Theorem 5, d-quasisupermodularity combined with complemen-

tarity in the receiver’s preferences leads to the sender’s optimal signal structure revealing

all information, or revealing nothing. Given that KG also provide sufficient conditions for

which it is optimal to either reveal all information, or reveal nothing (the former when the

sender’s payoff is convex in the posterior, the latter when it is concave), it is natural to con-

sider the relationship between these conditions. A simple example based on the presence of

costs as described in Theorem 6 demonstrates that these conditions are distinct. Suppose that

Ω = {ω1, ω2, ω3, ω4}, with ω1 < ω2 < ω3 < ω4 and µ0 assigning equal probability to each state.

Convexity implies that the signal structure (π, {s1, s2}) in which supp(µ(·|s1)) = {ω1, ω3}
and supp(µ(·|s2)) = {ω2, ω4} is at least as good for the sender as revealing no informa-

tion, whereas this is not necessarily the case in the presence of either d-supermodularity

or d-quasisupermodularity. On the other hand, there is some monotone signal structure

(π′, {s′1, s′2}) which is preferable to (π, {s1, s2}) under d-quasisupermodularity, which is not

necessarily the case under convexity. �

The characterization of the signal structure as monotone greatly eases the search for the

optimal structure, as on must now only search over a countable number of possible cutoff

points to describe the intervals over which the signals are supported. This also allows the
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construction of first-order conditions in looking for the optimal structure. Suppose, as in case

(ii) of Theorem 6, that the cost structure only depends on the number of signal realizations.

Then one cannot be better off by switching the marginal state of some interval of support

to another, and vice versa. This is true whether the optimization problem is constrained to

monotone solutions or not. We describe these incentive conditions in the following result.

Proposition 8: Suppose that c(π,S) is solely a function of |S|. Let (π,S) be an optimal

(monotone) signal structure. Consider s1, s2 ∈ S such that µ(·|s1) �σ µ(·|s2) and there does

not exist s3 ∈ S \ (s1, s2) such that µ(·|s1) �σ µ(·|s3) �σ µ(·|s2). If

ω̄2 ≡ sup{ω ∈ supp(µ(·|s2))} < inf{ω ∈ supp(µ(·|s1))} ≡ ω1

then d(µ(·|s1);ω1) ≥ d(µ(·|s2);ω1) and d(µ(·|s1); ω̄2) ≤ d(µ(·|s2); ω̄2). In particular, if ω̄2 =

ω1 ≡ ω∗, then d(µ(·|s1);ω∗) = d(µ(·|s2);ω∗).

We now present further applications of our results.

6 Additional Applications

6.1 Quadratic loss functions with biases

One of the classic models of signalling is the cheap talk model of Crawford and Sobel (1982).

In their model, they show that in any perfect Bayesian equilibrium, the sender’s types are

partitioned, so that a higher type sends a higher message. They also show that when types

are uniformly distributed, and

uS(a, ω) = −(a− ω − b)2

uR(a, ω) = −(a− ω)2

then if it were possible for the sender to commit to reveal his type, he would receive a higher

payoff than the equilibrium from their model. However, they do not explore whether this

would indeed be optimal overall, nor do they analyze other distributions of types.

KG explored a more general class of sender preferences in the persuasion environment, and

showed that if the sender’s preferences are given by

uS(a, ω) = −(a− (b1 + b2ω))2 (13)
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for [a, ā] = Ω = [0, 1], then it is optimal to reveal all information if b2 >
1
2
, and reveal nothing

if b2 <
1
2
.

We extend the analysis here further to look at the optimal structure when full separation

is not possible. When the sender’s preferences are given as in (13), we find that, since

a∗(µ) = Eµ[ω],

d(µ;ω′) = −(a∗(µ)− (b1 + b2ω
′))2 + 2(a∗(µ)− ω′)(

∫
(a∗(µ)− (b1 + b2)ω)dµ

= −(a∗(µ)− (b1 + b2ω
′))2 + 2(a∗(µ)− ω′)(a∗(µ)− b1 − b2a

∗(µ))

To check for d-supermodularity, we check the sum of the terms involving both µ and ω′,

which is

2b2a
∗(µ)ω′ − 2a∗(µ)ω′ + 2b2a

∗(µ)ω′

Because a∗(µ) is increasing in µ, this above expression is supermodular in (µ, ω′) if b2 >
1
2
,

and submodular if b2 <
1
2
. Thus it is optimal to reveal all information in the former case,

and reveal none in the latter, as anticipated by KG. Furthermore, if costs are as in Theorem

6, it is optimal to have a monotone signal structure.

To give a concrete example of a finite partition, let us look at an optimal partition when

|S| = 2, A = [0, 1], b2 = 1, and µ0 induces the uniform distribution over [0, 1]. Consider the

optimal signal structure (π, {s1, s2}), with µ(·|s2) �σ µ(·|s1). Since the signal structure is

monotone, there will exist ω∗ such that µ(·|s1) induces the uniform distribution on [0, ω∗],

while µ(·|s2) induces the uniform distribution on [ω∗, 1]. Thus

a∗(µ(·|s1)) =
ω∗

2

a∗(µ(·|s2)) =
1 + ω∗

2

and so, by Proposition 8, it must be that

−(
ω∗

2
−(b+ω∗))2+2(

ω∗

2
−ω∗)(ω

∗

2
−b−ω

∗

2
) = −(

1 + ω∗

2
−(b+ω∗))2+2(

1 + ω∗

2
−ω∗)(1 + ω∗

2
−b−1 + ω∗

2
)

Simplifying this expression yields

−(
ω∗

2
− (b+ ω∗))2 − 2b(−ω

∗

2
) = −(

1 + ω∗

2
− (b+ ω∗))2 − 2b(

1− ω∗

2
)

b = 2bω∗ =⇒ ω∗ =
1

2
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Thus it is optimal to divide the interval [0, 1] into two equal pieces. The intuition for this is

that, were the intervals to be uneven (say, with the upper interval being larger and the bias

b being low), the concavity of the sender’s payoff would imply that there would be a greater

loss from high states (i.e. ω near 1) being farther from the induced action of the receiver

than there would a benefit of moving the higher states of the lower interval (i.e. ω close to

ω∗) closer to the induced action of the receiver.

6.2 Credit ratings

In a recent paper, Goldstein and Leitner (2015) apply the persuasion model of KG to the

framework of credit ratings. In their framework, a social planner sets criteria by which a bank

is given a certain rating; his preferences are those of the banks from an ex-ante perspective

(described below). Conditional on that rating, a buyer offers to purchase an asset sold by

that bank at the expected value of the asset. Banks aim to maintain sufficient reserves for

a potential crisis, and so being able to sell their assets ensures that they will have sufficient

reserves, as long as they receive a high enough score. However, if the offer is too low, they

would rather not sell since the offered price does not provide sufficient insurance. The reader

is directed to their paper for additional discussion of this environment.

A key feature of their results is that the optimal ratings criteria are often non-monotone,

in that a bank with higher underlying value can be assigned a worse rating. This is often

unrealistic, in that there may be legal ramifications to the ratings agency if they were to do

so. Moreover, there may be incentive-compatibility issues, in that it may give banks perverse

incentives to undermine their own credit.

We find the optimal monotone signal structure in the model of Goldstein and Leitner. For-

mally, the state representing the quality of asset is located in the interval [ω, ω̄], where

ω < 1 < ω̄, and is distributed with full support according to F and continuous density f .

The uncertainty over the final value of the bank is represented by the variable ε, which is

distributed independently of ω according to the continuous function G(ε) with E[ε] = 0. For

all states, 1 − G(1 − ω) > 0 and G(1 − ω) > 0. The banks care about having sufficient

amounts of cash on hand when ε is realized, and so have payoff ω + ε if they do not sell and

ω + ε < 1; otherwise they have payoff ω + ε+ r for some r > 0. If they sell, their payoff is a

if a < 1, and a+ r otherwise. The sender (a social planner) cares about the ex-ante welfare

of the banks. The receiver (a buyer) takes action equal to E[ω|s], and so can be viewed as

having utility function uR(a, ω) = −(a− ω)2.

The sender’s payoff in state ω is thus when the receiver chooses action a ≥ 1 is a+r; otherwise,
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he declines to participate and gets expected payoff ω + r(1 − G(1 − ω)). The banks know

their own state, and can decline to sell if the price offered is too low. As shown in Goldstein

and Leitner (2015), they will always do so if a < 1, since the banks at least have positive

chance of ex-post assets ω + ε > 1 if they reject. This imposes an incentive compatibility

constraint on the signal structures that can be implemented: it must be optimal for the bank

to sell at the price offered if the social planner wants the signal realized to induce the bank

to accept the offer.

We say that resources are scarce if it is impossible to ensure that the asset is always sold.

Proposition 9: If resources are scarce, in the optimal monotone signal structure, there exists

some signal realization s∗ in which E[ω|s∗] = ω∗ + r(1 − G(1 − ω∗)), where ω∗ ≡ sup{ω ∈
supp(µ(·|s∗))}. Banks with assets with state ω > ω∗ sell the asset, while banks with assets

with ω < ω′ ≡ inf{ω ∈ supp(µ(·|s∗))} do not.

Moreover, either

E[ω|s∗] = 1 (14)

or

r(1−G(1− ω∗))f(ω∗) = 1 (15)

The idea here is that the high-credit assets do sell, while the ones with lower credit prefer to

take the risk rather than guarantee that they have insufficient funds. To determine what the

cutoff is, one must balance the incentive compatibility of the highest states in subsidizing the

lower states with the ability to subsidize more states when the expected value of the asset

given the critical credit rating s∗ is higher. This creates a hidden adverse selection problem

that is resolved by either equation (14), the corner solution, or (15), the interior solution.

7 Conclusion

There is a strong intuition in communication games that in circumstances with complemen-

tarities (such as supermodularity) between the state and the action, the action eventually

chosen by the receiver will be increasing in the state. This has been reinforced by the stan-

dard approach of the literature, in which the sender cannot commit to a strategy ex-ante,

whether or not signalling is costly. Our paper serves to show that this approach breaks down

when the sender can commit, and that one must take account of the additional effects of

changing the receiver’s beliefs, and hence their actions, when optimizing. The virtual utility

characterization of these effects allows one to view the persuasion problem in the context of
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the mechanism design literature.

Appendix: Proofs

Proof of Lemma 1: Suppose that µ1 �FOSD µ2. Since (strict) supermodularity is preserved

by first-order stochastic dominance, µ1 �FOSD µ2 only if, for any a1 > a2,∫
uR(a1, ω)dµ1 −

∫
uR(a2, ω)dµ1 ≥

∫
uR(a1, ω)dµ2 −

∫
uR(a2, ω)dµ2

where the inequality is strict if µ1 �FOSD µ2, by Theorem 7 of Milgrom and Shannon (1994).

By Theorem 5 of Milgrom and Shannon (1994), this implies that a∗(µ1) ≥ a∗(µ2) (strictly so

if µ1 �FOSD µ2 and either a∗(µ1) or a∗(µ2) is located in the interior of A by Theorem 1 of

Edlin and Shannon (1998)). �

Proof of Lemma 2: Clearly the payoff from any realization s /∈ S∗(a) is the same, so we

only need to check that the payoff from s′ is equal to that from
⋃
{S∗(a)}. The payoff from

the former is ∫
⋃
{s′(a)}

∫
uS(a∗(µ(·|s′)), ω)dµ(ω|s′)dτ(µ(·|s′))

while from the latter, it is∫
⋃
{S∗(a)}

∫
uS(a∗(µ(·|s)), ω)dµ(ω|s)dτ(µ(·|s))

Since a∗(µ(·|s)) = a for all s ∈ S∗(a), and action a is feasible conditional on s′ being realized,

we conclude that a∗(µ(·|s′)) = a, and so the two signals generate the same payoffs. �

Proof of Proposition 1: To show (a) and (b), by Bayes’ Theorem, there must exist s′ such

that ω′ ∈ supp(µ(·|s′)). Suppose that s′ 6= s. By Lemma 2, we can assume that µ(·|s′) �σ

µ(·|s). If µ(·|s′) �σ µ(·|s), then monotonicity would be violated since ω1 ∈ supp(µ(·|s)). On

the other hand, if µ(·|s′) ≺σ µ(·|s), then monotonicity would be violated by ω2. We therefore

conclude that s′ = s.

For (c), if ω1, ω2 ∈ supp(µ(·|s))∩ supp(µ(·|s′)), where ω1 6= ω2, monotonicity is violated since

the higher of {ω1, ω2} is in the support of the lower distribution, while the lower is in the

support of the higher distribution. �

Proof of Theorem 2: In the case where the sender’s preferences are supermodular, consider

any optimal signal structure (π,S). If |S| = 1, then the signal structure is trivially monotone,

and we are done. Thus we can assume without loss of generality that |S| = 2 and that there
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exist s1, s2 ∈ S such that a∗(µ(·|s1)) = a1 and a∗(µ(·|s2)) = a2. Suppose that the (π,S)

is not monotone. Then there exist ω1 ∈ supp(µ(·|s1)) and ω2 ∈ supp(µ(·|s2)) such that

ω1 > ω2. Without loss of generality, let ω1 = sup{ω : ω ∈ supp(µ(·|s1))} and ω2 = inf{ω :

ω ∈ supp(µ(·|s2))}. For any δ > 0, let sδ2 be the restriction of s2 to [ω2, ω2 + δ), and sδ1 be

the restriction of s1 to [ω1 − δ, ω1]. Let ω∗ ∈ [ω2, ω1] be the supremum of the values of ω

at which τ(µ(·|sω∗−ω2
2 )) ≤ τ(µ(·|sω1−ω∗

1 )). Then for some τ(µ(·|si))µ(ω∗|si) ≥ νi ≥ 0, we can

define µ̄1 = µ(·|sω1−ω∗
1 ) + ν1ω

∗ and µ̄2 = µ(·|sω∗−ω2
2 ) + ν2ω

∗ such that τ(µ̄1) = τ(µ̄2).

Since uS is supermodular in (a, ω), it follows that

d(µ(·|s2); µ̄1)− d(µ(·|s2); µ̄2) ≥ d(µ(·|s1); µ̄1)− d(µ(·|s1); µ̄2) (16)

as long as the induced action a∗ does not change. Note that for all η ∈ (0, 1],

µ(·|s2)− ηµ̄2 + ηµ̄1 �FOSD µ(·|s2) (17)

and so by single-crossing this implies that

a∗(µ(·|s2)− ηµ̄2 + ηµ̄1) ≥ a∗(µ(·|s2)) = a2

Similarly, since

µ(·|s1) �FOSD µ(·|s1) + ηµ̄2 − ηµ̄1 (18)

by single-crossing,

a∗(µ(·|s1) + ηµ̄2 − ηµ̄1) ≤ a∗(µ(·|s1)) = a1

Moreover, by (17) and (18), (16) remains true if we replace µ(·|s2) with µ(·|s2)− ηµ̄2 + ηµ̄1

and µ(·|s1) with µ(·|s1) + ηµ̄2− ηµ̄1. By the fundamental theorem of calculus, it follows that

τ(µ(·|s2))

∫
uS(a2, ω)d(µ(·|s2)− µ̄2 + µ̄1) + τ(µ(·|s1))

∫
uS(a1, ω)d(µ(·|s1) + µ̄2 − µ̄1)

= τ(µ(·|s2))

∫
uS(a2, ω)dµ(·|s2) + τ(µ(·|s1))

∫
uS(a1, ω)dµ(·|s1)

+

∫ 1

0

[d(µ(·|s2)− ηµ̄2 + ηµ̄1; µ̄1)− d(µ(·|s2)− ηµ̄2 + ηµ̄1; µ̄2)]dη

−
∫ 1

0

[d(µ(·|s1) + ηµ̄2 − ηµ̄1; µ̄1)− d(µ(·|s1) + ηµ̄2 − ηµ̄1; µ̄2)]dη

≥ τ(µ(·|s2))

∫
uS(a2, ω)dµ(·|s2) + τ(µ(·|s2))

∫
uS(a1, ω)dµ(·|s1)

27



Hence adding µ̄1− µ̄2 to µ(·|s2) and adding µ̄2− µ̄1 to µ(·|s1) results in a weak improvement

over (π,S). Note that the resultant signal structure is now monotone, as there is no ω < ω∗

in the support of µ(·|s2) + µ̄1 − µ̄2, and no ω > ω∗ in the support of µ(·|s1) + µ̄2 − µ̄1. Since

(π,S) was optimal, there also exists a monotone signal structure which is optimal. �

Proof of Corollary 3: Suppose that neither (a) nor (b) hold. Then for any ω ∈ Ω and

for small enough ε, a∗(µ(·|si) + εω) = a∗(µ(·|si)). For each of the signals s1, s2, we define

the signal realizations sδ1, s
δ
2 which restrict s1, s2 to the open interval within δ of ω2 and ω̄1,

respectively. For every δ > 0, if (π,S) is optimal, then d(µ(·|s1);µ(·|sδ1)) ≥ d(µ(·|s2);µ(·|sδ1))

and d(µ(·|s2);µ(·|sδ2)) ≥ d(µ(·|s2);µ(·|sδ2)). Note that as δ → 0, µ(·|sδ1) → µ(·|ω̄1) in the

weak-* topology. Hence

lim
δ→0

d(µ(·|si);µ(·|sδ1)) = uS(ai, ω̄1)

which is precisely the value of d(µ(·|s), εω̄1). Similarly, we find that

lim
δ→0

d(µ(·|si);µ(·|sδ2)) = uS(ai, ω2)

Suppose that uS(a2, ω2) < uS(a1, ω2). Then for sufficiently small δ, d(µ(·|s1);µ(·|sδ2)) >

d(µ(·|s2);µ(·|sδ2)). Thus there would be a feasible improvement from shifting a a weight

of ε of µ(·|sδ2) from µ(·|s2) to µ(·|s1), and so (π,S) could not be optimal. Similarly, if

uS(a2, ω̄1) > uS(a1, ω̄1), then there exists an improvement by shifting (for small enough δ

and ε) a weight of ε of µ(·|sδ1) from µ(·|s1) to µ(·|s2). �

Proof of Lemma 3: For the receiver, the change in payoff from adding ε · µ′ to µ, for a

given choice of a ∈ [a, ā], is∫
uR(a, ω)d(µ+ ε · µ′)−

∫
uR(a, ω)dµ =

ετ(µ′)

τ(µ) + ετ(µ′)
·
∫
uR(a, ω)dµ′

Hence the receiver’s problem is now

max
a

τ(µ)

τ(µ) + ετ(µ′)

∫
uR(a, ω)dµ+

ετ(µ′)

τ(µ) + ετ(µ′)
·
∫
uR(a, ω)dµ′

and so the first-order condition becomes

τ(µ)

τ(µ) + ετ(µ′)

∫
∂uR
∂a

(a∗(µ+ε ·µ′), ω)dµ(ω|s)+
ετ(µ′)

τ(µ) + ετ(µ′)
·
∫
∂uR
∂a

(a∗(µ+ε ·µ′), ω)dµ′ = 0

Note that the second term of the above equation vanishes as ε → 0. By Berge’s maximum
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theorem, limε→0 a
∗(µ+ ε ·µ′) = a∗(µ). Combining these cases and dividing by ετ(µ′), we have

τ(µ)

ετ(µ′)(τ(µ) + ετ(µ′))

∫
∂uR
∂a

(a∗(µ+ε·µ′), ω)dµ+
ετ(µ′)

ετ(µ′)(τ(µ) + ετ(µ′))
·
∫
∂uR
∂a

(a∗(µ+ε·µ′), ω)dµ′

− 1

ετ(µ′)

∫
∂uR
∂a

(a∗(µ), ω)dµ = 0

Taking the limit as ε→ 0,

− 1

τ(µ)

∫
∂uR
∂a

(a∗(µ), ω)dµ′ = lim
ε→0

1

ετ(µ′)
{
∫
∂uR
∂a

(a∗(µ+ ε · µ′), ω)dµ−
∫
∂uR
∂a

(a∗(µ), ω)dµ}

= lim
ε→0

1

ετ(µ′)

∫
∂2uR
∂a2

(a∗(µ), ω)dµ · (a∗(µ+ ε · µ′)− a∗(µ)) (19)

and so

lim
ε→0

a∗(µ+ ε · µ′)− a∗(µ)

ετ(µ′)
=
− 1
τ(µ)

∫
∂uR
∂a

(a∗(µ), ω)dµ′∫
∂2uR
∂a2

(a∗(µ), ω)dµ

Substituting this into the sender’s problem gives

lim
ε→0

D(µ, ε · µ′) =

lim
ε→0

1

ετ(µ′)
{τ(µ)[

∫
∂uS
∂a

(a∗(µ+ε·µ′), ω)dµ]·[a∗(µ+ε·µ′)−a∗(µ)]+ετ(µ′)·
∫
uS(a∗(µ+ε·µ′), ω)dµ′}

= −
∫

∂uS
∂a

(a∗(µ), ω)dµ ·
∫

∂uR
∂a

(a∗(µ), ω)dµ′∫
∂2uR
∂a2

(a∗(µ), ω)dµ
+

∫
uS(a∗(µ), ω)dµ′

Note that if if a∗(µ) = a∗(µ + εω) ∈ {a, ā} for small enough ε > 0, then the first term

vanishes, and we are left with limε→0D(µ, ε · µ′) =
∫
uS(a∗(µ), ω)dµ′.

Since this is true regardless of the sign of ε,

lim
ε→0+

D(µ, ε · µ′) = − lim
ε→0−

D(µ,−ε · µ′)

whenever such a subtraction is feasible. �

Proof of Theorem 4: By Lemma 2, without loss of generality, we can assume that for any

two signal realizations si, sj, µ(·|si) �σ µ(·|sj). If (π,S) is non-monotone, then there exists

ωi ∈ supp(µ(·|si)) and ωj ∈ supp(µ(·|sj)) such that ωi < ωj.

Suppose that |S| < ∞. Fix δ < 1
2
(ωj − ωi), and define sδi to be the restriction of si to
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[ωi − δ, ωi + δ]. By d-quasisupermodularity, either for all ω′j ∈ supp(µ(·|sδj)),

d(µ(·|si);ω′j)− d(µ(·|sj);ω′j) > 0

or for all ω′i ∈ supp(µ(·|sδi )),

d(µ(·|sj);ω′i)− d(µ(·|si);ω′i) > 0

and so either

d(µ(·|si);µ(·|s′j))− d(µ(·|sj);µ(·|s′j)) > 0

or

d(µ(·|sj);µ(·|s′i))− d(µ(·|si);µ(·|s′i)) > 0

In either case, there exists a local improvement, in the former case by transfering sufficiently

small ε weight of µ(·|sδ2) from µ(·|s2) to µ(·|s1), or in the latter case from transferring ε of

µ(·|sδ1) from µ(·|s1) to µ(·|s2), and so the non-monotone signal structure cannot be optimal.

This is sufficient whenever |Ω| <∞.

To extend to the case where |S| = ∞, recall that by Proposition 1, the optimal signal

structure partitions the state space into intervals. Using a probability integral transform,

we can express this partition by partitioning the interval [0, 1] into subintervals, and then

translating those intervals into the state space Ω. That is, there will exist some nondecreasing

function

ω̃ : [0, 1]→ Ω

α→ ω

For any K, let the boundary points of the optimal signal structure conditional on |S| = K

be {(lk, hk)}Kk=1, where 0 ≤ lk ≤ hk ≤ 1 and lk+1 = hk. The probability integral transform

operates so that, for any α ∈ [0, 1], the corresponding state ω̃(α) ∈ Ω is the lowest state for

which µ0((−∞, ω]) ≥ α.

Let lK(α), hK(α) be functions which describe the upper- and lower- bounds of the interval

to which α belongs in the optimal structure when |S| is constrained to equal K. Both

of these are increasing functions, and so by Helly’s selection theorem (Kolmogorov and

Fomin, p. 373), there exists a convergent subsequence of {lK(α), hK(α)}∞K=1, which we

call {lKm(α), hKm(α)}∞m=1, to some monotone functions l(α), h(α) which respect the interval

properties of each of the pair of functions (lK , hK). Moreover, the posteriors implied by

these intervals must converge in the weak-* topology almost everywhere, since there can only

30



be a discontinuity where l(α) = h(α) and ω̃(α) is discontinuous, which, since the latter is

monotone itself, can only occur at a countable number of values of α.

To conclude the argument for the convergence of the payoffs for this convergent subsequence

of monotone signal structures, we must show that the actions taken by the receiver at almost

every value of α converge. Define the action taken at α when |S| = K to be ãK(α). By

definition of the monotonicity of signal structures, the action taken by the receiver at higher

values of ω is increasing, and so it is increasing in the corresponding value of α as well. Hence

by Helly’s selection theorem, there exists a convergent subsequence of {ãKm(α)}∞m=1 to some

ã(α) almost everywhere. Since beliefs converge in the weak-* topology almost everywhere

and uR is continuous in (a, ω), ã(α) is optimal for the receiver almost everywhere as well by

Berge’s maximum theorem.

To show that the payoff to the sender implied by the signal structure in which the collection

of intervals is given by {l(α), h(α)} is optimal, we must show that it is at least as good as

any other signal structure. Consider any optimal signal structure (π,S). We approximate it

for |S| = 2K by dividing A into 2K intervals of equal length, and merging any set of signal

realizations {s} ⊂ S such that a∗(µ(·|s)) fall in the same interval.

Let a∗K(µ(·|{s}K)) be the action taken at signal realization s after it has been merged as

described in the previous paragraph with other signal realizations that lead to actions in

the same interval. We show that limK→∞ a
∗
K(µ(·|{s}K)) = a∗(µ(·|s)) for every s in this set.

Since ∂2uR
∂a2

< 0 and is continuous in (a, ω), and both A and Ω are compact, we find that∫
∂2uR
∂a2

(a, ω)dµ < 0 and is uniformly continuous over the set of all possible posteriors µ. Fix

ε > 0. For a given K, define an interval [ak, ak+1), where k < 2K . There exists δ such that if

a /∈ [ak− δ, ak+1 + δ], then
∫

[uR(a∗(µ(·|s), ω))−uR(a, ω)]dµ(ω|s) > ε if a∗(µ(·|s)) ∈ [ak, ak+1)

by the strict concavity of uR. Moreover, as ε→ 0, the infimum of such δ for which this is true

also must converge to 0 by the uniform continuity of
∫

∂2uR
∂a2

(a, ω)dµ. However, for sufficiently

high K, for any a ∈ [ak, ak+1),
∫

[uR(a∗(µ(·|s)), ω) − uR(a, ω)]dµ(ω|s) < ε by the continuity

of uR. Thus a /∈ [ak − δ, ak+1 + δ] cannot be optimal.

Since a∗K(µ(·|{s}K)) converges, the payoff from this finite approximation of (π,S) also con-

verges to that from (π,S). But we saw that a monotone signal structure was optimal over

all finite signal structures, and so the limit monotone structure as K →∞ must give at least

as good a payoff to the sender as (π,S). �

Proof of Theorem 5: In both cases, we first proceed for the case in which Ω is finite, and

then extend to the infinite case through successive finite approximations of Ω. By Proposition

4 in the online appendix of KG, this implies that |S| is finite, and so τ(µ(·|s)) > 0 for all

s ∈ S.
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(i) Suppose that (π,S) is optimal and there exists some signal s ∈ S such that µ(ω|s) /∈ {0, 1}
for some ω. We show that there exists an improvement over (π,S). Consider the alternative

signal structure (π′,S ′) which is identical to (π,S) except that it duplicates s into s1 and

s2 such that µ(ω|s) = µ(ω|s1) = µ(ω|s2) and τ(µ(·|s1)) = τ(µ(·|s2)) = 1
2
τ(µ(·|s)). For

shorthand, we write µ(·|si) = µi.

Suppose that a∗(µ(·|s)) ∈ (a, ā). Let ω ≡ min{ω : ω ∈ supp(µ(·|s))} and ω̄ ≡ max{ω : ω ∈
supp(µ(·|s))}. Then for ν, η ≥ 0 (with at least one strictly so), by Lemma 1,

µ2 + νω̄ − ηω �σ µ1 − νω̄ + ηω (20)

Moreover, by d-quasisupermodularity, either

d(µ2 + νω̄ − ηω; ω̄)− d(µ1 − νω̄ + ηω; ω̄) > 0 (21)

or

d(µ1 − νω̄ + ηω;ω)− d(µ2 + νω̄ − ηω;ω) > 0 (22)

Let δ = 1
4
τ(µ) min{µ(ω|s), µ(ω̄|s)} For any β, γ ∈ (0, δ), by the fundamental theorem of

calculus, there exist δ ≥ ν ≥ β and δ ≥ η ≥ γ (with either ν > β or η > γ) such that

τ(µ1 − νω̄ + ηω)

∫
uS(a∗(µ1 − νω̄ + ηω), ω)d(µ1 − νω̄ + ηω)(ω)

+τ(µ2 + νω̄ − ηω)

∫
uS(a∗(µ2 + νω̄ − ηω), ω)d(µ2 + νω̄ − ηω)(ω)

> τ(µ1 + γω − βω̄)

∫
uS(a∗(µ1 + γω − βω̄), ω)d(µ1 + γω − βω̄)(ω)

+τ(µ2 − γω + βω̄)

∫
uS(a∗(µ2 − γω + βω̄), ω)d(µ2 − γω + βω̄) (23)

and so we can without loss of generality set max{ν, η} = δ, as there will exist an improvement

by incrementing the weight on either ω̄ or ω for the cases where ν < δ and η < δ since the

payoffs is continuous in (ν, η) by Lemma 3. Note that (β, γ) were arbitrary, and that

lim
(β,γ)→(0,0)

τ(µ1 + γω − βω̄)

∫
uS(a∗(µ1 + γω − βω̄), ω)d(µ1 + γω − βω̄)(ω)

+τ(µ2 − γω + βω̄)

∫
uS(a∗(µ2 − γω + βω̄), ω)d(µ2 − γω + βω̄)(ω)

= τ(µ)

∫
uS(a∗(µ), ω)dµ(ω) (24)
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Hence we can take a sequence of values {(βk, γk, νk, ηk)}∞k=1 such that (βk, γk) → (0, 0) and

(without loss of generality) νk = δ and ηk ≤ δ for all k such that each (βk, γk, νk, ηk) satisfies

(23). Since the interval [0, δ] is compact, there exists a convergent subsequence of {ηk}∞k=1 to

some η∞ ∈ [0, δ] (without loss of generality, the sequence itself). By Lemma 3, the payoff to

the sender is continuous in (β, γ, ν), and so in the limit, we find from (24) that

τ(µ1 − δω̄ + η∞ω)

∫
uS(a∗(µ1 − δω̄ + η∞ω), ω)d(µ1 − δω̄ + η∞ω)(ω)

+τ(µ2 + δω̄ − η∞ω)

∫
uS(a∗(µ2 + δω̄ − η∞ω), ω)d(µ2 + δω̄ − η∞ω)(ω)

≥ τ(µ)

∫
uS(a∗(µ), ω)dµ(ω) (25)

Moreover,

µ2 + δω̄ − η∞ω �FOSD µ2

∼FOSD µ1 �FOSD µ1 − δω̄ + η∞ω

and so µ2 +δω̄−η∞ω �σ µ1−δω̄+η∞ω by Lemma 1. There then exists a local improvement

from either adding small enough weight ε of ω̄ from µ1 − δω̄ + η∞ω to µ2 + δω̄ − η∞ω, or

small enough ε of ω from µ2 + δω̄− η∞ω to µ1− δω̄+ η∞ω, due to inequalities (21) and (22),

respectively. Hence there exists an improvement over (π,S), and so it cannot be optimal.

For the case in which a∗(µ(·|s)) ∈ {a, ā}, the above method does not quite work, since it

may be that a∗(µ2 + δω̄ − η∞ω) = a∗(µ1 − δω̄ + η∞ω). To circumvent this issue, we take a

closer look at the support of µ(·|s). Suppose that a∗(µ(·|s)) = ā. If, for all ω ∈ supp(µ(·|s)),
a∗(ω) = ā, then splitting s into separate signals for each state does not change the payoff,

and so it will again be optimal to reveal all information. Otherwise, by supermodularity of

uR in (a, ω), it must be that a∗(ω) < ā. Since a∗ is continuous in µ, there exists β∗ ∈ (0, 1]

for which a∗(β∗ · µ(·|s) + (1− β∗)ω) = ā, but for all β ∈ (0, β∗), a∗(β · µ(·|s) + (1− β)ω) < ā.

It will then follow that for η, ν ≥ 0 (with one strict),

β∗ · µ(·|s) + (1− β∗)ω �σ β∗ · µ(·|s) + (1− β∗)ω + ηω − νω̄

Thus we can split s into two signals s1, s2 such that, for some c > 0,

µ1 = cβ∗ · µ(·|s) + c(1− β∗)ω

and

µ2 = µ(·|s)− (cβ∗ · µ(·|s) + c(1− β∗)ω)
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This will not change the payoff, as in both cases a∗(µ(·|si)) = ā. The argument then proceeds

as above, where now d(µ1;ω) is given by (5), but d(µ2;ω) = uS(ā2, ω). The case where

a∗(µ(·|s)) = a is symmetric, and so is omitted.

(ii) Suppose that (π,S) is optimal, and there exist s1, s2 ∈ S such that (without loss of

generality) µ(·|s1) �σ µ(·|s2); define these respective distributions as µ1 and µ2, respectively.

By Lemma 1, �σ is FOSD-consistent, and so there must exist ω1 ∈ supp(µ(·|s1)) and ω2 ∈
supp(µ(·|s2)) such that ω1 > ω2. By d-quasisubmodularity, either

d(µ2;ω1)− d(µ1;ω1) > 0

or

d(µ1;ω2)− d(µ2;ω2) > 0

In either case, an improvement exists, and so (π,S) can only be optimal if for all s1, s2 ∈ S,

µ1 ∼σ µ2. By Lemma 2, merging all such realizations generates the same payoff. Hence the

signal structure which generates the posterior beliefs identical to the prior is optimal.

Now consider the case where Ω is infinite. Consider any information structure (π,S). Let

ω̄ = sup{ω ∈ Ω} and ω = inf{ω ∈ Ω}. Consider a sequence of approximating state spaces

{Ωk} defined by dividing the interval [ω, ω̄] into subintervals of length ω̄−ω
2k

, and so that all

states ω in the same interval Ink (indexed by n ∈ {1, ..., 2k}) are mapped to the same value,

ωnk ; the prior distribution µk0 is then defined by assigning to ωnk the probability

µk0(ωnk ) =

∫
Ink

dµ0(ω)

where Ink = [n(ω̄−ω)+ω
2k

, (n+1)(ω̄−ω)+ω
2k

), with the interval closed for n = 2k. We correspondingly

approximate (π,S) by (πk,Sk) in which for any s ∈ S, there is a signal realization sk ∈ Sk
such that

µk(ωnk |sk) =

∫
Ink

dµ(ω|s)

and

dτ(µk(·|sk)) = dτ(µ(·|s))

Since π is measurable, this construction is well-defined. Note that this may lead to some

duplicates, i.e. there may be multiple values of sk which lead to the same µk; if so, these

realizations can be merged by Lemma 2 without changing the payoff from the resultant signal

structure.

As we have already shown, when the sender’s payoffs are d-quasisubmodular it is optimal to
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reveal no information when the state space is Ωk with prior µk0, and so∫
uS(a∗(µk0), ω)dµk0(ω) ≥

∫ ∫
uS(a∗(µk), ω)dµk(ω)dτ(µk)

Since uR is continuous and both µk → µ and µk0 → µ0 in the weak-* topology, it follows that

a∗(µk) → a∗(µ) and a∗(µk0) → a∗(µ0) by Berge’s maximum theorem. By the continuity of

uS, this implies that∫
uS(a∗(µ0), ω)dµ0(ω) ≥

∫ ∫
uS(a∗(µ), ω)dµ(ω)dτ(µ)

and so the signal structure which reveals no information provides at least as good a payoff

to the sender as (π,S).

Similarly, when the sender’s payoffs are d-quasisupermodular, it is optimal to reveal all

information, and so∫
uS(a∗(ω), ω)dµk0(ω) ≥

∫ ∫
uS(a∗(µk), ω)dµk(ω)dτ(µk)

Taking the limit as µk → µ and µk0 → µ0 yields∫
uS(a∗(ω), ω)dµ0(ω) ≥

∫ ∫
uS(a∗(µ), ω)dµ(ω)dτ(µ)

and so it is optimal to reveal all information. �

Proof of Theorem 6: For both (i) and (ii), we show that there is a local improvement for

any (π,S) that is not monotone. Without loss of generality, by Lemma 2 we can assume

that for all s1, s2 ∈ S, either µ(·|s1) �σ µ(·|s2) or µ(·|s2) �σ µ(·|s1). Now suppose that

µ(·|s1) �σ µ(·|s2), but there exists ω2 ∈ supp(µ(·|s2)) and ω1 ∈ supp(µ(·|s1)) such that

ω2 > ω1.

To show that an optimal signal structure exists, note that since lim|S|→∞ c(π,S) =∞, there

must exist some N∗ such that optimal structure must have |S| < N∗. We then check for the

optimal signal structure conditional on |S| = N < N∗, and optimize over N . For fixed N ,

the function ∑
s∈S

τ(µ(·|s))
∫

Ω

uS(a∗(µ), ω)dµ(ω|s)− c(π,S)

is continuous in (µ, τ(µ)), since a∗(µ) is continuous in µ and c(·, ·) is continuous in {τ(µ)}.
The set of such µ is compact under the weak-* topology, while {τ(µ)} is an N -dimensional

Euclidean vector contained in the N -dimensional simplex (a compact set, as long as we allow
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duplicate signal realization that induce the same posterior µ). A complication may arise in

that, when there is a duplicate signal realization, the two realizations can be merged and

therefore reduce the cost; however, this only serves to increase the sender’s payoff, and so

c(π,S) is lower-semicontinuous in π. Therefore an optimal (π,S) exists.

To show that a monotone signal structure is optimal, fix δ < 1
2
(ω2 − ω1), and define sδ1 to be

the restriction of s1 to [ω1 − δ, ω1 + δ], and sδ2 to be the restriction of s2 to [ω2 − δ, ω2 + δ].

(i) By d-supermodularity, for all ω′2 ∈ supp(µ(·|sδ2)) and ω′1 ∈ supp(µ(·|sδ1)), we have that

d(µ(·|s1);ω′2)− d(µ(·|s1);ω′1) > d(µ(·|s2);ω′2)− d(µ(·|s2);ω′1)

and so

d(µ(·|s1);µ(·|sδ2))− d(µ(·|s1);µ(·|sδ1)) > d(µ(·|s2);µ(·|sδ2))− d(µ(·|s2);µ(·|sδ1))

Hence there exists an improvement (excluding costs) by adding (ε
τ(µ(·|sδ1))

τ(µ(·|sδ2))
) ·µ(·|sδ2) (where ε is

sufficiently small) to µ(·|s1) and subtracting an equal weight from µ(·|s2), while subtracting

ε · µ(·|sδ1) from µ(·|s1) and adding it to µ(·|s2). Moreover,

τ(µ(·|s1) + ε
τ(µ(·|sδ1))

τ(µ(·|sδ2))
· µ(·|sδ2)− εµ(·|sδ1)) = τ(µ(·|s1))

τ(µ(·|s2) + ε · µ(·|sδ1)− ετ(µ(·|sδ1))

τ(µ(·|sδ2))
· µ(·|sδ2)) = τ(µ(·|s2))

and so the vector of probabilities {τ} (and hence c) is unaffected. Therefore (π,S) is not

optimal.

(ii) Similarly, if the sender’s payoffs are d-quasisupermodular, either

d(µ(·|s1);ω′2)− d(µ(·|s2);ω′2) > 0

or

d(µ(·|s2);ω′1)− d(µ(·|s2);ω′1) > 0

and so either

d(µ(·|s1);µ(|sδ2))− d(µ(·|s2);µ(·|sδ2)) > 0

or

d(µ(·|s2);µ(·|sδ1))− d(µ(·|s2);µ(·|sδ1)) > 0

In either case, ignoring costs, there exists a local improvement, in the former case by trans-
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fering sufficiently small ε weight of µ(·|sδ2) from µ(·|s2) to µ(·|s1), or in the latter case from

transferring ε of µ(·|sδ1) from µ(·|s1) to µ(·|s2). Let the new signal structure be (π′,S ′). Since

|S ′| = |S|, the cost c is unaffected. Hence (π,S) is not optimal. �

Proof of Corollary 7: We show that, in both cases, the problem reduces to that described

in Theorem 6.

(i) By Lemma 2, |S| ≤ N ; moreover, if it is optimal to set |S| < N , it is also optimal to

set |S| = N , as one can always construct duplicate signals with the same posterior. We can

therefore rewrite the problem as one in which

c(π,S) =

0, |S| ≤ N

∞, otherwise

(ii) As shown in part (i), the signal structure must have |S| ≤ N . Let the optimal signal

structure then be (π,S) (such a structure will exist because the set of signal structures

with |S| ≤ N is compact). Suppose that the set of actions taken is {a∗n}Nn=1, and let the

posterior distribution of states conditional on each a∗n be ν(·|a∗n) (this may be achieved through

randomization by the receiver). Then the signal structure (π′,S ′) in which S ′ = {sn}Nn=1,

µ(·|sn) = ν(·|a∗n), and τ(µ(·|sn)) = τ̂(n) will also be optimal.7 To see this, note that the

receiver to take the same set of actions {a∗n}Nn=1, as any other set of actions {â∗n}∞n=1 with

associated posterior distributions of states ν̂(·|â∗n) that would be optimal under (π′,S ′) would

also be feasible under (π,S) since ν̂(·|â∗n) =
∑N

n=1 αnν(·|a∗n) for some {αn}Nn=1 such that∑N
n=1 αnτ(µ(·|sn)) = τ̂(n). Thus the problem of the sender can be rewritten as one in which

c(π,S) =

0, {τ(µ)} = {τ̂(n)}

∞, otherwise

In both cases (i) and (ii), the result then follows from Theorem 6. �

Proof of Proposition 8: For each of the signals s1, s2, we define the signal realizations sδ1, s
δ
2

which restrict s1, s2 to within δ of ω1 and ω̄2, respectively. For every δ > 0, if (π,S) is optimal,

then dµ(·|s1);µ(·|sδ1)) ≥ d(µ(·|s2);µ(·|sδ1)) and d(µ(·|s2);µ(·|sδ2)) ≥ d(µ(·|s2);µ(·|sδ2)). Note

that as δ → 0, µ(·|sδ1)→ µ(·|ω1) in the weak-* topology. Hence if we take the limit as δ → 0,

7A similarity can be seen here to the revelation principal, in that instead of implementing this outcome
indirectly via some randomization on the part of the receiver, the sender can implement this outcome directly
by creating posteriors that are the same as the post-randomization distribution.
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we find that

lim
δ→0

d(µ(·|s);µ(·|sδ1)) = −
∫
∂uS
∂a

(a∗(µ(·|s)), ω)dµ(ω|s)]·
∂uR
∂a

(a∗(µ(·|s)), ω1)∫
∂2uR
∂a2

(a∗(µ(·|s)), ω)dµ(ω|s)
+uS(a∗(µ(·|s)), ω1)

which is precisely the value of d(µ(·|s), ω1). Similarly, we find that

lim
δ→0

d(µ(·|s);µ(·|sδ2)) = −
∫
∂uS
∂a

(a∗(µ(·|s)), ω)dµ(ω|s)]·
∂uR
∂a

(a∗(µ(·|s)), ω̄2)∫
∂2uR
∂a2

(a∗(µ(·|s)), ω)dµ(ω|s)
+uS(a∗(µ(·|s)), ω̄2)

Suppose that d(µ(·|s1); ω̄2) > d(µ(·|s2); ω̄2). Then for sufficiently small δ, d(µ(·|s1);µ(·|sδ2)) >

d(µ(·|s2);µ(·|sδ2)). For any fixed ε > 0, there would be a feasible improvement from shifting

any weight of no more than ε of µ(·|sδ2) from µ(·|s2) to µ(·|s1); this is possible due to the fact

that A and Ω are compact, and so d(·; ·) is uniformly continuous. If there is not an atom at

ω̄2, one can then choose δ so that τ(µ(·|sδ2)) < ε, and so thereby maintain monotonicity after

this swap; this is important if there is an exogenous monotonicity constraint. If there is an

atom at ω̄2, then one can simply add weight on ω̄2 from µ(·|s2) to µ(·|s2). Thus (π,S) could

not be optimal. Similarly, if d(µ(·|s2);ω1) > d(µ(·|s1);ω1), then there exists an improvement

by shifting (for small enough δ and ε) a weight of ε of µ(·|sδ1) from µ(·|s1) to µ(·|s2). �

Proof of Proposition 9: As shown in Goldstein and Leitner (2015), it must be that any

state ω ≥ 1 must sell; otherwise, the sender can just design a new signal in which the

conditional distribution just contains that state; the receiver then offers price a = ω and the

sender accepts, thereby improving the sender’s payoff.

Without loss of generality, one can consider a finite |S|. One can merge all signal realizations

s for which E[ω|s] < 1, since the bank will not sell in those cases anyway and so the signal is

irrelevant; call this signal s which induces posterior µ. For s such that E[ω|s] > 1, one can

always merge a collection of signals {s} such that

sup{ω ∈
⋃
{s}

supp(µ(·|s))} − inf{ω ∈
⋃
{s}

supp(µ(·|s))} < rG(1− ω̄)

since all such ω will still accept an offer to sell at the expectation of the merged signals rather

than risk having insufficient reserves. Lastly, there need be at most one signal realization at

E[ω|s] = 1 by Lemma 2.

To be incentive-compatible, clearly E[ω|s∗] ≥ ω∗+ r(1−G(1−ω∗)). If E[ω|s∗] > ω∗+ r(1−
G(1 − ω∗)) then for some δ > 0 and resources are scarce, there will exist some interval of

states [ω′−δ, ω′] such that if µ
δ

is the posterior generated by the restriction of µ0 to [ω′−δ, ω′],
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then Eµ(·|s∗)+µ
δ
[ω] > ω∗ + r(1−G(1− ω∗)). This would be an improvement since

lim
δ→0

d(µ∗;µ
δ
)−d(µ;µ

δ
) = lim

δ→0
E[ω|s∗]+r−(E[ω|s∗]−Eµ

δ
[ω])−(Eµ

δ
[ω]+r(1−Eµ

δ
[G(1−ω)]))

= rG(1− ω′) > 0

Therefore, by Proposition 8, E[ω|s∗] = ω∗ + r(1−G(1− ω∗)).

Let µ̄δ be the restriction of µ0 to [ω∗, ω∗ + δ]. The marginal amount by which a∗ increases

from adding µ̄δ is −(E[ω|s∗] − Eµ̄δ [ω]), so the total amount it increases per increase in δ is

−(E[ω|s∗] − Eµ̄δ [ω]) · 1
δ

∫ δ
0
f(ω∗ + x)dx. In the limit as δ → 0, this becomes r(1 − G(1 −

ω∗))f(ω∗). Hence the marginal amount by which the price offered increases by increasing ω∗

must be r(1−G(1−ω∗))f(ω∗). Now suppose that this is greater than 1. Then by shifting ω∗

up, the incentive compatibility constraint becomes slack for a small enough increase, and so

one can add more of ω < ω′ to s∗. Otherwise, if it is less than 1, then by decreasing ω∗ one

also slackens the incentive compatibility constraint, and so can add more of ω < ω′. Hence

either E[ω|s∗] = 1 or r(1−G(1− ω∗))f(ω∗) = 1. �
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