DISCUSSION PAPER NO. 158

A DYNAMIC PROGRAMMING ALGORITHM FOR CHECK SORTING*
by
Frederic H. Murphy
and

Edward A. Stohr

Revision: Decembar, 1976

WThe authors wish to thank Chuck Cooper of American National Bank
for presenting the problem to us and Phillip Ryczek and Bob Malczewski
of Continental Bank and Richard Rauscher and Bob Maychec of First

National Bank for further assistance. The paper has benefited greatly

from the constructive comments of the editor and referees.

ABSTRACT

The motivation for this paper is a problem faced by banks
which process large volumes of deposited checks. The checks
must Be separated by bank number before shipment to the Federal
Reserve or other banks., The sorting is usually accomplished
using a reader-sorter which reads the magnetic ink characters
on the checks and separates them into different '"pockets'.

This paper characterizes the optimal sorting strategy and des-
cribes an efficient procedure for finding the optimal solution
for problems of the size generally found in practice. The
algorithm is based on a two state dynamic programming recursion
in wh ich characteriéation theorems are used to drastically
reduce the size of the state space and in which the storage re-
quirements are minimal. The paper includes an analysis of com-
putational experience and describes how the algorithm can be

used in a real time environment with deadlines.

1. Introduction

Check processing is a major function of the commercial banking system and
the total annual cost of these operations exceeds three billion dollars
(L. Moore [5]). An important aspect of the check-processing problem is the
optimization of the system which sorts checks by their endpoint destinations.
The endpoints may be a collection of banks within a region, a Federal Reserve
bank or a single bank which must be sent a large volume of checks. For checks
drawn on the bank itself the endpoints are the banks own checking account
customers. In one large Chicago bank approximately two million checks with a

total value of roughly $1 billion dollars are sorted to 400 different end-

points on a typical day. A description of the problems faced by the Bank of
England in designing a computer system for the real time control of their

check processing operation is given by Banham and McLelland [1].

Large check sorting operations involve complex man-machine systems whose
reliability and efficiency are crucial to the successful operation of the bank
and to the maintenance of good relations with its customers. The objectives
of the system differ somewhat depending on the circumstances and the class of
check involved. The checks drawn on the bank itself must be separated from
the other checks and sorted by account number. For these checks a suitable
objective is simply to minimize the total processing time a ('throughput'
criterion). On the other hand, checks drawn on other banks must be returned
to those banks either directly or via a clearing bank in the Federal Reserve
system. In either case checks for the various endpoints will be subject to
clearing deadlines. Essentially the bank loses one day's interest on all
checks which miss their deadlines (at the current Federal Funds rate a loss
of approximately $150 would be incurred for each $1 million of checks not
processed on time). For this class of checks the processing system must there-

fore be designed to allow for the presence of deadlines and for the expected

(or actual) value of the checks associated with the various endpoints as well
as for efficient throughput. For given processing hardware the most important
decisions affecting performance involve the choice of one or more 'sort-patterns'
or strategies for separating the checks according to the various endpoints.
During processing, the checks are read into a computer-controlled sorter.
At each pass a code which translates to the endpoint is read off each check
and the check is sent to a specified pocket. Sorters are available with
different numbers of pockets. However, since the number of endpoints is sub-
stantially larger than the number of pockets, many checks must go through
multiple passes, This means that on early passes many endpoints have to be
grouped into the séme pocket, broken down into subgroups and finally into
individual endpoints. Since some endpoints have substantially higher volumes
of checks than others, it is clear that these endpoints ought to be separated
before the low volume endpoints. To represent the separation process, the
sorting pattern can be described as a tree with directed arcs. For example,

a tree for a four pocket sorter with 19 endpoints could be as shown in Figure 1(a).

Nodes connected to a single arc are called 'exterior nodes' and all other
nodes are called 'internal nodes' (Knuth [4, p. 399]). The external nodes re-
present distinct endpoints or 'kill-pockets' for checks. The root node repre-
sents the first pass of a batch of checks through the sorter while the other
internal nodes represent 'rehandle' pockets in the check sorting process. We
say that a tree is an H-level tree if the maximum number of arcs from the root

to an endpoint is H. A node is at level h < H if it is the hth node on the

path from the root to this node. Note that checks assigned to an endpoint

at level h go through h-1 passes.

The problem of optimizing the check sorting operation can be thought of
basically as that of choosing one or more sort-trees for use with the different
classes of incoming checks. When the processing is subject to deadlines it

is also necessary to simultaneously consider policies for sequencing the pro-

cessing of the various batches and sub-batches associated with the internal

nodes of the trees. As far as is known, the sort trees used in practige are
developed heuristically. One €Chicago bank uses only one sort~tree while another
uses six with the choice of sort-tree depending on the time of day. 1In the latter
case the sort-trees allihave the same general shape and differ only because

the endpoints are assigned to different pockets. In this paper we are primarily
concerned with the development of a technique for generating sort-trees which are
optimal with respect to a throughput criterion. However, in the last part of the
paper, we show how the sort-trees generated by our algorithm can be modified without
increasing the total processing time to allow for the presence of processing dead-
lines. The modified trees can be used in situations where it is necessary to
minimize losses from missed deadlines. In a subsequent paper [6], we show how

these trees can be used as inputs to a dynamic scheduling algorithm,

2. Problem Formulation

. 1
Let the sorter have m pockets to process checks for n endpoints.” The

volume of checks to endpoint i, for i = 1,...,n has mean q; - Without loss of

The value of m does not include the reject pocket(s) necessary for

unreadable items.

-4 -
generality we order the endpoints so that 95 > 9541 for i = 1,...,n. For a

given sort tree define p; as the number of passes for the checks of endpoint i,

Let h be the cost of sorting a check through h passes. We assume ¢, < ¢ .

h h+1
Nonlinearity of the costs allows for the probability of check damage increasing

more than proportionately with the number of passes beyond the first. One

interpretation of the costs cy is as follows. Let d be the average variagble

time to pass a check through the sorter and let r, be the probability of a
check being rejected (unreadable) on the hth pass. Assume that checks which
are rejected are subject to special handling procedures which on the average
involve 0 time units of processing per check. If the objective is to minimize
the total processing time for both rejects and non-rejects, the expected time

to sort checks which are separated on the hth pass 1is:

h k h k-1
¢, = T mw@-r)d+ T r, ™ (Q-r)8
b= g=p F k=1 K i=1 i

wﬁicﬁ is an increasing function of h, In the first part of the paper oﬁr objective
is to minimize the totai cost, ?) 9i- As shown later, a set-up cost associated with
each internal node, which results f;om the physical handling of the checks, does
not affect the optimal solution because the number of internal nodes is constant. In
practice it is often necessary to isolate certain classes of documents on the first
pass through the sorter. Possibilities here include travellers' checks which damage
and checks with very high dollar values. This requirement is accommodated in
the computer algorithm to be described simply by allowing the sorter to have less
than m pockets available on the first paés and eliminating the special endpoints
from further consideration.

An integer programming formulation of the check-sorting problem for the
case where ¢ = cp; is presented in Singh, [7]. However, a thousand

i
endpoint problem leads to six thousand integer variables and 1006 constraints

1
Note that d and & could alternatively have been defined as dollar cost

per item pass and per item respectively.

if a maximum of 6 passes is expected for any endpoint. The approach we take
is to construct and characterize a restricted class of trees that contains
an optimal tree and to use a recursion to implicitly enumerate all the members
of this restricted class. This recursion is based on a two-state dynamic pro-
gram. By further characterization of the structure of the dynamic program we
eliminate the need for a complete enumeration of all of the elements of the
two dimensional state space,drastically cutting down the size of the problem.
Although our discussion is in terms of the check prSZessing problem which
motivated the study, the algorithm déveloped has several potentiél areas of
application. The most obvious applications occur in other mechanical sorting
processes for example, in the sorting of mail by zip code (Horn, [2].) 1In
coding theory, the case where cpi = cp; has been solved by Huffman, [3]. 1In
this context the algorithm to be described below will allow the generation of
optimal codes where there is an increasing cost for the number of symbols used
in a string. Such a cost structure might occur when humans are involved in
the transmission or reception of strings of characters because longer strings
are more difficult to comprehend leading to a longer processing time per
symbol., Also, in contrast to Huffman's algorithm, the algorithm described
here works when there is a restriction on the number of levels in the trees.
We now state some straightforward results which simplify the analysis
by reducing the variety of trees which need be considered. Reassigning
end-points (banks) to different pockets on the same level in the tree does
not change the cost. Therefore, we can index the external nodes of the
tree from left to right be decreasing volume and need only consider trees

where the length of the path from the root to external node i is less than

or equal to the length of the path from the root to external node j for i < j.

Furthermore, since we can always add endpoints of zero volume, we need only
consider m-ary trees, that is, trees where exactly m arcs emanate from each

interior node. The number of nodes to be added is determined as follows (see

Knuth {4, p. 590]):
i if 1

v

lemma 1: Let i = n mod (m-1) and j = m-1 if 1

1]
[e]

m if 1=1

then the number of zero volume endpoints to be added to make the m-ary tree
is given by m-j. 1In addition, the m-ary trees considered 'feasible' will have
a form similar to that in Figure la with the longer paths from the root node
to the endpoints skewed as far to the right as possible. From now on we
assume that the m-j zero volume endpoints are added to ensure an m-ary tree.

For the sorting problem we have n external nodes and (say) N internal
nodes. The number of arcs in the tree is then n+N-1 but since every internal

n-1

node has m outwardly directed arcs we see that mN = n+N-1 and N = 1 Thus

the number of internal nodes in any m-ary tree with n external nodes is con-

3

stant and we need not consider the set up cost associated with each internal

node

3. The Tmplicit Enumeration Algorithm

A formulation of the sorting problem can be stated in dynamic programming
form in terms of a backwards recursion starting at maximum allowable height, H,
of the tree and iterating down to level 1., The dynamic program is used to
prove certain properties of the trees; these properties form the basis for
the algorithm to be described later. The state-space of the problem at level
h consists of all pairs of the form (i,r) where i indicates that the set

of endpoints {i,i+1,...,n} have not yet been separated at level h of the sort

tree and r is the number of internal nodes at the level h under consideration.
For example, at level h=3 in Figure la, i = 12 and r = 2.

The recursion presented is not the most 'natural' in the sense that some
of the costs associated with 'future' actions are charged against 'current'
costs. This is done to simplify the proofs of the characterization theorems

which appear later.

Let:
(1) fh(i,r) = the minimum cost of the forest (that is, collection of
trees - see [4, p. 306]), containing endpoints i through n with r
roots at level h and with Py >h for i< j<n,
n
= T (c - ¢,)9, 1 <h<H
* -1k =" =
k=i P Pl
where p: is the number of passes for endpoint k in the minimum cost solu-
tion. That is, f is the minimum cost of sorting endpoints i . through
n from the nth pass on, given that they have not been sorted out by
their h-15t pass through the sorter. The recursive equation is:
n
(2) fh(i,r) = min fh+1(j,mr-j+i) + (ch - ch_l)k§=]i 9

Jp) £33,
n-rm+ i-1

To define j1 and j2 let p = min(rm,]

) be the maximum feasible number
of internal nodes at level h+l for given i; then jl(i) = j+rm-p and jz(i) = i+rm-1.
Let i’ be the smallest index endpoint at level h, and r’ the number of

internal nodes at level H-1 in the initial H-1 level tree. Then the terminal
n
optimal value function is: f i',r') = -
B 5D =7 ey -y o

do not include the cost for the first h passes for endpoints 1 through

Note that we

n in fh+1(i,r). By including these costs as they are incurred in the current

n
cost component ((ch - Ch-l) Z qk at level h) we remove the effect of our

k=1
decision variable, j, on the current cost. As a result we need analyze only
one component of the recursion to draw conclusions about the structure of the

dynamic program. This recursion is numerically intractible for any practical

problem because of the two-dimensional state-space and the ranges for the

variables, We therefore propose another enumeration scheme. The dynamic pro-
gramming formulation (1) and (2) is utilized in the Appendix which gives the
theoretical justification for the algorithm described below.

Td simplify the discussion we define a plume to be a set of m arcs
and mt+l nodes of which m nodes are exterior nodes. The arcs connect
the external nodes to the remaining node which we call the root of the plume.
A plumg is shown in Figure l(b) for the case m=4. We define the level of a
plume to be the level of its root.

Let a; be the number of internal nodes at level i and for an h-level
sort tree define a 'sort vector' by a = (al,...,ah). Note that a; = 1. The
cost to complete the sort using the strategy defined by sort-vector, a, is de-
noted by C(a). To enumerate all trees of a given level, h, we could start with
the lexicographically largest vector, a, which is feasible (i.e. has a, =1 and

1

a1 < ma,, i=1,2,...,h-1) and enumerate all feasible trees in a lexicographi-
cally decreasing order. Geometrically, the movement to the next tree in the
sequence involves moving a plume (or plumes) from one level in the tree to the
next highest level that is feasible (maintains an m-ary tree of the form shown
in Figure la). ©Note that the plume(s) will now be associated with different
endpoints since tﬁe exterior nodes are always maintained in decreasing order

by check volume. Also, moving a plume up a level adds another exterior node

at the lower level.

-9 -
We now describe an implicit enumeration scheme for computing an optimal

sort-tree with level less than or equal to H. H' will represent the current

height of the tree. We start with the minimum height m-

N =4 ’

largest sort vector). We repeatedly increase H , the level of the tree, by one.

At each value of H we find a minimum cost tree with a maximum number of levels
4

less than or equal to H'. We stop at H'=H (or earlier if an increase in #H' does

not change the optimal tree). For a given 1’ the minimization proceeds down-

ward from the top with thé index k indicéting the lowest level in the tree to
which the optimization has extended. Each time we reduce k by 1 we have to

reoptimize at all higher levels in the tree. The algorithm generates a lexi-
cographically decreasing sequence of sort-vectors (but, as shown in Section 4,

only a small fraction of the total possible number).

Algorithm1

1., Start with the lexicographically largest sort-vector. Let H' be the height

of this tree and let it be represented by 8158y5 00534l Set k = H -1 and

’/
bHI = a.H: .
2. The optimal sort-vector for arseeesdy fixed is al,...,ak,b’k+1,...,b'H,.
If feasible, find al,...,ak-l, bk+l""’bH" the optimal sort-tree given

al,...,ak-l and go to step 3. If infeasible set k=k-1., If k=1l go to step 4;

. 4 =
otherwise set bk+1 %k*l

and repeat this step.

¥ ¥ = -
3. 1If C(al,...,ak - 1,bk+l,...,bH,)‘< C(al""ak’bk+l""bH’) set a, = a 1

and bﬁ+1 = bk+1""’bh’ = bH' and go to step 2. Otherwise set bé= a, and

k=k-1. If k> 1 go to.step 2; if k =1 go-to step 4.

1A number of details are omitted. A full description of the algorithm is

available from the authors on request.

ary. tree (lqgicographically

- 10 -

i i t- tor.
4, 1fH =H ,or bﬁ, = 0 stop, al,bE,bé,...bﬁ/ is the optimal sort-vec

ine V ee.sa, ,b! ceesb,
Otherwise let a,,2,,..+53y/y) be obtained from a,,...53;50 47027y by

removing a plume from the highest possible level and placing it at

H+l. SetH =H 4+, k = H -1 and let bﬁ(=1 ; go to step 2.

Detail of Step 2:

To obtain b bH' from b£+1,...,bﬁ in step 2 we recursively execute

k+1’"°°°
a procedure similar to step 2 for levels h = # , H -1, H -2,...,k+l. The

lexicographically largest sort-vector which must be considered at each

. 1] 1
level of optimization is obtained starting from al,...,ak,bk+ ""’bH'
the optimal sort-vector given al,...,ak. As proved in the Appendix only one

plume need be added at each level. Thus, if feasibility considerations

t
permit we start the reoptimization at level k+1 from al,..., 1,bk+1

bé+2,...,bﬁ, and at level k+2 from a,,...,8; ;- é+1 k+2+1,-.-,b' etc.
Thus this step iériﬁitialized by successively moving a plume to higher levels
until H’ is reached.

The algorithm is based on several 'convexity' results, the formal proofs
of which are given in the Appendix. Theorem 1 shows that when we enumerate
feasible sort trees in lexicographically decreasing order and when the only
change involves moving a plume from the second highest level to the highest
level the costs of the sort trees change in a convex fashion. This is because
as we enumerate the sort trees, endpoints which go through fewer passes have
decreasing volumes resulting in monotonically decreasing cost savings while

endpoints which go through more passes have larger and larger volumes re-

sulting in monotonically increasing costs. Theorem 2 is another convexity

- 11 -

result. It shows that as we reduce a, to ah-l then ah—2, etc., fh(i,ah),

fh(i+1,ah-1), fh(i+2,ah-2) etc. form a convex function. Thus sequentially re-

ducing the number of internal nodes at a given level (that is, moving a plume

to a higher level) and reoptimizing the upper levels leads to a convex cost

structure in the associated sort vectors. Theorems 1 and 2 provide the basis

for step 2 of the algorithm. Theorem 3 is the basis for the detail of step 2

of the algorithm. It shows that, given the best solution so far in the enumera-

tion, any better solution would involve moving some plumes to a higher level.

Finally, if we have the minimum cost sort-tree with maximum allowable height i

and we wish to increase H’ by one, Theorem 4 allows us to start the enumeration

from the current optimal solution. This justifies step 4 of the algorithm.
Figure 2 shows the sequence of sort-vectors evaluated by the algorithm

for thé problem with m=3, n=11, ¢q=(10, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1), H> 4,

¢y = h, h=1,2,...,H. The figures above the endpoint nodes are the volume of

checks at each endpoint. The optimal sort-vector is (1,1,3) with a cost of 45.

H =3:

C(1,1,3)=45

H =
11 1 1 111 1 1
(d) N _ (e) N
11111 1 y
N \f' g J 4
1 11
~ N
10 NP 10 8§ NJ -
\ \) o \\\
gt TN -
C(1,1,2,1)=47 c(1,1,1,2)=49

FIGURE 2

In (a), (b) and (c) of Figure 2 we successively move plumes from level H -1
to level H using steps 2 and 3 of the algorithm. Since the costs are de-
creasing we stop only because it is not feasible to move more plumes up in
the tree restricted to H = 3 levels. In (d) of Figure (2) H is increased
by 1 using step 4 of the algorithm. From Theorem 4 it is not necessary to
consider the sort vector (l,2,1,l)--we can always progress by moving plumes
to higher levels in the tree. The sort-tree in (e) of Figure (2) is evaluated
next but the costs increase so by the convexity of Theorem 2 the sort-tree
in (d) is the best that can be obtained by shifting plumes from level three
in the 4-level tree. Since there are no plumes to move from level 2 and
the 3-level tree in (c) has a smaller cost we stop without examining any

5-1level trees,

3. Computational Experience

The algorithm described in the previous section has been coded in FORTRAN
and tested on a CDC 6400 computer. Four different runs were made for each
setting of n (number of endpoints) and m (size of sorter). The endpoint volumes
and sorting costs used for these experiments are shown in Table 1. Runs 1, 3,
and 4 involved no restriction in level (H = N where N is the number of
internal nodes in the tree). Run 2 was the same as run 1 except that the
maximum allowable number of levels of the tree was restricted to H,=5, and run

1

3 was the same as run 4 (same random number seed) except that the costs, ¢, were

h
nonlinear.

- 13 -

TABLE 1

Description of Computer Rums

Run Endpoint Volumes, 9, Sorting Costs, c,
2
1 (@/2)°, (m/2-1)%,...,22,12,1,1,...,1. ¢, =h, h=1,2,..,
2 2
2 (/2)%, (a/2-1)%,...,2%,1%,1,1,...,1. ¢, =h, 1<h<s
- 2 . ,
3 qi = r; where r, is a random number drawn 1.0, 2.5, 4.5, 7.0, 10.0|
from an exponential distribution with 13.5
mean = 1000, ' -
4 (same as three above)

Table 2 shows the optimal sort-vectors found by the algorithm together

with the associated costs

«. In.runs 1, 2, and 4 the taotal costs equal

the total number of passes of checks through the sorter and the

average number of passes per check varied from 1.94 to 2.66. The column headed

'"No. of trees'" gives the number of candidate sort-vectors (trees) evaluated by

the algorithm,

These evaluations are carried-out efficiently by computing only

the incremental changes in moving from one tree to the next. When n = 200 and

m = 10, a complete enumeration of all trees restricted to five levels in

height involves 1174 evaluations whereas the algorithm required only 39 itera-

tions to find the optimal tree in run 2 of the experiment.

rapidly becames impractical for larger values of H and N.

Complete enumeration

The number of trees evaluated by the algorithm depends on the relative

sizes of the endpoint volumes.

The least amount of computation occurs when

the optimal sort-vector is the lexicographic maximum (minimum level tree).

In this case the algorithm terminates after only five or six evaluations.

The worst case for the algorithm is when the optimal tree has the maximum

possible number of levels, N; however this case mever occurs in the type of

-1 -

TABLE 2

COMPUTATIONAL PERFORMANCE

Experiment ' Optimal Solution
- . - No. of Time
n m N Run Sort vector ' Cost Cost Trees (Seconds)
per check
200 | 10 | 23 1 1,7,2,1,3,9 656,831 1.94 94 .40
2* 1,7,2,2,11 656,861 1.94 39 .09
3 1,7,9,4,1,1 385 x 100 2 .49 46 .12
4 1,6,9,4,2,1 747 x 108 1.94 51 .19
1000 | 10 {111 1 1,10,30,10,3,2,8,47 | 111,135,503 2.66 744 3.62
2* 1,10,31,15, 54 111,236,512 2.66 140 34
3 1,10,43,35,15,4,2,1 | 6,605x10° | 3,70 242 71
4 1,10,40,35,17,5,2,1 | 4,616 x10% | 2.59 345 1.40
2000 | 24 | 87 1 1,24,15,3,2,40,2 696,158,831| 2.09 600 2.80
2% 1,24,15,5,42 696,171,141] 2.09 105 .31
1,24,44,14,3,1 10,561 x10° | 2.81 70 .35 .
4 1,23,42,16,4,1 8,063 x10° | 2.15 64 .37
*
Restricted to five levels (Hl =5),
application considered here. For a given size sorter and similar distributions of

endpoint volumes, the number of iterations required by the algorithm appears to
increase approximately linearly with h in the experiments. As shown by run 3
the optimal sort-tree is quite sensitive to changes in the sorting costs. The
computation times in the last column of Table 2 demonstrate that the algorithm

is suitable for use in the real-time control of the check-sorting process as

outlined in the next section of the paper. At present the algorithm is implemen-

ted as an interactive computer program which allows the system designer to rapidly

assess the affects of various factors such as changes in the costs, s different

- 15 -

sorter sizes, and the separation of different 'special' end-points on the first or
subsequent passes,

The data used in the experiments described above were contrived to test the
computational performance of the algorithm, Detailed endpoint volume data are
not presently available from the banks consulted during this research. However,
it has been possible to carry out one experiment using available data collected
over a one hour period from an actual sorting process., 1In this case the sorter

had 12 (non-reject) pockets, there were 265 endpoints and the sort tree involved a

maximum of 4 levels. The data represented approximately 160,000 checks with a
total value of $50 million. To compensate for 'special' pockets as described
earlier, the algorithm was run for this endpoint data with m=10. The results

given in Table 3 show a 5% decrease in average number of passes per check, This
represents a substantial saving since on a pro-rata basis, an additional $2,500,000
worth of checks might have been processed in the same time period if the optimal

sort-tree had been used.

TABLE 3

COMPARISON OF ACTUAL AND OPTIMAL SORT-TREES

Sort-vector . Average No, of
a " Passes per Check
Actual sort-tree 1,6,13,4 Z 1.96
‘Optimal sort-tree 1,7,16,6 ' 1.87
(H = 4)

4L, Sorting Patterns When Time Constraints are Present

"The sort tree obtained from the algorithm presented in the previous section can
be used without modification to achieve efficient processing of the checks asso-

cidted with the bank's own customers. To implement the processing procedure it

- 16 -
makes sense in this case simply to sequence the set-ups in left-to-right order
on each level and to complete all the set-ups on any one level of the tree
before proceeding to the next. This will be optimal if there is a positive
probability of a system break-down since-the end-points with large volumes are
processed first.

In processing the checks drawn on other banks various groups of end-p?ints
have to be processed before different deadlines on each d;y so that the pro-

cessing bank can receive credit for the dollar value involved. The bank

essentially loses one day's interest on the value of all checks which miss

their deadlines. In this séctidn we suggest a procedure for modifying the
sort-tree and determining a sequence of processing steps (visits to inter-

nal nodes). This sequence allows for the presence of deadlines and the

dollar value of the checks and yet still maintains the minimum average number

of passes per check, The combination of the sort-tree and the specified sequence
of processing steps is called a "sortlpattern." We assume a real-time processing
enviromment in which it is possible to determine a separate sort-pattern either
for each incoming batch of chécks or for all batches of checlks for which
processing is begun during a specified time iqterval. The sort-pattern will

depend on the time at which processing starts both because ©f the deadlines

and because the expected end-point volumes and dollar values vary throughout

the day. To determine the sort-pattern for a batch of checks the following
steps aré proposed:

(1) Given the time of day and information concerning the origin of the
cheek;ﬁ££e expected distributions of check-volumes and values by end-point

is found from a table of stored values.

- 17 -

(2) The algorithm described in the previous sections is run and a sort-
tree which minimizes the total expected sorting time for the batch is determined.
At this point the end-points going from left to right in the'sort-tree are
arranged in decreasing order by volime.

(3) The end-poiﬁts at each level in-fhe sort-tree determined during
step(2)are ordered from left-to-right by incfeasing time to deadline and within
the group of end-points for each dead-line by decreasing dollar value. The
resulting sort-tree may appear as in Figure 3(a) where the letters appearing

1yn

above the external nodes refer to the associated deadline with deadline "a

being the most imminent and deadline "b" the next most imminent and so on.

aaaabb

(b)

FIGURE 3

(4) A modified sort-tree (see Figure 3(b))is now obtained by associating
each internal nodevwith the highest priority deadline in the éubtree for
which it is a root and moving it to the left until an end-point with the same
or higher priority is encountered. " o

3

As the modified sort-tree involves the same number of set-ups as the sort-
tree determined in step (2) and each end-point goes through the same number of
passes, it will also involve the minimum expected total processing time. How-

‘ever the new sort-tree has the advantage that the number of setups required to

completely process all the end-points associated with the earliest- dead-line,

"a'", is minimized within the class of optimal sort tries. Also, going from

left-to-right within each level, the internal nodes are associated with dead
lines of decreasing urgency and within the group of internal nodes associated
with each dead-line the expected dollar values associated with the endpoints
are decreasing.

(5) To complete the specification of the sort-pattern for the given
batch (br group of batches) it is now necessary to determine the actual time
sequence of set-ups (visits to internal nodes) which is to be employed. For
this purpose a job-shop scheduling procedure, [6 7, cén be employed to determine
the sequence which minimizes the expected value of the checks which miss dead-

lines.

(3)

(&)

- 19 -

APPEND IX

The algorithm presented in Section 2 is based on the following theorems:

Theorem 1l: Let C(al,az,....,ah) be the cost of the sort-tree represented by

815855000058, . C(al,az,....,ah_l-k,ah+k) is a convex function over the

feasible range of k.
Proof: As %k increases plumes with non-decreasing volume endpoints are
moved from level h-1 to level h and endpoints with non-increasing volumes
are moved to level h-2, With costs non-decreasing and savings nén-increasing
the theorem holds.
Theorem 2: 1In the dynamic program introduced previously:

fh(i+1,ah-1) + (ch - h)
- fh(i+l,ah—1)

h-p)9; - F(Esa

§_fh(1+2,ah-2) + (ch - Ch—l)qi+1

and

fh(i-m+;,ah) - fh(i,ah) < fh(i-2m+2,ah) - fh(i-m+1,ah)

Proof: To prove (4) we proceed by induction on h starting at h1 and working
down. Let h' be the highest level in the tree with 3 < ma ,. For
h =h'-1, (4) implies that we are bringing a succession of plumes from some

level less than h'-1 and placing them at level h'. As in Theorem 1, since

the endpoints for each added plume are non-decreasing in volume, (4) holds

for h = h'-1.

(5)

Suppose (4) is true for h+l,H42,...,h’. We have:f1

n
- fp(ha) =min {f . (Gemay - JH) + (g - ¢) I g
i>i k=1

Modifying our indexing:

1o simplify the notation and without loss of generality we assume jl(i) =i

- 20 -

n
(6) £, (i-mtl,a) = min {; (3-wtl,ma -j+i) + (¢, -c.) E q
h O h h "% 2 T
M £«) >
f(i-2m+2;a,) > min £, .. (j-2m*+2,ma, -j+i) + (¢, -c,__;) I q
B " jeomtopi-omte | DY h b BTy oiomp K

The upper limit of the range for j .in (5), (6) and (7} is decreasing from
feasibility considerations since there are more banks at higher levels in
the tree. Therefore, looking at the individual terms in (5), (6) and (7),

(4) follows from the induction hypothesis and the monotonicity of the qk's.

In (3) we are moving plumes from level h to some higher level in the

tree. To prove (3), we have (5) as before together with:
. ' . n
(®) (ep-cy_q)9; * £ (itl,a ~1) =j-m_m*_]l-;i+l{}flij]:-tn+l,mah-j+i). + {ch-ch_l)k*:‘i qk}
. - . s e 4 e n .
(9 (epmey Pyt £,(42,a,-2) T -2t {fh+1(3'2m+2’mah‘3+l) * epmepy) b1 qk}

As above, the upper limit of the range for j in (5), (8) and (9) is de-
creasing from feasibility considerationms. Since the number of roots available
in (5), (8) and (9) is the same (equal to mah-j+i) we may use inequality (&)

which gives the result.

Theorem 3: Let:

(10) al,az,...,ah_l,ah,...,aH

. ; < s ort -
represent a sort-tree where ah,ah+l,...,aH provides the minimum cost sor

tree for a1s355 - fixed. Assume a plume is relocated so that:

L Y

(11) bl,bz,...,bh_l,ah+1,ah+1,.;.,a

H

b let

is a sort-tree with bi < a; for i = 1,2,...,h-1. Given bl,bz,..., -1’

- 21 -

(12) bl’b2’""bh-l’eh’eh+1""’eﬁ

2 at 1, then e, e T lande =a

be the minimum cost sort-tree with e r
. i r

h
for r = h+l,h+2,...,H.

Proof: The endpoints that move to a higher level whén the number of internal
nodes at level h 1is increased from ay to ah+1 have volumes at least as great
as those already at this level. Now, applying the convexity result (3) to
sort-vector (12) at level h, we see that the theorem holds.

Theorems 1, 2 and 3 complete our characterization of restricted level trees.
We next characterize the effect of increasing the number of levels on the costs
of a shifting a plume. A superscript is added to fh as defined in (2) to indicate
the height restriction,

Theorem 4: In the dynamic program introduced previously:

H+l

;9 - H Bt i .
(13) £ (i+,a-1) - £ (La)2 £ bita -1 - £ (1,2)
H H BH H+l
(14) - fh (i-m+1,ah) - fh (l,ah);L fh (1-m+1,ah) - fh (1,ah)

This theorem shows that the increase in cost incurred by adding a plume or re-
moving an internal node from a given level is not greater when the extra

level is available. Therefore, every shift of a plume which occurs with H

levels, would also occur with H + 1 levels in the restricted height tree. As
a consequence, the optimal sort tree restricted to at most H + 1 levels can be
constructed by starting with the optimal sort tree with H levels and shifting
plumes to higher levels using the restricted level algorithm from the previous
section. C(Clearly, once the number of levels has increased to the point where

the highest level contains no plumes, we may stop.

- 22 -

Proof of Theorem 4: Our proof is by induction. Let S ERRREL: represent

(15)

a sort-tree with a maximﬁm height of H. Adding another level and optimizing
between levels H and H+l1 gives an optimal sort tree al,...,aH_l-;:,bh,bH 1"
Since bH < aH., going from al""faH -lsap to al,...,aHf 1-1,aH +1l increases
the number of passes for endpoints of higher volume than going from |
al,...,aH.l,bH bH_+1 to 31seeerdy _1,bH'+1,bH 1+ In addition, there can
be a cost saving reoptimization betﬁeen bﬁ‘+1 aﬁd b1{+1. Therefore, at level :
h = H-1 (13) holds and in like manner (14) holds.

Assume (13) and (14) hold for h+l,...H and our optimal sort vectors
for 813 ees2y fixed are al""’ah’bh+l""’b11+1 and Byseeespsdp 1 dy .

a We now prove (13). There are several

By the induction hypothesis b

h+l = 2h4e

cases which must be considered. The first case is when a1 < m(ah-l). Here

we remove one plume from level h and add it to level h+l and reoptimize

from level h+l. The first possibility is that apy = bh+l' If that is the
case, the plume is added to level h+l, the same endpoints are moved to level

h+l at the same costs in both trees. The next step is to reoptimize at

< . H , H .
1eve1»h+1 by considering fh+1(]-g+1,ah+1+l), fh+1(3-m+2,ah+1), etc., and

H+L H+1l)
fh+1 (J-m+1,ah+1+1), fh+1 (J-m+2,ah+1) etc. By the induction hypothesis the

savings at each iteration (if any) are greater in the H+l level tree and the

savings may continue for more iterations in the H+l level trees therefore,
(13) holds in this case.

i1eqs ,] >
The second possibility with 34 < m(ah_l) is when a4 bh+1'

Let Pi""’pj=h and ﬁi,...,ﬁj,=h in the H level tree and H +1 level
tree respectively. By the optimality of ah,...,aH given aysecesdp g

H. H
1) - £ j+l,a
bt) (ij+1,

(3%2,8449 " h+l

Y=o f 1) Z Cpag ” %) 954

2 (Ch+1 - Ch) qj' .

- 23 -

The cost of moving a plume from level h to h+l in the H 1level tree is
(ch+1 - ch)(qj-m+1+ pee t qj) and in the H+l. level tree is either

(ch+1 - ch)(qj'-m+1+ oo + q; + ...+ qj') if j > j'-mHl ('overlapping'

case) or (ch+1 - ch)(qj'-m+1+ eee T qj') if j € j'-mtl (non-overlapping

case). Consider a move from state (i,ah) to (i+1,ah-1) in the H-level

tree. If in reoptimizing at level h+l there are any changes in the H level
tree, a cost at least as great as vy is incurred each time Pj-m’pj-m+1 etc.

are reduced from h+1‘to h. That is, at least vy is traded for (ch - ch-l)qj-m'
By (15) the cost of reducing a nonoverlapping endpoint to its former level in
the H=-level tree is greater than the cost of initially raising the level

of a nen-overlapping endpoint in the H+1 level tree. Therefore, a cost of

at least v is incurred for each endpoint raised while moving the plume

in the H level tree. If there is no overlap (13) clearly holds. 1If

there i; overlap, optimize at level h+l in the H 1level tree. If no
overlapping endpoints are reduced (13) holds, again because of (15).
If, in the H 1level tree, overlapping endpoints are reduced, at some
point the number of internal nodes in the H level tree is equal

to bh+1-+1. Applying the induction hypothesis as in the first case
proved, (13) again holds.

Now we consider the case where a Z.m(ah ~1). Here the reduc-

h+1

tion of ay by one involves the displacement of more than one plume.

Since b < api1? at least as many plumes are displaced before optimi-

h+1
zation in the higher levels in the H 1level tree than in the H+1
level tree incurring at least as great a cost. We need only iterate at

level and by the induction hypotheses for (13) and (14), (13) holds.

Also, (14) follows directly from (13) at level h,

Y

References

Banham, J. A, and McClelland, P., 'Design Features of a Real-Time Check Clearing

System,' IBM Systems Journal, No. 4, 1972.

Horn, W. A., "Single-Machine Job Sequencing with Tree-like Precedence Ordering

~ and Linear Delay Penalties,' SIAM Journal of Applied Mathematics, Vol. 23,

No. 2, 1972,

Huffman, D,A.; "A Method for the Construction of Minimum - Redundancy Codes,"

Proc. IRE 40, 1098-1101 (1952).

Knuth, D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley,

Reading, Mass., 1969.

Moore, L. J., An Experimental Investigation of a Computerized Check Processing

System in g Large City Bank Using Digital Simulation, Ph.D. Thesis, Arizona

State University, September 1970,

Murphy, F.H. and Stohr, E.A., "A Mathematical Programming Approach to the

Scheduling of Check Sorting Operations,' Discussion Paper No. 164, Center for

Mathematical Studies in Economics and Management Science, Northwestern

University, Evanston, Illinois.

7. Singh, B. J., "A Heuristic Approach to Solve a Large Scale Linear Programming

Problem," presented at the ORSA-TIMS conference, Fall 1974.

