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Abstract

Cooperative concepts of renegotiation in repeated games have typically assumed that Pareto-

ranked equilibria could not coexist within the same renegotiation-proof set. With explicit rene-

gotiation, however, a proposal to move to a Pareto-superior equilibrium can be deterred by a

different continuation equilibrium which harms the proposer and rewards the refuser. This pa-

per introduces a simple protocol of renegotiation for repeated games and defines the stability of

social norms and renegotiation-proof outcomes in terms of a simple equilibrium refinement. We

provide distinct necessary and sufficient conditions for renegotiation-proofness, which converge

to each other as renegotiation frictions become negligible. Renegotiation-proof outcomes always

exist and can be all included within a single, most permissive social norm that is straightforward

to characterize graphically.

1 Introduction

The punishment equilibria used to sustain cooperation in repeated games are often Pareto inef-

ficient. This puts into question their credibility and the implementability of cooperative outcomes

based on such punishments when players are able to freely renegotiate the continuation of the

game. In fact, incorporating renegotiation satisfactorily in repeated games has been a longstanding

challenge.

To address this question, economists have introduced various concepts of renegotiation-proofness

based on the following idea: roughly speaking, an equilibrium is not renegotiation-proof if it entails

a continuation play that is Pareto dominated by some “credible” equilibrium (Pearce (1987), Bern-

heim and Ray (1989), Farrell and Maskin (1989), Abreu and Pearce (1991), and Asheim (1991)).1

∗We are grateful for comments from Ilya Segal, Larry Samuelson, and Joel Watson. Strulovici acknowledges

financial support from the NSF (Grant No.1151410) and the Alfred P. Sloan Foundation.
1The first discussion along these lines is due to Farrell (1983), which is subsumed by Farrell and Maskin (1989).

Other approaches to renegotiation include DeMarzo (1988), Benôıt and Krishna (1993), and Bergin and MacLeod

(1993). All these papers follow axiomatic approaches.
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These concepts mainly differ regarding what “credible” means and yield contrasted results: while

Pearce (1987) argued,2 as in the first paragraph, that maximal cooperation may not be sustained

due to the lack of a credible and severe enough punishment, Farrell and Maskin (1989) found that

most renegotiation-proof outcomes, as players become arbitrarily patient, had to be on the Pareto

frontier of the feasible set.3

Owing to their cooperative (i.e., non-strategic) nature, these concepts have left unexplored an

aspect of renegotiation which becomes crucial, perhaps even obvious, when one considers explicit

renegotiation: what happens when a player rejects another player’s proposal? Suppose that during

the punishment phase of a two-player repeated game, the continuation payoffs are (X1,X2) and

player 1 proposes a Pareto-improving equilibrium with payoffs (Y1, Y2). Clearly, such a Pareto-

improvement need not be accepted if, by rejecting 1’s proposal, player 2 gets rewarded by a higher

continuation payoff Z2 > Y2. Moreover, if 1’s continuation payoff Z1 after 2 has rejected her offer

is less than X1, then it is suboptimal for 1 to propose the Pareto improvement in the first place.

With explicit renegotiation, a bad equilibrium may perfectly withstand renegotiation as long as

any (credible) deviating proposal can be deterred in this fashion. Punishing a player who deviates

(here, in proposals) and rewarding the player who counters the deviation is standard thinking in

the analysis of dynamic games. It is also realistic: for example, if a player tries to bribe another

player to obtain some favor (a Pareto improving scheme for those players!), the player who rejects

and exposes the bribe may be rewarded for doing so, while the corrupting player may be punished.4

This paper considers explicit renegotiation in repeated games by appending a simple stage at the

end of each period: after actions and payoffs have been chosen and observed for period t, one of

the players may be selected, with a fixed probability, to propose a continuation plan. A plan is

more easily defined recursively,5 as prescribing players’ actions and proposals in period t + 1, as

2See also Abreu and Pearce (1991) and Abreu, Pearce and Stacchetti (1993).
3Farrell and Maskin, like Bernheim and Ray, introduce weak and strong concepts of renegotiation-proofness. The

strong notion is arguably the more satisfactory one as it allows external comparisons (for example, the repetition

of any static Nash equilibrium forms a weakly renegotiation-proof of the repeated game, but that equilibrium can

be challenged by other equilibria according to the strong concept). The strong concept is well-behaved (existence,

uniqueness) when players are arbitrarily patient, although the set of strongly-renegotiation proof equilibria may be

very small due to the lack of punishments outside of a line that goes through the Pareto frontier.
4It may be tempting for Player 1 to approach Player 2 nonetheless and beg him to ignore all equilibrium conventions

and simply implement the Pareto-improving equilibrium. Note however that such a proposal is precisely the kind of

deviation considered within our model, and that a player on the receiving end of the proposal can be rewarded by

rejecting it, as long as a suitably rewarding continuation is available for that player within the social norm.
5The definition can also be stated in extensive form. By time homogeneity of the setting, the set of plans is

also time invariant. As will be clear, however, the set of continuations in a given equilibrium, even allowing for

renegotiation, may be history dependent.
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well as the actual plan implemented in period t + 2 as a function of the actions, proposals, and

acceptance/rejection decisions made in period t+ 1.6

A set N of equilibria is called a norm if, roughly speaking, all continuations of these equilibria

(except possibly deviating proposals that are accepted) belong toN . This definition aims to capture

the idea of a social norm, known to all players, describing all equilibria which players see as feasible

and acceptable.

To assess the stability of a norm, we allow players to propose innovations which are equilibria of

the game with renegotiation. A norm N is stable if it can withstand innovations outside of the

norm, by rewarding the player who rejects the proposal and punishing the player who made it.7

Our notion of stability is strategic:8 it imposes an equilibrium refinement requiring that if a player

makes a proposal and which the other player accepts, then that proposal is played. This definition

rules out, in particular, cheap talk equilibria in which all proposals are ignored and any equilibrium

of the underlying repeated game can be implemented. In fact, we find that as players become

arbitrarily patient, the folk theorem need not hold any more when renegotiation is allowed.

We characterize the set of all renegotiation-proof equilibrium payoffs, which are those payoffs that

belong to the payoff set of some stable norm, when players are patient and renegotiation frictions

(modeled as the probability that no one gets to propose within any fixed time window) become

negligible. This set is well behaved: it is always non empty and is very simple to characterize. In

fact, its shape depends on only three points of the feasible payoff space: the minmax payoff vector

V , and the payoff vectors P1 and P2 that delimit the Pareto frontier. The set of renegotiation-

proof payoffs is the intersection of two positive orthants with the feasible set: the orthant with

vertex V (as in the Folk Theorem) and the orthant whose boundaries go through P1 and P2. Our

characterization is based on distinct necessary and sufficient conditions, holding at all friction levels

of renegotiation, which converge to each other as renegotiation frictions become negligible.

6Because these proposals can a priori be treated as cheap talk, any equilibrium of the underlying repeated game

without renegotiation has an equivalent equilibrium in the game with renegotiation. In particular, there always exist

equilibria in this game.
7Our results do not hinge on allowing players to propose arbitrary innovations. In fact, our characterization is

rigorously identical if players are instead restricted to propose “credible” innovations, in the following sense. Given a

norm N , an equilibrium is N -credible if any deviation from this equilibrium (in action or proposal) triggers reversal

to the norm. For example, if a punishment equilibrium belongs to the norm N , meaning that both players see such a

punishment as feasible (despite the possibility of renegotiation), then players may reasonably entertain the idea of a

cooperative equilibrium outside of the norm, with the understanding that if that equilibrium doesn’t work out (i.e.,

some player makes a deviation), they will revert to the norm and implement the punishment equilibrium.
8We also provide a simple set-theoretic notion which is payoff-equivalent to the strategic one.
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Moreover, in our setting all renegotiation-proof points can be implemented within the same stable

norm. Therefore, there is no issue of competition or indeterminacy between multiple norms, at

least not for the most permissive norm.9

Our construction also implies path dependence for the set of proposals considered acceptable within

the norm. For example, the cooperative proposal (Y1, Y2) above may have been acceptable at the

beginning of the game, but not after a deviation. The relevance of this path dependence has been

emphasized earlier (see, Abreu and Pearce (1991) and Asheim (1991)), and arises naturally in

our explicit model of renegotiation. We also show that Farrell and Maskin’s and Bernheim and

Ray’s common notion of weak renegotiation proofness (or internal consistency), often considered a

minimum requirement for any renegotiation-proof concepts, does rule out sustainable equilibria in

our game. This is intuitive: in these reduced-form concepts, renegotiation-proofness requires that

no equilibrium Pareto dominates another one in the same norm. As we argued earlier, however,

the pursuit of a Pareto dominated equilibrium may withstand renegotiation as long as the social

norm can reward a player for rejecting any proposal outside of the norm.

Although our main objective is to characterize the set of sustainable equilibria and renegotiation-

proof norms as renegotiation frictions become arbitrarily small, we also provide distinct necessary

and sufficient conditions for arbitrary levels of frictions. We then show that these conditions

converge to each other as frictions become negligible.

As mentioned above, our stable norms differ not only conceptually but also physically from pre-

vious definitions. Compared to weakly renegotiation-proof or internally consistent sets, they are

both more stringent by allowing proposals that lie outside of the norms, but also more permissive

by allowing Pareto-ranked equilibria to coexist within a given norm and the path-dependence of

acceptable proposals and equilibria. Our concept is weaker than strongly renegotiation-proof sets

when agents get arbitrarily patient, precisely because we allow punishments that are Pareto domi-

nated within the norm. Conceptually, however, our work is related to both notions of internal and

external consistency: stable norms are internally consistent in the sense that one has to be able

to punish deviation by a continuation that lies within the norm. They are also related to external

consistency because the norm is challenged by any equilibrium, and the set of equilibria is typically

much larger than the norm itself.

In accordance to the accepted standard in the modern analysis of repeated games, we allow players

to use a public randomization device and private mix strategies. This feature distinguishes our

analysis from some of the earlier work on renegotiation. For example, Farrell and Maskin (1989)

9There are many more restrictive norms.
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assume that players can observe each other’s mixing strategies, rather than merely observing the

action outcomes of the randomization.10 Bernheim and Ray (1989) rule out mixing altogether,

focusing the analysis on pure-strategy equilibria.11

In a recent paper, Miller and Watson (2013) study equilibrium selection in a repeated game with

an explicit bargaining protocol and transfers. Their goals and analysis are quite different from

this paper’s. In particular, that paper allows transfers and proposes an axiomatic restriction for

disagreements outcomes, which radically changes the analysis of punishments.

2 Setting

Consider a repeated game between two players indexed by i ∈ {1, 2}. Player i’s stage-game action,

ai, lies in a finite set Ai. The vector a = (a1, a2) of actions determines the period’s payoffs

u(a) = (u1(a), u2(a)). A distribution αi over Ai will be called a mixed action for i, and α = (α1, α2)

will denote a vector of mixed actions for both players. Players have a common discount factor

δ ∈ (0, 1), and we will often find it convenient to work with the current-period weight ε = 1− δ.

Each period is composed of the following stages:

1) Players observe the realization P of a public randomization device taking values in [0, 1];

2) They simultaneously choose mixed actions αi ∈ ∆(Ai), i ∈ {1, 2}. Mixing probabilities are not

observable. Conditional on the realization P of the public randomization device, players choose

their mixed actions independently from each other;

3) The vector a of actions is observed and the period’s payoffs are realized;

4) With probability p < 1, one of the players is chosen to propose a new plan describing the

continuation of the game. Each player has the same probability of p/2 being chosen. The chosen

player may, however, conceal his proposal opportunity and remain silent instead, or mix between

proposing or not. The object of the proposal is an infinite-horizon plan m from the set M of all

possible plans, and will be described shortly;

10That paper contains a claim that observing mixed strategies is without loss. However, it is possible to find

counter-examples showing that this claim is erroneous. Intuitively, when players observe mixing, there is without loss

only single continuation payoff vector, conditional on players’ mixing strategies. When mixtures are unobservable,

however, there must be a continuation vector for every possible outcome of the mixture, and all of these vectors

must belong to the renegotiation-proof set. This is problematic because some of these continuations may have

Pareto-ranked payoffs, violating weak renegotiation-proofness.
11Other papers have made different restrictions, such as focusing on symmetric equilibria or a finite horizon.
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5) If i makes a proposal, player −i decides whether to accept it, possibly mixing between acceptance

and rejection. The resulting decision D−i ∈ {0, 1} is equal to 1 (0) if −i accepts (rejects) the

proposal;

The public history for the stage consists of the realisation P of the randomisation device, the action

vector a, a proposal mi (or absence thereof) and, if applicable, an acceptance decision D−i. In

addition, each player privately observes the mixing probability used for each of her decisions.

A plan at period t describes players’ strategy for the infinite repetition of the stage-game described

above, from period t + 1 onwards. Those decisions (actions, proposals, and acceptance mixtures)

are history-dependent. Because the setting is time invariant, the set M of plans can be more

conveniently defined recursively.

Specifically, a plan m ∈ M at any period t is characterized as follows:

a) For each realization P of the public randomization device, a pair α = α[m](P ) of mixed actions

that players should play in period t+ 1;

b1) For each player i, a distribution µ̄i = µ̄i[m](P,a) ∈ ∆(M∪∅) over proposals, where the outcome

∅ means that i abstains from proposing (unbeknownst to player −i). We assume for simplicity that

distributions have finite support over plans.12 The proposer’s choice of a proposal distribution is

conditional on the realization P of the public randomization device and on the pair a of observed

actions. Because p < 1, not observing any proposal from either player is always consistent with

“on-path” behavior. The realized proposal is denoted µi;

b2) A probability q−i = q−i[m](P,a, µi) that −i accepts i’s proposal (whenever µi 6= ∅), conditional
on P , a, and µi;

b3) If no one made a proposal, the acceptance stage is skipped. To economize on notation, we

assume that some player i is, even in that case, conventionally selected (randomly or determin-

istically) as the proposer and let µi = ∅ and D−i = 0. (So, −i’s conventional response is to

systematically “reject” i’s non proposal.)

c) A continuation plan m+1 = m+1[m](P,a, i, µi,D−i) ∈ M for period t+2 onwards, as a function

of P , a, i, µi, D−i, where i indicates the identity of the last proposer. Obviously, this plan must be

independent of i whenever µi = ∅, so that the convention chosen for the proposer in the absence of

any actual proposal be indeed irrelevant. This restriction is applied throughout.

12This assumption sidesteps measurability issues over plans. It could easily be relaxed to, say, any subset P of

plans which is in bijection with a Borel subset B of Rn, say, in which case µ̄i would be the pushback measure over P

which corresponds to any distribution over B.
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Notation:

1) Actual plans are denoted by m and proposals by µ.

2) The subscript +1 in the plan notation m+1[m](P,a, i, µi,D−i) indicates that this plan concerns

the next period. This plan is, like the initial plan m itself, an element from the set M.

3 Concepts

The previous section has introduced an infinite-horizon game which we call “negotiated game”.

Any strategy profile of that game can be identified with a plan defined in that section. Indeed,

a plan defines – explicitly or recursively – an arbitrary history-dependent mixture of actions at

each node of the game.13 Accordingly, the subgame perfect equilibria (SPEs) of the renegotiated

repeated game can be identified as a subset S of M. Unless stated otherwise, in this paper “SPE”

refers to an equilibrium of our game with renegotiation (not to be confused with the subgame

perfect equilibria of the underlying repeated game without renegotiation).

Definition 1 A subset N of S is a norm if for any m ∈ N such that µi ∈ µ̄i[m](P,a) or D−i = 0,

m+1[m](P,a, i, µi,D−i) ∈ N ;

We interpret N as a social norm: it describes the set of all continuations plays which players

consider possible under “business as usual”. According to this norm, players may be punished if

they deviate from the equilibrium path, but they are always punished within the norm, regardless

of the history. However, players may in principle agree to play something outside of the norm.

This happens if a player makes a deviation in proposal (hence creating an “innovation”), which the

other player accepts.

Finally, we define the key concept of the paper.

Definition 2 A norm N is stable if for any SPE of N , whenever i proposes an equilibrium µ ∈ S
and −i accepts it, µ is implemented.

Stability thus amounts to a simple equilibrium refinement which rules out pure cheap talk, giving

some bite to proposals. This requires that any SPE of the norm N be able to withstand arbitrary

proposals. Recall on-path continuations must all belong to the norm, stability implicitly requires

13In the actual game, the absence of a proposal triggers the next period. Therefore, a plan’s independence from the

conventionally chosen proposer in case of a silence is not restriction on the set of strategy profiles being considered.
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that any proposals that is not in the norm be rejected. We allow considerable leeway in proposals.

As it turns out, both of our necessary and sufficient conditions, stated in the next section, are

rigorously identical if one restricts proposals to a much smaller subset of “credible” proposals,

which are roughly speaking equilibria such that any deviation triggers a reversal to the norm.

Since such a restriction is not needed for the results, however, we start with the simplest concept

and postpone credible innovations to Section 5.

Before defining renegotiation-proofness, we need to introduce notation to distinguish players’ payoffs

at different stages of the game. Given a subset L of SPEs, one may define the set of expected

payoffs for both players at different times of the game. The set U(L) (or just U , when there is

no confusion) denotes the set of expected payoffs for the players, across all possible SPEs in L,
computed before public randomization. V is defined identically but computed after the realization

of the randomization device P . In particular, U is included in the convex hull of V. Finally, W
consists of continuations payoffs after actions and payoffs for the current periods occurred, but

before the proposal stage. Any payoff vector of W is a mixture of three payoff vectors of U , seen as

continuation payoffs for the next period, according to whether player 1 or 2 gets to propose, or no

one does. Thus, payoffs of W are computed in terms of the next period.

Elements of U , V, and W are points of two-dimensional sets. For any point U of such a set, we let

πi(U) denote the ith component of U , i.e., i’s continuation payoff at point U .

Definition 3 A point A is q-renegotiation-proof if there exists ε̄ ∈ (0, 1/q) such that for all ε ≤ ε̄

and p = qε, there exists a stable norm N such that A ∈ U(N ). Moreover, A is renegotiation-proof

if it is q-renegotiation-proof for all q’s large enough.

The coefficient q is inversely related to the amount of renegotiation frictions in the game: when

q = 0, players never get a chance to renegotiate and the game reduces to a standard repeated game.

As with the standard Folk theorem, any point of the feasible IR set (in the usual sense of repeated

games, absent any renegotiation) is 0-sustainable. Our main objective is to characterize the set of

sustainable payoffs. To do so, we first study the set of q-sustainable payoffs for any fixed q, and

then let the renegotiation frictions go to zero.

In the definition above, A needs only belong to U which, unlike V, includes the initial use of a public

randomization device. As it turns out however, this distinction is unimportant for the theorems

below.
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4 Main Result

4.1 Statement

We let v
¯i

denote i’s minmax payoff in the stage game of the repeated game (absent any renegotia-

tion).14 The set of all feasible stage-game payoffs is a convex polygon. Similarly, let P i denote the

feasible payoff vector that provides i’s with his maximal payoff in the stage game.15 The ‘weak’

Pareto frontier (consisting of all points which are not strictly Pareto dominated) lies between P1

and P2.

Let v1 = max{v
¯1
;π1(P2)} and v2 = max{v

¯2
;π2(P1)}.

Theorem 1 (Renegotiation-Proof Set) Suppose that P1 6= P2. Then, the following holds:

Sufficiency If

πi(A) > vi for i ∈ {1, 2}, (1)

then the point A is q-renegotiation-proof for all q ∈ R+ and hence renegotiation-proof.

Necessity If A is q-renegotiation-proof, then

πi(A) ≥ v
¯ i +max{0; q/2

1 + (q/2)
(πi(P−i)− v

¯ i)} (2)

for i ∈ {1, 2}. If A is renegotiation-proof, inequalities in (1) must hold for both players as weak

inequalities.

If P1 = P2, all stable norms are payoff equivalent and reduced to the singleton {P1}. The only

renegotiation-proof point is P1, which is played forever. In this case, note players have perfectly

aligned interests, as they both want to implement P1. Our concept of renegotiation-proofness

selects that point as the only possible outcome, as renegotiation frictions become negligible.

The statement of Theorem 1 can be visualized on Figure 1 for a fixed friction level of renegotiation.

The orange domain represents the set of points which are known to be renegotiation-proof (i.e., part

of a stable norm), while the red domain represents the additional points whichmay be renegotiation-

proof. When q = 0 (no renegotiation), the red domain extends all the way back to the minmax

14As usual, player −i is allowed to mix across actions to minmax i.
15If several such points exist, we choose the point among those with the lowest payoff for −i. In that case, P i is

not strictly Pareto dominated, but it will be Pareto dominated by points giving the same payoff to i and a strictly

higher payoff to −i.
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π2

π1

P2

P1

2

2+q
(π1(P2)− v

¯1
)

v
¯

Figure 1: Necessary and sufficient conditions for renegotiation factor q

point v
¯
, and we obtain the Folk Theorem. As the renegotiation frictions vanish (q → +∞), the red

domain disappears: necessary and sufficient conditions become identical (up to the boundary).

It is straightforward to characterize renegotiation-proof points when frictions vanish. This may

be done graphically, and Figure 2 represents the corresponding sets for various configuration. In

configuration (a), renegotiation constrains the set of implementable payoffs because the deterrence

points P1 and P2 are too close to each other (all this is relative to the vector of minmax payoffs).

Configuration (b) represents a fully cooperative game. The only renegotiation-proof outcome is

the Pareto efficient point. In configuration (c), the punishment/reward points are sufficiently far

apart, and the Folk Theorem is restored.
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π2

π1

P2

P1

v
¯

π2

π1

P1 = P2

v
¯

(a) Renegotiation destroys the Folk Theorem (b) Pareto frontier reduced to one point

π2

π1

P2

P1

v
¯

(c) Folk theorem: the deterrence points P1, P2 have maximal power

Figure 2: Renegotiation-proof sets for various configurations

4.2 Proof: Sufficient Conditions

Outline We construct, for any point A satisfying (1), a norm containing A and which is stable for

any q ≥ 0. The construction starts by choosing two points A1, A2 such that Ai defines i’s worst

possible payoff according to the norm.16 Given any continuation payoff far away from Ai, it is

always in i’s interest to follow the prescribed play in action, since any deviation provides a gain

of order ε and can be punished by moving to Ai. The key is to choose Ai so that i is adequately

incentivized near Ai and to complete the norm with enough equilibria to guarantee that the norm

is stable. That last part is achieved by including some Pareto-optimal points Q1, Q2 in the norm so

16Unless stated otherwise, payoffs are elements of the set U , i.e., at the beginning of a period.
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that for any credible proposal that −i may deviate to, i can always be rewarded, and −i punished,

by rejecting −i’s proposal and have Qi implemented.

For each player i, there are two cases to consider, depending on whether i’s minmax payoff v
¯i

lies

above or below πi(P−i). We treat the former case first.

Suppose, thus, that v
¯1

> π1(P2) and v
¯2

> π2(P1), and consider any point A satisfying (1).

For ε small enough, the points A1 and A2 with coordinates

π1(A1) = v
¯1

+ ε1/2; π2(A1) = π2(A)

and

π1(A2) = π1(A); π2(A2) = v
¯2

+ ε1/2

are feasible and such that π1(A1) < π1(A) and π2(A2) < π2(A).

The point A1 is implemented as follows, with a similar implementation for A2.

1) Action stage: player 2 minmaxes player 1, possibly mixing between several actions a2j and 1

best responds by a pure action a1,minmax achieving his minmax payoff.

1a) If no deviation in action is observed – i.e., 1 chooses a1minmax and 2’s realized action a2j is

in the support of the mixture minmaxing 1 – the continuation payoff B1j ∈ W is a function of

a2j , chosen so that i) 2 is indifferent between mixing actions a2j , and ii) all B1j ’s give 1 the same

continuation payoff. This latter condition implies that

π1(A1) = εv
¯1

+ (1− ε)π1(B1j) (3)

Note that all B1j ’s are within an ε-proportional distance of A1.

1b) If 2 deviates in action (i.e., chooses an action outside of the mixture used to minmax 1), the

continuation payoffs jump to the point A2, mentioned above, which gives him the lowest possible

payoff in the norm.17 This punishment is clearly enough to incentivize 2, because any gain is of

order ε, whereas A2 is abitrarily close to 2’s minmax payoff and thus at an ε-independent distance

from π2(A1) (and, hence, π2(B1j)’s)

1c) If 1 deviates in action, disregard this. Such a deviation is obviously suboptimal, since 1 was

prescribed to best respond to being minmaxed by 2.

2) Proposal stage: the point B1j is implemented as follows: if either 2 gets a chance to propose, or

no player does, the continuations payoffs return to A1 ∈ U . (2 is prescribed to remain silent.) If

17More precisely, it jumps to the point B21, which is the analogue of the point B11, following the implementation

of A2.
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π2

π1

P2

P1

A1

B11

B12

C11C11

C12

D1

D2

A

A2

B21 B22

C21 C22

v
¯

Figure 3: Construction of a stable norm

1 gets a chance to propose, he proposes a point C1j , which lies on the line going through A1 and

B1j , and is chosen so as to satisfy the promise-keeping condition holds:

π1(B1j) = (1− [p/2])π1(A1) + [p/2]π1(C1j) (4)

Player 2 is prescribed to accept proposal C1j . The points {C1j}j give the same payoff to 1, inde-

pendently of j. Their implementation is described in 3) below.

2a) If 1 proposes any plan other than the one implementing C1j , he is punished by the implementa-

tion of a point D1 chosen so that i) π1(D1) < π1(C1j) and ii) 2 prefers D1 to 1’s proposal. Precisely,

D1 is defined as the point of the Pareto frontier that gives 1 a payoff of:

π1(A1) + π1(C1j)

2
(5)

2b) If 2 deviates by making a proposal or rejecting 1’s offer to move to C1j , he is punished by the

player-2 analogue of point D1.

This construction is represented on Figure 3.
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3) Next periods: the point C1j is easily implemented, because it gives 1 a payoff of the order of
√
ε above what A1 and, hence, B1j ’s give him, as explained shortly. A deviation in action by 1

brings a gain of order ε and is punished by a drop of order
√
ε in 1’s continuation payoff, and

is thus suboptimal, for ε small enough. More precisely, the point C1j can be implemented by a

deterministic sequence of actions keeping players’ continuation payoffs within a distance Kε from

C1j . The rules implementing that sequence are simple: play a deterministic action profile keeping

continuation payoffs ε-close to C1j and do not allow any proposal. If 1 deviates in actions, move to

one of the points B1j; if he deviates in proposals, move to D1. A similar rule is applied for player

2, who has even more to lose from deviating.

4) Finally, the point D1 lies at a distance of order
√
ε from A1, and can therefore be implemented

similarly to C1j by a deterministic sequence of actions which keep the continuation payoff within a

distance Kε from D1. Any proposal is ignored.

We verify the claim that all C1j ’s lie at a
√
ε-proportional distance to the right of A1. From 3

and 4, we get

π1(A1) = εv
¯1

+ (1− ε)π1(Bj) = εv
¯1

+ (1− ε)[(1 − [qε/2])π1(A1) + [qε/2]π1(C1j)]

Ignoring terms of order ε2 and higher, this implies that

π1(A1) = εv
¯1

+ (1− [1 +
q

2
]ε)π1(A1) + [qε/2]π1(C1j).

Subtracting π1(A1) from both sides and dividing by ε yields

ε1/2 = π1(A1)− v
¯1

= (q/2)[π1(C1j)− π1(A1)], (6)

which shows the claim.

The direction of each vector
−−−−→
A1C1j , which is also the direction of the vector

−−−−→
A1B1j depends only

on 2’s action a2j ; it does not change when ε goes to 0. This shows that for ε small enough

1. C1j is a feasible payoff;

2. π2(C1j) exceeds π2(A2) by an ε-independent value.

As explained above, the system of actions and proposals implementing Ai’s, Bij ’s and Cij’s and

Di’s is incentive compatible in actions and proposals.

To conclude the construction of the norm, note that A gives each player i a payoff higher than

Ai, by an amount that is bounded below away from zero and thus independent of ε as ε goes to
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zero. One may therefore implement A by a deterministic sequence of actions, chosen so that the

continuation payoffs stay within a distance Kε of A. Deviations in actions are punished by moving

to B11 or B21, depending on which of the players, 1 or 2, has deviated. Deviations in proposals are

similarly punished by moving to D1 or D2.

We now verify that the norm is stable. Within the norm, notice that whenever 1 gets a chance

to make a proposal his payoff is at least π1(D1). Since D1 is on the Pareto frontier, any proposal

giving 1 strictly more than π1(D1) must give 2 less than π2(D1). This means that D1 can serve as

a punishment in case 1 makes such a proposal. The norm thus constructed is stable.

Consider now the second case, in which v
¯1

≤ π1(P2) and/or v
¯2

≤ π2(P1). The construction of the

norm is almost identical to the previous case. The only difficulty is that the difference π1(A1)− v
¯1

is now bounded below away from zero, whereas it was previously of order ε. This may lead to

situations in which the points C1j constructed above are no longer feasible and/or may give 2 a

payoff lower than π2(A2). This difficulty is easily addressed by adding, for each j, a new point

E1j lying on the segment [A1B1j ] – and thus also on the line (A1C1j) – such that if player 2 gets

a chance to propose, or if nobody does, continuation payoffs jump to the point E1j . The promise

keeping condition (4) becomes

π1(B1j) = (1− [p/2])π1(E1j) + [p/2]π1(C1j) (7)

By choosing E1j close enough to B1j , one can make the point C1j within a distance
√
ε of B1j

and, hence, of A1. This guarantees that C1j is feasible and does not drop below π2(A2), so that

the rest of the argument for the first case can be applied. Finally, whenever the point E1j must

be implemented in the next period, we use the public randomization device to implement it as a

probabilistic mixture between A1 and C1j .

4.3 Proof: Necessary Conditions

When player i’s minmax v
¯i

is higher than πi(P−i), the necessary condition simply states that A’s

payoff must belong to the feasible IR set (i.e., be above the minmax). The only interesting case,

therefore, is when v
¯i

< πi(P−i). We will establish the necessary condition corresponding to player

1. The proof for the other case is identical and independent.

Let us thus assume that π1(P2) > v
¯1

and suppose, by contradiction, that there is a point A such

that π1(A) < v1 = v
¯1

+ q/2
1+(q/2) (π1(P2)− v

¯1
), which is q-renegotiation-proof. This means that one

can construct, for any ε small enough, a stable norm N that contains A as one of its continuation

payoffs.
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In this case, we first build a proposal which yields the payoff vector P2. The point P2 is easily

shown to be the payoff vector of an equilibrium of the game, and hence has to be considered in

the definition 2 to check that A belongs to a stable norm.18 However, we argue later in the paper

(Section 5) that our necessary and sufficient conditions are unchanged if one restricts attention, in

Definition 2, to credible proposals instead of arbitrary ones. A proposal is credible with respect

to some norm N if it is an SPE such that any deviation (in action or proposal) leads to reversal

to an equilibrium of the norm N .19 To this end, we now show that P2 is the payoff of a credible

proposal. The SPE implementing P2 is constructed as follows: players are prescribed to play, in

all periods, the pure action profile with payoff P2, and to abstain from making any proposal. Any

deviation, whether in action or in proposal, triggers the implementation of point A. Clearly, player 2

cannot benefit from deviating as he is getting his highest possible payoff in the game. Moreover,

the difference π1(P2) − π1(A) is by assumption bounded below by q/2
1+(q/2)(π1(P2) − v

¯1
), which is

ε-independent. Therefore, 1 cannot benefit from deviating either: a deviation in action may create

an immediate gain of order ε, but triggers a drop in continuation payoffs that is ε-independent and

dominates the gain. A deviation in proposal triggers A, which again is detrimental to 1. We thus

have a constructed an equilibrium of the game with payoff P2.

Let C1 denote 1’s infimum payoff in N when it is his turn to propose. Since P2 is a possible proposal

payoff, and since it lies on the Pareto frontier, A is a payoff of N only if

π1(P2) ≤ C1

We will show that it is impossible.

Let us denote A1 = infV ∈V(N ) π1(v), B1 = infW∈W(N ) π1(w), D1 = infU∈U(N ) π1(u).

Consider a sequence {Vm} ∈ V(N ) such that π1(Vm) → A1. For any Vm there is an action that

implements it the first period of the corresponding SPE. However, if player 1 deviates, he can

guarantee himself an immediate payoff of at least v
¯1
, and the worst punishment for him after

deviation gives him at least B1. Therefore, π1(Vm) ≥ εv
¯1

+ (1 − ε)B1. Since this inequality holds

for all Vm we obtain, taking the limit:

A1 ≥ εv
¯1

+ (1− ε)B1 (8)

Because any element of U(N ) lies in the convex hull of V(N ), and C1 is a mixture of points in

18By the Folk Theorem, P2 can be implemented by an SPE of the repeated game without renegotiation. By treating

all proposals as cheap talk, P2 can they also be implemented as SPE of the game with renegotiation.
19See Definition 4 for a precise definition.
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U(N ),20 we have

C1 ≥ D1 ≥ A1

Consider now a sequence {Wm} ∈ W(N ) such that π1(Wm) → B1. Any element Wm is a weighted

average of an expected payoff vector EU1
m whenever 1 gets a chance to propose, an expected payoff

vector EU2
m when it is 2’s turn to propose, and a payoff vector U0

m in case no one gets to propose:

Wm = (p/2)(EU1
m) + (p/2)(EU2

m) + (1− p)(U0
m) (9)

We note that EU1
m is a mixture of elements of U resulting from 1’s mixture over proposals and 2’s

mixture over his acceptance decision. Similarly, EU2
m is a mixture of elements of U .

Since all elements Um’s belong to U(N ), we have

π1(EU2
m) ≥ A1,

π1(U
0
m) ≥ A1.

Equation (9) then implies that

π1(Wm) ≥ (1− [p/2])A1 + [p/2]π1(EU1
m)

Recalling that C1 denotes 1’s infimum payoff when he gets to propose, we get

π1(Wm) ≥ (1− [p/2])A1 + (p/2)C1.

Taking limits,

B1 ≥ (1− [p/2])A1 + (p/2)C1

or

B1 ≥ (1− [qε/2])A1 + (qε/2)C1. (10)

Combining (8) and (10), we conclude that

A1 ≥ εv
¯1

+ (1− ε)[(1 − [qε/2])A1 + (qε/2)C1]

or, ignoring terms of order ε2 in right-hand side,

A1 ≥ εv
¯1

+ (1− [1 + (q/2)]ε)A1 + (qε/2)C1.

Subtracting A1 on both sides of the last equation and dividing by ε, we obtain

0 ≥ v
¯1

− [1 + (q/2)]A1 + (q/2)C1 (11)

20It is a mixture over the payoffs obtained following −i’s acceptance/rejection decision to i’s proposal.

17



From A1 ≤ π1(A), C1 ≥ π1(P2), and π1(A) < v1 = v
¯1

+ q/2
1+(q/2) (π1(P2)− v

¯1
), we get

0 < v
¯1

− [1 + (q/2)]A1 + (q/2)C1

which contradicts (11). This shows the necessary condition for player 1. An identical reasoning for

player 2 shows the second necessary condition. This proves the result. When P1 = P2, a similar

reasoning implies the result.

5 Equivalent notions of stability

5.1 Credible innovations

Our definition of stability allowed players to implement any continuation equilibrium that is pro-

posed and accepted at some point of the game. When players are used to a given norm N , however,

one may question why they would take such a proposal seriously. As it turns, both the necessary

and the sufficient conditions of Theorem 1 remain identical if one restricts proposals to a much

smaller subset.

Definition 4 Given a norm N , an N -credible (or just “credible”, when there is no confusion)

proposal is an SPE such that any off-equilibrium play (action, proposal, or acceptance decision) is

followed by a continuation in N at the next period;

A credible proposal is thus an SPE which can be supported under the assumption than any deviation

will followed by a reversal to the norm. For example, if a norm includes a harsh punishment

equilibrium for both players. Then, it supports many credible equilibria, any deviation of which

triggers a reversal to the norm and, more precisely, to the punishment equilibrium.

Definition 5 A norm N is stable with respect to credible innovations if it satisfies the refinement

of Definition 2 for all N -credible proposals.

Clearly Definition 5 is more permissive than Definition 4, because it imposes the refinement over a

smaller set of proposals. However, we get the following result.

Theorem 2 All the conclusions of Theorem 1 continue to hold if the norms sustaining renegotiation-

proof points are only required be stable with respect to credible innovations.
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The proof is straightforward. Because this second definition of stability is more permissive, our

construction for the sufficiency condition also works in this case. Moreover, it is easy to check that

the proposals considered to derive the necessary conditions are credible.

5.2 Set-theoretic definition

The norms that we defined earlier were open in the sense that they allowed the possibility that

players might depart from the norm in case an equilibrium outside of the norm is proposed and

accepted. This openness is necessary if we want to treat such proposals seriously. It is possible

however to bring our work closer to the set-theoretic approach that was studied in the late eight-

ies and early nineties. In fact, we show in this section that our earlier analysis can be entirely

reexpressed in terms of set-theoretic definitions, yielding exactly the same characterization.

In this section, players do not actually take equilibria outside of the norm seriously. They consider

their norm as the only possible outcomes. We thus begin by “closing” our definition of a norm:

Definition 6 A subset N of S is a closed norm if for any m ∈ N , m+1[m](P,a, i, µi,D−i) ∈ N .

The only difference with the earlier definition of a norm is that continuations belong to the norm,

including when a proposal outside of the norm is made and accepted. Next, our earlier definition of

stability is translated into set-theoretic terms. To keep in line with the previous section, we state

the definition for credible proposals. It should be noted however that the same definition dropping

“credible” yields the same set.

Definition 7 A closed norm N is stable if the following holds: consider any SPE of N and

history at which i gets a chance to propose and let Ûi denote i’s continuation payoff. Then, for any

credible proposal with payoff vector U which gives i a payoff Ui > Ûi, there exists a payoff vector

U ′ in the norm such that π−i(U
′) ≥ π−i(U) and πi(U

′) ≤ Ûi.

Theorem 3

1. For any closed norm N c, there exists an open norm N o which has the same payoff set, and vice

versa.

2. For any stable closed norm N c, there exists a stable open norm N o which has the same payoff

set, and vice versa.

Proof.
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1. Any closed norm N c is an open norm as well, so the first statement is trivially true. Now

consider any open norm N o. To construct a payoff-equivalent closed norm N c, we modify each

plan/equilibrium m of N o as follows: m’s rules on and off the equilibrium path are kept unchanged

except when a player, say i, makes a proposal µi which is off the equilibrium path. In this case,

because N o is only an open norm, the continuation equilibrium if −i accepts the proposal need not

lie in N o. Following such a proposal, players are instead prescribed to behave as if i had remained

silent. The new rules define an equilibrium: when playing the original equilibrium m, i was not

making the proposal µi anyway, so removing this option does not affect equilibrium behavior and

payoffs. By construction, the set of modified equilibria form a closed norm N c, and because each

equilibrium of N o has been modified into a single payoff-equivalent equilibrium of N c, the norms

are payoff equivalent.

2. We start with the observation that if two norms N c and N o have the same payoff sets, then any

proposal that is credible according to either norm is credible according to the other norm.

We now consider any renegotiation-proof open norm N o and construct the corresponding closed

norm N c as in Part 1. To show that N c is renegotiation-proof, consider any SPE m of N c, history,

and credible proposal U such that πi(U) is strictly greater than i’s continuation payoff Ûi. From the

above observation, U is also credible for N o. For the equilibrium m̃ of N o corresponding to m, and

the same history, if i proposes U , −i must reject it with positive probability (for otherwise πi(U)

would coincide with Ûi). Let U ′ denote the continuation payoff if −i rejects U . By renegotiation-

proofness of N o, −i knows that if he accepts U it will be implemented. Since it is weakly optimal

for −i to reject U , it must therefore be the case that π−i(U
′) ≥ π−i(U). Moreover, it must also be

the case that πi(U
′) ≤ Ûi, for otherwise it would be strictly optimal for i to deviate by proposing

U , and m̃ would not be an equilibrium. Using this U ′ in Definition 7, this implies that N c is

renegotiation-proof.

Next, consider any renegotiation-proof closed normN c. To construct a payoff-equivalent renegotiation-

proof open norm N o, we simultaneously modify all SPE’s of N c. The modification proceeds in two

steps, and is based on the recursive definition a plan. Recall that a plan at time is a prescription

of actions, proposals and acceptance decisions for the next period (each depending on what hap-

pened in earlier stages), along with a continuation plan resulting from these stages to applied in

the period after next. In Step 1, we modify the prescriptions for time t + 1, and still use plans

of N c as continuations plans. The purpose of this step is to a prescription compatible with the

requirement that if a credible proposal is made and accepted, then it has to be played. In Step

2, we replace these continuation plans of N c by those built in Step 1, to guarantee that the rule

applies at all periods, guaranteeing that off-path proposals which are accepted are implemented,
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so that Definition 5 holds at all periods.

Consider any SPE m of N c. We modify m as follows. For the modified SPE m̃, the action stage

and on-path proposals are prescribed exactly as in m.21 Now consider a history at which i’s gets

a chance to propose and makes any proposal U which is not prescribed by m but which is N c-

credible. If −i accepts the proposal, we construct m̃ by prescribing that players implement this

proposal.22 If the proposal gives i a strictly higher payoff than his equilibrium continuation payoff

Ûi, then by stability of N c, there must exist a payoff vector U ′ corresponding to some equilibrium

m′ of N c, which gives player −i at least as much as U , and which gives player i at most Ûi. We

prescribe playing the equilibrium corresponding to U ′ in case player −i rejects the proposal. If U

does not improves upon i’s equilibrium continuation payoff, we prescribe playing the continuation

equilibrium corresponding to any of i’s equilibrium proposal in case −i rejects U . Finally, if i makes

a non-credible proposal, the proposal is ignored as if i had stayed silent.

We now verify that m̃ is an SPE that yields the same payoff as m. Since m̃ prescribes the same

actions as m, players are incentivized to follow the same as actions as those prescribed by m. If

i gets a chance to make a proposal, any proposal prescribed by m (and hence m̃) yields the same

continuation payoff as in m. If player i makes a credible, off-equilibrium proposal that improves

upon his equilibrium payoff, then player −i is incentivized to reject it, and i’s continuation payoff

is weakly lower than his continuation payoff. It is never optimal for i to make a credible proposal

that lower’s his equilibrium payoff, regardless of −i’s acceptance decision. Finally, we replace all

continuation plans by their modified versions.

There remains to verify that the set consisting of all modified equilibria forms a stable open norm,

denoted N o, which is payoff equivalent to N c. First, we notice that continuation equilibria outside

of N o may only arise when a player make an off equilibrium proposal (which, by construction,

also has to be credible) which is accepted by the other player. Thus, N o is an open norm. By

construction, each element of N o corresponds to exactly one element of N c, which yields the same

expected payoffs. Therefore, the norms are payoff equivalent. As observed earlier, this implies that

they have the same set of credible proposals. This, in turn, implies that any credible proposal of

21We need to make another small modification to m issue whenever i is proposing a continuation µ outside of the

norm N
c, which −i is supposed to accept, and which is followed by a continuation µ′ in the norm N

c (as it should,

since the norm is closed). In that case, we can replace this play by i proposing instead µ′ and have it accepted by

−i. That this modification can be done while preserving the equilibrium is straightforwad to check. In fact, any SPE

of the game can be turned into a payoff equivalent “truthful” SPE of the game, i.e., one in which any proposal that

is made and accepted on the equilibrium path is implemented. See Section 6.
22At this point, we do not know yet that the proposal is N o-credible. We only know that it is N c-credible. However,

the norm N
o that we are constructing will be payoff equivalent to N

c and hence have the same credible proposals.
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N o that is accepted is played and, hence, that N o is stable. �

6 Discussion

Understanding and tractably modeling renegotiation in repeated games has been a longstanding

challenge. Nevertheless, the protocol and concepts studied in the paper lead to a particularly simple

characterization of stable norms and renegotiation-proof equilibria. We hope our characterization

can serve as a useful benchmark for applied economists who need to incorporate renegotiation in

their models. This section discusses several extensions or variations which were omitted until now

to simplify the exposition of our main ideas.

Truthful equilibria

To be interesting any analysis of renegotiation based on an explicit protocol must give some bite

to accepted proposals. We have kept our analysis as simple as possible by imposing our refinement

on stable norms only. In fact, it is easy to see that we could have focused our analysis on “truthful

equilibria,” in which any (equilibrium) proposal that is accepted is implemented. Indeed, it is easy

to see to prove that any equilibrium of the game has a payoff-equivalent truthful equilibrium. For

example, consider an equilibrium and history at which i proposes µ, −i accepts it, and another plan

µ′ is implemented. It is easy to modify the initial equilibrium by having i propose µ′ instead and

have it accepted. There are other minor issues to address, but it is easy to develop the argument

to build a truthful equilibrium.

By a similar reasoning, any equilibrium is equivalent to another equilibrium in which player pro-

posals are always accepted in equilibrium. For example, if a proposal is rejected with probability

1 after µ is proposed, leading to a continuation µ′, then one can replace this by an equilibrium in

which i proposes µ′ instead and have it accepted. Even if −i was mixing between acceptance and

rejection, leading to two continuations µ′ and µ′′, one can have i instead proposed the mixture of µ′

and µ′′, corresponding to −i’s acceptance probabilities, and have it accepted with probability 1 by

−i. Such mixture is always achievable by using the public randomization device at the beginning

of the next period.

While such a focus is natural, it is not necessary for the results and we chose not to discuss it until

to avoid cluttering the analysis.
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Asymmetric proposing probabilities and bargaining power

It is easy to extend the analysis to a protocol in which one of the players has a higher probability

factor qi of proposal than the other player. The sufficient conditions are unchanged in this setting,

but the necessary conditions become tighter for the player whose proposal probability is higher,

which translates a higher minimal guaranteed payoff for that player, across all renegotiation-proof

equilibria. To see this starkly suppose that v
¯1

< π1(P2) and v
¯2

< π2(P1) (configuration (a) in

Figure 2), so that renegotiation potentially benefits both players, compared to the minmax payoffs,

and consider the case in which 1 can make frequent proposals while 2 never gets a chance to make a

proposal (i.e., q1 is arbitrarily large while q2 = 0). Then, 2’s minimal guaranteed renegotiation-proof

payoff collapses to his minmax payoff, while 1 is guaranteed to get a payoff of at least π1(P2).

Asymmetric proposing probabilities and bargaining power

Fixed discount rate

Our objective is to understand how renegotiation affects the strategic behavior of patient players

and in particular how it affects the players’ ability to cooperate and to implement punishments. It

would also be interesting to study how renegotiation affects more impatient players. Our protocol

and analysis could be used to this end.

Impatience can have a dual effect on repeated games with renegotiation. As with standard repeated

games, it reduces the force of future punishments and hence the incentives to cooperate in the short

term in the presence of profitable deviations. However, impatience also weakens the impact of

future renegotiation. It is therefore possible that impatience weakens the impact of renegotiation

on repeated games. This conjecture can be explained most starkly when players are perfectly

impatient (δ = 0). In this case, renegotiation has of course no impact and the set of equilibria

collapses to the repetitions of static Nash equilibria.

As with the analysis of standard repeated games without renegotiation, however, we expect the

analysis of this case to be much more difficult.
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Three or more players

The analysis has focused on the case of two players, which is a common restriction in studies of

renegotiation given the complexity of the problem (e.g., Farrell and Maskin (1989), Benôıt and

Krishna (1993), and Miller and Watson (2013).23). A natural follow-up of this work is to extend

the analysis to three or more players. This raises new conceptual issues: Can proposals be targeted

toward a subset of individuals? What happens if only a subset of the agents agrees to renegotiate?

Because the protocol and concepts of the present paper lead to a particularly tractable analysis,

we are hopeful to successfully explore this extension in future research.

23Abreu et al. (1993) focus instead on symmetric equilibria.

24



References

Abreu, D., Pearce, D. (1991) “A perspective on renegotiation in repeated games,” in R. Selten

(ed.), Game Equilibrium Models, Springer Berlin Heidelberg.

Abreu, D., Pearce, D., and E. Stacchetti (1993) “Renegotiation and Symmetry in Repeated

Games,” Journal of Economic Theory, Vol. 60, pp. 217–240.

Asheim, G. (1991) “Extending Renegotiation-Proofness to Infinite Horizon Games,” Games and

Economic Behavior, Vol. 3, pp. 278–294.
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