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Abstract

In an important paper, Weinstein and Yildiz (2007) show that if players have an

infinite depth of reasoning and this is commonly believed, types generically have a unique

rationalizable action in games that satisfy a richness condition. We show that this result

does not extend to environments where players may have a finite depth of reasoning,

or think it is possible that the other player has a finite depth of reasoning, or think

that the other player may think that is possible, and so on, even if this so-called “grain

of naiveté” is arbitrarily small. More precisely, we show that even if there is almost

common belief in the event that players have an infinite depth of reasoning, there are

types with multiple rationalizable actions, and the same is true for “nearby” types. Our

results demonstrate that both uniqueness and multiplicity are robust phenomena when

we relax the assumption that it is common belief that players have an infinite depth, if

only slightly.
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1 Introduction

Multiplicity of predictions naturally arises in many situations of economic interest, ranging

from bank runs, currency attacks, debt crises, to arms races. One could view models with

multiple predictions as formalizing the idea that strategic uncertainty plays a critical role in

such games, so that there is an inherent indeterminacy of outcomes.1 An alternative perspec-

tive is to view models with multiple predictions as incomplete theories, where the multiplicity

can be resolved by extending the model; for example, by introducing incomplete information.

A striking result, due to Carlsson and van Damme (1993), is that a coordination game has an

essentially unique prediction when players observe the state of nature with some small noise;

a type has multiple rationalizable actions only if its signal is on the boundary of a set of sig-

nals for which the rationalizable action is unique.2 Weinstein and Yildiz (2007) formalize and

strengthen this idea: in any game, and for any information structure, types generically have

a unique rationalizable outcome, and multiplicity occurs if and only if we are in a knife-edge

case.3

An assumption that plays an essential role in the proof of these results is that players have

an infinite depth of reasoning: not only are players able to think about the payoffs of the game

and form beliefs about these payoffs, they can also form beliefs about others’ beliefs about

payoffs, about the others’ beliefs about their opponents’ beliefs, and so on, ad infinitum. In

fact, not only are players assumed to have an infinite depth of reasoning, it is assumed that

this is common belief. This is, of course, at best an idealization: some agents may only have a

finite depth of reasoning; others may have an infinite depth of reasoning, but may think that

their opponent has a finite depth, and so on.4

We therefore relax the assumption that it is common belief that players have an infinite

depth of reasoning, and show that the results of Carlsson and van Damme (1993) and Wein-

stein and Yildiz (2007) do not extend to this environment. More specifically, we show that

multiplicity of rationalizable outcomes is a typical and robust phenomenon if we do not insist

1See, e.g., Diamond and Dybvig (1983), Obstfeld (1986, 1996), and Cole and Kehoe (2000).
2This result has inspired a large literature with many important applications. See, e.g., Morris and Shin

(1998, 2004), Baliga and Sjöström (2004), Corsetti et al. (2004), and Goldstein and Pauzner (2005). See Morris

and Shin (2003) for a review.
3The results of Carlsson and van Damme and Weinstein and Yildiz presume that there is no a priori

restriction on payoffs; see Section 5.
4 An important literature in experimental literature suggests that subjects indeed only use a finite depth of

reasoning in a range of games. See, e.g., Nagel (1995), Stahl and Wilson (1995), Ho et al. (1998), Costa-Gomes

et al. (2001), Camerer et al. (2004), and Crawford and Iriberri (2007); see Heinemann et al. (2004, 2009),

Cabrales et al. (2007) for experimental studies of coordination games with noisy information, with a focus on

the effect of subjects’ depth of reasoning. See Crawford et al. (2012) for a survey.
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on players having common belief in an infinite depth. This is true even if players have an

infinite depth of reasoning and it is almost common belief that players have an infinite depth.

To establish our results, we need a framework to model the beliefs of players with finite and

infinite depth. Following Mertens and Zamir (1985), we construct a space of belief hierarchies,

and show that this space can be used to define a so-called universal type space that contains

all beliefs in a sense we make precise. We show that the universal type space of Mertens and

Zamir forms a (strict) subset of our universal space that is characterized by the event that

players have an infinite depth of reasoning and have common belief in that event (Proposition

3.4). Our universal type space thus provides the appropriate environment to study the effects

of relaxing the assumption that players have an infinite depth of reasoning and have common

belief in infinite depth.

Our first main result (Theorem 5.2) shows that for generic games in the class of games

studied by Carlsson and van Damme, there are types with an infinite depth of reasoning

and with almost common belief in infinite depth that have multiple rationalizable actions;

moreover, “nearby” types also have multiple rationalizable actions. Thus, there is robust

multiplicity in generic games even if there is almost common belief that players have an

infinite depth.

To see the intuition, it is useful to consider a simple example. Consider the game in Figure

1, taken from Morris and Shin (2003). When payoffs are commonly known, the game can

have multiple rationalizable outcomes: if it is commonly known that s = 1
2
, for example, both

actions are rationalizable for each player. However, as shown by Carlsson and van Damme,

if beliefs are perturbed slightly, so that a player believes that s = 1
2
, believes that the other

believes that, and so on, for a large but finite number n of iterations, but believes that the other

believes. . . (n+ 1 times). . . that the other believes that s = −1, then her unique rationalizable

action is bi.

a2 b2

a1 s, s s− 1, 0

b1 0, s− 1 0,0

Figure 1: A game in which payoffs depend on the state of nature s.

Now consider a player, say player 1, who forms a belief about payoffs, but not about player

2’s beliefs about payoffs; in that case, we say that player 1 has depth of reasoning equal to

1. A plausible assumption is that a player with depth 1 does not rule out any action of her

opponent.5 Suppose player 1 assigns equal probability to s = 2 and s = −1. Then, under

5Indeed, it is common in the experimental literature (footnote 4) to assume that a player with depth 1
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the conjecture that her opponent plays a2, it is optimal for her to choose a1. On the other

hand, under the conjecture that player 2 chooses b2, it is a best response for her to choose b1.

It follows that both actions are rationalizable for player 1 under such a belief. We show that

this remains true for types with slightly perturbed beliefs.

Next suppose a player has depth 2 and thinks that his opponent has depth 1. If he thinks

that his opponent assigns roughly equal probability to s = 2 and s = −1, then, by the above

argument, he cannot rule out any action of his opponent. If this player in turn assigns equal

probability to s = 2 and s = −1, then, by a similar argument as above, multiple actions are

rationalizable for that player, as well as for nearby types.

Theorem 5.2 demonstrates that for generic games, this simple argument can be extended

to more complex environments to show that even types with an infinite depth and with almost

common belief in infinite depth, have multiple rationalizable actions, and the same is true for

types with similar beliefs. This result implies that the result of Weinstein and Yildiz that types

generically have a unique rationalizable action when there is common belief in infinite depth

does not carry over to this more general environment, where players can have a finite depth

of reasoning, or may think that others have a finite depth of reasoning, and so on (Corollary

5.3).

Our second main result focuses specifically on one of the canonical global games discussed

in the literature (Carlsson and van Damme, 1993; Morris and Shin, 2003). In such games,

players receive a noisy private signal about the state of nature. While Theorem 5.2 implies

that there are types that have multiple rationalizable actions in this game, the beliefs of the

types constructed in the proof are generally not consistent with this information structure

with noisy signals. Theorem 5.4 shows that in fact, there is robust multiplicity even if beliefs

are required to be consistent with this information structure, players have an infinite depth

and almost common belief in the infinite depth, and have signals that almost makes one of the

actions (uniquely) dominant, provided that the noise level is sufficiently small. As we discuss

in Section 5, the difficulty in proving this result is to show that there is a positive noise level

for which a type has multiple rationalizable actions, even for extreme signals and very high

levels of mutual belief in infinite depth.

For this particular game, Theorem 5.4 is stronger than Theorem 5.2. Theorem 5.4 says

that we can always find a type whose belief is consistent with the information structure with

multiple rationalizable actions (and that has an infinite depth and almost common belief in

an infinite depth), while the beliefs of the types in Theorem 5.2 can be arbitrary. On the

other hand, by fixing the information structure, Theorem 5.4, by its nature, can apply only

thinks that her opponent chooses an action uniformly at random, unless some action is particularly salient

(Crawford et al., 2012).
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to a particular game, whereas Theorem 5.2 applies to generic games in a broad class. Thus,

the two results complement each other.

The intuition behind our results is that players with a finite depth of reasoning provide

a “seed” of multiplicity, as in the example above. By contrast, it follows from the results

from Weinstein and Yildiz that no such seed exists when there is common belief in the event

that players have an infinite depth of reasoning. For example, if the set of states of nature

is S = {−1, 2}, then, under the assumption that there is common belief in an infinite depth

of reasoning, a player has multiple rationalizable actions if and only if it is (correct) common

belief that players assign a probability sufficiently close to 1
2

to s = 2. However, this is a

knife-edge case.

We show that this seed of multiplicity can be used to construct an open set of types with

multiple rationalizable actions even under strong restrictions on players’ beliefs, such as almost

common belief in the event that players have an infinite depth of reasoning, or that beliefs

be consistent with a particular information structure. We thus use a similar proof technique

as the existing literature that obtains unique predictions by employing the “existence. . . of

dominance solvable games that serve as take-offs for the. . . argument, and, thus, exert a kind

of remote influence” (Carlsson and van Damme, 1993, p. 992). Rather than dominance

solvable games, we use types with a finite depth of reasoning as a starting point, and rather

than showing generic uniqueness, we demonstrate that multiplicity can be robust.

The remainder of this paper is organized as follows. After discussing some preliminaries,

Section 3 defines belief hierarchies of finite and infinite depth and constructs the universal type

space. Section 4 defines games with incomplete information, and Section 5 presents our main

results. Section 6 discusses the related literature, and the online appendix contains additional

results.

2 Preliminaries

We follow the standard conventions for subspaces, products, and (disjoint) unions of topo-

logical spaces. A subspace of a topological space is endowed with the relative topology, and the

product of a collection of topological spaces is endowed with the product topology. If (Vλ)λ∈Λ

is a family of topological spaces (possibly made disjoint by replacing some Vλ with a homeo-

morphic copy), then
⋃
λ Vλ is endowed with the sum topology, that is, a subset U ⊆

⋃
λ∈Λ Vλ

is open in
⋃
λ∈Λ Vλ if and only if U ∩ Vλ is open in Vλ for each λ ∈ Λ. In particular, if Vλ,

λ ∈ Λ, is a metric space with metric dλ (bounded by 1), then the sum topology on
⋃
λ∈Λ Vλ is
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U Y

Q

Figure 2: The space W (shaded gray) is the union of Q ⊆ U × Z and of Y . The space V is

the union of U and Y .

metrized by the metric dΛ, defined by

dΛ(v, v′) :=

{
dλ(v, v

′) if v, v′ ∈ Vλ;
1 otherwise.

Hence, if v, v′ belong to different component spaces Vλ, Vλ′ , then they are not close in the sum

topology. The sum of a countable collection of Polish spaces is Polish (Kechris, 1995, Prop.

3.3).

Given a topological space V , denote by ∆(V ) the set of probability measures on the Borel

σ-algebra B(V ) on V . We endow ∆(V ) with the topology of weak convergence, and with its

associated Borel σ-algebra. If V is Polish, then this σ-algebra is generated by the sets

{µ ∈ ∆(V ) : µ(E) ≥ p} E ∈ B(V ), p ∈ [0, 1];

a result that we will use often without mention.

We extend the definition of a marginal probability measure to a union of measurable spaces.

Let V be the union of the disjoint sets U and Y , and let Q ⊆ U × Z and W = Q ∪ Y , where

all spaces are assumed to be topological spaces; see Figure 2. Then for µ ∈ ∆(W ) denote by

margV µ ∈ ∆(V ) the probability measure defined by

margV µ(E) = µ({(u, z) ∈ Q : u ∈ E}) + µ(E ∩ Y )

for every measurable set E ⊆ V . If µ is a probability measure on a product space U × Y , and

E is a measurable subset of U , then we sometimes write µ(E) for margU µ(E).

3 Belief hierarchies

This section constructs the space of all belief hierarchies of finite and infinite depth. We

then define the universal type space for players with a finite or infinite depth of reasoning,

analogously to the universal Harsanyi type space of Mertens and Zamir (1985). The proofs

for the results in this section can be found in the online appendix.
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3.1 Construction

This section constructs the space of all coherent belief hierarchies. There is a fixed, finite

set of players N . There is a set S of states of nature. Each player i ∈ N can have private

information about the state of nature: she may receive a signal xi ∈ Xi. A belief hierarchy

for player i specifies her belief about the state of nature and the other players’ signals, i.e.,

about S×X−i, her beliefs about her opponents’ beliefs, and so on, up to some finite or infinite

order.6 That is, each hierarchy is associated with a depth of reasoning; a hierarchy’s depth

can either be finite or infinite.7

Formally, assume that S and Xi, i ∈ N , are compact metric.8 We construct two sequences

of spaces for each player i, Hm
i and H̃m

i , m ≥ 0, with Hm
i the set of mth-order belief hierarchies

that “stop” reasoning at order m, and H̃m
i the set of belief hierarchies that “continue” to reason

at that order. The belief hierarchies in Hm
i form the belief hierarchies with depth of reasoning

equal to m, while the belief hierarchies in H̃m
i are used to construct the belief hierarchies of

depth at least m+ 1 (and possibly infinite).

For a player i ∈ N , fix two arbitrary labels h∗,0i and µ0
i ; the label h∗,0i is used to define the

set H0
i of belief hierarchies of players who do not reason at all, while µ̃0

i is just a notational

“seed” on which the hierarchies of more sophisticated types will be built. Let H̃0
i := Xi×{µ̃0

i }
and H0

i := Xi × {h∗,0i } be the set of belief hierarchies that stop and continue at order 0,

respectively. The mth-order belief hierarchies thus specify a signal (in addition to the label

h∗,0i or µ0
i ). For reasons that will become clear shortly, it will be convenient to refer to h∗,0i as

the (naive) type.

We next consider players’ beliefs about the state of nature and about whether the other

players have stopped reasoning at order 0. Let

Ω̃0
i := S ×

∏
j 6=i

(
H̃0
j ∪H0

j

)
;

Ω0
i := S ×

∏
j 6=i

H0
j .

6As is standard, the Cartesian product of a collection of topological spaces (Vλ)λ∈Λ (where Λ is an arbitrary

index set) is denoted by V throughout the paper, with typical element v. Given λ ∈ Λ, we write V−λ for∏
`∈Λ\{λ} V`, with typical element v−λ.
7We thus distinguish between a player’s private information or signal and his belief hierarchy or type, as is

common in the literature on the robustness of game-theoretic predictions (e.g., Bergemann and Morris, 2005).

If a player’s signal uniquely determines her belief hierarchy, it is without loss of generality to identify her signal

and her belief hierarchy.
8The construction can easily be generalized to the case that S and Xi, i ∈ N , are Polish. Assuming that

the relevant spaces are compact metric ensures that our results are directly comparable to those of Weinstein

and Yildiz (2007).
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Define the set of first-order belief hierarchies that continue and stop at order 1 by, respectively,

H̃1
i := H̃0

i ×∆
(

Ω̃0
i

)
; (3.1)

H1
i := H̃0

i ×∆
(
Ω0
i

)
. (3.2)

Equations (3.1) and (3.2) describe the first-order beliefs for belief hierarchies that reason

beyond the first order and that stop reasoning at the first order, respectively, where a first-

order belief describes a player’s belief about the state of nature and other player’s signal. The

difference between the belief hierarchies that stop and that continue at order 1 is that the

latter can conceive of the possibility that the other players have not yet stopped reasoning at

order 0 (i.e., their beliefs are defined on
∏

j 6=i H̃
0
j ∪H0

j ), while the former can think only that

the other players have stopped reasoning at order 0 (i.e., their beliefs are defined on
∏

j 6=iH
0
j ).

For k = 1, 2, . . . , suppose, inductively, that for each player j ∈ N and all ` ≤ k, H̃`
j and

H`
j are the sets of belief hierarchies that continue to reason beyond order ` and that stop

reasoning at that order, respectively. Define

H̃≤ki := H̃k
i ∪

⋃k
`=0H

`
i , Ω̃k

i := S × H̃≤k−i ,

H≤ki :=
⋃k
`=0H

`
i , Ωk

i := S ×H≤k−i ,

and let

H̃k+1
i :=

{
(xi, µ

0
i , . . . , µ

k
i , µ

k+1
i ) ∈ H̃k

i ×∆(Ω̃k
i ) : margΩ̃k−1

i
µk+1
i = µki

}
, (3.3)

Hk+1
i :=

{
(xi, µ

0
i , . . . , µ

k
i , µ

k+1
i ) ∈ H̃k

i ×∆(Ωk
i ) : margΩ̃k−1

i
µk+1
i = µki

}
. (3.4)

Again, the interpretation is that H̃k+1
i is the set of belief hierarchies that continue to reason at

order k+1, while the set Hk+1
i contains the hierarchies that stop reasoning at k+1. As before,

the former can conceive of the possibility that the other players have not stopped reasoning

at order k, while the latter cannot. A belief hierarchy hki ∈ Hk
i that stops reasoning at order

k is said to have depth di(h
k
i ) = k.

The condition on the marginals in Equations (3.3) and (3.4) is a standard coherency

condition: it ensures that the beliefs at different orders do not contradict each other (see,

e.g., Brandenburger and Dekel, 1993, for a discussion). However, we need to use the extended

definition of the marginal (Section 2) here, as we consider the marginal beliefs over belief

hierarchies that are still “growing,” as well as belief hierarchies that stopped reasoning at

some lower order.

In the limit, define

H∞i :=
{(
xi, µ

0
i , µ

1
i , . . .

)
:
(
xi, µ

0
i , . . . , µ

k
i

)
∈ H̃k

i for all k ≥ 0
}
.
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The belief hierarchies in H∞i are those that “reason up to infinity.” We therefore say that a

belief hierarchy h∞i in H∞i has infinite depth, and write di(h
∞
i ) =∞.

The next result states that the set H∞i of belief hierarchies with an infinite depth is well-

defined:

Lemma 3.1. The set H∞i is nonempty and Polish.

The set H∞i contains the hierarchies with infinite depth, i.e., a hierarchy in H∞i has well-

defined beliefs at each order. It will be convenient to define

Hi := H∞i ∪
∞⋃
k=0

Hk
i

to be the set of all belief hierarchies. Under the usual choice of topology (Section 2), the space

Hi is Polish. For future reference, we denote this topology on Hi by τi. With some abuse of

notation, we sometimes write (xi, µ
0
i , . . .) for a typical element hi of Hi, regardless of whether

the belief hierarchy has a finite or infinite depth; in the former case, there is of course k <∞
such that hi = (xi, µ

0
i , . . . , µ

k
i ).

3.2 Universal type space

Following Mertens and Zamir (1985), we show that a belief hierarchy not only specifies a

belief about other players’ higher-order beliefs, but also about their belief hierarchy. We can

use that to define a so-called universal type space that contains all type spaces of players with

a finite or infinite depth of reasoning, in a sense we make precise.

The first step is to show that a belief hierarchy can be associated with a belief over the set

of belief hierarchies of the other players. That is, each belief hierarchy specifies a belief about

the full hierarchy of other players, not just about the individual levels of the hierarchy:

Lemma 3.2.

(a) For each belief hierarchy hi = (xi, µ
0
i , µ

1
i , . . .) ∈ H∞i there exists a unique Borel proba-

bility measure µi(hi) on S ×H−i such that

margΩ̃`−1
i
µi(hi) = µ`i

for all ` = 1, 2, . . ..

(b) For each k > 0 and every belief hierarchy hi = (xi, µ
0
i , µ

1
i , . . . , µ

k
i ) ∈ Hk

i , there exists a

unique Borel probability measure µi(hi) on S ×H≤k−1
−i such that

margΩ̃`−1
i
µi(hi) = µ`i

for all ` = 1, . . . , k.
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Thus, each belief hierarchy of player i can be associated with a belief over the set S of

states of nature, the signal spaces X−i and over the other players’ belief hierarchies, in such a

way that i’s belief over her `th-order space of uncertainty coincides with his `th-order belief

as specified by her hierarchy of beliefs. That is, the construction is canonical in the sense

of Brandenburger and Dekel (1993). The result implies that the beliefs of a player at each

order she can reason about determine her beliefs about the other players’ belief hierarchies.

Hence, specifying a player’s beliefs about the relevant higher-order spaces of uncertainty fully

specifies her beliefs over the full hierarchies of his opponents.

Using Lemma 3.2, we can construct a function that assigns to each belief hierarchy hi

its belief about nature and other players’ hierarchies. In the online appendix, we derive the

following result:

Corollary 3.3. There is unique mapping ψi : Hi → {h∗,0i } ∪∆(S × H−i) with the property

that for each k = 1, 2, . . ., for each hi = (xi, µ
1
i , . . .) ∈ Hi of depth at least k, its kth-order

belief µki is given by

µki = margΩ̃k−1
i
ψi(hi),

and is such that

• for h0
i ∈ H0

i , ψi(h
0
i ) = h∗,0i ;

• for hki ∈ Hk
i , k <∞, the support of ψi(h

k
i ) lies in S ×H≤k−1

−i ;

• for h∞i ∈ H∞i , the support of ψi(h
∞
i ) lies in S ×H−i.

Moreover, the function ψi is continuous.

This result is the analogue of the well-known result of Mertens and Zamir (1985) for the

space of belief hierarchies of infinite depth.9 It says that each (nontrivial) belief hierarchy

hi ∈ Hi for a player i ∈ N is associated with a belief ψi(hi) on S ×H−i.
Mertens and Zamir use the analogue of Corollary 3.3 to construct the so-called univer-

sal Harsanyi type space T MZ , where the type set of each player is given by a set of belief

hierarchies, and the beliefs of each type hMZ
i about the state of nature, signals, and other

9Unlike the case where all belief hierarchies have an infinite depth of reasoning (Mertens and Zamir, 1985),

the function ψi is not a homeomorphism. The reason is that there can be belief hierarchies hi, h
′
i ∈ Hi of

different depths such that ψi(hi) = ψi(h
′
i), so that ψi is not injective. For example, for s ∈ S and x−i ∈ X−i

and any k = 1, 2, . . . ,∞, there is a belief hierarchy hki ∈ Hk
i that assigns probability 1 to (s, x−i, h

∗,0
−i ). We

could rule out certain types that could be deemed “redundant” in this sense (though note that hki and hmi
have different higher-order beliefs whenever k 6= m), and obtain a homeomorphism. This does not affect our

main results.
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players’ types is given by the probability measure ψMZ
i (hMZ

i ), where ψMZ
i is the analogue of

the function ψi in Corollary 3.3.

In the online appendix, we define the class of type spaces for players with a finite or

infinite depth of reasoning, and show that we can likewise construct a universal type space T ∗

for players with a finite or infinite depth of reasoning. The set of types for each player i ∈ N
is given by Hi, and the belief of a type hi ∈ Hi about the state of nature, signals, and the

other players’ types is given by ψi(hi). As in the case of belief hierarchies of infinite depth

considered by Mertens and Zamir, the universal type space T ∗ generates all belief hierarchies

(of finite and infinite depth). With some abuse of terminology, we say that a type has depth

(of reasoning) k = 0, 1, . . . ,∞ if it generates a belief hierarchy of depth k.

In our analysis, we consider various so-called belief-closed subspaces of the space T ∗. A

belief-closed subspace of T ∗ is a tuple (H ′i)i∈N such that for i ∈ N , H ′i is a subset of Hi and for

each hi ∈ H ′i such that hi 6∈ H0
i , the support of ψi(hi) lies in S×H ′−i.10 We show in the online

appendix that the usual equivalence between type spaces and belief-closed subspaces extend

to the current framework: every (nonredundant) type space can be seen as a belief-closed

subset of the universal space T ∗, and, conversely, any belief-closed subset corresponds to a

type space.

The universal Harsanyi type space T MZ of Mertens and Zamir can be characterized by the

event that players have an infinite depth of reasoning, and commonly believe that.

Proposition 3.4. The universal type space T MZ for Harsanyi type spaces corresponds to the

belief-closed subset of T ∗ that coincides with the event that all players have an infinite depth

of reasoning, and there is common belief that all players have an infinite depth of reasoning.

See the online appendix for a formal statement and a proof. For simplicity, we will say that

there is (correct) common belief in the event that players have an infinite depth of reasoning

(CB∞) when all players have an infinite depth of reasoning, and there is common belief in

that event. Henceforth, we will use the terms belief hierarchy and type interchangeably when

referring to the elements of Hi, i ∈ N .

4 Games with incomplete information

We define games with incomplete information, and extend the standard concept of ratio-

nalizability to our setting. Formally, given a set of players N , set S of states of nature, and

signal spaces (Xi)i∈N , a (generalized) Bayesian game (on T ∗) is a tuple (S, (Ai)i∈N , (ui)i∈N),

10The tuple (H0
i )i∈N is a belief-closed subset by definition.
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where for each player i ∈ N , Ai is i’s action set, and ui : A × S → R is her utility func-

tion. Hence, a player’s signal does not directly affect her payoff. We assume that payoffs are

(jointly) continuous, and that action sets are finite. Players’ beliefs are modeled using the

universal type space T ∗.11 The set Γ of all games on A× S is thus the set of profiles (ui)i∈N

of continuous payoff functions on A× S. We endow Γ with its usual sup-norm topology.

It is straightforward to extend the notion of interim correlated rationalizability to this

setting (Battigalli and Siniscalchi, 2003; Dekel et al., 2007). In standard Bayesian games this

solution concept embodies common belief of rationality; and it allows a type to believe that

her opponents’ actions are correlated even conditional on them having a particular profile of

types and given that a particular state of nature obtains (also see Battigalli et al., 2011). For

each player i ∈ N and hi ∈ Hi \H0
i , let

R0
i (hi) := Ai

and, for k > 1, define inductively12

Rk
i (hi) :=


there is a measurable σ−i : S ×H−i → ∆ (A−i) s.t.

ai ∈ Ai : supp σ−i (s, h−i) ⊆
∏

j 6=iR
k−1
j (hj) for all h−i ∈ H−i, s ∈ S; and

ai ∈ arg maxa′i∈Ai

∫
S×H−i×A−i

ui(a
′
i, a−i, s)σ−i(s, h−i)(a−i)dψi(hi)

 .

where supp µ is the support of a probability measure µ. In words, Rk
i (hi) is the set of actions

for type hi that survive k rounds of iterated deletion of dominated actions: for each action

ai ∈ Rk
i (hi), there is a conjecture σ−i that rationalizes it, in the sense that the conjecture has

support in the actions of the opponents that have survived k− 1 rounds of deletion, and ai is

a best response to this conjecture (given the type’s belief ψi(hi)).

The (interim correlated) rationalizable actions of type hi for player i ∈ N are

R∞i (hi) :=
∞⋂
k=0

Rk
i (hi).

If hi ∈ H0
i , then we set R∞i (hi) := Ai. That is, any action is rationalizable for a type that

doesn’t think; this is in the spirit of the assumption that is common in the experimental

literature that so-called level-0 types randomize uniformly over their actions (Crawford et al.,

2012).

11In principle, we could have considered a different type space. However, considering the universal type

space is without loss of generality in the present context, as the set of interim correlated rationalizable actions

for a type depends only on the belief hierarchy that it generates (Dekel et al., 2007).
12At first sight, it may seem that our solution concept is not entirely consistent with the idea that players

can have a finite depth of reasoning. Specifically, the conjecture σ−i in the definition of Rki (hi) is defined for

every type profile h−i ∈ H−i of i’s opponents for every ti, including type profiles h′−i that correspond to a

depth of reasoning that exceeds that of hi. But since such type profiles h′−i are outside the support of the

belief ψi(hi) for type hi, the beliefs σ−i(s, h
′
−i) do not change the surviving set of actions for type hi.
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5 Robust multiplicity

In this section, we show that the seminal “generic uniqueness” result of Weinstein and

Yildiz (2007) is not robust to relaxing the assumption that it is common belief that players

have an infinite depth of reasoning. We start out by describing the results of Weinstein and

Yildiz.

5.1 Generic uniqueness and common belief in an infinite depth

Weinstein and Yildiz prove their generic uniqueness result for the universal type space

T MZ for Harsanyi type spaces constructed by Mertens and Zamir (1985). In the context of

the universal space, standard topological notions have a specific meaning, as discussed by

Weinstein and Yildiz (p. 372):

• If a subset Oi ⊆ Hi of types for i is open in a universal space, then if player i’s actual

type is in Oi, and our observation of the type’s higher-order beliefs is sufficiently precise,

then we know that the actual type is in Oi.

• If a subset Vi ⊆ Hi of types for i is dense in a universal space, then we cannot rule out

the possibility that player i’s type lies in Vi, even if we can observe the beliefs of player

i up to arbitrarily high order, with arbitrarily high precision.

If a type belongs to an open and dense subset, we say it is generic. The complement of an

open and dense set has the property that it has an empty interior : the complement does not

have a nonempty open subset (i.e., the complement of an open and dense subset is nowhere

dense). These interpretations are valid both for the universal type space T MZ for Harsanyi

type spaces and the universal type space T ∗ for types with a finite or infinite depth.

Weinstein and Yildiz make no a priori restrictions on the domain of payoff structures.

Thus, they consider games (S, (Ai)i∈N , (ui)i∈N) whose payoffs are rich in the following sense:

for every player i ∈ N and for each action ai ∈ Ai, there is a state of nature sai ∈ S at which

the action ai is strictly dominant for i. That is,

ui(ai, a−i, s
ai) > ui(bi, a

′
−i, s

ai)

for all a−i ∈ A−i and bi 6= ai.

We are now ready to state the generic uniqueness result of Weinstein and Yildiz:

Proposition 5.1. (Weinstein and Yildiz, 2007, Prop. 2) The set of types that have a

unique rationalizable action in a game with rich payoffs is open and dense in the universal

space T MZ for Harsanyi type spaces. Consequently, the set of types in T MZ that have multiple

rationalizable actions has an empty interior.
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This result means that even though there are types in the universal space T MZ for Harsanyi

type spaces that have multiple rationalizable actions, the types in the neighborhood of those

types have a unique rationalizable action; we come back to this below. Thus, if we model

players’ beliefs with a type in T MZ that has multiple rationalizable actions, then we can

conclude that these actions are indeed rationalizable for the player only if we are absolutely

certain that the player’s actual higher-order beliefs are exactly as given by the type. Hence,

multiplicity (of rationalizable actions) is not robust when there is common belief in an infinite

depth of reasoning.

5.2 Almost-common belief in an infinite depth

We construct a sequence of sets of types in T ∗ that have almost common belief that players

have an infinite depth of reasoning. For simplicity, we restrict attention to the case of two

players.

We construct a sequence B1
i , B

2
i , . . . of types for each player i = 1, 2 such that for large

n, the types in Bn
i have an infinite depth of reasoning and have almost common belief that

players have an infinite depth of reasoning. Formally, for i = 1, 2, let

B0
i :=

{
hi ∈ H∞i : ψi(hi)

( ⋃
γ<∞

Hγ
−i

)
= 1
}

be the set of types that have an infinite depth and that believe (with probability 1) that the

other player has a finite depth. For n = 1, 2, . . ., define

Bn
i :=

{
hi ∈ H∞i : ψi(hi)

(
Bn−1
−i

)
= 1
}
.

Thus, B1
1 is the set of types for player 1 with an infinite depth that believe that player 2 has an

infinite depth and believes that player 1 has finite depth; the set B1
2 of types for player 2 is of

course defined likewise. Similarly, B2
1 is the set of types for player 1 with an infinite depth that

believe that player 2 has an infinite depth and believes that player 1 has an infinite depth, but

believes that player 1 believes that player 2 has a finite depth. Again, B2
2 is defined similarly.

Generally, the types in Bn
i have an infinite depth of reasoning and have nth-order mutual

belief in the event that players have an infinite depth of reasoning, but not (n + 1)th-order

mutual belief in that event. When n grows large, the types in Bn
i have almost common belief

in an infinite depth (almost-CB∞).

5.3 Generic games

Before stating our results, we define some key notions. We say that there is robust mul-

tiplicity given the event E =
∏

i∈N Ei ⊆
∏

i∈N Hi if for each player i ∈ N , there is a type

14



hi ∈ Ei and an open neighborhood Oi(hi) of hi in Hi such that the types in Oi(hi) have mul-

tiple rationalizable actions. If that is the case, multiplicity is not a knife-edge case, unlike the

case of CB∞ studied by Weinstein and Yildiz: not only does the type hi ∈ Ei have multiple

rationalizable actions, the same is true for “nearby” types.

We are particularly interested in the possibility of robust multiplicity under minimal de-

partures of the assumption that it is common belief that there is an infinite depth of reasoning,

i.e., in the case where the event E consists of types whose beliefs are arbitrarily close to those

of types with common belief in an infinite depth. We say that there is robust multiplicity under

almost common belief in an infinite depth if for each n = 0, 1, . . ., there is robust multiplicity

given
∏

i∈N B
n
i .

We focus on the class of games studied by Carlsson and van Damme (1993), i.e., two

players, two actions games with rich payoffs. Theorem 5.2 says that there is robust multiplicity

in generic games in this class, even if there is almost-CB∞.13

Theorem 5.2. In any generic two player, two action game with rich payoffs, there is robust

multiplicity even if there is almost common belief in an infinite depth.

Proof. We establish a sufficient condition on games with rich payoffs under which there is

robust multiplicity when there is almost-CB∞; in Appendix C, we show that this condition

holds generically.

Fix a game (S, (Ai)i=1,2, (ui)i=1,2) with rich payoffs (and continuous payoff functions) such

that each player has two actions. Suppose that for each player i, there exist distinct actions

ai, bi ∈ Ai and distinct actions a−i, b−i ∈ A−i for the other player and pi ∈ [0, 1] such that

piui(ai, a−i, s
ai) + (1− pi)ui(ai, a−i, sbi) > piui(bi, a−i, s

ai) + (1− pi)ui(bi, a−i, sbi), (5.1)

and

piui(bi, b−i, s
ai) + (1− pi)ui(bi, b−i, sbi) > piui(ai, b−i, s

ai) + (1− pi)ui(ai, b−i, sbi). (5.2)

If player i = 1, 2 assigns probability pi to sai and probability 1 − pi to sbi , then, under the

conjecture that the other player chooses a−i (regardless of the state of nature), it is a strict

best reply for her to play ai; under the conjecture that the other player chooses b−i, it is a

13We use the same notion of genericity as in Section 5.1: the set of games for which there is robust multiplicity

under almost-CB∞ is open and dense in the set of all games with rich payoffs. If S is finite, the result also holds

if we interpret genericity in the measure-theoretic sense: the set of payoff functions with robust multiplicity

under almost common belief of infinite depth has probability 1 under the Lebesgue measure on the relevant

finite-dimensional space. When S is not finite, there is no obvious measure-theoretic notion that can be

applied.
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strict best reply for her to choose bi. If a game satisfies both conditions, then the best reply

for each player is responsive to the strategy of the other player, at least under certain beliefs

about the state of nature. Best replies are responsive in this sense in the game in Figure 3(a):

for any pi ∈ (1
3
, 2

3
) and any type hi for player i that assigns probability pi to sai = H and 1−pi

to sbi = L, it is a strict best reply for hi to play ai under the conjecture that the other player

chooses ai (since 2pi− (1− pi) > 0), while it is a strict best reply for hi to choose bi under the

conjecture that the other player chooses bi (since pi− 2(1− pi) < 0). By contrast, in the game

in Figure 3(b), best replies do not depend on conjectures about the other’s strategy, only on

beliefs about the state of nature. We refer to games with responsive best replies as responsive

games, and to games that do not have responsive best replies as nonresponsive games.

a2 b2 a2 b2

a1 2,2 1,0 a1 -1,-1 -2,0

b1 0,1 0,0 b1 0,-2 0,0

s = H s = L

(a)

a2 b2 a2 b2

a1 1,1 1,0 a1 0,0 0,1

b1 0,1 0,0 b1 1,0 1,1

s = H s = L

(b)

Figure 3: (a) A game where players’ best replies are responsive; (b) A game where players’

best replies are not responsive.

We show that in responsive games, for each player i = 1, 2, n = 0, 1, . . ., there is hi ∈ Bn
i

and an open neighborhood of hi in Hi such that both actions are rationalizable for the types

in the neighborhood.

To prove this, we first show that for each player i = 1, 2, there is a type of finite depth

and an open neighborhood of that type such that both actions are rationalizable for the types

in the neighborhood. It will be useful to introduce some unifying notation. For i = 1, 2 and

α = 0, 1, . . ., let Mα
i := Hα

i be the set of types of depth α. To define the sets Bn
i , n = 0, 1, . . .,

we need to consider the transfinite ordinals ω, ω+1, . . ..14 Let Mω
i := B0

i , and for n = 1, 2, . . .,

let Mω+n
i := Bn

i . We show that for any set Mα
i , α < ω + ω, there is a type hαi ∈ Mα

i and

a neighborhood Oα
i (hαi ) of hαi in Hi such that both actions are rationalizable for the types in

Oα
i (hαi ).

The claim follows immediately for α = 0, as both actions are rationalizable for any type

h0
i ∈ H0

i , i = 1, 2, and O0
i (h

0
i ) := H0

i is an open neighborhood for any such type. For α > 0,

suppose that for each player i = 1, 2 and γ < α, there is a type hγi ∈ Mγ
i and an open

neighborhood Oγ
i (hγi ) of hγi such that both actions are rationalizable for the types in Oγ

i (hγi ).

14Recall that ω = {0, 1, . . .} is the first infinite ordinal, and that ω + n, n = 1, 2, . . ., is the successor of

ω + n− 1. The ordinal ω + ω is the first ordinal that is greater than 0, 1, . . . , ω, ω + 1, ω + 2, . . ..
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Suppose that α is finite or that α = ω. Let hαi ∈Mα
i be a type such that

ψi(h
α
i )
(
sai ,

⋃
γ<α

Oγ
−i(h

γ
−i)
)

= pi, ψi(h
α
i )
(
sbi ,

⋃
γ<α

Oγ
−i(h

γ
−i)
)

= 1− pi.

Since (5.1) and (5.2) hold with strict inequality, there is η > 0 such that for each player i,

pi
(
ui(ai, a−i, s

ai)−η
)
+(1−pi)

(
ui(ai, a−i, s

bi)−η
)
> pi

(
ui(bi, a−i, s

ai)+η
)
+(1−pi)

(
ui(bi, a−i, s

bi)+η
)
,

and

pi
(
ui(bi, b−i, s

ai)−η
)
+(1−pi)

(
ui(bi, b−i, s

bi)−η
)
> pi

(
ui(ai, b−i, s

ai)+η
)
+(1−pi)

(
ui(ai, b−i, s

bi)+η
)
,

where ai, bi, a−i, b−i, s
ai , sbi are as in (5.1) and (5.2). Let dS be a metric that metrizes the

topology on S. By continuity of the payoff functions, there exists ζ > 0 (depending on η) such

that for all s̃ai , s̃bi such that dS(s̃ai , sai) < ζ and dS(s̃bi , sbi) < ζ,

ui(ai, a−i, s̃
ai) > ui(ai, a−i, s

ai)− η, ui(ai, a−i, s̃
bi) > ui(ai, a−i, s

bi)− η,

ui(bi, a−i, s̃
ai) < ui(bi, a−i, s

ai) + η, ui(bi, a−i, s̃
bi) < ui(bi, a−i, s

bi) + η,

ui(bi, b−i, s̃
ai) > ui(bi, b−i, s

ai)− η, ui(bi, b−i, s̃
bi) > ui(bi, b−i, s

bi)− η,

ui(ai, b−i, s̃
ai) < ui(ai, b−i, s

ai) + η, ui(ai, b−i, s̃
bi) < ui(ai, b−i, s

bi) + η.

Let Vai(ζ) and Vbi(ζ) be the open ζ-balls around sai and sbi , respectively, that is, let Vai(ζ) :=

{s̃ai ∈ S : dS(s̃ai , sai) < ζ}, and let Vbi(ζ) be defined similarly. Also, write O<α
−i for⋃

γ<αO
γ
−i(h

γ
−i). Then, for ξ > 0, define

U ξ
i (hαi ) :=

{
hi ∈ Hi : ψi(hi)

(
Vai(ζ)×O<α

−i
)
> ψi(h

α
i )
(
Vai(ζ)×O<α

−i
)
− ξ
}
∩{

hi ∈ Hi : ψi(hi)
(
Vbi(ζ)×O<α

−i
)
> ψi(h

α
i )
(
Vbi(ζ)×O<α

−i
)
− ξ
}
.

By continuity of the belief function ψi, the set U ξ
i (hαi ) is open in Hi (Billingsley, 1968, App.

III). Moreover, it contains hαi .

Since the payoff function ui is defined on a compact space, there is M ∈ [0,∞) such that

ui(ã, s̃) ∈ [−M,M ] for all (ã, s̃) ∈ A×S. It follows that for every type ξ > 0 and hi ∈ U ξ
i (hαi ),

under the conjecture that the other player plays a−i, the expected payoff to playing ai is at

least

(pi − ξ)
(
ui(ai, a−i, s

ai)− η
)

+ (1− pi − ξ)
(
ui(ai, a−i, s

bi)− η
)
− 2ξ(M + η),

while the expected payoff of playing bi is at most

(pi − ξ)
(
ui(bi, a−i, s

ai) + η
)

+ (1− pi − ξ)
(
ui(bi, a−i, s

bi) + η
)

+ 2ξ(M + η).
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Consequently, there is ξ̄1 > 0 such that for all ξ < ξ̄1, the former expression is at least as

great as the latter, and ai is rationalizable for any hi ∈ U ξ
i (hαi ). Likewise, for any ξ > 0 and

type hi ∈ U ξ
i (hαi ), under the conjecture that the other player plays b−i, the expected payoff to

playing bi is at least

(pi − ξ)
(
ui(bi, b−i, s

ai)− η
)

+ (1− pi − ξ)
(
ui(bi, b−i, s

bi)− η
)
− 2ξM,

while the expected payoff of playing bi is at most

(pi − ξ)
(
ui(ai, b−i, s

ai) + η
)

+ (1− pi − ξ)
(
ui(ai, b−i, s

bi) + η
)

+ 2ξM.

Again, there is ξ̄2 > 0 such that for any ξ < ξ̄2, action bi is rationalizable for any hi ∈ U ξ
i (hαi ).

If we define ξ̄ := min{ξ̄1, ξ̄2}, the result now follows by setting Oα
i (hαi ) := U ξ

i (hαi ) for some

ξ ∈ (0, ξ̄). The proof for the case that α = ω+n for some n = 1, 2, . . . is similar and therefore

omitted.

a2 b2 a2 b2

a1 1 + η1,1 + η2 1 + η3,η4 a1 η9,η10 η11,1 + η12

b1 η5,1 + η6 η7, η8 b1 1 + η13, η14 1 + η15, 1 + η16

s = H s = L

(c)

Figure 4: A perturbation of the game in Figure 3(b). Under generic payoff perturbations

η1, . . . , η16, the perturbed game is responsive.

In the appendix, we show that generically, games are responsive. Intuitively, if we perturb

the payoffs of a game with responsive best replies by a little bit, best replies still depend on

conjectures about the other player’s action. Hence, the set of responsive games is open in the

set of games with rich payoffs. On the other hand, if we perturb the payoffs of a nonresponsive

game slightly, then a player’s best reply may depend on her conjecture about the other’s play

for at least some beliefs about the state of nature, unless we choose the perturbations in a

very particular way. For example, consider the game in Figure 4. This is a perturbation of

the game in Figure 3(b). For “most” (small) values of η1, . . . , η16, Eqs. (5.1) and (5.2) are

satisfied for pi close to 1
2
. This means that the set of responsive games is dense in the set of

games with rich payoffs. �

The condition that there is almost common belief in an infinite depth is sufficient for there

to be robust multiplicity, but obviously not necessary. As the proof makes clear, there is

also robust multiplicity when players have a finite depth of reasoning. The strength of the
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result is precisely that we get robust multiplicity even if we relax the assumption that there is

common belief in an infinite depth only a little bit. As we discuss in Section 6, there are other

interesting types that exhibit robust multiplicity besides the ones that satisfy almost-CB∞.

Theorem 5.2 implies that the result of Weinstein and Yildiz that types with CB∞ generi-

cally have a unique rationalizable action in games with rich payoffs does not extend if we relax

the assumption of common belief in an infinite depth of reasoning:15

Corollary 5.3. Fix any generic (two player, two action game) with rich payoffs. For every

player i = 1, 2, n = 0, 1, . . ., the set of types in Bn
i with multiple rationalizable actions has a

nonempty open subset in T ∗.

Theorem 5.2 and Corollary 5.3 allow for general games, and do not put any a priori

restrictions on players’ beliefs about payoffs. However, in many applications, the information

structure imposes natural restrictions on players’ beliefs. In the next section, we show that

there is robust multiplicity even for types whose beliefs are consistent with the information

structure.

5.4 Global games

We prove our result in the context of one of the seminal games of the literature on global

games (Carlsson and van Damme, 1993; Morris and Shin, 2003), which we also discussed in

Section 1. Two players, labeled by i = 1, 2, decide simultaneously whether to invest (I) or not

to invest (NI). The payoff matrix is

I NI

I s, s s− 1, 0

NI 0, s− 1 0, 0

The set of states of nature is S := [−1, 2]. If s > 1 investing (I) is strictly dominant for each

player. If s < 0, then not investing (NI) is strictly dominant for each player. For intermediate

values of the state s, i.e., s ∈ [0, 1], both actions are rationalizable.

The information structure is as follows. The state s is drawn from S according to the

uniform distribution. Prior to playing, each player i receives a signal xi ∈ Xi := [−1, 2] that

is informative about the state of nature. When state of nature s, players’ signals are drawn

independently from the interval [s− ε, s+ ε], where ε > 0 is small (ε < 1
2
, say). Given the

15The result of Weinstein and Yildiz (2007) applies to games (with rich payoffs) with an arbitrary finite set

of players and finite action sets. To show that their result does not carry over, it is sufficient to show that it

does not hold for some games. That said, we could show a weaker result for games with an arbitrary (finite)

number of players and actions if we relax the assumption that there is almost common belief in infinite depth.
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signal xi, player i’s posterior on the state of nature is uniform in [xi − ε, xi + ε] ∩ [−1, 2] (by

Bayes’ rule). Moreover, conditional on s ∈ [xi − ε, xi + ε] ∩ [−1, 2], the player believes that

the other player’s signal x−i is distributed uniformly on [s− ε, s+ ε].

As shown by Carlsson and van Damme, if all types have an infinite depth of reasoning

and this is commonly believed, then I is the only rationalizable action for a player who have

received a signal xi <
1
2
, and NI is the unique rationalizable action for a player who received

a signal xi >
1
2
. Types that have received signal xi = 1

2
have multiple rationalizable actions: if

such a type believes that the other player chooses his dominant action (i.e., invests whenever

his signal is greater than 1
2

and does not invest otherwise), then the type is indifferent between

I and NI. By the generic uniqueness result of Weinstein and Yildiz (Proposition 5.1), this

multiplicity is not robust: if the type’s beliefs are perturbed slightly, then both actions are

rationalizable.

We next show that that there is robust multiplicity under this information structure.

To show this, we define the maximal belief-closed subset of T ∗ that is consistent with the

information structure and in which types can have a finite or infinite depth of reasoning.

More precisely, for ε > 0, we define the belief-closed subset (T εi )i=1,2 of T ∗, with type set T εi
for player i = 1, 2, that has the following properties:

(1) the belief of each type about the state of nature and the other player’s signal is as

described above;

(2) the belief of each type about the other’s signal is independent of its belief about the

other’s depth of reasoning;

(3) (T εi )i=1,2 is the maximal belief-closed subspace that is consistent with the information

structure in the sense that it contains any belief-closed subspace that satisfies the above

two conditions;

see Appendix A for a formal definition. We denote this belief-closed subset by T ε. The

assumption that players’ beliefs about signals are independent from their beliefs about players’

depth of reasoning seems a natural one; and we focus on the maximal belief-closed subspace

to obtain the strongest possible result.

Appendix B defines a collection Ci, i = 1, 2, of (equivalence) classes of belief hierarchies

for player i that partitions Hi and is such that each class Ci ∈ Ci is characterized completely

by its beliefs about players’ depth of reasoning. If the class Ci ∈ Ci is included in the set Bn
i

of types with nth-order mutual belief in the event that players have an infinite depth, then

we say that Ci satisfies nth-order mutual belief in infinite depth. These equivalence classes are

critical for obtaining the strongest possible result, as we discuss below.
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Theorem 5.4 shows that even if there is almost common belief that players have an infinite

depth of reasoning, and even if a player has received a signal arbitrarily close to the dominance

regions (i.e., xi close to 0 or close to 1), if there is some grain of naiveté and signals are

sufficiently precise, then both actions are rationalizable, and this multiplicity is robust to

small perturbations in beliefs.

Theorem 5.4. For each player i = 1, 2, signal xi ∈ (0, 1), n = 0, 1, . . ., and class Cn
i ∈ Ci of

beliefs that satisfies nth-order mutual belief in infinite depth, there is ε̄ > 0 such that for all

ε < ε̄, every type hi ∈ T εi with signal xi and with beliefs in class Cn
i has an open neighborhood

in Hi such that both actions are rationalizable for the types in this neighborhood.

The proof is relegated to Appendix C. The challenge in proving this result is that, as we

move closer to the dominance regions and consider higher and higher orders of mutual belief

in infinite depth, multiplicity is possible only if the noise level ε is sufficiently small.

The proof demonstrates that we can nevertheless bound the upper bound ε̄ on the noise

level away from zero even for signals close to the dominance regions and when there is almost

common belief in infinite depth. This is possible, because, as we show, no matter what a type

hi believes about the signal x−i of its opponent, and what order of mutual belief in infinite

depth it satisfies, we can always find finitely many types of its opponents to which it assigns

a sufficiently high probability and that have multiple rationalizable actions for some upper

bound on the noise that is greater than 0. This allows us to bound the upper bound for type

hi in turn.

To show this, we exploit the assumption that players’ beliefs about signals are independent

from their beliefs about players’ depth of reasoning. The independence assumption allows us to

choose the lower bound so that it holds uniformly for a class Ci of types that are characterized

solely by their beliefs about players’ depth. This makes that our result holds for all types

in T εi with beliefs in that class, even if they put a very large weight on types that are only

slightly less sophisticated than they are.

By working with the equivalence classes Ci, we can choose the bound on the noise level

after fixing the signal and the class (and thus the order of mutual belief in infinite depth),

but before choosing the type. This gives us the strongest possible result: the bound does not

depend on the specifics of the belief hierarchies, only on the two main dimensions (the signal

and beliefs about depth of reasoning); it is easy to see that there is no bound that would hold

uniformly across types. While we prove Theorem 5.4 for this particular game and information

structure, we believe the arguments can be applied more generally.

Together, Theorems 5.2 and 5.4 show that there are many types, possibly with almost

common belief in an infinite depth of reasoning, that have multiple rationalizable actions in
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this game, and this multiplicity is robust to further perturbations of beliefs. On the other

hand, the results of Weinstein and Yildiz (2007) imply that types that have common belief in

an infinite depth of reasoning generically have a unique rationalizable action in games with

rich payoffs. Hence, both uniqueness and multiplicity are common when we allow types to

have any depth of reasoning.

6 Discussion and related literature

Robust multiplicity given other events We have focused on showing that we have

robust multiplicity for the types in Bn
i , i = 1, 2, n = 0, 1, . . ., so as to show that the generic

uniqueness result of Weinstein and Yildiz does not hold if we slightly relax the assumption that

there is common belief in an infinite depth of reasoning. However, there are other interesting

sets of types for which one can show similar results. For example, we could consider a sequence

of types that are very sophisticated (in the sense that they have a high (but finite) or even

infinite depth of reasoning) and assign an arbitrarily high probability to the event that the

other player is only slightly less sophisticated.

Formally, we construct a sequence of sets {Hα,η
i }α, where η > 0 and α is a countable

ordinal.16 For i = 1, 2, let H0,η
i := Xi × {h∗,0i }. For α > 0, assume, inductively, that the

sets Hγ,η
i have been defined for i = 1, 2 and γ < α. We distinguish between the case where

α is a successor ordinal and where it is a limit ordinal.17 If α is a successor ordinal (e.g.,

α = 1, 2, . . .), then define

Hα,η
i :=

{
hi ∈ Hi \

⋃
γ<α

Hγ,η
i : ψi(hi)

(⋃
γ<α

Hγ,η
−i

)
= 1, ψi(hi)

(
Hα−1,η
−i

)
> 1− η

}
.

to be the set of types that assigns probability greater than 1− η to the types in Hα−1
−i . These

types assign a high probability (more than 1− η) to the event that the other is only slightly

less sophisticated than they are (i.e., to Hα−1,η
−i ). If α is a limit ordinal, then there is no unique

largest ordinal smaller than α (or even a finite set of such ordinals). So, to model that a type

at level α assigns high probability to types that are of slightly lower level, we fix an increasing

sequence {αn}∞n=1 of ordinals converging to α, and require that types assign high probability

16The result does not extend immediately to the uncountable ordinals, as not all relevant sets may be

measurable in that case.
17Recall that an ordinal α can be identified with the set {γ : γ < α} of its predecessors; we identify the

finite ordinals with the natural numbers 0, 1, 2, . . ., so that the first infinite ordinal ω is equal to {0, 1, . . .}. An

ordinal is a successor ordinal if it is the successor of some ordinal, where the successor of an ordinal α is the

least ordinal greater than α. An ordinal is a limit ordinal if it is not 0 or a successor ordinal. For example, 37

is the successor of 36, and ω is a limit ordinal.
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to the tail of that sequence.18 Then, define

Hα,η
i :=

{
hi ∈ Hi \

⋃
γ<α

Hγ,η
i : ψi(hi)

(⋃
γ<α

Hγ,η
−i

)
= 1, ψi(hi)

(⋃
n>

1
η

Hαn,η
−i

)
> 1− η

}
.

Thus, the types in this set assign a high probability (more than 1 − η) to types of the other

player that are only slightly less sophisticated (n > 1
η
).

We then have the following analogues to Theorems 5.2 and 5.4:

Theorem 6.1. In any generic two player, two action game with rich payoffs, for any η > 0,

player i = 1, 2, countable ordinal α, there is a type hα,ηi ∈ H
α,η
i and an open neighborhood of

hα,ηi such that both actions are rationalizable for the types in the neighborhood.

Theorem 6.2. For each η > 0, player i = 1, 2, signal xi ∈ (0, 1), class Cα,η
i ∈ Ci of beliefs

such that Cα,η
i ⊆ Hα,η

i , there is ε̄ > 0 such that for all ε < ε̄, every type hi ∈ T εi with signal

xi and with beliefs in class Cα,η
i has an open neighborhood in Hi such that both actions are

rationalizable for the types in this neighborhood.

The proof are essentially identical to those of Theorems 5.2 and 5.4, respectively, and are

therefore omitted.19

Minimum depth k Our results do not rely on the fact that the space of belief hierarchies

includes belief hierarchies (types) in H0
i that do not have beliefs and for whom any action is

rationalizable. We could have constructed the set of belief hierarchies in which every belief

hierarchy has at least depth k < ∞, and our results would go through with minor modifi-

cations, as long as there are types with common belief in an infinite depth of reasoning for

which multiple actions survive k rounds of elimination of dominated strategies. These types

can be used to construct an open set of types with depth k for which multiple actions are

rationalizable. The rest of the proofs of Theorems 5.2 and 5.4 then goes through without

change.

18If α is less than the first the least critical ordinal ε0 = ωω
ω··

·

, there is a standard such sequence (e.g.,

Takeuti, 1987, p. 120); for larger ordinals, we can fix an arbitrary such sequence.
19Theorems 5.2 and 6.1 do not imply each other, and likewise for Theorems 5.4 and 6.2: for α finite, Hα,η

i

is neither a subset or a superset of the set Hα
i of types of depth α. Even if we make Hα,η

i a subset of Hα
i

for α finite by requiring that the types in Hα,η
i have depth α (and that the types in Hα,η

i for infinite α have

infinite depth), then still Hω+1,η
i is not a subset of B1

i or vice versa. Also, while Theorem 5.2 and Theorem

5.4 consider only the sets Bαi for finite ordinals α, we could have considered all countable ordinals, though the

intuitive interpretation of the set Bαi for infinite α is not immediate.
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Topology While we have used the standard topology in our construction of the set of

belief hierarchies (Section 2), a natural question is whether there are alternative topologies

that one could use, and, if so, whether results are sensitive to this choice. An alternative

construction, which leads to a slightly weaker topology than the current one, is considered by

Kets (2010, 2013). The main difference is that in this alternative topology, the set of types

of infinite depth is no longer open.20 However, this does not affect our main results: what we

need for our results to hold is that there is a set of types of finite depth k ≥ 0 that is open.

To the best of our knowledge, this holds for all topologies that coincide with the standard

product topology on the set of belief hierarchies for a given depth of reasoning. Indeed, under

any natural topology, types of different depths are, in fact, different.

Common p-belief in infinite depth In this paper, we use the notion of almost com-

mon belief as employed by Rubinstein (1989) and Carlsson and van Damme (1993): a belief

hierarchy has almost common belief in an event E if it has nth-order mutual belief in E for

high n. Monderer and Samet (1989) have defined a different notion of almost common belief

than the one we use here: an event E is almost common belief in their sense if there is p close

to 1 such that all players assign probability at least p to E, assign probability at least p to

the event that all players assign probability at least p to E, and so on.

Our results do not go through under this alternative notion of almost common belief. This

is not surprising, since strategic behavior is generally sensitive to the notion of almost common

belief used (e.g., Monderer and Samet, 1989). More specifically, the proofs of Theorems 5.2

and 5.4 use the fact that we can always construct an open set of types that have multiple

rationalizable actions to which a type assigns high probability even if it has almost-CB∞ in

our sense. By the generic uniqueness result of Weinstein and Yildiz (2007), such an open set

of types does not exist under the alternative notion of almost-CB∞. Just like the results of

Weinstein and Yildiz, Carlsson and van Damme (1993), and others require that there is a

“seed” of uniqueness, by there being an open set of types with a unique rationalizable action,

our results rely on the existence of a similar seed of multiplicity.

Related literature A number of papers have shown that the results of Weinstein and Yildiz

do not hold if the topology is changed (Monderer and Samet, 1989; Dekel et al., 2006; Chen

et al., 2010) or when results are required to be robust against small misspecifications of the

game (Chen et al., 2013). Unlike these papers, we do not change the topology or introduce

additional uncertainty about the game. Rather, we identify a plausible epistemic assumption

20This implies in particular, that a sequence h1
i , h

2
i , . . . of belief hierarchies of (strictly) increasing depth can

converge to a belief hierarchy of infinite depth.
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– that it need not be commonly known that players have an infinite depth of reasoning –, and

investigate the consequences.21

Strzalecki (2009) likewise studies the behavior of players with a finite depth of reasoning.

He shows that types with a finite depth of reasoning can attack in equilibrium in the e-mail

game of Rubinstein (1989) if they exchange enough messages, which is ruled out in the case

that players have an infinite depth of reasoning. However, Strzalecki does not address the issue

of multiplicity and whether multiplicity can be robust. These questions cannot be addressed

in his framework, as it does not model players’ beliefs about the state of nature. Moreover,

the set of belief hierarchies constructed by Strzalecki does not include the belief hierarchies

with an infinite depth of reasoning. This means that it is not possible in his framework to

study outcomes under almost common belief in an infinite depth of reasoning.22

Finally, Kets (2010, 2013) presents an even richer model of the higher-order beliefs of

players with a potentially finite depth than the one used here. Similar results to the ones

presented here would hold in the framework of Kets, so that our results are robust to the

specification of higher-order beliefs. Since we do not need the additional richness of the

framework of Kets, we use the present, simpler, framework.

Appendix A The space T ε

Let ε > 0. We define a belief-closed subspace T ε of the universal space T ∗ that satisfies

the following properties:

(1) The belief of each type about S and X−i is consistent with the information structure.

That is, if type ti ∈ T εi has depth greater than 0 and has observed signal xi, it assigns

probability 1 to the event that the state of nature is uniform in [xi − ε, xi + ε] ∩ [−1, 2],

and that conditional on s ∈ [xi − ε, xi + ε] ∩ [−1, 2], the other player’s signal x−i is

distributed uniformly on [s− ε, s+ ε].

21Other potential sources of multiplicity in coordination games with incomplete information include endoge-

nous information about the state of nature, signaling, and learning; see, e.g., Angeletos and Werning (2006),

Angeletos et al. (2006, 2007), and Yang (2013). Unlike these models, we obtain multiplicity even if the game

is static, and there is no learning, signaling, or endogenous information.
22In the online appendix, we show that the universal type space T ∗ (strictly) contains the set of belief

hierarchies constructed by Strzalecki (2009). As we discuss there, the universal type space T ∗ constructed

here contains many more belief hierarchies than just those of finite depth and the belief hierarchies in the

universal type space of Mertens and Zamir (1985), so that the current framework is much richer than that of

Strzalecki.
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(2) The belief of each type about the other’s signal is independent of its belief about the

other’s depth of reasoning.

(3) Any belief-closed subspace that satisfies the above two properties is contained in T ε.

A.1 Preliminaries

To formally define this space, some more notation will be useful. We first define auxiliary

topologies on the spaces of belief hierarchies defined in Section 3 that distinguish belief hier-

archies only on the basis of their beliefs about players’ depth of reasoning. This will allow us

to formally express the independence condition (2) above.

Formally, for i = 1, 2, let τH̃0
i

be the trivial topology on H̃0
i , i.e., τH̃0

i
= {H̃0

i , ∅}; likewise,

let τH0
i

be the trivial topology on H0
i . Let τ∆(Ω̃0

i ) be the topology on ∆(Ω̃0
i ) generated by the

sets

{µi ∈ ∆(Ω̃0
i ) : µi(S ×G−i) > νi(S ×G−i)− δ} : νi ∈ ∆(Ω̃0

i ), G−i ∈ τH̃0
−i
, δ > 0;

and let the topology τ∆(Ω0
i ) on ∆(Ω0

i ) be defined analogously.23 Let τH̃1
i

and τH1
i

be the product

topologies on H̃1
i and H1

i , respectively, induced by these topologies.

For k ≥ 1, suppose that for all ` ≤ k, the topologies τH̃`
i

and τH`
i

on H̃`
i and H`

i have

been defined, and let τ
H̃≤k

i
and τ

H≤k
i

be the sum topologies on H̃≤ki and H≤ki , respectively. Let

τ∆(Ω̃k
i ) be the topology on ∆(Ω̃k

i ) generated by the sets

{µi ∈ ∆(Ω̃k
i ) : µi(S ×G−i) > νi(S ×G−i)− δ} : νi ∈ ∆(Ω̃k

i ), G−i ∈ τH̃≤k
−i
, δ > 0;

and let the topology τ∆(Ωk
i ) on ∆(Ωk

i ) be defined similarly.

Let τH̃k+1
i

be the relative topology on H̃k+1
i induced by the product topology induced by

(H̃k
i , τH̃k

i
) and (∆(Ω̃k

i ), τ∆(Ω̃k
i )); let the topology τHk+1

i
on Hk+1

i be defined similarly. Let τH∞i
be the relative topology on H∞i induced by the product topology generated by (H̃0

i , τH̃0
i
),

(∆(Ω̃0
i ), τ∆(Ω̃0

i )), (∆(Ω̃1
i ), τ∆(Ω̃1

i )), . . ., and let τHi
be the sum topology on Hi induced by τH0

i
,

τH1
i
, . . ., τH∞i ; denote the Borel σ-algebra generated by τHi

by BHi
. Note that every nonempty

open set in τHi
(or: Borel set) is of the product form. That is, if Ui ∈ τHi

is nonempty, then

there exist Gi ⊆ Hi such that Ui = Xi × {(µ0
i , . . .) : (xi, µ

0
i , . . .) ∈ Gi for some xi ∈ Xi}.

Finally, let τ∆(S×H−i) be the topology on ∆(S ×H−i) generated by the sets

{µi ∈ ∆(S ×H−i) : µi(S ×G−i) > νi(S ×G−i)− δ} G−i ∈ τH−i
.

23We emphasize that the spaces H̃0
i , H0

i , ∆(Ω̃0
i ), and ∆(Ω0

i ) are as defined in Section 3. In particular,

∆(Ω̃0
i ) and ∆(Ω0

i ) are the sets of probability measures on the measurable space (Ω̃0
i ,B(Ω̃0

i )) and (Ω0
i ,B(Ω0

i )),

respectively, where the Borel σ-algebras B(Ω̃0
i ) and B(Ω0

i ) are as defined in Section 3. An analogous remark

pertains to the higher-order spaces discussed below.
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Since the topologies defined here distinguish belief hierarchies only on the basis of their beliefs

about players’ depth of reasoning (and not about the state of nature or players’ signals), these

topologies are weaker than the corresponding ones considered in Section 3. This means, of

course, that the σ-algebra BHi
on Hi generated by the auxiliary topology τHi

is (strictly)

coarser than the usual Borel σ-algebra B(Hi) generated by the standard product topology τi

on Hi (cf. Section 3).

The following result will be helpful:

Lemma A.1. The belief map ψi from the topological space (Hi, τHi
) to the topological space

(∆(S ×H−i), τ∆(S×H−i)) is continuous.

Proof. Fix a belief hierarchy hi ∈ Hi and a net {hλi }λ∈Λ such that {hλi }λ∈Λ converges to

hi in τHi
. We want to show that {ψi(hλi )}λ∈Λ converges to ψi(hi) in τ∆(S×H−i). We give

the proof for the case that hi ∈ H∞i ; the proof for the case that hi ∈ Hk
i for k < ∞ is

similar. Since hλi → hi, there is λ′ ∈ Λ such that hλi ∈ H∞i for all λ ≥ λ′. For λ ≥ λ′,

write hλi = (µλ,0i , µλ,1i , µλ,2i , . . .); also, write (µ0
i , µ

1
i , µ

2
i , . . .) for hi. Then, we have that for

all k = 0, 1, . . ., the sequence {µλ,ki }λ converges to µki in τ∆(Ω̃k
i ). Since ψi is canonical, this

is equivalent to {margΩ̃k−1
i
ψi(h

λ
i )}λ converging to ψi(hi). The result now follows since the

cylinders are a convergence-determining class. �

As we have seen, a similar result holds for the standard topology (Corollary 3.3).

To emphasize, we use these auxiliary topologies purely as a tool to define the space T ε

(whose features we use in an intermediate step in the proof of Theorem 5.4). In particular,

we do not change the topology on the space Hi of belief hierarchies (which is the standard

topology τi defined in Section 324), unlike the literature on strategic topologies (e.g., Dekel

et al., 2006). Hence, all our results pertain to the standard (product) topology τi on Hi,

i = 1, 2.

In the next section, we will use the topologies defined here to formalize the condition that

players’ beliefs about the other’s depth of reasoning be independent of its belief about the

other’s signal.

A.2 Construction

Let ε > 0. To construct the space T ε, we need some more notation. For i = 1, 2 and

xi ∈ Xi, let Hi(xi; ε) be the set of types hi ∈ Hi with signal xi such that their belief about

the state of nature and the other player’s signal is as defined in (1) above. Let Hi(ε) :=

24To wit, the topologies in Section 3 are defined as outlined in Section 2, with product spaces being endowed

with the product topology, disjoint unions of spaces being endowed with the sum topology, and the space of

Borel probability measures being endowed with the weak convergence topology.
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⋃
xi∈Xi

({(xi, h∗,0i )} ∪ Hi(xi; ε)). Finally, for hi ∈ Hi, let χ∗i (hi) ∈ Xi be the signal associated

with the belief hierarchy (xi, µ
0
i , . . .) ∈ H−i

We construct T ε from a family of belief-closed subspaces of the universal space T ∗. Let

(H ′i)i=1,2 be a belief-closed subspace of T ∗ such that for each player i = 1, 2 and each type

hi ∈ H ′i \H0
i , there is xi ∈ Xi such that

(i) beliefs about the state of nature and the other’s signal are obtained from the signal xi,

that is, hi ∈ Hi(xi; ε);

and if the depth di(hi) of hi is at least 2, then

(ii) The support of the belief ψi(hi) of hi lies in S ×H−i(ε);

(iii) hi believes that the other player’s beliefs are obtained from a signal x−i if and only if

the other player’s signal is indeed x−i, that is, for each signal x−i ∈ X−i,

ψi(hi)(x−i, H−i(x−i; ε)) = ψi(hi)(x−i) = ψi(H−i(x−i; ε)).

(iv) beliefs about players’ depth of reasoning are independent of beliefs about signals, i.e.,

for Y−i ∈ B(X−i) and F−i ∈ BH−i
, we have that

ψi(hi)
(
F−i ∩ {h−i ∈ H−i : χ∗−i(h−i) ∈ Y−i}

)
=

ψi(hi)
(
F−i
)
ψi(hi)

(
{h−i ∈ H−i : χ∗−i(h−i) ∈ Y−i}

)
. (A.1)

For i = 1, 2, let T εi be the union of the sets H ′i that belong to such a belief-closed subspace

(H ′j)j=1,2. This defines the belief-closed subspace T ε. By the results in Appendix II, this

belief-closed subspace defines a type space for players with a finite or infinite depth.

Note that the signal of a type hi = (xi, µ
0
i , . . .) ∈ T εi ∩Hi(xi; ε) is χ∗i (hi) = xi. For xi ∈ Xi,

denote the set of types T εi ∩Hi(xi; ε) that have received signal xi by T εi (xi).

Hence, the beliefs of the types in T ε are consistent with the information structure, and,

in fact, the information structure is common belief. Moreover, the belief of each type in T εi
about the other player’s signal is independent of its belief about players’ depth of reasoning.

By construction, T ε is the maximal belief-closed subspace which satisfies these properties.25

25It follows from the results in the online appendix (Appendix II) that T ε is in fact a type space (for players

with a finite or infinite depth of reasoning), and that any type space that also satisfies these properties can be

mapped into T ε via a unique belief-preserving morphism.
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Appendix B Equivalent beliefs about players’ depth

It will be useful to define a collection Ci, i = 1, 2, of classes of belief hierarchies for player

i that are characterized by their beliefs about players’ depth of reasoning.26 For i = 1, 2, let

Ci be the partition of Hi that contains the set Xi × {h∗,0i } and the subsets{
hi ∈ Hi : di(hi) = di(h

′
i), ψi(hi)(E) = ψi(h

′
i)(E) for all E ∈ BH−i

}
: h′i ∈ Hi

of types that have the same depth of reasoning and the same beliefs about players’ depth of

reasoning. That is, every element Ci of Ci is an (equivalence) class of types with the same

depth of reasoning and the same beliefs about players’ depth of reasoning.

Let πi : Hi → Ci be the function that maps each hi ∈ Hi into the (unique) partition element

of Ci to which it belongs. Let τCi be the strongest topology on Ci that makes the function πi

continuous with respect to the topology τHi
on Hi, that is,

τCi :=
{
F ⊆ Ci : (πi)

−1(F ) ∈ τHi

}
.

Since the function πi is continuous with respect to τHi
(given the topology τCi on Ci), it is also

continuous with respect to the finer topology τi. We denote the Borel σ-algebra associated

with τCi by B(Ci).
We claim that the topological space (Ci, τCi) is homeomorphic to the universal space T d

(where d stands for “depth”) with nontrivial beliefs only about players’ depth of reasoning

(and trivial beliefs about the state of nature and about signals). That is, let Sd be some

arbitrary singleton {sd}, and for i = 1, 2, let Xd
i be an arbitrary singleton {xdi }. Then, we

can construct a universal type space on the set Sd of states of nature and signal spaces Xd
1

and Xd
2 as in the online appendix (Appendix II), giving a set Hd

i of belief hierarchies for each

player i = 1, 2, endowed with the usual topology τ di (defined analogously to the topology τi in

Section 3). Then, it is straightforward to show by induction that the space Ci, endowed with

the topology τCi , is homeomorphic to the topological space (Hd
i , τ

d
i ), for i = 1, 2. It follows

that Ci is a Polish space under the topology τCi .

Finally, it will be useful to define a probability measure associated with each equivalence

class. For i = 1, 2 and Ci ∈ Ci such that Ci 6= Xi × {h∗,0i }, let Ψi(Ci) be the probability

measure on B(Ci) defined by:

Ψi(Ci)(E) := ψi(hi)
(
{h−i ∈ H−i : π−i(h−i) ∈ E}

)
for E ∈ B(Ci) and some arbitrary hi ∈ Ci. Since π−i is measurable and since the types in Ci

have the same beliefs on BH−i
, this belief is well-defined. As C−i is Polish when it is endowed

with the topology τC−i
, the probability measure Ψi(Ci) is regular.

26While we construct the classes for the case of two players, the construction can easily be generalized to

the case of an arbitrary finite set of players.
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Appendix C Proofs

C.1 Proof of Theorem 5.2 (continued)

We show that generic games with rich payoffs are responsive. That is, the set of responsive

games is open and dense in the set of all two players, two actions games with rich payoffs (and

continuous payoff functions, for fixed S). Denote the set of games with rich payoffs by R ⊆ Γ,

and recall that R is endowed with the relative topology induced by the sup-norm topology on

Γ. We write Ri for the collection of utility functions ui for i such that (ui, u
′
−i) ∈ R for some

utility function u′−i for the other player. The set of responsive games is denoted by Y ⊆ R,

and Yi, i = 1, 2, is the set of utility functions ui ∈ Ri for i such that (ui, u
′
−i) ∈ Y for some

utility function u′−i ∈ R−i for the other player.

For i = 1, 2, we write Ai = {ai, bi} for the action set for player i. For sai , sbi ∈ S such that

sai 6= sbi , let Ri(s
ai , sbi) be the set of utility functions in Ri such that ai is strictly dominant

at sai and bi is strictly dominant at sbi ; such states exist by the rich payoffs assumption.

Fix i = 1, 2, ai ∈ Ai, sai , sbi ∈ S such that sai 6= sbi , distinct actions a−i, b−i ∈ A−i, and

pi ∈ [0, 1]. Define Yi(ai, a−i, b−i, sai , sbi , pi) ⊆ Ri(s
ai , sbi) to be the set of utility functions for

player i such that ai is strictly dominant at sai , bi is strictly dominant at sbi , and conditions

(5.1) and (5.2) hold for this combination of actions and the probability pi.

We claim that the collection Yi(ai, a−i, b−i, sai , sbi , pi) is open in Ri. It then follows that

the collection of responsive games is open, since this set is the finite product of unions of the

sets Yi(ai, a−i, b−i, sai , sbi , pi), ai ∈ Ai, a−i, b−i ∈ A−i, sai , sbi ∈ S, and pi ∈ [0, 1].

It suffices to show that for each ui ∈ Yi(ai, a−i, b−i, sai , sbi , pi), there is an open set in

Yi(ai, a−i, b−i, sai , sbi , pi) that contains ui. Fix ui ∈ Yi(ai, a−i, b−i, sai , sbi , pi). Then there

exists δ > 0 sufficiently small such that any u′i ∈ Ri with u′i(ci, d−i, s
ei) ∈ (ui(ci, d−i, s

ei) −
δ, ui(ci, d−i, s

ei) + δ), ci ∈ Ai, d−i ∈ A−i and sei = sai , sbi , satisfies conditions (5.1) and (5.2).

Consequently, Yi(ai, a−i, b−i, sai , sbi , pi) is open.

We next show that the set of responsive games is dense in R. Again, it suffices to consider

Ri, i = 1, 2. Let i = 1, 2 and ui ∈ Ri. Let V be an open neighborhood of ui. We want to show

that the intersection of V with the set Yi of “responsive” payoff functions for i is nonempty.

If ui ∈ Yi, then this is immediate; so suppose ui ∈ Ri \ Yi. Without loss of generality, assume

that ui ∈ Ri(s
ai , sbi). Since V is open, there is δ > 0 sufficiently small such that any u′i ∈ Ri

with u′i(ci, d−i, s
ei) ∈ (ui(ci, d−i, s

ei)−δ, ui(ci, d−i, sei)+δ), ci ∈ Ai, d−i ∈ A−i and sei = sai , sbi ,

belongs to V , and the intersection of the set of such utility functions u′i and Yi is nonempty.

�
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C.2 Proof of Theorem 5.4

Recall that the usual (product) topology on Hi, i = 1, 2, is denoted by τi (Section 3).

Also recall the definition of the auxiliary topology τHi
, i = 1, 2, from Appendix A. It is easy

to see that the topology τHi
is coarser than τi (as the former only takes into account beliefs

about depth of reasoning, and the latter considers all beliefs). Finally, recall the definition in

Appendix B of the partition Ci of Hi into equivalence classes of types with the same depth of

reasoning and the same (higher-order) beliefs about players’ depth of reasoning; recall that Ci
is endowed with the topology τCi .

To prove the result, we need to consider the behavior of types with a finite depth. As in

the proof of Theorem 5.2, it will be useful to introduce some extra notation. For i = 1, 2 and

α = 0, 1, . . ., let Mα
i := Hα

i be the set of types of depth α. To accommodate the sets Bn
i ,

n = 0, 1, . . ., we need to consider the infinite ordinals ω, ω + 1, . . ..27 Let Mω
i := B0

i , and for

n = 1, 2, . . ., let Mω+n
i := Bn

i . Thus, we consider the sequence of sets {Mα
i }α<ω+ω.

The next lemma shows that for each player i = 1, 2 and α < ω+ω, the set Mα
i is measurable

and that there is Cα
i ∈ Ci such that Cα

i ⊆Mα
i . This implies that the sets Mα

i are well-defined,

and that the statement in Theorem 5.4 is not void.

Lemma C.1. For every player i = 1, 2 and ordinal α < ω + ω, we have that Mα
i ∈ BHi

(and

thus Mα
i ∈ B(Hi)). Moreover, the set Mα

i is a (nonempty) union of elements of Ci.

Proof. For α = 0, M0
i is an element of Ci by definition; moreover, M0

i ∈ BHi
. For α > 0,

suppose that for all γ < α, we have that Mγ
i ∈ BHi

and that Mγ
i is a union of elements of C.

If α is finite, then it is immediate that Mα
i is a union of elements of Ci and that Mα

i ∈ BHi
.

So suppose α ≥ ω. Then there is G−i ∈ BH−i
such that

Mα
i =

{
hi ∈ H∞i : ψi(hi)(G−i) = 1

}
.

It is immediate that Mα
i is a union of elements of Ci. That Mα

i ∈ BHi
follows from the the

fact that H∞i ∈ BHi
and from Lemma A.1. Thus, we have Mα

i ∈ BHi
for all α < ω+ω; since

B(Hi) is finer that BHi
, it follows that Mα

i ∈ B(Hi) for all α < ω + ω. �

In fact, this result implies that we could have strengthened the statement of Theorem 5.4 to

apply to classes of beliefs that are merely consistent with nth-order mutual belief in infinite

depth (i.e., class Ci ∈ Ci is such that Ci ∩ Bn
i 6= ∅), as opposed to classes of beliefs that

satisfy nth-order mutual belief in infinite depth (i.e., Ci ⊆ Bn
i ): by Lemma C.1, the two are

equivalent.

27Recall that ω = {0, 1, . . .} is the first infinite ordinal, and that ω + n, n = 1, 2, . . ., is the successor of

ω + n− 1. The ordinal ω + ω is the first ordinal that is greater than 0, 1, . . . , ω, ω + 1, ω + 2, . . ..
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Recall that for every ε > 0, player i = 1, 2, and signal xi ∈ Xi, T
ε
i (xi) is the set of types in

T εi that have received signal xi. We have the following observation:

Lemma C.2. For every ε > 0, player i = 1, 2, signal xi ∈ Xi, and class Ci ∈ Ci, there is

hi ∈ Ci such that hi ∈ T εi (xi).

In words, for every signal, and every “kind” of belief about players’ depth of reasoning, as

given by an equivalence class in Ci, there is a type in T ε with that signal and this “kind” of

beliefs about players’ depth of reasoning. The proof of Lemma C.2 follows directly from the

definitions. We will use this result without mention.

The proof of Theorem 5.4 relies on the following lemma.

Lemma C.3. For every player i = 1, 2, ordinal 1 ≤ α < ω + ω, yi ∈ (0, 1
2
), Cα

i ∈ Ci such that

Cα
i ⊆Mα

i , there is εα(yi, C
α
i ) > 0 and an open neighborhood Oα

i (yi, C
α
i ) of Cα

i in Ci such that

for every ε ≤ εα(yi, C
α
i ), both actions are strictly rationalizable for every type hi ∈ T εi (xi)

with xi ∈ [yi,
1
2
] and πi(hi) ∈ Oα

i (yi, C
α
i ).

Proof. Recall that for each player i = 1, 2, both actions are rationalizable for the types in

M0
i = Xi × {h∗,0i }.
Let α = 1, i = 1, 2, yi ∈ (0, 1

2
), and C1

i ∈ Ci such that C1
i ⊆M1

i . Then, Ψi(C
1
i )({M0

−i}) = 1.

Define

O1
i (yi, C

1
i ) := {Ci ∈ Ci : Ψi(Ci)({M0

−i}) > Ψi(Ci)({M0
−i})− yi}.

Clearly, C1
i ∈ O1

i (yi, C
1
i ), so that O1

i (yi, C
1
i ) is nonempty. Using that Ci is homeomorphic to

the set of belief hierarchies Hd
i (endowed with the usual topology) when there is uncertainty

only about players’ depth of reasoning (Appendix B), we obtain that the set O1
i (yi, C

1
i ) is open

in τCi (Billingsley, 1968, App. III).

Let ε > 0 and xi ∈ [yi,
1
2
]. Let hi ∈ T εi (xi) be such that πi(hi) ∈ O1

i (yi, C
1
i ). Then,

ψi(hi)(M
0
−i) > 1− yi,

and under the conjecture that all types in M0
−i invest (regardless of the state of nature), the

expected payoff of investing to hi is strictly greater than (1 − yi)xi + yi(xi − 1) ≥ 0. Under

the conjecture that the types in M0
−i do not invest, the expected payoff of investing to hi is

strictly less than yixi + (1 − yi)(xi − 1) = xi + yi − 1 < 0. Hence, both actions are strictly

rationalizable for hi.

For α > 1, suppose the claim is true for all γ < α. We prove the result for the case that α

is finite or α = ω; the proof for the case that α = ω + n, n = 1, 2, . . ., is similar and therefore

omitted.
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Let i = 1, 2, yi ∈ (0, 1
2
), and Cα

i ∈ Ci such that Cα
i ⊆ Mα

i . Let Ψi(C
α
i ) be the probability

measure defined on BH−i
defined as in Appendix B. Since Ψi(C

α
i ) is regular, there is a subset

K<α
−i (yi) ⊆ {C−i ∈ C−i : C−i ⊆Mγ

−i for some γ < α}

that is compact (in τC−i
) and is such that

Ψi(C
α
i )(K<α

−i (yi)) > 1− yi
3
.

By the induction hypothesis, for each Cγ
−i ∈ K<α

−i (yi), there is εγ(yi
2
, Cγ
−i) > 0 and an open

neighborhood Oγ
−i(

yi
2
, Cγ
−i) of Cγ

−i in C−i such that for all ε ≤ εγ(yi
2
, Cγ
−i), both actions are

(strictly) rationalizable for the types in h−i ∈ T ε−i(x−i) with x−i ∈ [yi
2
, 1

2
] and π−i(h−i) ∈

Oγ
−i(

yi
2
, Cγ
−i).

Since K<α
−i (yi) is compact, there are finitely many Cγ1

−i, . . . , C
γm
−i ∈ K<α

−i (yi) such that

K<α
−i (yi) ⊆

m⋃
`=1

Oγ`
−i(

yi
2
, Cγ`
−i) := V <α

−i (yi).

Note that V <α
−i (yi) is open in τC−i

(and thus belongs to B(C−i)). Let

ε̃α(yi, C
α
i ) := min{εγ1(yi

2
, Cγ1
−i), . . . , ε

γ1(yi
2
, Cγm
−i )},

so ε̃α(yi, C
α
i ) > 0. Also, let

Oα
i (yi, C

α
i ) := {Ci ∈ Ci : Ψi(Ci)(V

<α
−i (yi)) > Ψi(C

α
i )(V <α

−i (yi))− yi
3
}.

It is immediate that Cα
i ∈ Oα

i (yi, C
α
i ), so the set is nonempty. Again, the set Oα

i (yi, C
α
i ) is

open in τCi .

Define

Q<α
−i (yi) :=

{
h−i ∈ H−i : χ∗i (h−i) ∈ [yi

2
, 1

2
], π−i ∈ V <α

−i (yi)
}

to be the set of types in class V <α
−i (yi) that have received a signal in [yi

2
, 1

2
]; note that Q<α

−i (yi)

is nonempty and that Q<α
−i (yi) ∈ B(H−i). Then, for ε > 0 and hi ∈ T εi (xi) with xi ∈ [yi,

1
2
]

and πi(hi) ∈ Oα
i (yi, C

α
i ), we have that

ψi(hi)
(
Q<α
−i (yi)

)
= ψi(hi)

(
{h−i ∈ H−i : χ∗−i(h−i) ∈ [yi

2
, 1

2
]}
)
ψi(hi)

(
(π−i)

−1(V <α
−i (yi))

)
> ψi(hi)

(
{h−i ∈ H−i : χ∗−i(h−i) ∈ [yi

2
, 1

2
]}
) (

1− yi
3
− yi

3

)
,

where the equality uses that beliefs about players’ depth of reasoning are independent of

beliefs about signals (condition (A.1) above). The inequality uses the definition of V α
−i(yi). By

choosing ε small enough, the probability that the signal x−i of a type h−i = (x−i, µ
0
i , . . .) ∈ T ε−i
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is in the interval [yi
2
, 1

2
] is arbitrarily close to 1. Consequently, there is positive εα(yi, C

α
i ) ≤

ε̃α(yi, C
α
i ) such that for all ε ≤ ε̃α(yi, C

α
i )

ψi(hi)
(
Q<α
−i (yi)

)
> 1− yi.

Let ε ≤ εα(yi, C
α
i ), and let hi ∈ T εi (xi) be such that xi ∈ [yi,

1
2
] and πi(hi) ∈ Oα

i (yi, C
α
i ).

Then, under the conjecture that all types in Q<α
−i (yi; ε) invest (for any state of nature), the

expected payoff of investing to hi is strictly greater than (1 − yi)xi + yi(xi − 1) ≥ 0. Under

the conjecture that the types in Q<α
−i (yi; ε) do not invest, the expected payoff of investing to

(xi, hi) is strictly less than yixi + (1− yi)(xi − 1) = xi + yi − 1 < 0. Hence, both actions are

strictly rationalizable for hi. �

By a symmetric argument, we can prove the “mirror image” of Lemma C.3: For every player

i = 1, 2, ordinal 1 ≤ α < ω+ω, yi ∈ (1
2
, 1), Cα

i ∈ Ci such that Cα
i ⊆Mα

i , there is εα(yi, C
α
i ) > 0

and an open neighborhood Oα
i (yi, C

α
i ) of Cα

i in Ci such that for every ε ≤ εα(yi, C
α
i ), both

actions are strictly rationalizable for every type hi ∈ T εi (xi) with xi ∈ [1
2
, yi] and πi(hi) ∈

Oα
i (yi, K

<α
−i (yi)

α
i ).

We are now ready to prove Theorem 5.4. If α = 0, then Mα
i = Xi × {h∗,0i } = H0

i for

i = 1, 2; moreover, if C0
i ⊆ M0

i , then C0
i = M0

i . Since both actions are rationalizable for the

types in H0
i , we have that for any player i = 1, 2, signal xi ∈ (0, 1), ε > 0, and every type

hi ∈ T εi (xi) with beliefs in class C0
i , both actions are rationalizable for hi, and the same is true

for the types in the set

O0
i (hi) := H0

i .

Clearly, O0
i (xi, hi) is an open neighborhood of hi (in τi), and the result follows for α = 0.

So suppose 0 < α < ω + ω. Fix a player i = 1, 2, a signal xi ∈ (0, 1), and a class Cα
i ∈ Ci

such that Cα
i ⊆ Mα

i . First suppose xi ≤ 1
2
. By Lemma C.3, there is εα(xi, C

α
i ) > 0 and an

open neighborhood Oα
i (xi, C

α
i ) of Cα

i in Ci such that for every ε ≤ εα(xi, C
α
i ), both actions are

strictly rationalizable for every type hi ∈ T εi (xi) with πi(hi) ∈ Oα
i (xi, C

α
i ).

Let ε ≤ εα(xi, C
α
i ) be positive and let hi ∈ T εi (xi) such that πi(hi) ∈ Cα

i . Since both actions

are strictly rationalizable for hi, there is δ > 0 such that both actions are rationalizable for

the types in

Oα
i (hi) :=

{
h′i ∈ Hi :

∫
S

sdψi(h
′
i) ∈ (xi − δ, xi + δ), πi(h

′
i) ∈ Oα

i (xi, C
α
i )
}
.

Clearly, this set contains hi, and it is open in τi (Kechris, 1995, e.g.,). For xi >
1
2
, the result

follows from a symmetric argument. �
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Online Appendix to “Robust Multiplicity with a Grain of

Naivité”

Aviad Heifetz Willemien Kets

December 11, 2013

This appendix contains some results not included in Heifetz and Kets (2013).1 Unless

stated otherwise, all references to sections, results, etcetera, are to Heifetz and Kets (2013),

which also contains the references to cited papers.

The outline is as follows. Appendix I defines the type spaces that provide an implicit

description of the belief hierarchies of players with a finite or infinite depth of reasoning.

Appendix II constructs the so-called universal type space T ∗ for players with a finite and

infinite depth, and shows that the universal type space T MZ for the class of Harsanyi type

spaces, constructed by Mertens and Zamir (1985) and others forms a belief-closed subspace

of this space, and is characterized by the event that players have an infinite depth and that

that is commonly believed. Finally, we show how our construction relates to the set of belief

hierarchies with finite depth constructed by Strzalecki (2009). The proofs are relegated to

Appendix III for clarity of exposition.

Appendix I Type spaces

Section 3 provides a explicit description of players’ hierarchies of beliefs when they can

have a finite or infinite depth of reasoning. Belief hierarchies can also be described implicitly,

using the concept of a type space (cf. Harsanyi, 1967–1968). Here we define type spaces that

allow for finite-order reasoning. Formally:

1Heifetz and Kets (2013), Robust Multiplicity with a Grain of Naivité, Working paper, Northwestern Uni-

versity.
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Definition 1. A type space (that allows for finite-order reasoning) is a tuple

T :=
〈(
Ti
)
i∈N ,

(
βki
)
i∈N,k∈ITi

, (χi)i∈N

〉
,

where for each player i, Ti = T∞i ∪
⋃∞
`=0 T

`
i is the set of types for player i, assumed to be

nonempty and Polish, χi is a measurable function that maps each type ti ∈ Ti into a signal

χi(ti) ∈ Xi, and ITi is the set of indices k ∈ {0, 1, . . .} ∪ {∞} such that T ki is nonempty.

Moreover,

(a) if T 0
i is nonempty, then the function β0

i maps T 0
i into the singleton {h∗,0i }, i.e., β0

i (ti) =

h∗,0i for all ti ∈ T 0
i ;

(b) if T ki is nonempty, where k = 1, 2, . . ., the function βki is measurable and maps T ki into

∆(S × T≤k−1
−i ) where T≤kj :=

⋃k
`=0 T

`
j and T≤k−i :=

∏
j 6=i T

≤k
j ;

(c) if T∞i is nonempty, the function β∞i is measurable and maps T∞i into ∆(S × T−i);

(d) if there is ti ∈ T ki for some i ∈ N and finite k > 0, then for all j 6= i, there is kj < k

such that T
kj
j is nonempty.

Thus, each type in T 0
i is associated with the “naive” type. Types in T ki for finite index k

are mapped into a belief over nature and the types with an index of at most k−1, while types

in T∞i have a belief about nature and types with any index k. Condition (d) requires that if

there is some type that has a finite index, then there is a type for each of the other players

that has a lower index. Without such a requirement, a type’s belief may not be well-defined,

given that the beliefs of types with a finite index are concentrated on types with lower indices.

It will be useful to introduce the following notation: for ti ∈ T ki (k = 0, 1, . . . ,∞), let

βi (ti) := βki (ti) .

Finally, a type’s signal χi(ti) ∈ Xi describes its private information. In many applications,

there is a one-to-one correspondence between types and signals, and it is common to omit the

signal function from the definition of a type space in that case. We choose the more general

formulation common in the robustness literature where types with the same signal can have

different higher-order beliefs, or, conversely, a given higher-order belief can be the result of

different signals (e.g., Bergemann and Morris, 2005).

We can compare Definition 1 with the definition of a Harsanyi type space:

Definition 2. A Harsanyi type space is a tuple

T H := 〈(THi )i∈N , (β
H
i )i∈N , (χ

H
i )i∈N〉,
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where for each player i, THi is the type set of i, assumed to be nonempty and Polish, χHi is

the signal function that maps each type tHi ∈ THi into a signal χHi (tHi ) ∈ Xi, and βHi is a

measurable function that maps the types in THi into the set of Borel probability measures

∆(S × TH−i) on the set of states of nature and other players’ types (and thus signals).

It is easy to see that the Harsanyi type spaces can be viewed a special case of the type

spaces defined in Definition 1, viz., a type space in which each type has index k =∞.

We next show that there is a type space that is universal in the sense that it contains all

type spaces. We also show that each type generates a well-defined belief hierarchy, and relate

the index of a type to the depth of reasoning of the belief hierarchy it induces.

Appendix II The universal space

Here we construct a particular type space, built from the belief hierarchies constructed in

Section 3.1. We show that it generates all possible belief hierarchies. This type space is used

in the robustness analysis in Section 5, as it allows us to consider a wide range of perturbations

of beliefs.

II.1 Construction

Following Mertens and Zamir (1985), we take the set of types for each player i ∈ N to be

the set Hi of belief hierarchies. The belief associated with each type hi ∈ Hi is then given by

the probability measure µi(hi) identified in Lemma 3.2. Using Lemma 3.2, we can construct

a function that assigns to each belief hierarchy hi its signal (by projecting hi onto Xi) and a

belief about nature and other players’ hierarchies (as given by Lemma 3.2). The inverse of

this function assigns to each signal-belief pair (xi, µi) ∈ Xi×∆(S×H−i) the associated belief

hierarchy (possibly finite). Proposition II.1 shows that these functions are continuous, so that

we have a homeomorphism for each depth k.

Proposition II.1. There is a homeomorphism ψ̃∞i : H∞i → Xi ×∆(S ×H−i). Moreover, for

each k = 1, 2, . . ., there is a homeomorphism ψ̃ki : Hk
i → Xi ×∆

(
S ×H≤k−1

−i
)
.

We write ψki (hi), k = 1, 2, . . ., hi ∈ Hk
i , for the projection of ψ̃ki into ∆(S×H≤k−1

−i ); likewise,

ψ∞i (hi), hi ∈ H∞i , is the projection of ψ̃∞i (hi) into ∆(S × H−i). Define ψ0
i : H0

i → {h
∗,0
i } in

the obvious way, and view ψki (hi), hi ∈ Hk
i , k <∞, as a probability measure on ∆(S ×H−i).

Finally, let ψi : Hi → ∆(S ×H−i) be the function that coincides with ψki on Hk
i . This gives

us Corollary 3.3.
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This result allows us to define the type space that generates all belief hierarchies. For each

player i ∈ N , let T ∗i := Hi, and for every hi = (xi, µ
0
i , . . .) ∈ T ∗i , define β∗,ki (hi) := ψi(hi) if

hi has depth k; this mapping is measurable by Proposition II.1. Also, let χ∗i (hi) := xi. Then,

T ∗ := 〈(T ∗i )i∈N , (β
∗,k
i )i∈N,k=0,1,...,∞, (χ

∗
i )i∈N〉 is a type space.

We next show that the type space T ∗ is universal, in the sense that any type from any

type space can be mapped into this type space in a way that preserves beliefs (cf. Mertens and

Zamir, 1985). This means that T ∗ generates all belief hierarchies, of finite or infinite depth.

We start by defining the belief-preserving mappings.

II.2 Belief-preserving mappings

Let T := 〈(Ti)i∈N , (βki )i∈N,k∈ITi , (χ
T
i )i∈N〉 and Q := 〈(Qi)i∈N , (λ

k
i )i∈N,k∈IQi

, (χQi )i∈N〉 be type

spaces such that IQi ⊇ ITi for each player i ∈ N , where we recall that ITi and IQi are the set of

indices k such that the set of types for i of depth k in T and Q are nonempty, respectively. We

define maps, called type morphisms, from players’ type sets in the space T to the corresponding

type sets in Q, in such a way that higher-order beliefs are preserved.

To define the concept of a type morphism, some preliminary notation will be useful. For

each player i ∈ N and k ∈ ITi , let ϕki be a measurable function from T ki to Qk
i . Define

ϕi := (ϕki )k∈ITi , and let ϕ := (ϕi)i∈N . Also, for i ∈ N and k < ∞, if T ki is nonempty, then

define

ϕ<k−i : T≤k−1
−i → Q≤k−1

−i

by

ϕ<k−i
(
(t
mj

j )j 6=i
)

:=
(
ϕ
mj

j (t
mj

j )
)
j 6=i

where t
mj

j ∈ T
mj

j , j 6= i, mj < k. Note that by condition (d) in the definition of a type space

and the assumption that IQj ⊇ ITj for all j ∈ N , the function ϕ<k−i is well-defined. Let IdS be

the identity function on S.

The function ϕ is a type morphism from T to Q if for each player i ∈ N ,

(i) for each k = 1, 2, . . ., type ti ∈ T ki , and E ∈ B(S)⊗ (Q≤k−1
−i ),

λki
(
ϕki (ti)

)
(E) = βki (ti)

(
(IdS, ϕ

<k
−i )
−1(E)

)
; (II.1)

(ii) for ti ∈ T∞i , E ∈ B(S)⊗B(Q−i),

λ∞i (ϕ∞i (ti)) (E) = β∞i (ti)
(
(IdS, ϕ

∞
−i)
−1(E)

)
; (II.2)

(iii) for ti ∈ T ki , k = 1, 2, . . . ,∞, we have χQi (ϕki (ti)) = χTi (ti).
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The mapping ϕ is a type isomorphism if ITi ⊇ IQi , the inverse of ϕi is measurable for each

i ∈ N , and the inverse satisfies (i)–(ii).

Conditions (i)–(iii) are the analogues of the standard condition that a type morphism

preserves beliefs, but take into account that a type may have finite depth. In particular, if a

type space only consists of types of infinite depth, the current definition of a type morphism

reduces to the standard one. Lemma III.5 below shows that type morphisms preserve belief

hierarchies, just like standard type morphisms (Heifetz and Samet, 1998, Prop. 5.1).

Using the concept of a type morphism, we next show that modeling belief hierarchies by

types is without loss of generality in the sense that every (coherent) belief hierarchy can be

modeled in this way.

II.3 Universality

A type space Q is universal if for any type space T , there is a unique type morphism from

T to Q (Mertens and Zamir, 1985). The next result shows that the type space T ∗ is universal.

Proposition II.2. The type space T ∗ is universal, and the universal space is unique (up to

type isomorphism).

Proposition II.2 implies that there is a type space that generates all (coherent) belief

hierarchies. Thus, the type space T ∗ contains all the type spaces that allow for finite-order

reasoning.

The proof maps each type ti ∈ T ki with index k in a type space T into a belief hierarchy in

Hk
i of depth k, using a so-called hierarchy map hT,ki . This means that every type with index

k generates a belief hierarchy of depth k = 0, 1, . . . ,∞. With some abuse of terminology, we

say that a type has depth (of reasoning) k if it generates a belief hierarchy of depth k.

II.4 Belief-closed subspaces

We next show that each (nonredundant) type space forms a belief-closed subspace of the

universal space T ∗, and vice versa, as is the case for Harsanyi type spaces (Mertens and Zamir,

1985). Recall that (H ′i)i∈N with H ′i ⊆ Hi for i ∈ N is a belief-closed subset of T ∗ if for all

i ∈ N and hi ∈ H ′i \H0
i ,

supp ψi(hi) ⊆ S ×H ′−i,

where supp µ is the support of a probability measure µ. A type structure T is nonredundant if

any two types for a player differ in their signal and/or the belief hierarchy that they generate.

Formally, T is nonredundant if for all i ∈ N and k such that T ki is nonempty, the hierarchy

map hT,ki : T ki → Hk
i (defined in the proof of Proposition II.2 below) is injective.
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Proposition II.3. Suppose T is a type space, and suppose ϕ is a type morphism from T to

the universal type space T ∗. If T is nonredundant, then, for all i ∈ N and ti ∈ Ti \ T 0
i ,

ψi
(
ϕ
κ(ti)
i (ti)

)(
S ×

∏
j 6=i

{
hj ∈ Hj : hj = ϕ

κ(tj)
j (tj) for some tj ∈ Tj

})
= 1,

where κ(tj) = k for j ∈ N and tj ∈ T kj . Conversely, if H ′i ⊆ Hi, i ∈ N , is such that

suppψi(hi) ⊆ S ×H ′−i

for all i ∈ N and hi ∈ H ′i \H0
i , then there is a type space T and a type morphism ϕ from T

to T ∗ such that for all players i,

H ′i = {hi ∈ Hi : hi = ϕ
κ(ti)
i (ti) for some ti ∈ Ti}.

Thus, the type space T ∗ is universal and contains all nonredundant type spaces as belief-

closed subsets. We next turn to the question of how the universal space T ∗ relates to the

universal space constructed for the standard case by Mertens and Zamir (1985) and others.

II.5 Common belief in infinite depth of reasoning

We show that the universal Harsanyi space, constructed by Mertens and Zamir (1985) and

others, is a belief-closed subset of the universal space T ∗, and is characterized by the event

that players have an infinite depth of reasoning, and commonly believe that all players have

an infinite depth of reasoning.

The universal type space for the class of Harsanyi type spaces (Definition 2) can be con-

structed in a similar way as the universal type space T ∗ for type spaces that allow for finite-

order reasoning. Let Ẑ0
i := Xi × {ẑ0

i }, where ẑ0
i is an arbitrary singleton, and define

Ω̂0
i := S × Ẑ0

−i,

and

Ẑ1
i := Ẑ0

i ×∆(Ω̂0
i ).

For k = 1, 2, . . ., assume, inductively, that we have already defined Ẑ`
j for each player j ∈ N

and all ` ≤ k. Define

Ω̂k
i := S × Ẑk

−i,

and let

Ẑk+1
i :=

{
(xi, µ

0
i , . . . , µ

k
i , µ

k+1
i ) ∈ Ẑk

i ×∆(Ω̂k
i ) : margΩ̂k−1

i
µk+1
i = µki

}
.

The space Ẑi for player i is the set of all (xi, µ
0
i , µ

1
i , . . .) such that (xi, µ

0
i , µ

1
i . . . , µ

k
i ) ∈ Ẑk

i

for all k. By standard arguments, the analogue of Lemma 3.1 holds. Moreover, there is a
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Borel measurable function ζ̂i that assigns to each belief hierarchy zi ∈ Ẑi a Borel probability

measure ζ̂i(zi) ∈ ∆(S×Ẑ−i) (cf. Heifetz, 1993). If we define χ̂MZ
i : Ẑi → Xi to be the projection

function, we can view T̂ MZ := 〈(Ẑi)i∈N , (ζ̂i)i∈N , (χ̂MZ
i )i∈N〉 as a Harsanyi type space. As is

well-known, the Harsanyi type space T̂ MZ is universal with respect to the class of Harsanyi

type spaces, in the sense that every Harsanyi type space can be embedded into T̂ MZ via a

unique type morphism for Harsanyi type spaces.

The Harsanyi type space T̂ MZ corresponds to a type space T MZ = 〈(Zi)i∈N , (ζ∞i )i∈N , (χ
∞
i )i∈N〉

in our sense if we take the type set for player i ∈ N to be Zi = Z∞i ∪
⋃∞
k=0 Z

k
i , where Z∞i := Ẑi

and Zk
i = ∅ for k < ∞, and the belief map given by ζ∞i := ζ̂i. Also, let χ∞i (zi) := χ̂MZ

i (zi)

for i ∈ N and zi ∈ Zi. It then follows from Proposition II.2 that T MZ can be embedded

in the universal type space T ∗ via a unique type morphism. The converse clearly does not

hold, as T ∗ contains types that have a finite depth of reasoning, types that assign a positive

probability to types with a finite depth of reasoning, types that assign a positive probability

to types that assign a positive probability to types with a finite depth of reasoning, and so

on. Moreover, because the space T MZ is nonredundant by construction, the type space T MZ

corresponds to a belief-closed subspace of the universal type space T ∗ (by Proposition II.3).

We now characterize this subspace of T ∗ in terms of players’ higher-order beliefs. More

specifically, we show that the subspace of T ∗ corresponding to T MZ is characterized by the

event that there is correct common belief in the event that players have an infinite depth of

reasoning, that is, all players have an infinite depth of reasoning, believe that others have an

infinite depth of reasoning, believe that others believe that, and so on.

To state the result, we define the event that a player believes an event that concerns other

players’ signals and beliefs.2 An assumption Ei about player i is a measurable subset of Hi.

A joint assumption is a set of the form E =
∏

i∈N Ei, where Ei is an assumption about player

i.

Let i ∈ N and let E =
∏

j∈N Ej be a joint assumption; write E−i for
∏

j 6=iEj. Then,

define3

Bi(E) :=
{
hi ∈ Hi \H0

i : ψi(hi)(S × E−i) = 1
}
.

Thus, Bi(E) consists of the types that believe E−i (with probability 1). Let B(E) :=∏
i∈N Bi(E). The following result is immediate:

2We thus do not consider players’ beliefs about the state of nature directly, and we implicitly assume that

players know their own signal. We could consider the more general case, but the current definition is simpler,

and suffices for our purposes.
3We define the belief operator for the universal space T ∗, but the definition can clearly be extended to

arbitrary type spaces.
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Lemma II.4. For each player i ∈ N and joint assumption E, we have that Bi(E) ∈ B(Hi).

So, Bi(E) is an assumption about player i.

Then, we say that the joint assumption E is (correct) common belief at (hi)i∈N ∈
∏

i∈N Hi

if

(hi)i∈N ∈ CB(E) := E ∩
∞⋂
`=0

[
B
]`

(E),

where [B]1(E) := B(E), and [B]`(E) :=
∏

i∈N Bi([B]`−1(E)) for ` > 1. It follows from

Lemma II.4 that B(E) and CB(E) are measurable for any joint assumption E. Finally, let

E∞i := H∞i be the assumption that player i has an infinite depth of reasoning, so that E∞ is

the joint assumption that players have an infinite depth of reasoning. We can now formally

state Proposition 3.4:

Proposition 3.4. Let ϕ be the unique type morphism from T MZ to the universal type space

T ∗. Then, ∏
i∈N

ϕ∞i (Zi) = CB(E∞).

II.6 Finite-depth type spaces

Finally, we show that the universal type space of Strzalecki (2009, App. A) for finite-depth

types can be embedded into T ∗. Strzalecki considers only uncertainty about players’ depth

of reasoning, not about payoffs or other aspects of the game. We thus have to consider the

universal type space T ∗ for the case where the set of states of nature and signal profiles is a

singleton. We show that the universal type space of Strzalecki is in fact a strict subspace of

this space. For notational simplicity, we present the result for the case of two players, but the

result holds for any finite number of players.

Formally, the universal type space of Strzalecki is defined as follows. For each player i,

define Y 0
i := {0}, and for k > 0, let

Y k
i := {k} ×∆

(⋃k−1

m=0
Y m
−i

)
.

The interpretation is that Y k
i is the set of belief hierarchies for player i of depth k. A belief

hierarchy of depth k has a belief about the depth of reasoning of the other players, and assigns

probability 1 to the event that the other players have a depth strictly lower than k. Since

these belief hierarchies are formally different objects from the ones defined in Section 3, we

will refer to them as Strzalecki-hierarchies. The set of all Strzalecki-hierarchies for player i is

then Yi :=
⋃∞
k=0 Y

k
i .
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We show that each Strzalecki-hierarchy corresponds to a belief hierarchy (in our sense) of

the universal space T ∗ when we take the set of states of nature and the signal space for each

player to be a singleton, i.e., S := {s} and Xi = {xi}, i ∈ N , where s and xi are arbitrary

singletons. Recall that for each k = 0, 1, . . . and i ∈ N , Hk
i is the set of belief hierarchies for

player i that stop reasoning at order k, i.e., the belief hierarchies in Hk
i have depth k. We

claim that for each k = 0, 1, . . ., there is a homeomorphism between the set Y k
i of Strzalecki-

hierarchies of depth k and the set Hk
i of belief hierarchies of depth k. For i ∈ N , let ξ0

i be

the trivial mapping from Y 0
i to H0

i ; clearly, ξ0
i is a homeomorphism. For k > 0, assume,

inductively that for each player i ∈ N , there is a homeomorphism ξk−1
i from Y k−1

i to Hk−1
i .

Then, for i ∈ N , let ξki be the function that maps the Strzalecki-hierarchy (k, νki ) ∈ Y k
i into

the belief hierarchy (xi, µ
0
i , µ

1
i , . . . , µ

k
i ) ∈ Hk

i , where µki is such that for each measurable subset

E ⊆ H≤k−1
−i ,

µki (s, E) := νki

(⋃k−1

m=0
{(m, νm−i) ∈ Y m

−i : ξm−i(m, ν
m
−i) ∈ E}

)
;

and for ` < k, µ`i := margΩ̃`−1
i
µki . (Recall that by the coherency condition discussed in

Section 3, µki uniquely determines the lower-order beliefs µ`i .) It is easy to check that ξki
is a homeomorphism. Thus, we have a homeomorphism between the Strzalecki-hierarchies

Yi :=
⋃∞
k=0 Y

k
i and the finite-depth hierarchies H<∞

i :=
⋃∞
k=0 H

k
i in T ∗. Clearly, the set of

finite-depth hierarchies is a proper subset of the set Hi of all belief hierarchies. The latter set

includes not only the belief hierarchies of Mertens and Zamir (1985) (which satisfy common

belief in the event that every player has an infinite depth, by Proposition 3.4), but also belief

hierarchies of infinite depth that assign positive probability to types of the other player of every

possible depth k = 0, 1, . . . ,∞), or assign positive probability to the other player having such

beliefs, and so on. Indeed, such belief hierarchies cannot be constructed using the approach

of Strzalecki. What is crucial in our construction is that each order k < ∞, the set of belief

hierarchies for a player i contains both the belief hierarchies that end at that order (viz., Hk
i )

as well as the belief hierarchies that continue to “grow” (viz., H̃k
i ).

Appendix III Proofs

III.1 Proof of Lemma 3.1

The proof follows from a number of lemmas:

Lemma III.1. For i ∈ N and k ∈ N, Ω̃k
i , Ωk

i , H̃
k
i and Hk

i are Polish.

Proof. The proof is by induction. Clearly, H̃0
i and H0

i are Polish for each i ∈ N , so that

Ω̃0
i , Ω0

i and H̃1
i and H1

i are also Polish. Suppose Ω̃`
i , Ω`

i , H̃
`+1
i and H`+1

i are Polish spaces
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for each i ∈ N and ` ≤ k − 1. It follows immediately that Ω̃k
i and Ωk

i are Polish, so that it

remains to show that H̃k+1
i and Hk+1

i are Polish spaces. First note that ∆(Ω̃k
i ) and ∆(Ωk

i ) are

Polish. We thus need to establish that H̃k+1
i and Hk+1

i are a closed subset of H̃k
i ×∆(Ω̃k

i ) and

H̃k
i × ∆(Ωk

i ), respectively. We prove the claim for H̃k+1
i ; the proof for Hk+1

i is similar. Let

hi = (xi, µ
0
i , . . . , µ

k+1
i ) ∈ H̃k

i ×∆(Ω̃k
i ) and suppose there is a sequence (hni )n∈N in H̃k+1

i , where

hni = (xni , µ
0,n
i , µ2,n

i , . . . , µk+1,n
i ), such that hni → hi. It is sufficient to show that hi ∈ H̃k

i . If we

show that

margΩ̃k−1
i
µk+1,n
i → margΩ̃k−1

i
µk+1
i , (III.1)

and

µk,ni → µki , (III.2)

the proof is complete: Because hni ∈ H̃k+1
i for all n, it follows that

margΩ̃k−1
i
µk+1
i = µki ,

so that hi ∈ H̃k+1
i . But using that H̃k

i ×∆(Ω̃k
i ) is endowed with the product topology, (III.1)

and (III.2) follow immediately from the assumption that hni → hi. �

Lemma III.2. (Heifetz, 1993, Thm. 6) For any (xi, µ
0
i , . . . , µ

k
i ) ∈ H̃k

i , there exists µk+1
i ∈

∆(Ω̃k
i ) such that (xi, µ

0
i , . . . , µ

k
i , µ

k+1
i ) ∈ H̃k+1

i .

The proof is similar to the proof of Theorem 6 of Heifetz (1993) and thus omitted.

We are now ready to prove Lemma 3.1. By Lemma III.2, H̃k
i is nonempty. Also, the

projection function from H̃k
i into H̃k−1

i is surjective. It follows that the inverse limit space

H∞i is nonempty (e.g., Hocking and Young, 1988, Lemma 2.84). Since H∞i is a closed subset

of the Polish space H̃0
i ×

∏∞
k=0 ∆(Ωk

i ), it is Polish. �

III.2 Proof of Lemma 3.2

We first prove the first claim. By Lemma 3.1, the space S×H∞−i is a nonempty Polish space

for every player i ∈ N . By a version of the Kolmogorov consistency theorem, for each belief

hierarchy h∞i = (xi, µ
0
i , µ

1
i , . . .) ∈ H∞i of infinite depth, there exists a unique Borel probability

measure µ∞i on S ×H−i such that

margΩ̃k
i
µ∞i = µk+1

i

for all k, i.e., the mapping is canonical (Parthasarathy, 1978, Prop. 27.4). The last claim fol-

lows immediately by associating the belief µki to the finite hierarchy hki = (xi, µ
0
i , . . . , µ

k−1
i , µki ) ∈

H̃k
i . �
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III.3 Proof of Proposition II.1

First consider the infinite hierarchies. Lemma 3.2 shows that each infinite belief hierarchy

h∞i = (xi, µ
0
i , µ

1
i , . . .) ∈ H∞i corresponds to a unique Borel probability measure on S × H−i,

and the mapping is canonical. Moreover, the signal xi associated with h∞i is obtained by

projecting h∞i onto Xi. Denote the function that maps H∞i into Xi × ∆(S × H−i) in this

way by ψ̃∞i . Conversely, let r∞i : Xi × ∆(S × H−i) → H∞i be the mapping that assigns

to each (xi, µi) ∈ Xi × ∆(S × H−i) the hierarchy (xi,margSµi,margΩ̃0
i
µi,margΩ̃1

i
µi, . . .) ∈

Xi ×∆(S)×
∏

k≥0 ∆(Ω̃k
i ). The function r∞i is the inverse of ψ̃∞i ; it remains to show that ψ̃∞i

and r∞i are continuous. The function ψ̃∞i is continuous if and only if hni → hi in H∞i implies

ψ∞i (hni ) → ψ∞i (hi) in Xi × ∆(S × H−i). This follows from the continuity of the projection

function and the fact that the cylinders form a convergence-determining class in S×H−i, with

the value of ψ̃∞i (hi) for hi = (xi, µ
0
i , µ

1
i , . . .) on the cylinders being given by the µki ’s. Finally,

it follows from the continuity of the identity function and the marginal operator that r∞i is

continuous.

For the case of finite hierarchies, simply set ψki (hki ) := (xi, µ
k
i ) for each hki = (xi, µ

0
i , . . . , µ

k−1
i , µki ) ∈

H̃k
i . Continuity of the mapping ψki is immediate. �

III.4 Proof of Proposition II.2

Let T = 〈(Ti)i∈N , (βki )i∈N,k∈ITi , (χi)i∈N〉 be a type space. Given a collection of functions

fλ : Vλ → Wλ, we define the induced functions f : V → W and f−λ : V−λ → W−λ, λ ∈ Λ, by

f(v) := (fλ(vλ))λ∈Λ and f−λ(v−λ) := (fλ(v`))`∈Λ\{λ}.

To construct a type morphism from the types in T to the types in the space T ∗, we first

construct a collection of functions that maps each type into the associated hierarchy of beliefs

(Step 1). Step 2 establishes that these mappings define a type morphism from T to T ∗. Step

3 then shows that this type morphism is unique.

Step 1: From types to belief hierarchies

Each type induces a belief hierarchy of the kind discussed in Section 3.1, as we show now. The

mapping from types to belief hierarchies is standard (e.g., Mertens and Zamir, 1985), except

that we need to take into account that hierarchies may have a finite depth.

We define a collection of mappings. Lemma III.3 below shows that these functions are

well-defined. For i ∈ N , if T 0
i 6= ∅, let hT,0,0i : T 0

i → H0
i be defined by

hT,0,0i (ti) = (χi(ti), h
∗,0
i ).

Clearly, hT,0,0i (T 0
i ) ⊆ H0

i . Also, hT,0,0i is measurable.

11



Similarly, if T 1
i is nonempty, define hT,1,0i : T 1

i → H̃0
i by

hT,0,0i (ti) = (χi(ti), µ̃
0
i ).

Again, it is easy to see that hT,1,0i (T 1
i ) ⊆ H̃0

i , and that hT,1,0i is measurable. If T 0
i is nonempty,

define the function hT,<1,0
i : T 0

i → H0
i by

hT,<1,0
i (ti) := hT,0,0i (ti).

Again, hT,<1,0
i (T 0

i ) ⊆ H0
i , and hT,<1,0

i is measurable. Finally, define the function hT,1,1i : T 1
i →

H1
i by

hT,1,1i (ti) :=
(
hT,1,0i (ti), β

1
i (ti) ◦

(
IdS, h

T,<1,0
−i

)−1)
,

where IdS is the identity function on S. It is easy to verify that hT,1,1i (T ii ) ⊆ H1
i . Since an image

measure µ ◦ f−1 induced by a Borel probability measure µ and a measurable function f from

a metrizable space into a metrizable space is measurable, the function hT,1,1i is measurable.

Fix k = 1, 2, . . ., and let ` = 0, . . . , k − 1. Suppose, inductively, that the mappings

hT,m,`i have been defined for m = 0, 1 . . . , k whenever the relevant domain is nonempty. If

T≤ki =
⋃k
m=0 T

m
i is nonempty, then define

hT,<k+1,`
i : T≤ki → H̃≤`i

by

∀m = 0, 1, . . . , k, ti ∈ Tmi : hT,<k+1,`
i (ti) :=

{
hT,m,`i (ti) if m > `;

hT,m,mi (ti) if m ≤ `.

Also, for k > 0, let

hT,<k+1,k
i : T≤ki → H≤ki

be defined by

∀m = 0, 1, . . . , k, ti ∈ Tmi : hT,<k+1,k
i (ti) := hT,m,mi (ti).

Then, if T k+1
i 6= ∅, let hT,k+1,0

i : T k+1
i → H̃0

i be defined by

hT,k+1,0
i (ti) := (χi(ti), t

∗,0
i ),

as before, and for ` = 1, . . . , k, define hT,k+1,`
i : T k+1

i → H̃`
i by

hT,k+1,`
i (ti) :=

(
hT,k+1,`−1
i (ti), β

k+1
i (ti) ◦

(
IdS, h

T,<k+1,`−1
−i

)−1
)
.

Finally, define hT,k+1,k+1
i : T k+1

i → Hk+1
i by

hT,k+1,k+1
i (ti) :=

(
hT,k+1,k
i (ti), β

k+1
i (ti) ◦

(
IdS, h

T,<k+1,k
−i

)−1
)
.

The next lemma states that these functions are well-defined:

12



Lemma III.3. Let i ∈ N and k = 0, 1, . . ..

(a) If T ki is nonempty, then hT,k,`i is well-defined and measurable for ` = 0, 1, . . . , k.

(b) If T≤ki is nonempty, then hT,<k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k.

Proof. We start with some preliminary observations. Let Y =
⋃
λ∈Λ Y

λ be a countable union

of topological spaces, endowed with the sum topology. By standard results, for B ∈ B(Y ) and

λ ∈ Λ, we have that B ∩ Y λ ∈ B(Y λ). Also, for Bλ ∈ B(Y λ), λ ∈ Λ, we have Bλ ∈ B(Y ).

Finally, if Y and W are Polish, then B(Y ×W ) = B(Y )⊗B(W ). We will make use of these

results without mention.

We are now ready to prove Lemma III.3. The proof is by induction. As noted above,

the functions hT,0,0i , hT,1,0i , and hT,1,1i are well-defined and measurable (as is hT,<1,0
i ) for every

player i (whenever the respective domains are nonempty). Let k = 1, 2, . . .. Suppose that

the functions hT,k,`i and hT,k,ki are well-defined and measurable whenever T ki is nonempty. It

suffices to show that:

(i) The function hT,<k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k.

(ii) The function hT,k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k + 1.

To prove (i), first note that T≤ki is nonempty whenever T ki is nonempty. It follows directly

from the induction hypothesis that hT,<k+1,`
i and hT,<k+1,k

i are well-defined for ` = 0, 1, . . . , k−
1, i.e.,

hT,<k+1,`
i

(
T≤ki

)
⊆ H̃≤`i , and hT,<k+1,k

i

(
T≤ki

)
⊆ H≤ki .

To show that hT,<k+1,k
i is measurable, let B ∈ B(H≤ki ). Then,(
hT,<k+1,k
i

)−1
(B) =

{
ti ∈ T≤ki : hT,<k+1,k

i (ti) ∈ B
}

=
k⋃

m=0

{
ti ∈ Tmi : hT,m,mi (ti) ∈ B ∩Hm

i

}
.

Hence, it suffices to show that for all ` = 0, . . . k,{
ti ∈ T `i : hT,`,`i (ti) ∈ B ∩H`

i

}
∈ B

(
T≤ki

)
. (III.3)

By our earlier observations, we have that B ∩H`
i ∈ B(H`

i ). It then follows from the measur-

ability of hT,`,`i that {
ti ∈ T `i : hT,`,`i (ti) ∈ B ∩H`

i

}
∈ B

(
T `i
)
,

and (III.3) follows. The proof that hT,<k+1,`
i is measurable for ` = 0, . . . , k − 1 is similar and

thus omitted.
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The proof of (ii) consists of two parts. We first show that hT,k+1,`
i and hT,k+1,k+1

i are well-

defined for ` = 0, 1, . . . , k whenever T k+1
i is nonempty. That is, suppose T k+1

i is nonempty.

Then,

hT,k+1,`
i

(
T k+1
i

)
⊆ H̃`

i and hT,k+1,k+1
i

(
T k+1
i

)
⊆ Hk+1

i .

Clearly, hT,k+1,0
i (T k+1

i ) ⊆ H̃0
i . Let ` = 1, . . . , k − 1, and suppose hT,k+1,`−1

i

(
T k+1
i

)
⊆ H̃`−1

i .

We show that hT,k+1,`
i

(
T k+1
i

)
⊆ H̃`

i . From the induction hypothesis and (i) it follows that

hT,<k+1,`−1
−i is well-defined and measurable (recall condition (d) in the definition of a type

space). Using the induction hypothesis, we have that for all ti ∈ T k+1
i ,

hT,k+1,`
i (ti) =

(
hT,k+1,`−1
i (ti), β

k+1
i (ti) ◦

(
IdS, h

T,<k+1,`−1
−i

)−1) ∈ H̃`
i ×∆(S × H̃≤`−1

−i ).

If ` = 1, then we are done. If ` = 2, 3, . . . , k, we need to show that a player’s higher-order

beliefs are coherent, i.e., for each ti ∈ T k+1
i ,

margΩ̃`−2
i
βk+1
i (ti) ◦

(
IdS, h

T,<k+1,`−1
−i

)−1
= βk+1

i (ti) ◦
(
IdS, h

T,<k+1,`−2
−i

)−1
.

Fix E ∈ B(Ω̃`−2
i ). Then, using the extended definition of the marginal,

margΩ̃`−2
i
βk+1
i (ti) ◦

(
IdS, h

T,<k+1,`−1
−i

)−1
(E)

= βk+1
i (ti) ◦

(
IdS, h

T,<k+1,`−1
−i

)−1({
(s, x−i, µ

0
−i, . . . , µ

`−2
−i , µ

`−1
−i ) ∈ S × H̃≤`−1

−i :

(s, x−i, µ
0
−i, . . . , µ

`−2
−i ) ∈ E

})
+ βk+1

i (ti) ◦
(
IdS, h

T,<k+1,`−1
−i

)−1(
E ∩ Ω̃`−2

i

)
= βk+1

i (ti) ◦
(
IdS, h

T,<k+1,`−2
−i

)−1
(E),

so that hT,k+1,`
i (ti) ∈ H̃`

i for ` = 2, 3, . . . , k. A similar argument shows that hT,k+1,k+1
i (ti) ∈

Hk+1
i .

Next, we show that hT,k+1,`
i is measurable, where ` = 0, 1, . . . , k + 1. For ` = 0, this is

immediate. So let ` = 1, 2, . . . , k + 1, and suppose the claim is true for `− 1. It then follows

directly from the induction hypothesis and (i) that the claim is true for ` (recall that the

image measure induced by a measurable function from a metrizable space into a metrizable

space is measurable). �

For i ∈ N and k <∞ such that T ki is nonempty, define hT,ki : T ki → Hk
i by:

hT,ki (ti) :=
(
hT,k,0i (ti), β

k
i (ti) ◦

(
IdS, h

T,<k,0
−i

)−1
, βki (ti) ◦

(
IdS, h

T,<k,1
−i

)−1
, . . . ,

βki (ti) ◦
(
IdS, h

T,<k,k−1
−i

)−1
)
,

i.e., hT,ki (ti) is the belief hierarchy (of depth k) induced by ti. It follows directly from the

above that hT,ki is well-defined and measurable.
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We next define a collection of functions that will be used to obtain the belief hierarchies

of infinite depth. For i ∈ N , if T∞i is nonempty, let hT,∞,0i : T∞i → H̃0
i be defined as before.

For ` = 1, 2, . . ., assume that the function hT,∞,`−1
i : T∞i → H̃`−1

i has been defined and is

measurable. Define the function hT,≤∞,`−1
i : T∞i ∪

⋃∞
m=0 T

m
i → H̃≤`−1

i by

∀m =∞, 0, 1, . . . , ti ∈ Tmi : hT,≤∞,`−1
i (ti) =

{
hT,m,`−1
i (ti) if m > `− 1;

hT,m,mi (ti) if m ≤ `− 1;

Also, define hT,∞,`i : T∞i → H̃`
i by

hT,∞,`i (ti) :=
(
hT,∞,`−1
i (ti), β

∞
i (ti) ◦

(
IdS, h

T,≤∞,`−1
−i

)−1
)
.

Again, these functions are well-defined:

Lemma III.4. Let i ∈ N .

(a) If T∞i is nonempty, then hT,∞,`i is well-defined and measurable for ` = 0, 1, . . ..

(b) The function hT,≤∞,`i is well-defined and measurable for ` = 0, 1, . . ..

The proof is similar to that of Lemma III.3, and thus omitted. Define hT,∞i : T∞i → H∞i
by:

hT,∞i (ti) :=
(
hT,∞,0i (ti), β

∞
i (ti) ◦

(
IdS, h

T,≤∞,0
−i

)−1
, β∞i (ti) ◦

(
IdS, h

T,≤∞,1
−i

)−1
, . . .

)
.

That is, hT,∞i (ti) is the belief hierarchy (of infinite depth) induced by ti. By the above, hT,∞i
is well-defined and measurable.

Together, these results imply that each type generates a well-defined belief hierarchy.

We next define a type morphism from an arbitrary type space T to T ∗, using the mappings

defined in Step 1.

Step 2: Constructing a type morphism

Recall that ITi is the set of indices k = 0, 1, . . . ,∞ such that T ki is nonempty. For i ∈ N ,

define ϕi := (ϕki )k∈ITi as follows. If k ∈ ITi is finite, then define ϕki : T ki → Hk
i by:

ϕki (ti) := hT,ki (ti).

If T∞i is nonempty, then define ϕ∞i : T∞i → H∞i by:

ϕ∞i (ti) := hT,∞i (ti).
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We show that ϕ = (ϕi)i∈N is a type morphism. By Lemmas III.3 and III.4, the functions

ϕki , i ∈ N , k ∈ ITi , are well-defined and measurable. Also, for each ti ∈ Hk
i , we have that

χ∗i (ϕ
k
i (ti)) = χi(ti), that is, signals are preserved.

It remains to show that the mappings preserve higher-order beliefs. To show this, let i ∈ N
and suppose there is k < ∞ such that T ki 6= ∅. We need to show that for each ti ∈ T ki and

E ∈ B(S)⊗B(H≤k−1
−i ),

ψki
(
ϕki (ti)

)
(E) = βki (ti)

((
IdS, ϕ

<k
−i
)−1

(E)
)
.

Let ti ∈ T ki . Using that T ∗ is canonical, we obtain

ψki
(
ϕki (ti)

)
(E) = ψki

(
hT,k,0i (ti), β

k
i ◦ (IdS, h

T,<k,0
−i )−1, . . . , βki ◦ (IdS, h

T,<k,k−1
−i )−1

)
(E)

= βki (ti)
(
(IdS, h

T,<k,k−1
−i )−1(E)

)
.

Next suppose that T∞i 6= ∅, and let ti ∈ T∞i . We need to show that for each E ∈ B(S) ⊗
B(H−i),

ψ∞i (ϕ∞i (ti)) (E) = β∞i (ti)
((

IdS, ϕ
∞
−i
)−1

(E)
)
.

Let ti ∈ T∞i . Again using that the belief maps in T ∗ are canonical, we have

ψ∞i (ϕ∞i (ti)) (E) = ψ∞i

(
hT,∞,0i (ti), β

∞
i ◦ (IdS, h

T,≤∞,0
−i )−1, . . .

)
(E)

= β∞i (ti)
(
(IdS, h

T,∞
−i )−1(E)

)
.

It follows that ϕ is a type morphism.

Step 3: There is a unique type morphism from any type space to T ∗

We show that for any type space T , there is a unique type morphism from T to T ∗. The proof

uses the following lemmas. Lemma III.5 shows that type morphisms preserve belief hierarchies

(cf. Heifetz and Samet, 1998, Prop. 5.1):

Lemma III.5. Fix arbitrary type spaces T and Q, and let ϕ be a type morphism from T to

Q. Then, for each i ∈ N ,

(a) if T ki is nonempty, where k <∞, then hQ,ki (ϕki (ti)) = hT,ki (ti);

(b) if T∞i is nonempty, then hQ,∞i (ϕ∞i (ti)) = hT,∞i (ti).

Proof. Here we show (a); the proof that (b) holds is similar and is thus omitted. The claim

clearly holds for k = 0. Let k = 1, 2, . . ., and suppose the claim is true for m = 0, 1, . . . , k− 1.

Again, for each i ∈ N such that T ki 6= ∅, it is easy to see that hQ,k,0i (ϕki (ti)) = hT,k,0i (ti) for
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every ti ∈ T ki , where hQ,k,0i is defined analogously to hT,k,0i (recall that IQi ⊇ ITi , so that hQ,k,0i

is well-defined). Let ` = 1, . . . , k and suppose that

hQ,k,mi

(
ϕki (ti)

)
= hT,k,mi (ti)

for every ti ∈ T ki and m ≤ ` − 1. Denoting the belief maps for player i in Q by λki , where

k ∈ IQi , we can use condition (II.1) to obtain

λki
(
ϕki (ti)

)
◦
(
IdS, h

Q,<k,`−1
−i

)−1
= βki (ti) ◦

(
IdS, ϕ

<k
−i
)−1 ◦

(
IdS, h

Q,<k,`−1
−i

)−1

= βki (ti) ◦
(
IdS, h

Q,<k,`−1
−i ◦ ϕ<k−i

)−1

= βki (ti) ◦
(
IdS, h

T,<k,`−1
−i

)−1
,

where the last line uses the induction hypothesis. Again using the induction hypothesis, we

obtain

hQ,k,`i

(
ϕki (ti)

)
=

(
hQ,k−1,`
i

(
ϕki (ti)

)
, λki
(
ϕki (ti)

)
◦
(
IdS, h

Q,<k,`−1
−i

)−1)
=

(
hT,k,`−1
i (ti), β

k
i (ti) ◦

(
IdS, h

T,<k,`−1
−i

)−1)
= hT,k,`i (ti),

for every ti ∈ T ki . �

Lemma III.6. Let i ∈ N and k = 0, 1, . . . or k = ∞. Then hT
∗,k

i : Hk
i → Hk

i is the identity

function.

The proof of Lemma III.6 follows directly from Lemma 3.2 and Proposition II.1.

To show that ϕ is the unique type morphism from T to T ∗, suppose that ϕ̃ is a type

morphism from T to T ∗. Then, it follows from Lemma III.5 that for every i ∈ N and k ∈ ITi ,

hT,ki
(
ϕ̃ki (ti)

)
= hT,ki (ti).

But by Lemma III.6,

hT,ki
(
ϕ̃ki (ti)

)
= ϕ̃ki (ti),

so that ϕ̃ki (ti) = hT,ki (ti). The result then follows by noting that ϕki = hki .

To summarize: Step 2 shows that for any type space T , there is a type morphism from T
to T ∗, using the functions defined in Step 1. Step 3 shows that this type morphism is unique.

Hence, T ∗ is universal. By a similar argument as in the proof of Proposition 3.5 of Heifetz

and Samet (1998), there is at most one universal space, up to type isomorphism. �

17



III.5 Proof of Proposition II.3

Let T be a type space. We first prove the first claim. Let i ∈ N . We need to show that

for each player j 6= i, the subset
{
hj ∈ Hj : hj = ϕ

κ(tj)
j (tj) for some tj ∈ Tj

}
is measurable.

Because T is nonredundant, the function ϕj is injective, and it follows from the results of

Purves (1966) that

{hj ∈ Hj : hj = ϕ
κ(tj)
j (tj) for some tj ∈ Tj} =

⋃
k∈ITj

ϕkj (T
k
j ) ∈ B(Hj).

Hence, S ×
∏

j 6=i{hj ∈ Hj : hj = ϕ
κ(tj)
j (tj) for some tj ∈ Tj} is indeed an event in B(S) ⊗

B(H−i). The result now follows directly from the definition of a type morphism.

The proof of the second claim is immediate: for each i ∈ N , define Ti := H ′i; and for each

hi ∈ H ′i of depth k, k = 0, 1, . . . ,∞, define βki (hi) := ψki (hi), and let χi(hi) be the projection

of hi on Xi. �

III.6 Proof of Proposition 3.4

Clearly, ϕ∞i (zi) ∈ H∞i for all i ∈ N and zi ∈ Zi. Hence,∏
j∈N

{
hj ∈ Hj : hj = ϕ

κ(zj)
j (zj) for some zj ∈ Zj

}
⊆ E∞.

The type structure T MZ is nonredundant by construction, so that by Proposition II.3, for

i ∈ N and zi ∈ Zi,

ψi
(
ϕ∞i (zi)

)(
S ×

∏
j 6=i

{
hj ∈ Hj : hj = ϕ

κ(zj)
j (zj) for some zj ∈ Zj

})
= 1

and it follows that∏
j∈N

{
hj ∈ Hj : hj = ϕ

κ(zj)
j (zj) for some zj ∈ Zj

}
⊆ CB(E∞).

To prove the reverse inclusion, it is sufficient to show that for each i ∈ N , there is Y ∞i ⊆ Z∞i
such that

ϕ∞i (Y ∞i ) = projHi

(
CB(E∞)

)
,

where projV is the projection function into a space V . To show this, we construct a map

f̂ from CB(E∞) to
∏

j∈N Ẑj. First note that CB(E∞) ⊆
∏

j∈N H
∞
j . For a hierarchy

profile (xj, µ
0
j , µ

1
j , . . .)j∈N ∈ CB(E∞) and player i ∈ N , let f̂ 0

i (xi, µ
0
i ) := (xi, ẑ

0
i ). For
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k = 1, 2, . . ., suppose f̂k−1
j : projH̃k−1

j
(CB(E∞)) → Ẑk−1

j has been defined for all j ∈ N .

For (xj, µ
0
j , µ

1
j , . . .)j∈N ∈ CB(E∞) and i ∈ N , define

f̂ki (xi, µ
0
i , . . . , µ

k
i ) :=

(
f̂k−1
i (xi, µ

0
i , . . . , µ

k−1
i ), µki ◦

(
IdS, f̂

k−1
−i
)−1)

.

It is easy to check that f̂ki is well-defined, given that the beliefs specified by the belief hierarchies

in CB(E∞) are coherent. Then, for each (hi)i∈N ∈ CB(E∞), with hi = (xi, µ
0
i , µ

1
i , . . .) for

i ∈ N , define

f̂((hi)i∈N) := (xi, ẑ
0
i , µ

1
i ◦ (IdS, f̂

0
−i)
−1, . . .)i∈N .

Again, it is easy to verify that f̂(CB(E∞)) ⊆
∏

i∈N Ẑi, so that the set projẐi
f̂(CB(E∞))

corresponds to a subset Y ∞i of Z∞i = Ẑi. Given that there is a unique type morphism ϕ from

T MZ to T ∗, we have that ϕ∞i (Y ∞i ) = projHi
(CB(E∞)), and the result follows. �
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