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Abstract

Two players choose whether to cooperate on a project. Each of them

is endowed with some evidence, and if both possess a sufficient amount

then cooperation is profitable. In order to facilitate cooperation the players

reveal evidence to one another. However, some players are concerned about

privacy, and so revelation of evidence that does not result in cooperation

is costly.

We show that in equilibrium evidence can be exchanged both incre-

mentally and all at once, and identify conditions under which the different

rates of evidence exchange are optimal.
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1 Introduction

When two parties communicate in an attempt to undertake a joint venture, the

conventions and protocols that structure their communication may be formed by

a variety of factors. In this paper we analyze the interplay of two such factors:

On the one hand, in order to cooperate successfully a party must communicate

some proprietary information that is necessary for the venture. On the other

hand, parties may have privacy concerns: If the joint venture fails to materialize,

a party may be adversely affected by the other’s use of the revealed information.

Consider the following examples of communication with such privacy con-

cerns: Two firms with complementary expertise wish to cooperate on a project.

The execution and success of the project depend on firms sharing their expertise

and ideas. However, some firms’ level of expertise and novelty of ideas may be

too poor to permit successful cooperation. If this fact becomes clear in the pro-

cess of communication, the project is abandoned. In such an event, however, a

firm that revealed promising ideas prior to the abandonment may regret doing

so. Anticipating this, firms may want to structure their communication in ways

that minimize the harm sustained in case cooperation fails.

Next, consider two shady characters who wish to engage in a less-than-legal

venture. They exchange plans for a potential criminal scheme, references to crim-

inal connections that may be useful in their venture, and descriptions of other

activities to which only the criminal underworld is privy. However, some char-

acters may be undercover cops—they are uninterested in a criminal venture, but

rather in obtaining information from the criminal that may lead to an arrest.

So while the potential profits from the venture may render information exchange

appealing, the characters’ concerns for privacy drive them to structure communi-

cation in a way that minimizes the amount of incriminating information revealed

to undercover agents.

As a third example, consider two researchers, a theoretician and an empiricist,

who are interested in joining forces on a project. They engage in communication
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to convey the content of their research and write a joint paper. At the same time,

they face uncertainty about the viability of their potential research partner. Does

the theoretician actually have a sound and reasonable model, and does she have

theorems with correct proofs that fit the project’s aims? Does the empiricist

have sufficient data, and do those data support the project’s aims? If the answer

is no, the researcher may be unwilling to reveal her own ideas, as those might

potentially be exploited by the other.

In this paper, we analyze the tradeoff between the two conflicting forces

demonstrated in the examples—the necessity of information exchange versus the

concern for privacy—and examine its effect on the structure of communication.

In particular, what is the optimal rate of information exchange? Is optimal com-

munication incremental, with parties revealing little bits of information in alter-

nating fashion? Or is optimal communication simple, with one party revealing

all her information at once?

Our main result is that both modes of communication—incremental and

simple—may be optimal in equilibrium. Which of the two obtains depends on

the order in which information must be revealed. Suppose that the initial pieces

of information to be exchanged are unlikely to reveal the viability of the oppo-

nent or that they tend to inflict a relatively high cost due to privacy loss. In

this case, the optimal mode of communication is simple, which one player reveal-

ing all evidence first. By a similar intuition, incremental information exchange

is optimal when the initial pieces of information to be exchanged are relatively

likely to reveal the viability of the opponent or when they inflict little harm due

to privacy loss.

In this paper, we take the order of information exchange as given. Such an

assumption is plausible in many applications in which information must be re-

vealed in a predetermined order. For example, a theoretician describing a proof

must reveal lemmas that build one on top of another. However, in other appli-

cations parties may have more flexibility as to the order in which information is
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presented: a firm can reveal its financial statements to potential partners before

or after allowing them to visit its factories, and criminals may agree on what

proofs of viability to present first. For such cases, our analysis sheds light on the

optimal order in which information should be revealed. We show that privacy

leakage is smaller when incremental exchange is optimal than when simple ex-

change is optimal. Hence, when they have the flexibility to do so, parties should

order information in such a way that optimal communication is incremental: in-

formation that is less valuable or more likely to demonstrate viability should be

revealed first.

Organization Immediately following is a brief survey of the related literature.

Sections 2 and 3 contain the model and its analysis, the latter of which includes

our main results about the optimality of incremental and simple communication.

In Section 4 we then discuss the robustness of the results to our assumptions.

Finally, most proofs are deferred to the Appendix.

1.1 Related Literature

This paper is part of a large literature on strategic information exchange that

was pioneered by Crawford and Sobel (1982) (cheap-talk), Milgrom (1981), and

Milgrom and Roberts (1986) (verifiable information). Our notion of information

is modeled after Shin (1994) and Dziuda (2011), in that players must reveal their

information truthfully, but can obstruct their type by withholding some informa-

tion. Unlike most of the communication literature (exceptions include Li et al.

(2001)), in our paper both players have private information about the relevant

state variable (their type) and both communicate this information. Moreover,

in our paper the messages sent affect players’ utilities. This is similar to Kartik

(2009), who assumes that lying is costly, with the difference that in our paper

revealing (by assumption truthfully) information is costly.

The paper that is closest to ours is Augenblick and Bodoh-Creed (2013). In
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that paper, developed concurrently with and independently of ours, each party

has a privately observed type and wishes to find a matching partner, but prefers to

confuse non-matching partners about her type. The authors assume that pieces

of information are heterogenous and focus on the order in which they should

be revealed. We analyze a somewhat orthogonal problem by taking the order of

information exchange as given (perhaps because it is agreed upon beforehand) and

focusing on whether information exchange should be simple or incremental. This

question is minor in Augenblick and Bodoh-Creed (2013), because in their setting

communication is essentially one-sided: One player reveals information about her

type, and the other confirms whether her type matches or not. Since Augenblick

and Bodoh-Creed (2013) search for the sender-optimal equilibrium, incremental

communication is optimal: at the first point at which the receiver does not confirm

the match, communication stops. Hence, incremental exchange allows the sender

to avoid revealing her entire type. In our model communication must be two-

sided as each of the viable types possesses different information. As a result, the

question of whether incremental communication is better arises, and the answer

turns out to depend on the nature of the evidence. While our results do shed

some light on the optimal order of information exchange, these implications are

somewhat incomparable with the results of Augenblick and Bodoh-Creed (2013)

because the modeling of privacy concerns is very different in the two papers.

Hörner and Skrzypacz (2011) analyze a problem in which an uninformed prin-

cipal wishes to acquire information from a possibly informed agent. The principal

cares about money (which translates to a form of privacy concerns), but the agent

does not have privacy concerns. Hörner and Skrzypacz (2011) show that in the

equilibrium that maximizes the surplus of the principal and the informed agent,

information is revealed and payments are made gradually.

Information in our model can be interpreted as money or effort, and hence

communication can be viewed as contributions to a common project. In most

models on this topic, there is a free-riding problem: Each player has an incentive
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to withhold her contributions and wait for the opponent to finance the public

good. This literature finds that gradualism—splitting contributions into smaller

pieces and contributing in an alternating fashion—may ameliorate this problem

(see Lockwood and Thomas (2002), Marx and Matthews (2000), Compte and

Jehiel (2004) in the context of public good, and Pitchford and Snyder (2004) in

the context of the hold-up problem).1 In contrast to this literature, there is no

free-riding in our model as players’ actions are not substitutes but complements.

Under symmetric information, if both players are able to contribute to the project,

they would do so. Hence, gradualism in our model stems from the uncertainty

about the ability of the opponent to contribute.

Watson (1999, 2002) obtains that gradualism may be optimal in partnerships

if asymmetric information is present. In these papers, two players are involved in

a partnership: High types want to stay in the partnership forever, while low types

have an incentive to exit unless the partnership level increases quickly. Watson

(1999, 2002) shows that high types prefer to start at a low level of partnership and

increase it slowly, as this encourages the low types to exit early, when the stakes

are low. In our paper, the incremental exchange also allows the low (unviable)

types to drop out (being discovered in our case) at the moment at which the

opponent invested only little (revealed little information in our case). However,

unlike in Watson (1999, 2002), players are allowed to participate in the exchange

in an asymmetric fashion. Hence, incremental information exchange corresponds

to both players investing little in a partnership, while simple information exchange

corresponds to one player investing more than the opponent. As a result, we

obtain that gradualism may not be optimal.

Also related is the literature on sustaining conversations, including Stein

1In Admati and Perry (1991) gradualism in contributions comes from the convexity of the

cost function and would be optimal even with a single player. Moreover, as Compte and Jehiel

(2003) argue, the insight of Admati and Perry (1991) about gradualism is sensitive to the

symmetry assumption. In contrast, in our model gradualism arises solely as result of strategic

interactions and would hold also if players were asymmetric.
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(2008) and Ganglmair and Tarantino (2013). While these papers also have an

element of privacy concerns, the driving force behind their models is that con-

versation generates new ideas, and hence players converse to further develop new

information.

Our paper is somewhat related to the computer science literature on exchange

protocols, which also derived the insight that incremental communication can be

beneficial. In particular, Blum (1983), Damg̊ard (1995), and Bardsley et al.

(2008) show that incremental communication can facilitate the exchange of se-

crets. However, a critical element of these papers is that players can, for some

cost, discover the opponent’s secret even in the absence of communication. This

element, which is absent from our paper and others in the strategic communi-

cation literature, is crucial for the equilibrium analysis of the aforementioned

exchange protocols.

Finally, our paper is related to the cryptography literature, and in particular

to zero-knowledge proofs (pioneered by Goldwasser et al. (1989)) and secure 2-

party computation (introduced by Yao (1982)). The tools developed in this field

allow computationally-bounded players to jointly compute a function of their re-

spective private information, while maintaining the privacy of this information.

However, in many economic applications information cannot be generically en-

coded and must be seen by the opponent to be verified, which would render these

tools inapplicable. Furthermore, in some applications it is simply not feasible or

too costly to run a cryptographic protocol to reach agreement.

2 The Model

Players and their types There are two players {1, 2}, which we typically

denote by i ∈ {1, 2} and j
def
= 3 − i, each of which has a type τi. Each player

possesses a unit of evidence. This evidence can potentially lead to a successful

project, in which case we call the player viable (τi = V ), or not, in which case we
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call the player unviable (τi = U). The type of a player is her private information.

The prior probability that a player is viable is p and is independent across players.

Evidence is to be interpreted as a code, a recipe, or a proof that takes a fixed

amount of time (or space) to transmit, but can be divided into smaller pieces,

each of which can be transmitted in correspondingly less time (or space).

Game There are possibly infinitely many rounds of communication. In each

round, one player is called upon to speak, and this happens in an alternating

fashion with player 1 moving first. In each round t, the speaking player i chooses

the amount of new evidence to disclose in that round. Formally, let N i
t be the

amount of evidence disclosed by player i up to round t (including t). In each

round t, the speaking player i chooses N i
t ∈ [N i

t−2, 1], where N i
−1 = N i

0
def
= 0. That

is, we are assuming that a player can withhold evidence, but cannot withdraw

evidence already disclosed.

We want the model to capture the idea that a viable type needs to reveal

the entire proof, code, or recipe in order to prove its viability. Unviable types

are those whose proofs or recipes are incomplete or contain a fatal flaw. Hence,

after an unviable player reveals a sufficient amount of the evidence, her type

becomes known to the opponent. To this end, we assume that the unviable

type of player i is characterized by a number Ki ∈ (0, 1), which is her private

information. If in some round t, the unviable type with Ki reveals N i
t > Ki,

player j receives a signal that the opponent is unviable: sit = U . We assume

that Ki is distributed with a strictly increasing, continuous distribution function

F (Ki) and is independent of Kj. Note that we are implicitly assuming that an

unviable player cannot fabricate the evidence of a viable one.2

2Note that Ki can be also interpreted as the highest amount of evidence that the unviable

type possesses; for example, the number of lemmas proved. In this case after revealing Ki

amount of evidence, player i would be unable to reveal any further evidence. We find it

convenient to assume that i can continue revealing evidence, but since this evidence does not

enter the payoffs, our assumption is without loss of generality.
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A history of play up to and including round t isHt = {{N1
1 , N

2
2 , ..., N

i
t}, s

j
t−1, s

i
t},

where sit ∈ {∅, U} and sit = U means that player j received a signal that i is

unviable and sit = ∅ means that player j did not receive this signal. A pure

strategy of player i is a function that for each t in which i speaks maps Ht−1 into

N i
t ∈

[
N i
t−2, 1

]
.3

We allow the players to split evidence into arbitrarily small pieces, but we want

the number of such pieces to be finite. Hence, we place the following assumption

on the set of strategies available to the players:

Assumption 2.1 A strategy σi of player i is admissible if for each strategy σj

of player j there exists some T (σj) such that the following is satisfied: if i = 1

(i = 2), then for every odd (even) t > T (σj), the history Ht generated by strategies

σi and σj has the property that N i
t = N i

t−2.

This assumption says that no matter how the game unravels, player i will

stop revealing new evidence after a finite number of rounds.

For fixed strategies of the players, denote by N i = maxtN
i
t the largest amount

of evidence revealed in the game by i. By Assumption 2.1, N1 and N2 exist.

Payoffs There exists a project that pays v > 0 to each player if and only if both

players are viable and share all their respective evidence: that is, if τ1 = τ2 = V

and N1 = N2 = 1. In this case, we say that players cooperate on the project.

In addition to the payoff from the project, players obtain payoffs from the

evidence exchanged in the game. We assume that only the evidence provided

by the viable types is valuable, and discuss the robustness of our results to this

assumption in Section 4. A viable player i who reveals N i suffers a disutility

3It is standard in game theory to present dynamic games as evolving in physical time, and

hence to describe the set of actions available to each player at each instance of time. Since

time is continuous in our model, we find it more convenient to treat the uninterrupted flow of

evidence as one round, use then rounds as different stages of the game, and describe the set of

actions available in each round.
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h (N i) , and a player i who receives N j from a viable opponent benefits g (N j).

Formally, the utilities of the viable and unviable types, respectively, are:

uVi = v1(τj=V, N1=N2=1) + g
(
N j
)
1(τj=V ) − h

(
N i
)
, (1)

and

uUi = g
(
N j
)

1(τj=V ), (2)

where the symbol 1(·) denotes the indicator function. Both g and h are strictly

increasing, continuous, and take value 0 at 0. We normalize h(1) = 1.

Equilibrium The solution concept is a pure-strategy weak Perfect Bayesian

Equilibrium (PBE).

Throughout the paper, we will primarily be interested in optimal modes of

communication; in particular, in whether it is optimal for each player to reveal

all evidence at once, or whether splitting evidence into finer pieces and revealing

them in an alternating fashion can be welfare improving. Our optimality criterion

will be the joint payoff of the viable types. If our game is part of a larger game

in which players make costly investments to become viable, then maximizing the

payoff of the viable types can be consistent with providing the largest incentives

for such investments. However, in Section 4.1 we discuss how our results would

extend if the goal were to maximize the payoff of the unviable types or the total

payoff of all types.

Comments In our model, the evidence exchanged is instrumental to the project:

the project cannot be undertaken unless all evidence is exchanged. Moreover,

once information is exchanged, cooperation happens automatically. We find this

assumption reasonable in a variety of settings. For example, the research project

cannot be completed unless all ideas are put down in the paper, and as soon as

they are written down, the decision on whether to submit the project for publi-

cation or shelve it is trivial. However, in a variety of settings the decision about
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cooperation may be undertaken even before all information is exchanged. For

example, consider two firms entertaining a merger. They exchange proprietary

information that includes financial statements, contracts with other firms, and

revenues; they visit each other’s factories; and most generally, they “open the

books” to each other. However, they can commit to the merger even before they

exchange all information, that is, before they are certain that the opponent is

viable and the merger will result in synergies. Similarly, the information that

criminals exchange may only serve to signal that they are not undercover cops,

and they may engage in a successful criminal venture even without exchanging

this information. Situations like these can be easily mapped into our model with

one modification: one has to endogenize the decision of cooperation and hence

the amount of information exchanged. It is straightforward to show, however,

that if the privacy concerns are smaller than the disutility from engaging in a

venture with an unviable opponent, players will exchange all information before

they decide to cooperate. In such cases all our results will continue to hold.

Next, a few comments on our assumptions are in place. First, if players had

no privacy concerns, all projects could be undertaken with only a two-round

evidence exchange—player 1 would reveal all her evidence in round 1, and then

player 2 would reveal all her evidence in round 2. All equilibria leading to the

project would deliver the same welfare.

Second, in the current model only the amount of evidence revealed, and not

its order, matters. Such a modeling assumption is clearly appropriate if there

is only one feasible order of evidence exchange (e.g., subsequent lemmas feed on

the previous ones) or if a player cannot distinguish ex ante between different

pieces of the opponent’s evidence, and hence is unable to require them in any

particular order. However, our model is more general: If each player can require

the opponent to reveal her evidence in a particular order, then once this order

is agreed upon, it results in some F, h, and g, and our analysis follows. We will

discuss this further in Section 3.2.1.
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And finally, the problem of privacy could be easily solved if an expert benev-

olent mediator were available. However, in many circumstances a mediator with

expertise sufficient to judge the viability of the presented evidence is unlikely to

be benevolent.

3 Analysis

3.1 Preliminaries

Our first proposition states that we can divide all equilibria into two categories.

Proposition 3.1 In any equilibrium, either

a. the players cooperate on the project with probability 1 when τ1 = τ2 = V , or

b. viable types reveal no evidence.

We delegate most proofs to the Appendix, but provide the proof of Proposition

3.1 here as it is short and conveys the intuition.

Proof: Since we consider pure strategy equilibria, if the project is under-

taken with some probability when players are viable, this probability must be

1. Suppose then that there exists an equilibrium in which the project is never

undertaken. By Assumption 2.1, there is a last round T (σj) at which the viable

type of player i reveals new evidence. Suppose without loss of generality that

T (σj) < T (σi). Then at T (σi), player i knows that if she reveals the piece of

evidence prescribed by the equilibrium, she suffers a disutility from that, and

in return she can at most receive evidence from the unviable type, which is not

valuable. Hence, not revealing any evidence at T is a profitable deviation.

We will call the equilibria from part (a) cooperating and the equilibria from

part (b) non-cooperating.
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Lemma 3.2 Any cooperating equilibrium strictly Pareto dominates any non-

cooperating equilibrium.

The intuition for Lemma 3.2 is simple: since viable players always have the

option to reveal no evidence, they must be better off in any equilibrium in which

they willingly reveal evidence.

Given Lemma 3.2, we will henceforth focus on cooperating equilibria. The

following proposition outlines the most important aspects of all such equilibria.

Proposition 3.3 In any cooperating pure strategy PBE there exists T > 0 and

a sequence
{
N̄t

}T
t=1

with N̄T−1 = N̄T = 1 such that in each t,

a. after any Ht−1 with {N1
1 , N

2
2 , ..., N

i
t−1} = {N̄1, N̄2, ..., N̄t−1} and sjt−2 =

sit−1 = ∅, all viable types of j and all unviable types of j with Kj > N̄t

reveal N̄t;

b. if N i
t−1 < N̄t−1, then the viable type j reveals N j

t = N̄t−2;

c. if sit−1 = U, then the viable type j reveals no new evidence in the game.

If pv− h(1) ≥ 0, then a cooperating equilibrium exists and any sequence
{
N̄t

}T
t=1

with N̄T−1 = N̄T = 1 can be supported as a cooperating equilibrium.

Proposition 3.3 fully characterizes behavior on the equilibrium path: players

adhere to the prescribed sequence of evidence revelation as long as no one has

deviated (part a). As soon as one player deviates (unless she deviates to revealing

everything and proves that she is viable), the exchange of valuable evidence stops

(parts b and c).4 Note that the proposition does not characterize the strategies

of the players off the equilibrium path, as those may vary across equilibria.

4To be precise, part b does not say that the exchange of valuable evidence stops completely

after any deviation from
{
N̄t

}T
t=1

, but in the appendix we show that it stops after all deviations

from this sequence that happen on the equilibrium path.
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It should not come as a surprise that many sequences
{
N̄t

}T
t=1

can be sup-

ported as cooperating equilibria. This is simply because for a given sequence,

adherence to this sequence can be enforced by off-equilibrium beliefs that con-

sider every deviation (except possibly to N i
t = 1) as coming from the unviable

type. The only constraints that NT must satisfy is that every viable player

prefers to adhere to the sequence instead of walking away after some round t

with the evidence received from the opponent. The condition pv − h(1) ≥ 0

assures that walking away is never profitable for a viable type no matter how we

split the evidence.

From now on, we will identify each cooperating equilibrium with its corre-

sponding sequence NT
def
=
{
N̄t

}T
t=1

of evidence revelation. Since we are inter-

ested in whether more incremental—and hence taking place in more rounds—

communication is beneficial, we will restrict our attention to sequences NT for

which N̄t 6= N̄t−2 for all t ≤ T . Such a restriction is without loss of generality

and allows us to treat T as a measure of how incremental different sequences of

evidence exchange are.

We conclude this section by deriving the payoffs of the viable players as a

function of NT . Consider an equilibrium NT , and observe that if the viable type

of player i faces another viable type, the two will exchange all evidence and receive

v+ g(1)−h(1) each. If, however, a viable type of player i faces an unviable type,

she will stop revealing evidence—and hence stop incurring disutility from privacy

losses—as soon as N̄ j
t > Kj. This is because in such a round t, either she will

receive the signal that her opponent is not viable, or her opponent will deviate

from the prescribed sequence NT . The probability that the unviable opponent

has Kj ∈ (N̄t−2, N̄t) is equal to F (N̄t)−F (N̄t−2). Thus, the expected utility of a

viable player 1 is

E[uV1 (NT )] = p (v + g (1)− h (1))− (1− p)
K∑
k=0

(F (N̄2k+2)− F (N̄2k))h
(
N̄2k+1

)
,

(3)
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where K = T−2
2

if T is even and K = T−3
2

if T is odd. The expected utility of a

viable player 2 is derived similarly.

Equation 3 reveals that differences in payoffs across cooperating equilibria

come only from differences in the expected disutilities from evidence revealed to

unviable types. It will be convenient to denote this disutility

Ψ1(NT )
def
=

K∑
k=0

(F (N̄2k+2)− F (N̄2k))h
(
N̄2k+1

)
, (4)

and call it the privacy leakage of player 1. Similarly, denote by Ψ2(NT ) the

privacy leakage of player 2. Hence, the equilibria that maximize the joint payoff

of the viable types E[uV1 (NT )] + E[uV2 (NT )] are those that minimize the joint

privacy leakage

Ψ1(NT ) + Ψ2(NT ) =
T−1∑
t=1

(F (N̄t+1)− F (N̄t−1))h
(
N̄t

)
. (5)

Note that in the shortest cooperating equilibrium, N 2 = {1, 1}, a viable

player 1 reveals all her evidence in the first round. Hence, in the second round,

the viable type of player 2 knows which type she is facing. If she faces the

unviable type she reveals nothing. If she faces the viable type, she reveals 1 unit of

evidence and cooperation on the project is successful. Hence, Ψ1(N 2) = h(1) = 1

and Ψ2(N 2) = 0. We call this equilibrium simple, and any other cooperating

equilibrium incremental.

3.2 Simple Versus Incremental Evidence Exchange

Before we state the first result, it is useful to understand that, in our model,

the value of evidence is two-fold. First, evidence has an intrinsic value—the

actual content that makes it relevant for the success of the project—such as the

description of the project design, the relevant computer code, or a proof. The

more evidence a viable player reveals, the higher its intrinsic value. The intrinsic

value of evidence is measured by h, and it counts as a loss for the viable player
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who reveals it. However, the evidence revealed by a player also carries information

about the type of this player: the more evidence a player reveals, the more likely

the opponent is to believe that she is the viable type. This extrinsic value of

evidence is measured by F . Whenever a player is called upon to reveal N̄t, the

viable type of this player suffers from the intrinsic value lost, but the viable type

of the other player benefits from the extrinsic value gained.

It turns out that what matters for the optimality of equilibrium exchange is

the precise relationship between the intrinsic and extrinsic values of evidence.

To summarize this relationship, it is convenient to use the following change of

variables:

M
def
= h (N) . (6)

M measures the units of intrinsic value contained in an amount N of evidence.

The expression F (h−1(M)) then measures the extrinsic value associated with M

units of intrinsic value.

We are now ready to state the conditions under which the optimal equilibria

are simple.

Proposition 3.4 Suppose that pv > h(1).

a. If M = F (h−1(M)) for all M ∈ (0, 1), then all cooperating equilibria deliver

the same joint payoff to the viable types.

b. If M > F (h−1(M)) for all M , then the unique cooperating equilibrium that

maximizes the joint payoff to the viable types is the simple one.5

For intuition, suppose that at a certain stage of communication player 1 has

revealed less evidence than her opponent. Who should reveal new evidence next?

In (a), F (h−1(M)) is assumed to be linear in M , and so revealing an additional

unit of intrinsic value always delivers one additional unit of extrinsic value. Hence,

5In fact, any sequence in which one player reveals all her evidence first is an optimal equi-

librium, but recall that we are assuming that there are no “silent” stages.
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it does not matter which player reveals new evidence next – the total gain/loss

from the next piece of evidence will be the same. This implies that any mode of

evidence exchange is optimal.

To understand the intuition behind part (b), it is easier to focus on the case

in which F (h−1(·)) is strictly convex, which is a sufficient condition for M >

F (h−1(M)). Under strict convexity, any unit of intrinsic value revealed by a

player delivers less extrinsic value than each additional unit. This implies that a

unit of intrinsic value revealed by the player who lags in the exchange carries less

extrinsic value than a unit revealed by the player who is ahead. This means that

as soon as player 1 reveals some evidence, it is optimal to ask her to reveal the

rest of her evidence before player 2 speaks. This, in turn, implies simple evidence

exchange.

When M > F (h−1(M)) but F (h−1(·)) is locally concave, it is not longer true

that at any stage of the exchange it is optimal to ask the player who is ahead to

reveal the rest of her evidence. However, since the revelation of all evidence carries

the same intrinsic and extrinsic value (by the normalization F (h−1(1)) = 1), and

the revelation of N < 1 units of evidence delivers less extrinsic value than its

intrinsic value, the result still holds.

The intuition above immediately suggests that when F (h−1(·)) is concave,

incremental evidence exchange should be optimal. In this case, a unit of intrinsic

value revealed by the player who lags in the exchange carries more extrinsic value

than a unit revealed by the player who is ahead. Hence, optimality requires that

in equilibrium the player who lags in evidence exchange is the one who reveals an

additional unit of evidence. This implies that evidence should be exchanged in

turns, and the pieces exchanged should be as small as possible. Proposition 3.5

below formalizes this intuition.

Proposition 3.5 Suppose that pv > h(1).

a. If M < F (h−1(M)) for some M , then there exists an equilibrium that de-

livers a higher total payoff to the viable types than the simple equilibrium.
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b. Suppose that F (h−1(·)) is strictly concave, and consider a cooperating equi-

librium NT . Then there exists another cooperating equilibrium with T + 1

rounds of communication that delivers a strictly higher total payoff to the

viable types.

When F (h−1(·)) is not globally concave, as in part (b), it is not always ben-

eficial to let the player who lags reveal the next piece of evidence. Hence, it

is not true that more incremental exchange is always better. However, when

M < F (h−1(M) for some M , it is definitely beneficial for both players to reveal

M units of intrinsic value before exchanging any more evidence.

We would like to stress that the above propositions do not let us compare the

payoffs between any two arbitrary equilibria with T > 2 and T ′ > T. To see why,

suppose that F (h−1(·)) is strictly concave. Suppose that in both equilibria players

reveal evidence in similarly sized pieces in each round. Then by the arguments

presented above, the longer equilibrium should deliver a higher welfare. Suppose

now that in the longer equilibrium with T ′ > T, player 1 reveals a large amount

of evidence in the first round. Under concave F (h−1(·)) this is suboptimal, and

hence the longer equilibrium may deliver lower welfare.

3.2.1 Comments on the Shape of the Utility Function

We have established that the nature of the optimal evidence exchange depends

crucially on the shape of F (h−1(·)). The shape of F (h−1(·)) is an empirical

question, but we would like to develop intuition for when it is likely to be convex

or concave.

Let us start by assuming that F (K) = K. In such a case, F (h−1(·)) is concave

when h is convex. And we should expect h to be convex if the proprietary evidence

is of little value unless a large quantity of it is obtained.

Suppose now that h is linear. Then, F (h−1(·)) is concave if F is concave.

Recall that Ki is interpreted as the smallest amount of evidence of i that allows
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j to verify that i is unviable. We expect F to be concave in environments in

which most of the invalid evidence can be spotted quickly (small Ki).

In certain applications, the order in which evidence is revealed may be fixed

by the nature of evidence. For example, revealing a proof may require revealing

its steps in a predetermined order, as the steps may build upon themselves. In

other application, however, the players may have more flexibility as to the order

in which evidence is presented. Our analysis suggests that in the latter case, they

should order evidence in such a way that F (h−1(·)) is concave: the first pieces

of evidence should be the ones that are most likely to be possessed only by the

viable types, but that are also less costly if leaked to an unviable type.

3.3 Properties of Optimal Incremental Evidence Exchange

Proposition 3.5 implies that when F (h−1(·)) is strictly concave, the optimal mode

of equilibrium exchange does not exist. For any number of rounds T, players

would always benefit by splitting evidence even finer. Since the model is only

an abstraction of actual situations, one can conjecture that in reality there is a

limit to the number of rounds in which players can engage. The next proposition

describes how players should split information if they are bound by T rounds.

Proposition 3.6 Fix T and suppose F (h−1(·)) is differentiable and strictly con-

cave. If (F (h−1(·)))′ is (weakly) concave/convex, then among the equilibria of

length T , in the one that maximizes the joint welfare of the viable types, the

sequence
{
h(N̄t)− h(N̄t−1)

}T+1

t=1
is (weakly) increasing/decreasing.

Hence, if (F (h−1(·)))′ is concave, then the amount of intrinsic information

revealed in each round should increase as the communication progresses. In this

case it is as if players “build trust” in the initial rounds, and once this trust is

built, they exchange evidence more freely. In the other case, players become more

“cautious” towards the end.
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The intuition for Proposition 3.6 is as follows. Recall that if F (h−1(·)) is

strictly concave, then the extrinsic value of an additional unit of intrinsic value

revealed by the player who lags is higher than the one revealed by the player

who leads. Hence, an equilibrium is optimal if in each round, the difference in

the amount of evidence revealed by the players is small. For a finite T , however,

there is a limit to how small this difference can be, but one can make it larger in

some rounds and smaller in others. It is crucial then that the rounds in which

this difference is high coincide with the rounds in which the difference between

the extrinsic value of an additional unit of intrinsic value revealed by the lagging

player and the leading player is the smallest. And when (F (h−1(·)))′ is concave,

this difference is the smallest at higher levels of h(N̄t), that is, in later rounds.

Hence, in later rounds players can split information less finely.

From Proposition 3.5, we know under what conditions optimal equilibria are

incremental. One may ask, however, what is the welfare gain that players can

achieve by playing the incremental equilibria. To answer this question, one needs

to assume a functional form for h. The next proposition gives an example of the

welfare gain that can be achieved for a relatively simple class of functions.

Proposition 3.7 Suppose h(N) = F (N)α (or equivalently, F (h−1(M)) = M
1
α )

for some real number α > 1. Then in the optimal equilibrium with T rounds, it

holds that Ψi(NT ) + Ψj(NT )→ 2/(α + 1) as T →∞.

Hence, for higher α—which correspond to a more concave F (h−1(·))—the welfare

gain from incremental communication is higher. In the limit as α→∞, evidence

that has very little intrinsic value carries a lot of extrinsic value; hence, in this

case one can avoid privacy leakage almost completely.

20



4 Extensions

4.1 Other Optimality Criteria

In this section we discuss how our results extend with other optimality criteria,

namely the joint payoff of all types and the joint payoff of the unviable types.

Note first that when both players are viable or both players are unviable, the

details of evidence exchange do not matter. This is because the viable types end

up cooperating no matter what exchange protocol they follow, and the unviable

types do not gain any valuable evidence. Hence, the mode of communication

matters only if one player is viable and the other is not.

With probability p, player 2 is unviable. In this case, player 1’s privacy leakage

is described by the equation for Ψ1(·) (equation 4). Player 2’s privacy leakage

(which is a gain in this case) is derived solely from the evidence revealed by player

1; hence, her privacy leakage will be like in equation (4) but with (−g) in place of

h. So the total privacy leakage will be like in (4) but with h(N)− g(N) in place

of h(N). One can derive the privacy leakage in the case when player 1 is unviable

similarly. Summing them, we obtain that the total expected privacy leakage is

T−1∑
t=1

(F (N̄t+1)− F (N̄t−1))(h
(
N̄t

)
− g

(
N̄t

)
). (7)

Hence, maximizing total welfare of all types is equivalent to minimizing (7).

By the same argument, maximizing the joint payoff of only the unviable types

requires minimizing

T−1∑
t=1

(F (N̄t+1)− F (N̄t−1))(−g
(
N̄t

)
). (8)

Hence, all our results still hold with the caveat that the conditions in the propo-

sitions need to be placed on the function F (w−1(·)) instead of F (h−1(·)), where

w(N)
def
= h(N) − g(N) when we maximize the total payoff and w(N)

def
= −g(N)

when we maximize the total payoff of the unviable types.
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Note that evidence exchange is socially beneficial if h(N)− g(N) < 0. Using

w(N)
def
= h(N)− g(N), our model can be used to characterize when incremental

exchange is socially beneficial in such settings.

4.2 All Types Have Privacy Concerns

So far we have assumed that the unviable types do not have privacy concerns.

Even though this is likely to hold in most of our examples, one can easily imagine

situations in which this is not true. The following provides one such example.

Example 4.1 Two firms are contemplating a merger based on the perceived po-

tential synergies. To complete the merger, they have to share all private informa-

tion; e.g., their financial statements, accounting procedures, initiated investments,

corporate culture. Each firm i privately knows whether it satisfies conditions for

the synergies to be realized, and if it does not, then this becomes apparent to firm j

after i reveals Ki amount of information. In this example, both firms may be con-

cerned about their privacy independently of their type: In the event of the merger

not occurring, both firms can use the acquired information in the marketplace.

In this section, we discuss how our results would change if we allowed all types

to have privacy concerns.

Let hτi (N i) be the disutility that player i suffers if she reveals N i, and let

gτj (N j) be the utility that player i receives if she obtains N j from her opponent.

Hence, the payoffs may depend on whether the source of evidence is U or V :

uVi = v1(τj=V,N1=N2=1) (9)

− hV
(
N i
)

+ gV
(
N j
)
1(τj=V ) + gU

(
N j
)

1(τj=U),

and

uUi = −hU
(
N i
)

+ gV
(
N j
)

1(τj=V ) + gU
(
N j
)
1(τj=U). (10)

As before, all functions are continuous, take value 0 at 0, gV and hV are strictly

increasing, and we normalize hV (1) = 1. Until now, we were assuming that
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hU ≡ gU ≡ 0.

It should be clear that Proposition 3.1 and Lemma 3.2 still hold. We show in

the appendix that the behavior outlined in parts a, b, and c of Proposition 3.3

holds with possibly one exception: the unviable types do not have to adhere to

the sequence NT (the second part of a). They follow the sequence only up to

a certain round, after which they reveal no new evidence. This is because the

unviable types now have privacy concerns as well, and therefore adhering to the

equilibrium sequence may result in too much privacy loss for them to be optimal.

In the presence of privacy concerns for the unviable types, making evidence

exchange more incremental has an additional effect: If the difference between

the amount of information revealed in each round is small enough, some of the

unviable types may find it optimal to stop revealing evidence early in the game

(possibly in their first round). This decreases the information leakage of the

viable types; hence, it should be beneficial. Indeed, Proposition 4.2 below states

that when the viable types have any privacy concerns, the simple equilibrium is

never optimal.

Proposition 4.2 Suppose that hU is strictly increasing, and the simple equilib-

rium exists. Then there exists N̄1 ∈ (0, 1) and N̄2 ∈ (0, 1) such that N 4 ={
N̄1, N̄2, 1, 1

}
strictly Pareto dominates (in terms of the payoffs of the viable

types) the simple equilibrium.

Note that if N̄1 is sufficiently large and N̄2 sufficiently small, the unviable

types of player 1 and 2 do not reveal any evidence in the game, as the privacy

loss from revealing N̄1 and N̄2, respectively, is larger than the possible evidence

gain from N̄2 and 1− N̄1, respectively. Hence, the viable type of player 2 knows

the type of her opponent already in the second round. As a result, she reveals

no evidence to the unviable opponent, obtaining the same privacy leakage 0 as in

the simple equilibrium. Similarly, the viable type of player 1 knows the type of

her opponent in the third round; hence, her privacy leakage is only hV (N̄1). And
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this is strictly less than the privacy leakage in the simple equilibrium, namely

Ψ1(N 2) = hV (1).

Let us call all equilibria that discourage the unviable types from evidence

exchange screening. The crucial feature of the screening equilibrium N 4 is that

the difference between what a player has to reveal in a given round and what he

expects to receive in the next round is small enough that the benefit does not

outweigh the privacy loss. This suggests that by splitting information finer, one

can discourage the unviable types from participating using a lower N̄1, and hence

achieving a lower privacy leakage hV (N̄1). The following Proposition 4.3 confirms

this intuition.

Proposition 4.3 Let h be a strictly increasing and continuous function with

h (0) = 0, and let hU (N) = bh (N) for some b > 0. Then if NT is a screen-

ing equilibrium, then there exists NT+1 that is also a screening equilibrium with

N1 (NT+1) < N1 (NT ) . Moreover, for each fixed T, the lowest N1 in any screen-

ing equilibrium is a decreasing function of b.

The analysis above sheds light on the shape of the optimal equilibria. Sup-

pose first that gU(N) = 0 for all N . That is, the viable types do not benefit

from the evidence obtained from the unviable types. In this case, screening is

beneficial. When F (h−1
V (·)) is convex and hU(1) is small, the optimal equilibrium

is a screening equilibrium with as many rounds as possible. When F (h−1
V (·)) is

concave, then the optimal equilibrium is incremental either for the reasons out-

lined in the previous sections or because it discourages the unviable types from

evidence exchange. It is not strightforward, however, to compare the screening

equilibria with the nonscreening ones in this case, as the non screening equilibria

may admit a lower N̄1.

The same logic favors incremental equilibria when gU(N) is strictly increas-

ing but small. When gU(1) becomes large, however, the analysis becomes more

complicated. This is because the viable types may prefer the unviable types to
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reveal as much information as possible. Hence, when both gU and hU become

large, there are two competing effects: one can discourage the unviable types as

the expense of a smaller N̄1, but discouraging them becomes less valuable. Which

effect dominates is left for future research. In Example 4.4 below, however, we

demonstrate that at the other extreme when gU ≡ gV ≡ hU ≡ hV , the screening

effect dominates and incremental exchange is optimal.

Example 4.4 Suppose gU ≡ gV ≡ hU ≡ hV . There exists T0 such that the fol-

lowing holds for all T ≥ T0: There exists a cooperating equilibrium with a sequence

NT in which the viable types reveal all their evidence according to NT as long

as their opponent does the same, but unviable types do not reveal any evidence.

Moreover, for these equilibria, Ψ2(NT ) = 0, and as T → ∞, Ψ1(NT ) → 0.

Hence, one can construct an equilibrium in which the payoffs of the viable types

are arbitrarily close to the payoffs they would obtain if they suffered from no

privacy concerns.

4.3 Discounting

Our interpretation of the real-world communication is that exchanging evidence

always takes the same amount of time, independent of whether one player re-

veals all evidence first or players split evidence into smaller pieces that they then

exchange in an alternating fashion. For that reason, we do not incorporate dis-

counting into our model. However, if alternating evidence exchange requires more

time or carries some other cost (e.g., cost of attention), then players have an in-

centive to minimize the number of rounds. In this case, the characterization of

the optimal equilibria is less straightforward, but the general insights hold. Since

discounting incentivizes players to have as few rounds as possible, the simple

equilibria are still optimal when F (h−1(·)) is convex. When F (h−1(·)) is suffi-

ciently concave, the optimal equilibria are still incremental, but unlike before, for

each F (h−1(·)), there exists a finite optimal number of rounds T .
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Discounting also affects the analysis of Section 4.2. The equilibrium N 4 from

Proposition 4.2 is still an equilibrium, but any other incremental equilibrium

that discourages all unviable types from exchange is not: Once both players are

revealed viable, they have a strong incentive to reveal all remaining evidence at

once. In such a case, one can still construct equilibria in which some unviable

types drop out in the first two rounds, but one has to leave some unviable types

with large Ki in the game to incentivize the viable types to reveal evidence

incrementally.

5 Conclusions

Our results indicate that optimal communication can be simple or incremental,

depending on the order in which evidence is revealed. However, when players

can decide on the order or when all players have privacy concerns, incremental

evidence exchange dominates. Our paper sheds light on possible drivers behind

the fact that, in practice, we often observe incremental communication.

Appendix

A Proofs from Section 3.1

A.1 Proof of Lemma 3.2

If there is no cooperating equilibrium, then the lemma is vacuously true. Suppose

then that there exists a cooperating equilibrium that is weakly Pareto dominated

by some non-cooperating equilibrium. Since by Proposition 3.1, in the non-

cooperating equilibria no valuable evidence is exchanged, and so the payoff of

each viable type is 0. Hence, if a cooperating equilibrium is dominated by a non-

cooperating one, then the payoffs in the former must be E
[
uV1
]
≤ 0 and E

[
uV2
]
≤

0. First, it cannot be that E
[
uVi
]
< 0, as then player i would prefer not to reveal
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her evidence at all and obtain at least 0. Second, in any cooperating equilibrium

E
[
uV2
]
> 0, as player 2 has an option to walk away from communication after

receiving the first round of evidence, which with probability p is valuable. Hence,

her expected payoff in the equilibrium must be strictly positive. Actually, the

lemma is true even if we consider joint payoff of all types (as in Section 4.1), as

the unviable types can only benefit from evidence exchange.

A.2 Proof of Proposition 3.3

In what follows, pit denotes the posterior belief held at the end of period t by j

about i being the viable type. Let σ1 and σ2 denote the pure strategies of the

viable type of players 1 and 2 in a cooperating equilibrium. Let
{
N̄1
t

}
t∈{1,3,...}

and
{
N̄2
t

}
t∈{2,4,...} be the amount of information that the viable types of players

1 and 2 reveal on the equilibrium path if both players are viable and use σ1

and σ2. By Assumption 2.1, viable types achieve cooperation in a finite number

of rounds; hence, there exists t such that N̄ i
t−1 = N̄ i

t = 1. Let T denote the

smallest such t. By definition, in any cooperating equilibrium at any t, the viable

type of the speaking player i must adhere to
{
N̄1
t

}
t∈{1,3,...} and

{
N̄2
t

}
t∈{2,4,...} as

long as the opponent has adhered to it so far and sit−2 = sjt−1 = ∅. Setting{
N̄t

}T
t=1

= {N̄1
1 , N̄

2
2 , N̄

1
3 , ...} proves the behavior of the viable types outlined in

part (a).

Step A: If in some t, pit = 0, then the viable type of j reveals no evidence in

t+ 1. This is straightforward as given such beliefs, j expects only privacy leakage

from continuing the evidence revelation.

Step B: If sit = U, then the viable type j reveals no more evidence in the game.

This comes directly from Bayes’ rule and Step A. This proves part (c).

Step C: If in equilibrium the strategy of the unviable type of player i prescribes

revealing N i
t 6= N̄t, then if in round t the opponent j sees N i

t , then she reveals no

new evidence after t unless i reveals all her evidence and turns out to be viable.

This follows directly from Bayes’ rule and Step A.

27



Step D: To prove the behavior of the unviable types outlined in part (a),

note that such types are indifferent between any amount of evidence they reveal,

and strictly prefer to receive more evidence from the opponent. By Step C, if

a strategy of j that does not adhere to
{
N̄t

}T
t=1

is an equilibrium strategy, it

results in the opponent i withholding her evidence in the first round in which j

deviates from
{
N̄t

}T
t=1

. Since adhering to
{
N̄t

}T
t=1

as long as Kj > N̄ j
t makes the

viable opponent reveal more evidence in t+ 1, a strategy that does not adhere to{
N̄t

}T
t=1

as long as Kj > N̄ j
t cannot be an equilibrium.

Step E: To prove part (b), note that if N i
t−1 < N̄t is on the equilibrium path,

then part (b) follows from Step C. Suppose then that N i
t−1 is off the equilibrium

path. Take the first round t − 1 in which N i
t−1 < N̄t is observed. Clearly, the

beliefs of j at t − 1 can be arbitrary. If they are pit−1 = 0, then part (b) follows

from Step A. Suppose then that pit−1 > 0, and that the viable j’s strategy is to

continue revealing new evidence. Consider an unviable type with Ki
t ∈ (N̄t−2, N̄t).

If this type adheres to her equilibrium strategy, then in any case she obtains

no more evidence from the opponent (either because of Step C or because her

strategy requires revealing N̄t which results in si = U). If she reveals N i
t instead,

she obtains some new evidence from the viable type of j. Hence, revealing N i
t

is profitable, which contradicts the assumption that N i
t was off the equilibrium

path.

Last claim

We will show now that if pv ≥ h(1), then any sequence
{
N̄t

}T
t=1

with N̄T−1 =

N̄T = 1 can be supported as the following cooperating equilibrium. Players

adhere to the behavior outlined in parts (a), (b), and (c). Moreover, (d) as soon

as N i
t 6= N̄t, then the opponent (of either type) reveals no new evidence unless at

some τ > t, i reveals N i
τ = 1 and siτ = ∅; and (e) if at any t, N i

τ = 1 and si = ∅,
then j (of either type) reveals N j

τ+1 = 1. There may be equilibria in which the

behavior described in (d) and (e) does not hold, but it is straightforward to see

that they will be outcome equivalent to the equilibrium outlined here. And since
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we are proving existence, it is enough to prove the existence of one equilibrium.

The proof of the behavior described in parts (b) and (c), and the behavior of

the unviable types described in (a) did not rely on the details of the sequence;

hence, it will hold for any sequence. The behavior described in (d) and (e) is

clearly optimal for any sequence. We will now show that each player has an

incentive to adhere to the behavior outlined in part (a) for any sequence.

Consider one such sequence. Suppose that the players followed this sequence

up to (but excluding) round t, and that a viable type of j moves in t. By Bayes’

rule, pit−1 = p

p+(1−p)(1−F(N̄t−1))
. If j adheres to the sequence, with probability pit−1

she will cooperate and with probability
(
1− pit−1

)
the evidence exchange will

stop at some time τ > t, the time at which the opponent reveals herself unviable.

Hence, her expected payoff from adhering to the sequence is

pit−1 (v + g (1)− h (1))−
(
1− pit−1

) K∑
k= t−1

2

F
(
N̄2k+2

)
− F

(
N̄2k

)
1− F

(
N̄t−1

) h
(
N̄2k+1

)
, (11)

where again K = T−2
2

if T is even and K = T−3
2

if T is odd.

If j deviates in t to revealing all her evidence, then her expected payoff is

pit−1 (v + g (1)− h (1))−
(
1− pit−1

)
1,

which is clearly lower than her payoff from not deviating. If she deviates to

anything else, then by (d), she expects no more evidence exchange. Hence her

best deviation is to reveal no new evidence at t. In such a deviation, she suffers

disutility h
(
N̄t−2

)
, but with probability pit−1 she faces a viable type in which

case she benefits from the evidence gained so far g
(
N̄t−1

)
. Comparing this to

(11) and using the formula for pit−1, we obtain that she does not deviate if and

only if

v+g (1)−h (1) ≥ 1− p
p

K∑
k= t−1

2

(
F
(
N̄2k+2

)
− F

(
N̄2k

))
h
(
N̄2k+1

)
+g
(
N̄t−1

)
−
h
(
N̄t−2

)
pt

.

Note that the summation on the right-hand side of the IC constraint is smaller

than the privacy leakage in the entire game, which in turn we have shown is
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smaller than 1. Using this, we obtain

1− p
p

K∑
k= t−1

2

(
F
(
N̄2k+2

)
− F

(
N̄2k

))
h
(
N̄2k+1

)
+ g

(
N̄t−1

)
−
h
(
N̄t−2

)
pt

<
1− p
p

+ g
(
N̄t−1

)
−
h
(
N̄t−2

)
pt

<
1− p
p

h(1) + g (1)

< v + g (1)− h (1) ,

where the last inequality is true if v > 1
p
h (1) . Hence, if v > 1

p
h (1) , the incentive

compatibility constraint is satisfied.

A.3 Proof of Proposition 3.4

As established before, the equilibrium that maximizes payoff of the viable types

minimizes their total privacy leakage. Using the change of the variables intro-

duced in (6), the formula for privacy leakage (5) becomes

Ψ1(MT ) + Ψ2(MT ) =
T−1∑
t=0

(F (h−1(M̄t+1))− F (h−1(M̄t−1)))M̄t. (12)

If for all M, it holds that M ≥ F (h−1(M)), then

Ψ1(MT ) + Ψ2(MT ) ≥
T−1∑
t=0

(F (h−1(M̄t+1))− F (h−1(M̄t−1)))F (h−1(M̄t))

= F (h−1(M̄T−1))F (h−1(M̄T )) = F (h−1(h(1)))F (h−1(h(1))) = 1,

where the inequality is strict if M > F (h−1(M)) for all M and it is an equality

if M = F (h−1(M)) for all M . Since Ψ1(N 2) + Ψ1(N 2) = 1, the proposition

follows.

A.4 Proof of Proposition 3.5

To prove part (a), take M for which M < F (h−1(M)), and let N̄1 = h−1(M).

Then clearly h(N̄1) < F (N̄1). Consider an incremental equilibrium N 3 =
{
N̄1, 1, 1

}
.
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We have

Ψ1(N 3) + Ψ2(N 3) = h(N̄1) + 1− F (N̄1) < 1, (13)

which is less than in the simple equilibrium N 2.

To prove part (b), take an equilibrium NT , and consider a sequence N̂T+1 for

which N̂t = N̄t for all t ∈ {1, . . . , T − 2} and N̂T−1 = x, N̂T = 1, and N̂T+1 = 1,

where x ∈
(
N̄T−3, 1

)
. Then

Ψ1(NT ) + Ψ2(NT )− (Ψ1(N̂T+1) + Ψ2(N̂T+1)) =(
1− F

(
N̄T−2

))
+
(
1− F

(
N̄T−3

))
h
(
N̄T−2

)
−
(
1− F

(
N̄T−2

))
h (x)−

(
F (x)− F

(
N̄T−3

))
h
(
N̄T−2

)
− (1− F (x)) .

Thus, the privacy leakage in NT is strictly higher than in N̂T+1 if and only if

(1− F (x))
(
1− h

(
N̄T−2

))
<
(
1− F

(
N̄T−2

))
(1− h (x)) ,

which holds if and only if

1− F (x)

1− h (x)
<

1− F
(
N̄T−2

)
1− h

(
N̄T−2

) .
Using the change of variables M̄T−2

def
=h

(
N̄T−2

)
and z

def
=h (x) , the above inequality

can be rewritten as

1− F (h−1(z))

1− z
<

1− F (h−1(M̄T−2))

1− M̄T−2

.

But when F (h−1(·)) is strictly concave, one can find x ∈
(
max{N̄T−3, N̄T−2}, 1

)
and the corresponding z ∈

(
max{M̄T−3, M̄T−2}, 1

)
such that the above is satis-

fied. By Proposition 3.3, if pv > h(1), then N̂T+1 is also an equilibrium, which

completes the proof.

A.5 Proof of Proposition 3.6

Proof: Let
{
N̄t

}T
t=1

be the equilibrium of length T that minimizes the total
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information leakage. Then by definition, we have

{
N̄t

}T−2

t=1
= arg min

{N̄t}T−2

t=1

T−1∑
t=1

(
F
(
N̄t+1

)
− F

(
N̄t−1

))
h
(
N̄t

)
,

where N̄0 = 0 and N̄T = N̄T−1 = 1. From Proposition 3.5 we know that the

solution is interior. Using the change of variables (6) in the above expression and

differentiating with respect to Mt, we obtain that for each integer t such that

1 ≤ t ≤ T − 2 it must be the case that

d

dMt

(
T∑
t=1

(
F (h−1(Mt+1))− F (h−1(Mt−1))

)
Mt)

)

= F (h−1(Mt+1))− F (h−1(Mt−1)) +
dF (h−1(Mt))

dMt

(Mt−1 −Mt+1)

= 0.

Hence,

dF (h−1(Mt))

dMt

=
F (h−1(Mt+1))− F (h−1(Mt−1))

Mt+1 −Mt−1

(14)

=

∫Mt+1

Mt−1

dF (h−1(x)
dx

dx

Mt+1 −Mt−1

≤
dF (h−1(Mt+1+Mt−1

2
))

dMt

,

where the last inequality follows if the derivative of F (h−1(·)) is weakly concave

(the inequality is strict if the derivative of F (h−1(·)) is strictly concave). When we

compare the far left-hand side with the far right-hand side of the above inequality

and use the fact that F (h−1(·)) is strictly increasing, we obtain that

Mt ≤
Mt+1 +Mt−1

2
(15)

(with strict inequality if the derivative of F (h−1(·)) is strictly concave). Thus,

since this holds for every t ∈ {1, . . . , T} we get that {Mt −Mt−1}Tt=1 is (weakly)

increasing. Using the change of variables (6), equation (15) implies the first part

of the proposition. The proof for the convex case is analogous.
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A.6 Proof of Proposition 3.7

Let NT =
{
N̄t

}T
t=1

be the equilibrium of length T that minimizes the total

information leakage. Then by definition, we have

NT = arg min
{N̄t}T−2

t=1

T−1∑
t=1

F
(
N̄t+1

)
− F

(
N̄t−1

)
h
(
N̄t

)
,

where N̄0 = 0 and N̄T = N̄T−1 = 1. We have

Ψi(NT ) + Ψj(NT ) =
T−1∑
t=1

(
F
(
N̄t+1

)
− F

(
N̄t−1

))
h
(
N̄t

)
=

T−1∑
t=1

(Lt+1 − Lt−1)h(F−1(Lt))

=
T−1∑
t=1

(Lt+1 − Lt−1)Lαt

using the change of variables Lt
def
=F (Nt) and the assumption that h(N) = F (N)α.

Now, similarly to the proof of Proposition 3.6, after differentiating with respect

to Lt the first-order conditions yield

Lt+1 − Lt−1 =
h(F−1(Lt+1))− h(F−1(Lt−1))

h(F−1(Lt))′
=
Lαt+1 − Lαt−1

αLα−1
t

.

Thus,

Ψi(NT ) + Ψj(NT ) =
T−1∑
t=1

(Lt+1 − Lt−1)Lαt (16)

=
1

α

T−2∑
t=1

(
Lαt+1Lt − Lαt−1Lt

)
+ (1− LT−2). (17)

Summing (16) with α times (17) and observing that LT = LT−1 = 1 yields

(α + 1)(Ψi(NT ) + Ψj(NT )) = LαT−2LT−1 + LαT−1LT−2 + (α + 1)(1− LT−2),

and so

Ψi(NT ) + Ψj(NT ) =
2 +

(
LαT−2 − 1

)
+ α (1− LT−2)

α + 1
.
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The claim then follows from the fact that LT−2 → 1 as T →∞ (by the proof of

Proposition 3.5).

B Proof from Section 4

B.1 Proof of the version of Proposition 3.3 outlined in

section 4.2

The proof of Proposition 3.3 depends on the unviable types not having privacy

concerns only in two steps: A and D. When the unviable types have privacy

concerns, Step A still holds but needs a different proof. Step D needs to be

altered as the behavior of the unviable types is different than in Proposition 3.3.

Below we present the new versions of these steps.

Step A: When pit = 0, both players believe that evidence exchange will not

lead to cooperation. Hence, at this point a player has an incentive to reveal

new evidence only if the opponent is expected to reveal new evidence in return.

But by the same argument as in the proof of Proposition 3.1, the player who is

supposed to reveal new evidence last, has an incentive to deviate to revealing no

new evidence. Hence, no evidence exchange can occur.

Step D: By Step C, if the equilibrium strategy of j does not adhere to
{
N̄t

}T
t=1

in round t, it results in the opponent i withholding her evidence in t+1. Hence, it

is better for j to either reveal no new information in this round, as this decreases

her privacy leakage, or to adhere to the sequence
{
N̄t

}T
t=1

.

B.2 Proof of 4.2

Let N 4 =
{
N̄1, N̄2, 1, 1

}
be such that

hU
(
N̄1

)
≥ pgV

(
N̄2

)
(18)

hU
(
N̄2

)
≥ gV (1)− gV

(
N̄1

)
. (19)
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By continuity of gV and hU , it is possible to find N̄1 close to 1 and N̄2 close to

0, for which (18) and (19) are satisfied. Below we will show that there exists an

equilibrium with the above N4 in which the viable types of both players adhere

to N 4, and the unviable types of both players reveal no evidence. Hence, in this

equilibrium the information leakage of player 1 is hV (N̄1) and of player 2 is 0.

Since in the simple equilibrium the information leakage of player 1 is hV (1), and

player 2 is 0, N 4 strictly Pareto dominates the simple equilibrium.

Suppose first that both types of player 2 follow the strategies outlined in

the previous paragraph. The unviable type of player 1 knows that by revealing

N̄1, she suffers hU(N̄1), and gains gV
(
N̄2

)
only if she faces the viable opponent.

Hence, her IC is

0 ≥ pgV
(
N̄2

)
− hU

(
N̄1

)
,

which is satisfied by (18). Suppose now that both types of player 1 follow the

strategies outlined in the previous paragraph. Then at t = 2, the unviable type

of 2 knows the type of her opponent. If the opponent revealed N̄1, then player 2

benefits gV
(
N̄1

)
if she does not reveal anything. If she pretends to be viable and

reveals N̄2, then she suffers a privacy loss, but she will receive all information

from the opponent. Hence, her IC is

gV
(
N̄1

)
≥ gV (1)− hU

(
N̄2

)
,

which again is satisfied by (19).

It remains to show that the viable types of both players have an incentive

to adhere to N4, but it should be clear (and is straightforward to show) that

whenever players have an incentive to reveal evidence in a simple equilibrium,

then they do in N4.

B.3 Proof of Proposition 4.3

Suppose NT is a screening equilibrium. This requires that every unviable type

prefers to reveal nothing in the first round at which she speaks instead of planning
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to reveal evidence until some round t. At t = 1, the unviable type of player 1

knows that with probability (1− p) she faces an unviable type, in which case no

evidence will be revealed in t = 2. With probability p she faces the viable type,

in which case she can stay in the conversation until any t such that Ki > N̄t and

receive N̄t+1 from the opponent. Hence, for all odd t, the following IC constraint

must be satisfied:

p
(
gV
(
N̄t+1

)
− hU

(
N̄t

))
− (1− p)hU

(
N̄1

)
≤ 0. (20)

In round 2, no player will reveal evidence if no evidence is disclosed in round

1. For the unviable player 2 not to disclose any evidence in round 2 after she

observes N̄1 in round 1, it must be that she prefers to walk away with N̄1 instead

of planning to follow NT until some t. That is, for all even t, the following IC

constraint must be satisfied:

gV
(
N̄t+1

)
− hU

(
N̄t

)
≤ gV

(
N̄1

)
. (21)

Step 1: If NT satisfies the IC constraints and at least one inequality is strict,

then there exists another N ′
T that satisfies the IC constraints with inequality and

N̄ ′1 < N̄1.

Take the first t at which the IC constraint is satisfied with strict inequality. If

t = 1, then by continuity and strict monotonicity of hU and gV one can decrease

N̄1 and keep (20) satisfied. Suppose then t = 2. Then one can decrease N̄2 and

keep (21) satisfied. Since N̄2 only enters the first and second period IC’s, we

need to make sure that (20) for t = 1 is satisfied. But decreasing N̄2, relaxes (20)

for t = 1, so one can decrease N̄1. Repeating the same argument for any t proves

the step.

Step 2: Suppose NT is a screening equilibrium. By Step 1, we can assume

that NT satisfies the IC constraints with strict equality. Consider decreasing N̄1

by ε1. In order to keep the IC for t = 1 satisfied, one needs to decrease N̄2 by some

ε2, which by continuity of all functions is a continuous function of ε1 Therefore,
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to keep the IC for t = 2 satisfied, one needs to decrease N̄2 by ε2, which again

by continuity is a continuous function of ε1. Continuing this logic until T − 1,

we obtain that we need to decrease N̄T−1 by some εT−1. So far, by constructions,

all IC constraints are satisfied until T − 1. We need to make sure that the IC

constraint at T − 1 is satisfied as well. Suppose that T − 1 is odd. Then the IC

is

p
(
gV (1)− hU

(
N̄T−1 − εT−1 (ε1)

))
− (1− p)hU

(
N̄1 − ε1

)
≤ 0.

Since in NT , N̄T−1 = 1, and by continuity of εT−1 with respect to ε1, one can

find ε1 > 0 that will make this IC satisfied. And by construction,, N̄1− ε1 < N̄1.

Step 3: It remains to show that the lowest N1 is a decreasing function of

b. Since by Step 1, the lowest N1 is achieved in the equilibrium in which all

constraints are binding, it remains to show that increasing b, relaxes all the

constrains.But this is immediate from (20) and (21).

B.4 Proof of Example 4.4

Define h
def
= gU ≡ gV ≡ hU ≡ hV . Take T even (an analogous proof can be

constructed for T odd) and a sequence NT with N̄T = N̄T−1 = 1 such that (20)

and (21) are satisfied with equality for all t. Then by adding the left-hand sides

and the right-hand sides of (20) and (21) for the corresponding ts one obtains

that for any odd K,

h (1)− h
(
N̄T−K

)
=
K + 2− 2p

p
· h
(
N̄1

)
.

Hence, for K = T − 1, we get

h (1)− h
(
N̄1

)
=

T + 1− 2p

p
· h
(
N̄1

)
⇔ p

T + 1− p
= h

(
N̄1

)
.

By setting N̄1 = h−1
(

p
T+1−p

)
, we obtain a sequence for which all IC constraints

for the unviable types are satisfied, and the unviable types reveal no evidence.
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If the viable types adhere to NT , then the privacy leakage is Ψ1 (NT ) = h
(
N̄1

)
and Ψ2 (NT ) = 0, and limT→∞ h

(
N̄1

)
= limT→∞

p
T+1−p = 0. Hence, it remains

to show that the IC constraints of the viable types are satisfied.

At t = 1, if the viable type of player 1 reveals N̄1, with probability 1− p she

faces the unviable type, and no more evidence is exchanged, and with probability

p she faces the viable type and cooperates on the project. Hence, her IC constraint

at t = 1 is

0 ≤ pv − (1− p)h(N̄1). (22)

In all other odd rounds she knows whether her opponent is viable. If she faces

the unviable type, she clearly has an incentive to reveal no evidence. If she faces

the viable type, she must prefer to continue exchanging evidence and end up with

v+ gV (1)−hV (1) = v, instead of walking away at some t with the evidence that

the opponent revealed in t− 1. Hence, her IC constraint in round t is

v ≥ h(N̄t−1)− h(N̄t−2). (23)

In each round in which player 2 speaks, she knows the type of her opponent,

hence, her IC constraint in all even rounds is identical to (23). By (20) and (21),

h(Nt−1) − h(Nt−2) ≤ max
{

1−p
p
h
(
N̄1

)
, h
(
N̄1

)}
, and since limT→∞ h

(
N̄1

)
= 0,

there exists T0, such that for all T ≥ T0, (23) is satisfied. Similarly, (22) is also

satisfied.
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