
 

CMS-EMS 
Center for Mathematical Studies in Economics 

And Management Science 

Discussion Paper #1571 
 

The Logical Consistency of Time Inconsistency 
A Theory of Forward-Looking Behavior 

 

Simone Galperti* 
Bruno Strulovici** 

 
October 29, 2013 

 
JEL Classification: D01, D60, D90. 
 
Keywords:  time inconsistency, forward-looking behavior, hyperbolic discounting,  
beta-delta discounting, anticipations, welfare criterion. 
 

* UC, San Diego 
**Northwestern University 

 

 

 



The Logical Consistency of Time Inconsistency
A Theory of Forward-Looking Behavior

Bruno Strulovici Simone Galperti∗

Northwestern University UC, San Diego

First Draft: May 2011

October 29, 2013

Abstract

This paper argues that, to be forward-looking in a logically consistent sense, a de-
cision maker must take account of his overall well-being, not just his instantaneous
utility, in all future periods. However, such a decision-maker is necessarily time
inconsistent. The paper explores the relationship between how a decision-maker
discounts well-being and how he discounts instantaneous utility. It also provides
simple axiomatizations of preferences that exhibit forward-looking behavior, includ-
ing quasi-hyperbolic discounting (Phelps and Pollack (1968) [18]; Laibson (1997)
[12]). Finally, the paper provides a rigorous way to think about welfare criteria in
models with time inconsistent agents.
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1 Introduction

The standard theory of intertemporal choice hinges on the concept of instantaneous util-
ity: the utility that a consumption event yields at the time when it occurs. According
to the usual interpretation of this theory, at each time, a forward-looking decision maker
(DM) assigns to any consumption stream an overall utility that aggregates instantaneous
utilities from then on. Such a DM, however, is forward-looking in a very limited sense:
He does not realize that, at any future time, his overall utility will continue to depend on
immediate as well as future consumption.1 This logical inconsistency calls for reconsider-
ing how we think about and model forward-looking behavior. This paper aims to do so,
by proposing a theory based on the broader concept of well-being. In this theory, a DM
will be fully forward-looking, for at each time his overall utility (hereafter, ‘well-being’)
depends not on his instantaneous utilities, but on his well-being at all future dates.2

To illustrate the conceptual issues raised by the standard theory, consider the geomet-
rically discounted utility (DU) model (Samuelson (1937) [21]). To be concrete, imagine
you have just won a trip to Hawaii, which will take place in two weeks. How does that
affect your well-being today (time 0)? For simplicity, ignore other consumption and nor-
malize the utility of consuming nothing to zero. The DU model says that, at time 0,
your well-being is

U0 = u(c0) + δu(c1) + δ2u(c2) + · · · = δ2u(c2),

where δ is your discount rate, u(·) measures your instantaneous utility, and c2 is the ‘trip
consumption.’3 Yet, it also says that at time 1—i.e., one week before the trip—your
well-being is

U1 = u(c1) + δu(c2) + · · · = δu(c2),

which is not zero. So the DU model must imply that, at time 1, your well-being takes
account of the Hawaii trip. Is this dependence recognized at time 0?

The answer depends on how we interpret the DU model. If we view the time-0 self as
thinking about the time-1 self only in terms of time-1 consumption, which is zero, then

1An alternative interpretation will be discussed later. As will be clear, that interpretation is also
problematic.

2Since the goal here is to address the logically inconsistent way in which the standard theory models
forward-looking behavior, the paper focuses of the case in which current well-being depends on future
well-being. Of course, it is natural to consider the case in which current well-being may also depend on
past well-being. But this is beyond the scope of this paper.

3Allowing for time-dependent utility, ut, is irrelevant for the main point here.
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the answer is no. This interpretation is logically inconsistent, for it treats the time-1 self
as forward-looking if we look at him from time 1, but as myopic if we look at him from
time 0. Another interpretation is that time-0 well-being depends on time-0 consumption
and time-1 well-being, i.e.,

U0 = u(c0) + δU1.

In words, at time 0, you care about the trip only through the well-being that your time-1
self will get from thinking about going to Hawaii a week later. Accordingly, the time-0
self does realize that the time-1 self’s well-being depends on the Hawaii trip, but he
does not care about the trip per se. This interpretation, though logically consistent, is
unsatisfactory. There is no reason why the time-0 self should not care directly about the
time-2 self—or even later selves, for that matter.

To overcome these issues, this paper axiomatizes and analyzes preference representa-
tions that properly capture fully forward-looking behavior. In general, preferences over
consumption streams, c, will be represented by the function

U(c) = V (c0, U(1c), U(2c), . . .), (1)

where tc is the continuation of c from t onwards. This expression highlights the two con-
ceptual premises of this paper. First, future well-being, not future instantaneous utility,
determines today’s well-being. Therefore, for instance, DM is insensitive to reshuffling
consumption across dates, as long as this does not change future well-being. Of course,
today’s well-being also depends on today’s consumption. The second premise is that
immediate consumption is essentially different from (future) well-being, a more general
and comprehensive entity. Such a distinction links this paper with some early work on
intertemporal choice by Böhm-Bawerk (1890)[24] and Fisher (1930) [5], who had a similar
point of view.

The present paper focuses on preferences that do not change over time. Nonetheless,
fully forward-looking behavior turns out to be incompatible with time consistency. A
sequence of preferences is time consistent, if it has the following property: If a course
of action is preferable according to tomorrow’s preference, then it remains preferable,
for tomorrow, according to today’s preference.4 In this paper, this property holds if
and only if V in (1) depends only on its first two arguments, so that DM does not
care about his well-being beyond the immediate future. To see the intuition, consider

4Time consistency is conceptually different from stationarity of a preference (Koopmans (1960) [9]),
even though these properties are often viewed as synonyms. This difference is discussed at the end of
Section 4.
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a setting with three periods, 1, 2, and 3.5 In period 2, when choosing consumption
for the last two periods, DM understands that his immediate well-being depends on
period-3 well-being and acts accordingly. Instead, in period 1, when again considering
how much to consume in the last two periods, DM understands that his immediate well-
being depends on period-3 well-being in two ways: directly, but also indirectly via his
period-2 well-being. So DM’s view on consumption allocations in period 2 and 3 changes
between period 1 and 2. Roughly speaking, in period 2, DM is unable to internalize the
‘externality’ that his choices have on himself in period 1—this period is, by then, part of
the past.

This point implies that a fully forward-looking DM is necessarily time inconsistent.
This conclusion may seem paradoxical, since such a DM cares more about his future
well-being than in standard models, looking beyond the immediate future. This, perhaps
unexpected, source of time inconsistency differs from usual rationales that view DM as
overweighing the present vs. the future (Laibson (1997) [12]), or imply that he is prone
to temptations (Gul and Pesendorfer (2001) [7]), or assume that his preferences change
over time (Strotz (1955) [23]).

The paper then considers well-being representations that feature time discounting.
The goal is to understand the implications of how DM discounts well-being on how he
discounts instantaneous utility, and vice versa. As is well-known, geometric discounting
of instantaneous utility implies time consistency; this, as noted, is equivalent to DM’s
being ‘myopically’ forward-looking. Therefore, this paper shows that we can interpret
and explain departures from geometric discounting of instantaneous utility as situations
in which DM is fully forward-looking. In this view, if we believe that usually people are
fully forward-looking, then we should be less surprised by the overwhelming evidence
against geometric discounting (see, e.g., Frederick et al. (2002) [6]).

The paper derives general formulae that allow us to express well-being discount func-
tions only in terms of instantaneous-utility discount functions, and vice versa. In general,
a fully forward-looking DM always discounts well-being more than he appears to discount
instantaneous utility. The reason is simple: DM weighs his instantaneous utility at some
future date t more than his well-being at t, because consumption at t affects well-being
at t as well as at all previous periods.

To illustrate how these formulae work, the paper considers two renown cases: hy-
perbolic (see, e.g., Loewenstein and Prelec (1992) [15]) and quasi-hyperbolic discounting

5The point holds with finitely as well as infinitely many periods. Of course, in the first case, preferences
cannot be time invariant because their domain changes over time. So this example is just for illustration.
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(Phelps and Pollack (1968) [18]; Laibson (1997) [12]). In the first case, a faster decline of
the instantaneous-utility discount rate corresponds to slower discounting of well-being.
In the second case, β-δ discounting corresponds to a specific well-being representation:6

U(c) = u(c0) +
∞∑
t=1

αtγU(tc), (2)

where γ = β
1−β . Most importantly, the paper derives this representation from straightfor-

ward axioms on preferences. It thus provides a surprising, yet natural, axiomatization of
quasi-hyperbolic discounting, which complements existing ones (see Section 2). The de-
gree of present bias β is tightly linked with the parameter γ, interpreted as the ‘vividness’
or ‘imaginability’ of future well-being.7 This link implies, for instance, that increasing
the vividness of the future well-being caused by some behavior may mitigate present bias.
This differs from providing information on the consequences of some behavior and could
be done with appropriate ad campaigns, for issues like smoking, dieting, or even climate
change.

Built on the concept of well-being, the theory in this paper can accommodate phe-
nomena that appear as anomalies in the DU model.8 For instance, despite discounting
his future well-being, a fully forward-looking DM may desire to advance dreadful events
(like a colonoscopy) and to postpone delightful events (like a party with friends). More
generally, such a DM may prefer consumption streams that induce increasing, rather
than decreasing, instantaneous-utility streams, while the DU model would predict the
opposite. This is because later consumption improves well-being in more periods and
therefore is more valuable from an ex-ante point of view.

Finally, this paper suggests a different angle from which we can think about welfare
criteria, in contexts with time-inconsistent preferences. If a preference has a well-being
representation, then we know explicitly to what extent DM’s choices today take account
of future well-being. In contrast, this information is not conveyed by a representation
that depends only on instantaneous utility. This information, however, may be valuable
to assess whether today’s choices serve as a reasonable welfare criterion. For example,
by expression (2), today’s choices of a β-δ DM actually take account of his well-being in
all future periods—not just tomorrow. As a result, one may argue that the β-δ model
defines a more reasonable welfare criterion than the DU model.

6For a similar result, see Saez-Marti (2005) [20].
7This interpretation is related to Loewenstein (1987) [14] (see Section 2).
8For evidence of these phenomena, see, e.g., Frederick et al. (2002) [6].
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As noted, the paper provides straightforward axiomatizations of several well-being
representations. The general representation in (1) hinges on one simple axiom, which
intuitively says the following. Given two consumption streams with equal initial con-
sumption, if DM is indifferent between their continuations (tc) starting at any future
date, then he cannot prefer either stream—for example, because it allocates future con-
sumption differently over time. This ensures that current well-being depends on future
consumption only through the implied future well-being.

The paper then derives well-being representations characterized by time separability,
discounting, and stationary dependence on future well-being. Time separability in im-
mediate consumption and future well-being follows from a straightforward adaptation of
Debreu’s (1960) [3] strong-separability axiom. With regard to stationarity, intuitively, it
says that, from the ex-ante point of view, DM does not see himself as changing how he
ranks his options, simply because all options are postponed by one period. Of course,
for this property to be reasonable, the time shift should not change the nature of the
considered options. More concretely, from the point of view of this paper, postponing
consumption streams that start at some future date does not change their nature, for
it involves shifting future well-being. Instead, postponing consumption streams that
start today changes their nature, for it transforms immediate consumption into future
well-being. For this reason, in this paper, the stationarity axiom refers only to future
well-being. This axiom differs substantively from Koopmans’ (1960) stationarity, as well
as from Olea and Strzalecki’s (2013) quasistationarity (see Section 2).

Finally, to obtain the ‘vividness’ representation in (2) a further axiom is needed.
Even if DM’s preference is separable in immediate consumption and future well-being,
the consumption trade-offs between two periods can be influenced by well-being—hence
consumption—in future periods. This interdependence, although consistent with some
evidence (see Frederick et al. (2002) [6]), is clearly absent in the β-δ model. So the ad-
ditional axiom simply rules it out. The resulting axiomatic foundation of the β-δ model
sheds light on its main features. First, the stark, apparently ad-hoc, distinction between
short and long-run discounting of instantaneous utility is explained by the conceptual
distinction between immediate consumption and future well-being, combined with sta-
tionarity in future well-being. Second, the time separability in instantaneous utility is
explained by separability in immediate consumption and future well-being, combined
with the impossibility that intertemporal consumption trade-offs depend on future well-
being.
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2 Related Literature

Several papers have addressed, in various ways, the criticisms that empirical studies have
raised against the standard DU model. More specifically, Loewenstein (1987) [14], Caplin
and Leahy (2001) [1], and Koszegi (2010) [11] augment the DU model with a psychological
dimension called anticipation. In these papers, consumption at date t generates two
kinds of utilities, both geometrically discounted: standard instantaneous utility at t
and anticipation utility at all t′ < t. Anticipation utility captures the effects on DM’s
happiness of feelings, like excitement or anxiety, that he harbors when thinking about
future events. Such a psychological connotation sets anticipation apart from forward-
looking behavior as intended here: Being forward-looking simply means that DM cares
about the future per se—as in the DU model—and correctly forecasts that he continues
to do so in the future. Although conceptually very different, anticipation models can
also lead to time inconsistency and can accommodate the anomalies of the DU model
addressed in the present paper. This paper, however, does so without augmenting the
model with psychological dimensions. It therefore complements the explanations offered
by anticipation models.

The result that fully forward-looking behavior leads to time inconsistency of pref-
erences relates to the work on nonpaternalistic sympathy of Pearce (1983) [17]. This
paper considers a cake-eating model with finitely many generations; each generation’s
well-being depends on its consumption as well as the well-being of all other or only
future generations. The paper shows that any consumption plan in a non-cooperative
equilibrium among generations must be inefficient. It leaves open, however, the ques-
tion of whether equilibria are inefficient because the generations cannot coordinate on
a better outcome—intuitively, like in the prisoner’s dilemma—or because they pursue
fundamentally inconsistent goals. The present paper shows that the second reason is the
answer.

Phelps and Pollack (1968) [18] introduced β-δ discounting, so as to analyze economies
populated by non-overlapping generations that are ‘imperfectly altruistic.’ That is, this
paper views as more plausible that the current generation cares significantly more about
its consumption than about that of any future generation—composed, after all, of unborn
strangers. In this view, the β-δ formula, though simple, has a natural justification.
Laibson (1997) [12] makes a significant conceptual leap, by applying the same formula
to individual decision-making. He justifies using it based on its ability “to capture the
qualitative properties” of hyperbolic discounting, which has received substantial empirical
support. Nonetheless, with a single DM, it is more difficult to justify why he cares
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significantly more about his immediate consumption than his own future consumption
in a uniform way.

Several papers have provided axiomatic justifications for the β-δ model in settings
with a single DM (see, e.g., Hayashi (2003) [8]; Olea and Strzalecki (2013) [16]). These
axiomatizations differ from that of the present paper as follows. First, they continue to
view DM as caring about instantaneous utilities. Within this framework, they replace
Koopmans’ (1960) stationarity—clearly violated by β-δ discounting—with quasistation-
arity, namely stationarity from the second period onward. Assuming quasistationarity,
however, does not address the conceptual issue posed by Laibson’s model. Second, to
obtain the β-δ representation, they need to ensure that current and future instantaneous
utilities are cardinally equivalent. Olea and Strzalecki’s clever axioms turn out to suggest
simple experiments to identify and measure β and δ, but they are difficult to interpret.
In contrast, the present paper views DM as caring about immediate consumption and
future well-being. As a result, its notion of stationarity—involving only well-being—has
a more natural interpretation and, as noted, can offer a rationale for the β-δ formula
in Laibson’s setting. The paper also shows that this formula is tightly linked with an
intuitive property, namely that intertemporal consumption trade-offs do not depend on
future well-being.

Finally, as noted, the literature has already discovered the mathematical equivalence
between the β-δ formula and the representation in (2). For example, Saez-Marti and
Weibull (2005) [20] derive this equivalence, while studying when discounting instanta-
neous utility is consistent with altruism, “in the sense that each DM’s utility can be
written as the sum of own instantaneous utility, and some weighted sum of all future
DMs’ total utilities.” However, note that, in their paper, the weights αtγ represent the
degree of altruism of generation 0 towards generation t; so their interpretation is com-
pletely different from that in the present paper. More generally, Saez-Marti and Weibull
do not provide an axiomatic foundation of either representation; hence, they also do not
address the conceptual issues mentioned before.

3 Preliminaries

This paper considers how a decision maker (DM) evaluates consumption streams. At
each time t, the set of feasible consumption levels is X. Time is discrete with infinite
horizon: T = {0, 1, 2, . . .}. The set of consumption streams is C = XT .9 For t ≥ 0,

9The mathematical properties of X and C will be introduced later in Section 7.
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let tC be the set of consumption streams starting at time t—elements of this set will be
denoted by tc = (ct, ct+1, . . .). At each t, DM has a preference relation �t, defined over
the domain tC. This preference represents DM’s choices over consumption streams at t.
In principle, DM’s preferences could very well be different at different times. This paper
assumes, however, that they are time invariant.

Assumption 1 (Time Invariance). For all t ≥ 0, �t=�.

This paper considers a DM who, at each t, cares about his future well-being (i.e.,
overall utility). That is, it focuses on preferences � that have the following well-being
representation. This, as well as other representations to follow, will be axiomatized in
Section 7.

Definition 1 (Well-Being Representation). The preference � has a well-being represen-
tation if and only if there exist (continuous) functions U : C → R, with range U , and
V : X × UN → R, such that for any t

tc � tc
′ ⇐⇒ V (ct, U(t+1c), U(t+2c), . . .) > V (c′t, U(t+1c

′), U(t+2c
′), . . .),

and U(tc) = V (ct, U(t+1c), U(t+2c), . . .).10

So the utility DM assigns to a consumption stream tc depends only on his immediate
consumption ct and, for at least some periods after t, on the per-period well-being that
he will get from tc. In this paper, well-being captures an aggregate of sensorial pleasure
from immediate consumption and purely mental satisfaction (or dissatisfaction) from
future well-being. While such an aggregation seems difficult to make, it is somehow
performed by any forward-looking DM who must choose current consumption in a dy-
namic optimization problem. The definition is recursive, as one should expect: For a
forward-looking DM, well-being today involves well-being in the future. Finally, note
that this paper does not consider a DM who is fully myopic and cares only about imme-
diate consumption, and that, at this stage, V may be strictly decreasing in U(t+kc) for
some k ≥ 1.

4 Forward-Looking Behavior and Time (In)consistency

Among the properties of dynamic choice, time consistency is perhaps the most prominent
and studied one. Therefore, this paper first considers what implications time consistency

10Of course, one can allow DM’s preferences to differ across time, yet obtain for each �t a well-being
representation. In this case, U and V will depend on t.
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has on the extent to which DM is forward-looking—that is, on how V depends on future
well-being. Surprisingly, there is a tension between being time consistent and being
forward-looking.

In the present setup, the idea that choices are consistent over time is captured as
follows (see, e.g., Siniscalchi (2011) [22]).

Definition 2 (Time Consistency). If (t+1c) ∼t+1 (t+1c
′), then (ct, t+1c) ∼t (ct, t+1c

′). If
(t+1c) �t+1 (t+1c

′), then (ct, t+1c) �t (ct, t+1c
′).11

This condition is based on the following question. Suppose DM is considering, at t, the
consumption streams he will be facing from t + 1 onward. Does DM rank such streams
in the same way at t and at t + 1? Importantly, these rankings are those revealed by
DM’s choice correspondences at t and t+ 1—which, by Assumption 1, are generated by
the same preference. So Definition 2 first requires that, if at t+ 1 DM chooses either t+1c

or t+1c
′, then at t he also choose either stream extended with the same consumption at t.

In other words, a strict preference between (ct, t+1c) and (ct, t+1c
′) would be equivalent to

different choice correspondences at t and at t+ 1, which is at odds with time consistency.
On the other hand, if DM chooses t+1c but not t+1c

′ at t+ 1, then it is again a violation
of time consistency if he chooses (ct, t+1c

′).12

Time consistency has strong implications on the degree of forward-looking behav-
ior. Indeed, DM’s preference is time consistent if and only if he cares about immediate
consumption and (positively) about his well-being in the next period only.

Proposition 1. The preference � satisfies time consistency if and only if V (ct, U(t+1c),

U(t+2c), . . .) = V (ct, U(t+1c)), for all c ∈ C, and V is strictly increasing in its second
argument.

Proof. Suppose V (ct, U(t+1c), U(t+2c), . . .) = V (ct, U(t+1c)) for all c ∈ C and V is in-
creasing in the second argument. Using Assumption 1, if t+1c ∼ t+1c

′, then13 U(t+1c) =

U(t+1c
′) and, since V is a function, V (ct, U(t+1c)) = V (ct, U(t+1c

′)). This implies (ct, t+1c)

∼ (ct, t+1c
′). If t+1c � t+1c

′, then U(t+1c) > U(t+1c
′) and, since V is strictly increasing in

its second argument, V (ct, U(t+1c)) > V (ct, U(t+1c
′)); this implies (ct, t+1c) � (ct, t+1c

′).
11Definition 2 looks similar to the Stationarity Postulate in Koopmans (1960, 1964) [9, 10]. However,

time consistency and stationarity are conceptually very different (see below and Section 7.1).
12One could consider a weaker version of the second part of Definition 2: If (t+1c) �t+1 (t+1c

′), then
(ct, t+1c) %t (ct, t+1c

′). This version, however, would be at odds with time consistency, unless DM is
fully myopic and cares only about the present.

13This step would be meaningless if U(t+1c) represented how DM evaluates consumption streams
starting at t + 1 from the perspective of t, but not necessarily how he evaluates such streams from the
perspective of t+ 1. This observation applies to the rest of the proof.
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Suppose t+1c ∼ t+1c
′ implies (ct, t+1c) ∼ (ct, t+1c

′). Then, for any (U(t+1c), U(t+2c), . . .)

and (U(t+1c
′), U(t+2c

′), . . .) such that U(t+1c) = U(t+1c
′),

V (ct, U(t+1c), U(t+2c), . . .) = V (ct, U(t+1c
′), U(t+2c

′), . . .).

So can V depend only on its first two components. Suppose t+1c � t+1c
′ implies (ct, t+1c)

� (ct, t+1c
′). Then, U(t+1c) > U(t+1c

′). Moreover, it must be that V (ct, U(t+1c)) >

V (ct, U(t+1c
′)); that is, V must be strictly increasing in its second argument.

As noted in the introduction, the standard DU model satisfies

U(tc) = u(ct) + δU(t+1c) = V (ct, U(t+1c)).

To allow for the two interpretations of this model mentioned in the introduction, this
paper adopts the following definitions.

Definition 3 (Myopically Forward-Looking DM). A DM is myopically forward-looking
at t if either his immediate well-being depends only on his well-being at t+ 1, or he fails
to realize that, in the future, he will continue to care about future selves.

Definition 4 (Fully Forward-Looking DM). A DM is fully forward-looking if, at all
t ≥ 0, his immediate well-being depends directly on his well-being at all s > t.

To see the intuition behind Proposition 1, suppose t+1c involves reducing consumption
(i.e., saving) at t + 1—which DM dislikes—and increasing it at all following periods—
which he likes. Also, suppose that, at t+1, DM is indifferent between saving immediately,

t+1c, or not, t+1c
′. Now imagine that, at t, DM can choose whether to save at t + 1 or

not, holding consumption at t fixed. Then, at t, if DM cares about his well-being beyond
t+ 1, he must strictly prefer (ct, t+1c) to (ct, t+1c

′)—i.e., saving at t+ 1. Intuitively, from
the perspective of t + 1, the negative effect on t + 1 well-being of saving (i.e., of t+1c)
exactly offsets the positive effect of the higher well-being in later periods. But since at
t DM cares directly about well-being beyond t+ 1, he weighs more the positive effect of

t+1c, thus strictly preferring to save at t+ 1. More generally, this mechanism can lead to
situations in which, at t+ 1, DM wants to review the consumption plan chosen at t.

Proposition 1 has several implications. First, a DM who cares about his well-being
beyond the immediate future must be time inconsistent. So this paper identifies a cause
of time inconsistency in DM’s caring, at t, about his well-being beyond t+ 1. Moreover,
if we deem natural that a DM should care about his future in this way, then based on
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Proposition 1, we must conclude that time inconsistency should be the rule, rather than
the exception.

The second implication is that DM’s preference is time consistent if and only if, at
each t, it has a specific recursive representation: DM’s utility from a consumption stream,
U(tc), depends only on immediate consumption, ct, and continuation utility U(t+1c).
Moreover, at t, DM must always be happier if his continuation utility is higher. In this
case, at t + 1, DM never wants to review a consumption plan chosen at t, since that
plan was already maximizing his t + 1 well-being. In contexts in which DM at different
dates correspond to different generations (e.g., as in Phelps-Pollack (1968) [18]), with this
recursive utility each generation is benevolent towards its children, but cares about the
well-being of its grandchildren and beyond only through the impact on its children’s well-
being. Put differently, this means that your grandparents care about you only because,
if you are happy, then your parents are happy.

Definition 2 looks similar to the Stationarity Postulate in Koopmans (1960, 1964)
[9, 10]. In the present setup, stationarity requires the following: If (t+1c) ∼t (t+1c

′), then
(ct, t+1c) ∼t (ct, t+1c

′); and if (t+1c) �t (t+1c
′), then (ct, t+1c) �t (ct, t+1c

′). Despite the
similarity, the two conditions are conceptually very different.14 Indeed, Koopmans writes:

“[Stationarity] does not imply that, after one period has elapsed, the ordering
then applicable to the ‘then’ future will be the same as that now applicable
to the ‘present’ future. All postulates are concerned with only one ordering,
namely that guiding decisions to be taken in the present. Any question of
change or consistency of preferences as the time of choice changes is therefore
extraneous to the present study.” (p. 85, [10], emphasis in the original)

The point can be illustrated with two simple examples.

Example 1 (Stationarity 6⇒ Time Consistency): For t ≥ 0, �t is represented by

Ut(tc) = u(ct) +
∞∑

s≥t+1

δs−tt u(cs) = u(ct) + δtUt(t+1c),

where u(·) is continuous, strictly increasing, and bounded. Moreover, δt ∈ (0, 1) and
δt > δt+1 for t ≥ 0. Then, each �t satisfies stationarity. However, it is easy to see that
{�t}t≥0 violates time consistency.

14Of course, if Assumption 1 holds, time consistency and stationarity are mathematically equivalent.
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Example 2 (Time Consistency 6⇒ Stationarity): For t ≥ 0, �t is represented by

Ut(tc) = u(ct) + φt

∞∑
s≥t+1

δs−tu(cs) = u(ct) + φtδUt+1(t+1c),

where δ ∈ (0, 1), φ0 ∈ (0, 1), and φt = 1 for t ≥ 1; u(·) has the same properties as before.
It is easy to see that {�t}t≥0 satisfies time consistency, but �0 violates stationarity.

These observations highlight in which way the present paper departs from other
intertemporal utility models. It does not relax stationarity directly—for example, as
Hayashi (2003) [8] and Olea and Strzalecki (2013) [16] do. Instead, it takes a concep-
tually different view of what determines preferences over consumption streams. The
starting point is to allow forward-looking behavior to extend beyond the immediate fu-
ture. By Proposition 1, doing so requires abandoning time consistency, which by time
invariance (Assumption 1) happens to be formally equivalent to stationarity.

5 Discounting the Future: Well-being vs. Instanta-

neous Utility

Recursive utility representations are the norm in dynamic economic models, like re-
peated games or contracting games. By Proposition 1, however, such representations do
not allow for fully forward-looking behavior. Standard geometric discounting of future
instantaneous utility (not future well-being) is an example in this sense. More generally,
let d : N× N→ R++ be a discount function: d(t, s) measures the weight that, sitting at
t, DM assigns to date s ≥ t. Suppose DM’s preference are represented by

U(tc) =
∑
s≥t

d(t, s)u(cs) (3)

for t ≥ 0, where u : X → R is DM’s instantaneous utility from consumption.15 Without
loss of generality, set d(0, 0) = 1.

Proposition 2. For t ≥ 0, U(tc) = u(ct) + d(t, t + 1)U(t+1c) if and only if d(t, t) = 1

and, for s > t,

d(s, t) =
s−t−1∏
j=0

d(t+ j, t+ j + 1). (4)

15For simplicity, this paper focuses on the case of time-homogenous instantaneous utility.
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The expression U(tc) = u(ct)+d(t, t+1)U(t+1c) is well known: It is the standard promise-
keeping condition, where total utility today is the sum of instantaneous utility today plus
the discounted continuation utility in the next period. It is also similar to a Bellman
equation, where ct is the optimal consumption at t.

Proposition 2 has two implications. First, if the discount function depends only on
the time difference s − t, then we must have geometric discounting: d̂(s − t) = δs−t

for δ = d̂(1). By Assumption 1 and Proposition 1, this of course says that geometric
discounting of instantaneous utility implies time consistency. But this also says that any
form of discounting that depends only on s − t and is not geometric—like hyperbolic
discounting—implies that, when comparing consumption streams, DM must care about
his well-being beyond the immediate future. In other words, we can understand any
departure from geometric discounting as a situation in which DM exhibits forward-looking
behavior, as intended here.

The second implication concerns how future consumption affects current well-being.
For s > t, this effect is captured by d(t, s), which, by (4), takes account of only the direct
channel through which consumption at s affects utility at t. As we will see, when DM
cares about his well-being beyond next period, d(t, s) will capture more than just this
direct channel.

In light of Proposition 2, one wonders if it is possible to find a relationship between
how DM discounts future instantaneous utility from consumption and how he cares about
future well-being—for instance, when he discounts instantaneous utility hyperbolically,
or quasi-hyperbolically. The next result relates instantaneous-utility discounting and
well-being discounting. This result will help us understand the properties of how a
forward-looking DM discounts consumption at each future time, from a more primitive
well-being representation with discounting—which will be axiomatized in Section 7. To
state the result, for s > t, let

T (t, s) = {t = (τ0, . . . , τn) | 1 ≤ n ≤ |s− t| , τ0 = t, τn = s, τi < τi+1} , (5)

and for s ≥ t+ 1, let

T̂ (t, s) = {t = (τ0, . . . , τn) | 2 ≤ n ≤ |s− t| , τ0 = t, τn = s, τi < τi+1} . (6)

T (t, s) is the set of all increasing vectors starting at t and ending at s; T̂ (t, s) is the set
of all such vectors with at least one intermediate date.

Proposition 3. If U(tc) = u(ct) +
∑

s>t q(t, s)U(sc) for some well-being discount func-
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tion q, then U(tc) = u(ct) +
∑

s>t d(t, s)u(cs) for some instantaneous-utility discount
function d. Moreover, for all t ≥ 0 and s > t,

d(t, s) =
∑

t∈T (t,s)

|t|−1∏
n=1

q(τn−1, τn). (7)

Similarly, if U(tc) = u(ct) +
∑

s>t d(t, s)u(cs) for some instantaneous-utility discount
function d, then U(tc) = u(ct) +

∑
s>t q(t, s)U(sc) for some (possibly negative) function

q. In particular, for all t ≥ 0 and s > t+ 1, q(t, t+ 1) = d(t, t+ 1) and

q(t, s) = d(t, s) +
∑

t∈T̂ (t,s)

(−1)|t|
|t|−1∏
n=1

d(τn−1, τn). (8)

The intuition behind Proposition 3 is simple. When DM is fully forward-looking,
d(t, s) takes account of all channels—not just the direct one as in Proposition 2—through
which utility from consumption at s affects well-being at t (see (7)). There are as many
such channels as there are ways of reaching s from t in j jumps, for j ≤ s − t − 1. For
example, consumption two periods from now affects today’s well-being via two channels:
(1) a direct one, for today DM cares about his well-being two periods from now; (2) an
indirect one, for today DM cares about his well-being tomorrow, which in turn depends
on his well-being two periods from now. As a result, independently of how DM discounts
well-being, he discounts instantaneous utility at least two periods in the future strictly
less than his well-being at that period.

Corollary 1. Suppose d and q are instantaneous-utility and well-being discount functions
corresponding to the same preference �. Then, d(t, s) > q(t, s) whenever s− t ≥ 2.16

As an illustration of the relationship between d and q, consider the well-known and
empirically supported case of hyperbolic discounting (see Frederick et al. (2002) [6] and
references therein). In its most general version, hyperbolic discounting takes the form

d(t, s) = dh(s− t) = [1 + k(s− t)]−
p
k (9)

with k, p > 0 (see Loewenstein and Prelec (1992) [15]). Unfortunately, it is hard to derive
in closed form the well-being discount function qh corresponding to dh.17 However, using

16Using a recursive formulation, Saez-Marti and Weibull (2005) [20] make a similar but weaker obser-
vation, namely that d(t, s) ≥ q(t, s) for all t and s.

17Proposition 2 in Saez-Marti and Weibull (2005) [20] implies that, if dh satisfies (9), then qh ≥ 0;
that is, qh is a discount function.
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Proposition 3, we can simulate qh for different values of k and p. This gives us an idea
of how qh qualitatively relates to dh.

Figure 1: Hyperbolic-Discounting Simulation

(a) k = 30 (b) k = 0.3

(c) k = 0.0001

Figure 1 represents dh, qh, and the standard geometric discount function for δ = 0.9

(curve GD). In all three panels, given k, the parameter p is set so that dh(τ) = δτ at
τ = 10 (this period is arbitrary). Recall that hyperbolic discounting is characterized by
declining discount rates, as highlighted by panel (a) and (b). Also, recall that, given
p, dh(τ) converges to δτ for every τ as k → 0—this pattern is clear going from panel
(a) to (c). All three panels illustrate the point of Corollary 1: Starting in period 2,
qh is strictly below dh. Moreover, they illustrate that, when a hyperbolic-discounting
time-inconsistent DM becomes more similar to a geometric-discounting time-consistent
DM, he discounts more his well-being from period 2 onwards. Indeed, for these periods,
qh moves closer to zero as dh moves closer to GD. This is, of course, an illustration of
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Propositions 1 and 2: DM can be time consistent if and only if he does not care about
well-being beyond period 1, i.e., qh(τ) = 0 for τ > 1.

In general, taking account of all channels through which future consumption affects
current well-being seems complicated. However, it can reduce to simple nongeometric
discounting of instantaneous utility. The following result illustrates this point in the
specific but important case of β-δ discounting.

Proposition 4. Suppose that U(tc) = u(ct) +
∑

s>t q(t, s)U(sc) and U(tc) = u(ct) +∑
s>t d(t, s)u(cs). Then, for s > t, d(t, s) = βδs−t with β, δ ∈ (0, 1) if and only if

q(t, s) = γαs−t with γ > 0 and α ∈ (0, 1). Moreover,

β =
γ

1 + γ
and δ = (1 + γ)α.

Section 7 presents a set of axioms on DM’s preference that corresponds to a well-being
representation of the form

V (ct,U(t+1c), . . .) = u(ct) +
∑
s>t

αs−tγU(sc), (10)

with γ > 0 and α ∈ (0, 1) (see Theorem 4). In so doing, this paper offers a foundation of
quasi-hyperbolic discounting based on the forward-looking behavior of a DM who takes
account of his well-being beyond the immediate future. This interpretation differs from
the usual one based on myopia, which says that a DM would discount future consumption
quasi-hyperbolically because he disproportionately cares about the present against any
future period. Moreover, Proposition 4 tightly links the ‘degree of present bias,’ β, with
how DM ‘rescales’ with γ his future well-being before incorporating it in his current well-
being. For example, geometric discounting of well-being (γ = 1) corresponds to β = 1

2
.

We can interpret the rescaling parameter γ as measuring the degree to which DM finds
future outcomes ‘imaginable’ or ‘vivid.’ As suggested by Böhm-Bawerk (1889) [24] and
Fisher (1930) [5], DM’s current utility depends on current consumption as well as on his
ability to imagine or foresee his future ‘wants.’ This essential difference between current
consumption and future well-being results in an asymmetric treatment of current and
future instantaneous utilities from consumption, which are instead identical in nature.
Finally, note that the representation in (10) separates ‘vividness’ of future well-being
from discounting.

Proposition 4 has several implications. First, it implies that fully forward-looking
behavior inevitably leads to present bias with respect to instantaneous utility—indeed,
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the implied β is always strictly less than one. Moreover, it can also give an explanation
for why present bias weakens as the period length shortens. If each period t represents
a shorter time horizon, current instantaneous utility u(ct) should play a smaller role in
determining current well-being; that is, γ should be larger in (10). Consequently, β
should get closer to one. The second implication is about long-run rates of discounting
and how increasing the vividness of future well-being can mitigate present bias.

Corollary 2. For any degree of present bias β, a fully forward-looking DM discounts
instantaneous utility at a long-run rate δ that is strictly higher than the rate α at which
he discounts well-being. Moreover, for any α, increasing vividness, γ, mitigates present
bias and improves the long-run rate δ.

For example, using Laibson et al.’s (2007) [13] estimates of β = 0.7 and δ = 0.95, we
get γ = 2.33 and α = 0.285. So well-being discounting is actually much steeper than
one might think by looking only at consumption discounting; moreover, this difference
depends significantly on ‘vividness.’

If we interpret DM in different periods as different generations, then Corollary 2
suggests that fully forward-looking generations prefer policies that are ‘sustainable’ in the
long run. If c and c′ involve long-run decisions that yield the same well-being to the next
generation, but c′ harms all later generations more than c, then the current generation
would prefer c to c′; in contrast, with a recursive utility function, the current generation
would be indifferent between c and c′. Of course, fully forward-looking generations are
also present biased, so they are subject to procrastinating the implementation of c′—
e.g., curbing carbon emissions. By the second part of Corollary 2, however, increasing
the vividness of the consequences of c and c′ on future generations both strengthens the
preference for sustainability and mitigates procrastination.18

Finally, one can use Proposition 4 to see that a fully forward-looking DM can exhibit
a desire to advance dreadful events and postpone delightful ones, or a preference for
improving (worsening) sequences of good (bad) events. Evidence of these phenomena,
which are at odds with standard discounted utility, is summarized in Frederick et al.
(2002) [6]. In Proposition 4, δ must be strictly less than one to ensure that U is well
defined over infinite-horizon problems. However, with finite horizon, δ can exceed 1,
even if DM positively discounts well-being (α < 1); that is, DM can weight future
instantaneous utility more than the current one, even if he weights future well-being less
than the current one.

18This assumes that external forces—like government ad campaigns—can modify DM’s preference, in
the spirit of the literature that interprets advertising as a way of modifying people’s preferences.
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Example 1. (Anticipating Dreadful Events) DM has to undergo a colonoscopy, denoted
by x. He finds this treatment very vivid (γ large) and painful (u(x) < 0). Recall that
βδ = γα. So, if δ > 1, DM strictly prefers to have his colonoscopy either today (if
βδ > 1), or tomorrow (if βδ < 1), than at any future date.

Example 2. (Postponing Delightful Events) DM has to choose when to open a very
expensive bottle of wine with his friends, ct. Based on past experience, DM finds such
events vivid (γ large) and enjoyable (u(ct) > 0). Then, if βδ < 1, DM would prefer
to open the bottle today rather than tomorrow. But if δ > 1, DM may strictly prefer
to open it at some time after tomorrow—provided that the natural decay of the wine
quality is not too fast nor too slow.19

More generally, it is easy to see that δ > 1 can lead DM to prefer improving (rather
than worsening) sequences of consumption, in a way that contradicts the predictions
of standard discounted utility but is consistent with some empirical evidence (see, e.g.,
Frederick (2002) [6]). If δ > 1, at t, DM assigns increasing weights to instantaneous
utilities from t + 1 onward. Therefore, given consumption at t, he is better off choosing
sequences that assign increasing, rather than decreasing, levels of consumption (and
instantaneous utility) to future periods.

6 Discussion: Welfare Criteria and Normative Analy-

sis

Models that allow for time-inconsistent preferences pose serious conceptual problems,
when defining welfare criteria and addressing policy questions. Discussing hyperbolic
discounting, Rubinstein (2003) [19] notes:

“Policy questions were freely discussed in these models even though welfare
assessment is particularly tricky in the presence of time inconsistency. The
literature often assumed, though with some hesitation, that the welfare cri-
terion is the utility function with stationary discounting rate δ (which is
independent of β).” (p. 1208)

Alternatively, to assess welfare, one may want to use a different weighted sum of each-
period instantaneous utilities, possibly averaging the β-δ weights with the standard DU
weights.

19For instance, suppose the wine goes bad at some t′ < +∞, so that u(ct) = 0 for t ≥ t′.
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The present paper offers a different, perhaps clearer, interpretation of welfare with
time-inconsistent preferences. Since well-being representations depend explicitly on DM’s
well-being at each date, they allows us to understand how current well-being takes into
account future well-being. In the specific case of the β-δ model, for instance, the pa-
rameters β and δ should be mapped back to the parameters γ and α in the well-being
representation, as indicated by Proposition 4. With this representation, a level of well-
being can be explicitly assigned to each DM’s self (or generation).

This last point highlights that how a welfare criterion should weigh each-period well-
being is a more general problem and has nothing to do with (quasi-) hyperbolic discount-
ing or, more generally, with time inconsistency. Indeed, in the standard DU model, DM’s
welfare is usually and uncontroversially measured as the sum of instantaneous utilities,
discounted at DM’s subjective rate. That model, however, implies that DM’s current
preference takes into account only his well-being in the next period, but not in future
periods. In contrast, the β-δ model implies that DM’s current preference takes into ac-
count, though in a simple way, his well-being in all future periods—the same holds with
more general well-being representations. From this perspective, the ex-ante preference of
the β-δ model appear as a more reasonable welfare criterion, than the ex-ante preference
of a DU model with discount rate δ.

To see this point from a different angle, consider a model with an infinite sequence
of generations, in which each generation’s well-being is measured by the geometrically
discounted sum of future generations’ instantaneous utility. It is standard to use such
a well-being of the first generation, so as to evaluate the welfare implied by different
policies. The first generation, however, does not care directly about the well-being of its
grandchildren, great grandchildren, and so forth.

This property seems to call for a different welfare criterion. In the present model, each
generation cares directly about the well-being of future generations beyond its children,
and its choices reveal how much. For example, we could interpret αt in Proposition 4
as representing how much generation 0 cares about generation t, whose well-being has
vividness γ for generation 0. A planner may then use this information to build a welfare
criterion for all generations. On the one hand, the planner may simply weigh unborn
generations in the same way as does the first generation. On the other hand, the planner
may, for example, aggregate the well-being of all generations using weights αt, so as to
determine how to weigh each generation’s consumption.
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7 Axiomatization

7.1 General Well-Being Representation

This section first presents a set of axioms that corresponds to DM’s preference having the
general well-being representation in Definition 1. With further axioms, it then obtains
the more specific forms analyzed in Section 4. Since DM’s preference are time invariant
(Assumption 1), for simplicity, this section takes the perspective of t = 0. Hereafter, the
set X of feasible consumption levels is a connected, separable metric space with metric
d. Let > be an order on X—e.g., if X ⊂ R, > is the usual order. The set C = XT of
consumption streams is endowed with the sup-norm: ‖c− c′‖C = supt d(ct, c

′
t).

The first three axioms are standard.

Axiom 1 (Weak Order). � is complete and transitive.

Axiom 2 (Continuity). For all c ∈ C, the sets {c′ ∈ C : c′ ≺ c} and {c′ ∈ C : c′ � c} are
open.

Axiom 3 (Constant-Flow Dominance). For all c ∈ C, there exist constant sequences c
and c such that c - c - c.

These axioms lead to the following standard result, which builds on Diamond (1965)
[4].

Theorem 1. Under Axioms 1-3, there exists a continuous function U : C → R that
represents �.

Theorem 1 says that DM’s preference at each t can be expressed in terms of current and
future consumption, as in a standard model. The function U obtained here, however, will
be different from the one arising under usual assumptions: U(c) assumes the connota-
tion of the well-being generated by consumption stream c, which depends on immediate
consumption as well as future well-being.

The following axiom simply rules out a trivial dependence on immediate consumption
as well as full myopia.

Axiom 4 (Non triviality). There exist x, x′, x̂ ∈ X and 1c, 1c
′, 1ĉ ∈ 1C, such that

(x, 1ĉ) � (x′, 1ĉ) and (x̂, 1c) � (x̂, 1c
′).
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The next axiom aims to capture the idea that consumption streams starting tomorrow
affect well-being today, only through the well-being that they generate at each future
time. This axiom is the key to obtaining the well-being representation in Definition 1.

Axiom 5. If tc ∼ tc
′ for all t ≥ 1, then (c0, 1c) ∼ (c0, 1c

′).

Axiom 5 rules out the possibility that DM prefers stream c over c′ because, even
though they generate the same stream of immediate consumption and future well-being,
they allocate future consumption differently over time. To express DM’s preference in
terms of immediate consumption and future well-being, for t ≥ 1, let f0(c) = c0, ft(c) =

U(tc), and f(c) = (f0, f1, f2, . . .). Also, let

F = {f(c) : c ∈ C} , (11)

and let U be the range of U . Note that U is an interval by continuity of U , non triviality
(Axiom 4), and connectedness of X.

Theorem 2. Axioms 1-5 hold if and only if there exists a continuous function V :

X × UN → R such that V (f(c)) = U(c) and V is nonconstant in f0 and ft for some
t ≥ 1.

Proof. (⇒) First, define equivalence classes on consumption streams as follows. Say that
c is equivalent to c′ if U(tc) = U(tc

′) for all t ≥ 1 and c0 = c′0.20 Let C∗ be the set of
equivalence classes of C, and let U∗ be defined by the utility function U on that domain.
Then, the function f ∗ : C∗ → F , defined by f ∗(c∗) = f(c) for c in the equivalence class
c∗, is by construction one-to-one and onto; so let (f ∗)−1 denote its inverse. Finally, for
any f ∈ F , define

V (f) = U∗((f ∗)−1(f)).

By Axiom 5, V is a well-defined function, and V (f(c)) = U(c) for every c. By Axiom
4, V is nonconstant in its first argument; moreover, since V (f(x̂,1 c)) > V (f(x̂,1 c

′)), the
function V cannot be constant in all arguments other than the first one.

(⇐) Suppose V : F → R is a continuous function such that V (f(c)) = U(c). Then,
it is immediate to see that the implied preference � satisfies Axioms 1-4.

Proposition 2 allows us to represent DM’s preference in terms of current consumption,
f0, and future well-being, ft for t ≥ 1. Note that Axiom 5 is weaker than an axiom—

20In general, there may be several consumption streams in an equivalence class. For exam-
ple, suppose U(c) = c0 + c1 + c2 + c3, and let c = (1, 1,−1,−1, 1, 1,−1,−1, . . .) and c′ =
(1,−1,−1, 1, 1,−1,−1, 1, 1, . . .).
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similar, in spirit, to Koopmans (1960) [9] stationarity—that requires 1c ∼ 1c
′ to imply

(c0, 1c) ∼ (c0, 1c
′). Axiom 5 requires that DM be indifferent (today) between two con-

sumption streams, only if he is indifferent between their truncations at all future times,
not just tomorrow.

7.2 Discounting Well-Being Representations

This section aims to refine the general well-being representation V (Definition 1), by
introducing time separability and a stationary dependence on future well-being.

The first two axioms, inspired by Debreu (1960) [3] and Koopmans (1960) [9], im-
ply that DM’s preference are separable in immediate consumption and future well-
being, as well as across future well-being. Let Π consist of all unions of subsets of
{{1}, {2}, {3, 4, . . .}} .

Axiom 6 (Immediate-Consumption and Well-Being Separability). Fix any π ∈ Π. If c,
ĉ, c′, ĉ′ ∈ C satisfy
• tc ∼ tĉ and tc

′ ∼ tĉ
′ for all t ∈ π,

• tc ∼ tc
′ and tĉ ∼ tĉ

′ for all t ∈ N \ π,
• either c0 = c′0 and ĉ0 = ĉ′0, or c0 = ĉ0 and c′0 = ĉ′0,
then c � c′ if and only if ĉ � ĉ′.

Note that Axiom 6 requires that certain consumption streams be indifferent, as opposed
to being equal. This is because we want separability in well-being, which can be the
same across streams that allocate consumption differently over time. The next axiom is
of technical nature. It ensures that DM’s preference does depend on well-being at period
1, 2, and 3 (Debreu’s essentiality condition).

Axiom 7 (Essentiality). There exist x, x′, y, y′ ∈ X and 3c, 3c
′ ∈ 3C such that (z, x,2 c)

� (z, x′,2 c), (z′, z′′, y,3 c
′′) � (z′, z′′, y′,3 c

′′), and (w,w′, w′′,3 c) � (w,w′, w′′,3 c
′) for some

z, z′, z′′, w, w′, w′′ ∈ X, 2c and 3c
′′.

The third axiom, also inspired by Koopmans (1960) [9], is meant to ensure that DM’s
preference is sufficiently stationary. Intuitively, stationarity means that, from today’s
point of view (t = 0), DM does not see himself as changing how he evaluates an event,
simply because this event is postponed to a subsequent date. Of course, requiring sta-
tionarity is reasonable only to the extent that this property refers to postponing events
or objects of the same nature. In this paper, however, instantaneous consumption and
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future well-being are conceptually different. So the axiom requires stationarity only with
respect to future well-being.

Axiom 8 (Well-Being Stationarity). If c, c′ ∈ C satisfy c0 = c′0 and 1c ∼ 1c
′, then

(c0, 2c) % (c′0, 2c
′) ⇐⇒ c % c′.

It is useful to compare this axiom with Koopmans’ (1960) [9] stationarity and with
Olea and Strzalecki’s (2013) quasistationarity. Koopmans’ stationarity involves postpon-
ing two consumption streams from today to tomorrow, replacing today’s consumption
with the same amount in both cases. Stationarity requires that DM rank such new
streams as he ranked the original streams. If we assume that DM evaluates streams
based only on the instantaneous utility generated in each period—so that today’s and
tomorrow’s consumption are conceptually equivalent—then stationarity seems reasonable
(at least normatively).

On the other hand, Olea and Strzalecki allow for violations of stationarity, but as-
sume quasistationarity. This property involves postponing two consumption streams
(with equal today’s consumption) from tomorrow to the day after, replacing tomorrow’s
consumption with the same amount in both cases. Again, quasistationarity requires that
DM rank such new streams as he ranked the original ones. Olea and Strzalecki continue
to assume that DM evaluates streams based only on instantaneous utilities. However,
within this framework, quasistationarity seems more difficult to justify. If DM views con-
sumption in the same way in all periods, why should stationarity hold between tomorrow
and the day after, but not between today and tomorrow? This issue does not arise in
the present model, for tomorrow’s well-being is equivalent to well-being thereafter, but
differs conceptually from today’s consumption.

Finally, the next axiom says that DM likes consumption and is benevolent towards
his future selves (or generations).

Axiom 9 (Monotonicity). If c, c′ ∈ C satisfy c0 > c′0 and tc % tc
′ for all t ≥ 1, then

c % c′.

Theorem 3 (Additive Well-Being Representation). Axiom 1-8 hold if and only if there
exist continuous nonconstant functions u : X → R and G : U → R, and α ∈ (0, 1) such
that

U(c) = u(c0) +
∞∑
t=1

αtG(U(tc)).

Moreover, Axiom 9 also holds if and only if u and G are also increasing.
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One might wonder whether the cumulative effects of future well-being on preceding
well-being inevitably leads the summation in the expression of Theorem 3 to diverge
to infinity. By Axioms 1-4, the function U is a well-defined representation of � and
cannot be constant. Therefore, there always exist consumption streams c such that U(c)

is bounded. Of course, if U is always bounded, then the summation in the expression of
Theorem 3 will always converge.

By Axiom 6, separability holds between immediate consumption and future well-
being, as well as across future well-being. Nonetheless, since well-being at t affects
well-being at all s < t, the trade-off between consumption at 0 and at t can depend on
well-being—and hence consumption—between 0 and t. So, controlling for the effect of
instantaneous utility at 0 and t, we get that DM’s discount factor can depend on well-
being between 0 and t. Of course, this dependence hinges on the properties of G. On
the other hand, well-being at t—hence consumption at t and thereafter—can affect the
trade-off between consumption at any two preceding dates.21 For example, note that

u(c0) +
∞∑
t=1

αtG(U(tc)) = u(c0) + αG

(
u(c1) +

∞∑
t=2

αtG(U(tc))

)

+
∞∑
t=2

αtG(U(tc));

so well-being at all dates after t = 2 can affect the trade-off between consumption today
and tomorrow. This effect, however, is absent in the standard discounted-utility model,
which highlights that Axiom 6 is weaker than the usual separability axiom.

More generally, the previous effect would be absent if G were affine, a property that
is implied by the next axiom. As a result, we obtain a representation in terms of ‘vivid-
ness’ of future well-being and, in light of Proposition 4, an axiomatic foundation for the
renowned β-δ discounting of instantaneous utility.

Axiom 10 (Strong Consumption Separability).
i) (c0, c1, 2c) � (c0, c

′
1, 2c) ⇐⇒ (ĉ0, c1, 2ĉ) � (ĉ0, c

′
1, 2ĉ)

ii) (c0, c1, 2c) � (c′0, c1, 2c
′) ⇐⇒ (c0, ĉ1, 2c) � (c′0, ĉ1, 2c

′)

iii) (c0, c1, 2c) � (c′0, c
′
1, 2c) ⇐⇒ (c0, c1, 2ĉ) � (c′0, c

′
1, 2ĉ)

iv) (c0, c1, 2c) � (c0, c1, 2c
′) ⇐⇒ (ĉ0, ĉ1, 2c) � (ĉ0, ĉ1, 2c

′).

Axiom 10 and axiom 6 with π = ∅ imply strong separability in c0, c1, and 2c. Note,
however, that these two axioms are quite different: Axiom 6 is about separability in well-

21For evidence of this phenomenon see, e.g., Frederick et al. (2002) [6].
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being, whereas axiom 10 is about separability in consumption in the first two periods
and well-being in the third period.

Theorem 4 (‘Vividness’ Well-being Representation). Axiom 1-10 hold if and only if
there exist γ > 0, α ∈ (0, 1), and a continuous nonconstant function u such that

U(c) = u(c0) +
∞∑
t=1

αtγU(tc).

This result allows us to understand β-δ discounting of instantaneous utility in terms
of properties of DM’s preference for immediate consumption and future well-being. First,
the stark, apparently ad-hoc, difference between discounting of future instantaneous util-
ity from today’s perspective and from any future period’s perspective comes from the
natural conceptual difference between today’s utility from immediate consumption and
future well-being. Second, additive time separability in instantaneous utility, which char-
acterizes β-δ discounting, requires separability in immediate consumption and future well-
being, but also that the trade-off between consumptions at any two consecutive periods
is not affected by the following well-being.

8 Appendix

8.1 Proof of Proposition 2

(⇒) Rewrite (3) as

U(tc) = d(t, t)u(ct) +
∑
s>t

d(t, s)u(cs)

= d(t, t)u(ct) + d(t, t+ 1)

[
u(ct+1) +

∑
s>t+1

d(t, s)

d(t, t+ 1)
u(cs)

]
, (12)

and
U(t+1c) = d(t+ 1, t+ 1)u(ct+1) +

∑
s>t+1

d(t+ 1, s)u(cs). (13)

For U(tc) = u(ct) + d(t, t + 1)U(t+1c) to hold for all t ≥ 0, it must be that d(t, t) = 1 for all
t ≥ 1, and

d(t, s) = d(t, t+ 1)d(t+ 1, s) (14)

for all t ≥ 0 and s > t+ 1.22 In particular, it follows that d(t, t+ 2) = d(t, t+ 1)d(t+ 1, t+ 2)

22For this procedure to be justified, one needs enough variability in u(c) across consumption, which is
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for all t ≥ 0. Suppose that, for all t ≥ 0 and 2 ≤ k ≤ n− 1,

d(t, t+ k) =
k−1∏
j=0

d(t+ j, t+ j + 1).

Then, by (14),

d(t, t+ n) = d(t, t+ 1)d(t+ 1, t+ n)

= d(t, t+ 1)d(t+ 1, (t+ 1) + n− 1)

= d(t, t+ 1)

(n−1)−1∏
j=0

d((t+ 1) + j, (t+ 1) + j + 1)

=
n−1∏
j=0

d(t+ j, t+ j + 1).

The result follows by induction.

(⇐) It follows by substituting d(t, s) into (12) and (13).

8.2 Proof of Proposition 3

(Part 1) Suppose � can be represented by U(tc) = u(ct) +
∑

s>t q(t, s)U(sc). We want to show
that there exists an alternative representation of �, given by

U(tc) =
∑
s≥t

d(t, s)u(cs)

for some discount function d. If this is true, then

U(tc) = u(ct) +
∑
s>t

q(t, s)U(sc)

= u(ct) +
∑
s>t

q(t, s)

∑
r≥s

d(s, r)u(cr)


= u(ct) +

∑
s>t

 ∑
t<r≤s

q(t, r)d(r, s)

u(cs).

assumed here. For example, if u is identically equal to zero, then no identification of the coefficients is
feasible. Instead, if u takes at least two value over X, then the identification method is justified: Varying
consumption at a single t—leaving the rest of consumption unchanged—pins down the coefficient at t.
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This implies that, for all t ≥ 0 and s > t, d(t, t) = 1 and

d(t, s) =
∑
t<r≤s

q(t, r)d(r, s). (15)

This immediately implies d(t, t + 1) = q(t, t + 1) for all t ≥ 0. Now define T (t, s) as in (5).
Suppose that (7) holds for all t ≥ 0 and s = t+ k with 1 ≤ k ≤ n− 1. Then, by (15)

d(t, t+ n) =
∑

t<r≤t+n
q(t, r)d(r, s)

= q(t, t+ n) +
∑

t<r≤t+n−1

 ∑
t∈T (r,t+n)

|t|−1∏
j=1

q(τj−1, τj)q(t, r)


= q(t, t+ n) +

∑
t∈T (t,t+n)\{(t,t+n)}

|t|−1∏
j=1

q(τj−1, τj)q(t, r).

The result follows by induction.

(Part 2) Suppose � can be represented by U(tc) = u(ct) +
∑

s>t d(t, s)u(cs). We want to
show that there exists an alternative representation of �, given by

U(tc) = u(ct) +
∑
s>t

q(t, s)U(sc),

for some function q. If this is true, then for all t ≥ 0,

u(ct) = U(tc)−
∑
s>t

q(t, s)U(sc)

and

U(tc) = u(ct) +
∑
s>t

d(t, s)

[
U(sc)−

∑
r>s

q(s, r)U(rc)

]

= u(ct) + d(t, t+ 1)U(t+1c) +
∑
s>t+1

U(sc)

d(t, s)−
∑

t<r≤s−1
q(r, s)d(t, r)


This implies that, for all t ≥ 0 and s > t+ 1, q(t, t+ 1) = d(t, t+ 1) and

q(t, s) = d(t, s)−
∑

t<r≤s−1
q(r, s)d(t, r). (16)
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Define T̂ (t, s) as in (6). For s = t+ 2, (16) becomes

q(t, t+ 2) = d(t, t+ 2)− d(t, t+ 1)q(t+ 1, t+ 2)

= d(t, t+ 2)− d(t, t+ 1)d(t+ 1, t+ 2).

So (8) holds for all t ≥ 0 and s = t+ 2, since T̂ (t, t+ 2) = {(t, t+ 1, t+ 2)}. Now suppose that
(8) holds for all t ≥ 0 and s = t+ k with 2 ≤ k ≤ n− 1. Then, by (16), for s′ = t+ n

q(t, s′) = d(t, s′)− d(t, s′ − 1)d(s′ − 1, s′)

−
∑

t<r≤s′−2
d(t, r)

d(r, s′) +
∑

t∈T̂ (r,s′)

(−1)|t|
|t|−1∏
j=1

d(τj−1, τj)


= d(t, s′)−

∑
t<r≤s′−1

d(r, s′)d(t, r) +

−
∑

t<r≤s′−2

∑
t∈T̂ (r,s′)

(−1)|t|
|t|−1∏
j=1

d(τj−1, τj)d(t, r)

= d(t, s′) +
∑

t∈T̂ (t,s′)

(−1)|t|
|t|−1∏
j=1

d(τj−1, τj).

The result follows by induction.

8.3 Proof of Proposition 4

(⇐) Suppose q(t, s) = γαs−t with γ > 0 and α ∈ (0, 1). By (7) of Proposition 3, for all t ≥ 0

and s > t,

d(t, s) =
∑

t∈T (t,s)

|t|−1∏
j=1

γατj−τj−1 = αs−t
∑

t∈T (t,s)

γ|t|−1.

The second factor on the right can be written as

s−t−1∑
i=0

(
s−t−1
i

)
γi+1. (17)

Indeed, for each 0 ≤ i ≤ s − t − 1, there are
(
s−t−1
i

)
ways to go from t to s in i + 1 jumps,

because there are
(
s−t−1
i

)
ways to choose the i + 1 locations of the jumps. Expression (17)

equals γ(1 + γ)s−t−1, which can be easily seen from the binomial development of (1 +x)n. This
implies that

d(t, s) =
γ

1 + γ
((1 + γ)α)s−t.
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So β = γ
1+γ , which is in (0, 1) since γ > 0, and δ = (1 + γ)α > 0 since γ, α > 0. To see why

δ < 1, consider x ∈ X such that |u(x)| 6= 0. Then,

U(x, x, . . .) = u(x)

(
1 + β

∞∑
s>0

δs

)
,

so δ < 1 because U is bounded.

(⇒) Suppose d(t, s) = βδs−t with β ∈ (0, 1) and δ > 0. By (8) of Proposition 3, for all t ≥ 0

and s > t+ 1,

q(t, s) = βδs−t +
∑

t∈T̂ (t,s)

(−1)|t|
|t|−1∏
n=1

βδτn−τn−1

= δs−t

β − ∑
t∈T̂ (t,st)

(−β)|t|−1


= δs−t

β − s−t−1∑
j=1

(
s−t−1
j

)
(−β)j+1


= δs−tβ

s−t−1∑
j=0

(
s−t−1
j

)
(−β)j =

β

1− β
((1− β)δ)s−t.

In the third line, the sum starts at j = 1 because, by definition, T̂ (t, s) contains vectors with at
least two jumps. Finally, q(t, t+ 1) = d(t, t+ 1) = β

1−β ((1− β)δ).

8.4 Proof of Theorem 1

The proof follows and generalizes that of Diamond (1965) [4], and is based on the following
lemma by Debreu (1954) [2].

Lemma 1. Let C be a completely ordered set and Z = (z0, z1, ...) be a countable subset of C.
If for every pair c, c′ of elements of C such that c ≺ c′, there is an element z of Z such that
c � z � c′, then there exists on C a real, order-preserving function, continuous in any natural
topology.23

Lemma 2. For any c ∈ C, there exists a constant sequence c∗ such that c ∼ c∗.

Proof. Let D be the set of constant sequences and, for any fixed c ∈ C, let A = {d ∈ D :

d - c} and B = {d ∈ D : d % c}. Axiom 2 implies that A and B are nonempty and closed;
Axiom 1 implies that A ∪ B = D. Moreover, D is connected. Indeed, for any continuous

23A natural topology is one under which Axiom 2 holds for that topology.
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function φ : D → {0, 1}, the function φ̄ : X → {0, 1} defined by φ̄(x) = φ(x, x, . . .) is also
continuous. Connectedness of X implies that φ̄ is constant and, hence, that φ is constant,
showing connectedness of D. This implies that A and B have a nonempty intersection, proving
the lemma.

To conclude the proof of Theorem 1, let Z0 denote a countable subset of X, which exists
since X is separable, and let Z denote the subset C consisting of constant sequences whose
elements belong to Z0. Lemma 2 implies that Z satisfies the hypothesis of Lemma 1, which
yields the result.

8.5 Proof of Theorem 3

This proof adapts arguments in Debreu (1960) [3] and Koopmans (1960, 1964) [9, 10] to the
present environment. It is convenient to work in terms of the streams of immediate consumption
and future well-being f , defined in (11), and the binary relation �∗ on F induced by the function
V : F → R in the proof of Theorem 2.

Let Π′ consist of all unions of subsets of {{0}, {1}, {2}, {3, 4, . . .}}.

Lemma 3. Axiom 6 implies that �∗ satisfies the following property. For any f , f ′ ∈ F and
π ∈ Π′,

(fπ, fπc) �∗ (f ′π, fπc) ⇐⇒ (fπ, f
′
πc) �∗ (f ′π, f

′
πc),

where πc = T \ π. By Axiom 7, �∗ depends on f0, f1, f2, and 3f .

Proof. Recall that tc ∼ tc
′ implies U(tc) = U(tc

′), which is equivalent to ft = f ′t . Then, by
Axiom 6, for any π ∈ Π′

V (fπ, fπc) > V (f ′π, fπc) ⇐⇒ V (fπ, f
′
πc) > V (f ′π, f

′
πc).

By Debreu [3], there exist then continuous nonconstant functions V , û, a, b, and d such that

V (f) = û(f0) + a(f1) + b(f2) + d(3f) (18)

and
f �∗ f ′ ⇐⇒ V (f) > V (f ′).
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By Lemma 3 with π = {0}, Axiom 4, and Koopmans’ [9] argument, V can be expressed as

V (f) = W (v(f0), A(1f)) (19)

for some continuous, nonconstant functions W , v, and A. Similarly, by Lemma 3 with π = {1},
Axiom 4, and Koopmans’ [9] argument, V can be expressed as

V (f) = W (v(f0), A(G(f1), B(2f))),

for some continuous, nonconstant functions W , A, G, and B. Now use axiom 8 to obtain, as
shown by Koopmans (1960) [9], that A in (19) and B in (20) are homeomorphic and therefore
B can be taken to equal A by a simple modification of the function A. This leads to

V (f) = Ŵ (v(f0), Â(Ĝ(f1), A(2f))). (20)

According to (19), for every v(f0), �∗ depends on 1f only through A(1f). Therefore, for all
f1,

A(1f) = φ1(a(f1) + h(2f)),

for some strictly increasing and continuous function φ1, where h(2f) = b(f2) + d(3f).

According to (20), for every v(f0) and Ĝ(f1), �∗ depends on 2f only through A(2f). There-
fore, for all 2f ,

A(2f) = φ2(b(f2) + d(3f)),

for some strictly increasing and continuous function φ2.

According to (20), for every v(f0) and A(2f), �∗ depends on f1 only through Ĝ(f1). There-
fore,

a(f1) ≡ G(f1) = φ3(Ĝ(f1)),

for some strictly increasing and continuous function φ3.

Now comparing the two previous equations for A implies that, for all f ,

a(f2) + h(3f) = φ(b(f2) + d(3f)),

where φ is some strictly increasing continuous function.

Lemma. φ is affine.

Proof. Let x = f2 ∈ X and y = 3f ∈ Y. We have

a(x) + h(y) = φ(b(x) + d(y)),
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where φ is increasing and continuous. Note that, since b, d, and U are continuous and non-
constant and X is connected, without loss of generality I = {b(x) + d(y) : x ∈ X , y ∈ Y} is
a connected, nonempty interval. Choose x0 ∈ X and y0 ∈ Y arbitrarily, and define a(x) =

a(x)− a(x0), h(y) = h(y)− h(y0), and b(·) and d(·) similarly. So

a(x) + h(y) = φ(b(x) + d(y) + b(x0) + d(y0))− φ(b(x0) + d(y0))

≡ φ(b(x) + d(y)).

Note that φ is continuous on the connected nonempty interval I = I − b(x0) − d(y0), which
contains 0, and that a(x) = φ(b(x)) and h(y) = φ(d(y)). So,

φ(b̃+ d̃) = φ(b̃) + φ(d̃) (21)

for all b̃ ∈ Ib = {b(x) : x ∈ X} and d̃ ∈ Id = {d(y) : y ∈ Y}.

Using (21), we can now show that φ is linear, thus φ is affine. First, note that since φ(0) = 0,
φ(x) = −φ(−x); so we can focus on the positive part, I+, or the negative part, I−, of I. Suppose,
without loss of generality, that I+ 6= ∅. Consider any b > b′ > 0 in I+ such that b and b′ are
rational. Then, by (21), φ(b) = mφ( 1

n) and φ(b′) = m′φ( 1
n′ ) for m, m′, n, n′ ∈ N. Since φ( 1

n)n

= φ(1) = φ( 1
n′ )n

′, it follows that φ(b) = b
b′φ(b′). Since rationals are dense in I+ and φ is

continuous, φ(b) = b
b′φ(b′) holds for all b, b′ ∈ I+, which implies linearity.

Since φ must be increasing, there exists α > 0 such that b(f2) =αa(f2) and

d(3f) = αh(3f) = α(b(f3) + d(4f)). (22)

It follows that
V (f) = û(f0) +G(f1) + αG(f2) + d(3f).

Now restrict attention to streams f that are constant after t = 3—which correspond to con-
sumption streams that are constant after t = 3. For such streams, d(3f) = d̂(f3). By Axiom 8
and α > 0,

G(f3) ≥ G(f ′3) ⇐⇒ d̂(f3) ≥ d̂(f ′3).

So d̂(·) = ϕ(G(·)) for some strictly increasing and continuous function ϕ. Again by Axiom 8,

αG(f2) + ϕ(G(f3)) ≥ αG(f ′2) + ϕ(G(f ′3))

if and only if
G(f2) + αG(f3) + ϕ(G(f3)) ≥ G(f2) + αG(f3) + ϕ(G(f3)).

33



So
αG(f2) + ϕ(G(f3)) = α(G(f2) + αG(f3) + ϕ(G(f3))) + k,

which implies ϕ(G)(1−α) = α2G+k. Since ϕ must be strictly increasing, it follows that α < 1.
Finally, by iteratively applying (22) and relying on α ∈ (0, 1), we get that �∗ can be represented
by

V ∗(f) = u(f0) +
∞∑
t=1

αtG(ft).

Finally, it is easy to see that Axiom 9 holds if and only if u and G are increasing—using
Lemma 2.

8.6 Proof of Theorem 4

By Debreu (1960) [3], � can be represented by

w0(c0) + w1(c1) + w2(2c),

for some continuous and nonconstant functions w0, w1, and w2. By Theorem 3, � is also
represented by

u(c0) + αG(u(c1) + g(2c)) + αg(2c),

where g(2c) =
∑∞

t=2 α
t−1G(U(tc)). It follows that

u(c0) + αG(u(c1) + g(2c)) + αg(2c) = ξ [w0(c0) + w1(c1) + w2(2c)] + χ,

where ξ > 0 and χ ∈ R. This implies that

αG(u(c1) + g(2c)) + αg(2c) = ξ [w1(c1) + w2(2c)] ,

and therefore G must be affine.
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