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Abstract

The standard framework for analyzing games with incomplete information models

players as if they have an infinite depth of reasoning. This paper generalizes the type

spaces of Harsanyi (1967–1968) so that players can have a finite depth of reasoning. We

do this by restricting the set of events that a player of a finite depth can reason about.

This allows us to extend the Bayesian-Nash equilibrium concept to environments with

players with a finite depth of reasoning. We demonstrate that the standard approach

of modeling beliefs with Harsanyi type spaces fails to capture the equilibrium behavior

of players with a finite depth, at least in certain games. Consequently, the standard

approach cannot be used to describe the equilibrium behavior of players with a finite

depth in general. The same result can be shown to hold for rationalizability, showing

that the results do not hinge on the specifics of the solution concept.

JEL classification: C700, C720, D800, D830

Keywords: Bounded rationality, higher-order beliefs, finite depth of reasoning, games with

incomplete information, Bayesian-Nash equilibrium.

∗Kellogg School of Management, Northwestern University. E-mail: w-kets@kellogg.northwestern.edu.

Phone: +1-505-204 8012. This paper supersedes Kets (2009) and Kets (2010). I am grateful to Adam

Brandenburger, Yossi Feinberg, and Matthew Jackson for their guidance and support, to Adam Branden-

burger, Eddie Dekel, Alfredo Di Tillio, Jeff Ely, Amanda Friedenberg, Ben Golub, Joe Halpern, Aviad Heifetz,

Philippe Jehiel, Rosemarie Nagel, Antonio Penta, Marcin Peski, Tomasz Sadzik, Dov Samet, Marciano Sinis-

calchi, Rani Spiegler, and Jonathan Weinstein for stimulating discussions, and to numerous seminar audiences

for helpful comments. Part of this research was carried out during visits to Stanford University and the NYU

Stern School of Business, and I thank these institutions for their hospitality. Financial support from the Air

Force Office for Scientific Research under Grant FA9550-08-1-0389 is gratefully acknowledged.



1. Introduction

In games with incomplete information, it is important to not only consider players’ beliefs

about the state of nature, but also their beliefs about other players’ beliefs. Consider, for

example, a player who has to decide whether or not to invest in a project. The payoff associated

with each choice depends on the economic fundamentals (i.e., the state of nature), as well as

the actions of other investors. The player’s optimal decision thus depends on her beliefs about

the state of nature, i.e., on her first-order belief. Because the same is true for her opponents,

the player’s optimal action may also depend on her belief about her opponents’ first-order

belief, i.e., on her second-order belief. And because her opponents in turn condition their

action on their beliefs about their opponents’ beliefs about the state of nature, the player’s

optimal choice may also depend on her belief about her opponents’ second-order beliefs (i.e.,

her third-order belief), and so on, ad infinitum.

Harsanyi (1967–1968) developed a tractable framework to analyze such games with incom-

plete information, and Harsanyi type spaces are widely used to study questions of economic

interest. However, in the Harsanyi formalism, players are modeled as if they have an infinite

depth of reasoning, that is, as if they can form beliefs about every possible higher-order event.

Since it seems empirically plausible that players only have a finite depth of reasoning, it is

important to understand the behavior of players with a finite depth of reasoning in games

with incomplete information. In particular, an important question is whether the standard

framework can be used to model the behavior of such players.

While there is an extensive literature on the behavior of players with a finite depth in

games without payoff uncertainty, much less is understood about their behavior in games with

incomplete information. This paper provides the first general framework that jointly models

players’ higher-order beliefs and their depth of reasoning, to analyze players’ behavior in games

with incomplete information.1 The framework generalizes the standard Harsanyi framework

to allow players to have a finite depth of reasoning, that is, to have beliefs only up to order

four, say, or to think possible that an opponent has beliefs only up to order two or three.

The key innovation is that a player’s depth is modeled by the set of events that a player

can reason about, rather than by a simple number, as is common in the literature (footnote

1). For example, a player of depth 2, who can reason only about her opponents’ first-order

beliefs, can reason precisely about the events that can be described in terms of the first-order

1Play in games with complete information by players with a finite depth is studied by, e.g., Nagel (1995),

Stahl and Wilson (1995), Ho et al. (1998), Costa-Gomes et al. (2001), Strzalecki (2009), and Alaoui and Penta

(2013). Brocas et al. (2009), Crawford and Iriberri (2007), and Rogers et al. (2009) present behavioral models

for games with incomplete information, but do not develop a model of beliefs independent of behavior. See

Crawford et al. (2012) for a survey, and see Section 8 for further discussion.
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beliefs of his opponents. As we discuss in Section 8, this extends the notion of a small world

of Savage (1954) to a strategic context. We construct players’ belief hierarchies, and show

that each type generates a belief hierarchy of a well-defined depth (Theorem 5.2 and Corollary

5.3).

Our richer framework allows us to derive new strategic implications. Unlike the existing

literature, we focus on (Bayesian-Nash) equilibrium for most of the paper, as this is the solution

concept most commonly used in applications with incomplete information. Maintaining the

assumption of equilibrium behavior also makes it possible to understand the effect of players’

depth of reasoning in isolation. This allows us to study whether predictions obtained using the

standard (equilibrium) framework remain valid when players have a finite depth of reasoning.2

A natural question is whether the equilibrium behavior of players with a finite depth of

reasoning can be modeled using Harsanyi type spaces. One might hope, for instance, that for

a given type space T in which players have a finite depth of reasoning, there is a Harsanyi

type space T H that gives the same equilibria in every game as does T . If that is the case, then

we do not need to be concerned with the question whether or not real players have a finite or

infinite depth if we are interested in equilibrium predictions: we can simply use the Harsanyi

type space T H to model equilibrium play.

The Harsanyi type spaces typically used in applied work are natural candidates for this

purpose: in these type spaces, the higher-order beliefs of a type are determined uniquely by its

beliefs up to some fixed, finite order.3 Since strategies cannot depend on beliefs at arbitrarily

high order by definition, one might hope that such Harsanyi type spaces can be used to model

the behavior of players with a finite depth of reasoning.

A first question is whether for a given finite-depth type space, there is a Harsanyi type

space with the property that for any game, for any equilibrium of the finite-depth type space,

there is a corresponding equilibrium in the Harsanyi type space. Theorem 6.2 shows that

the answer is yes, and that the Harsanyi type spaces for which this holds are precisely the

Harsanyi type spaces in which it is common belief that the finite-order beliefs are as specified

by the finite-depth type space. This includes the “finite-order” Harsanyi type spaces described

above, but also much more complex ones; see, e.g., the proof of Lemma 6.1.

As for the converse, Theorem 6.4 proves a negative result: for every finite-depth type space,

for every Harsanyi type space, there is a game with the property that there is an equilibrium

2Of course, it is an empirical question whether players (with a finite or infinite depth) actually follow

equilibrium strategies, and, if so, under what conditions.
3In other words, there is some k <∞ such that for each type in the Harsanyi type space, the higher-order

beliefs it induces are commonly known conditional on its kth-order beliefs; see, e.g., Morris et al. (1995) and

Qin and Yang (2013). This class of type spaces includes Harsanyi type spaces with finite type sets, or Harsanyi

type spaces in which types represent payoffs and are drawn from a common prior.
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for the Harsanyi type space such that there is no corresponding equilibrium for the finite-depth

type space. This means that, at least in general games, Harsanyi type spaces are not suitable

to model the equilibrium behavior of players with a finite depth of reasoning.

The intuition behind Theorem 6.4 is simple, but subtle. In every Harsanyi type space,

strategies can depend on beliefs at higher order, and such strategies cannot be part of an

equilibrium in a finite-depth space because players’ expected utility cannot be calculated

when strategies are too complex in that sense. The subtlety lies in understanding why even

finite-order Harsanyi type spaces do not “work.” After all, in such Harsanyi type spaces, a

type’s higher-order beliefs are determined completely by its belief up to some finite order k,

so that strategies that depend on players’ higher-order beliefs effectively depend on beliefs up

to order (at most) k.

However, while the expected utility of such strategies for players of depth (at least) k + 1

is well-defined, it turns out that if types have finite depth k + 1 (or higher), then their beliefs

cannot be captured by a Harsanyi type space in which beliefs are determined by players’

beliefs up to order k. Recall that a type has depth k+1 precisely when the set of events it can

reason about are the events that can be described in terms of its opponents’ kth-order beliefs.

But in a Harsanyi type space in which beliefs are determined by the beliefs up to order k,

this set coincides with the set of events that can be described in terms of the other players’

(k + 1)th-order beliefs. This means that a type with such beliefs would have beliefs at least

k + 2, a contradiction.

The richer framework for modeling players’ depth is thus critical for understanding why

Harsanyi type spaces cannot model players’ equilibrium behavior when they have a finite depth

of reasoning. In particular, if we were to define type spaces in the usual way and just add

a parameter that specifies the depth of reasoning of the type, then we would not be able to

see that the finite-order Harsanyi type spaces described above cannot capture the equilibrium

behavior of types with a finite depth of reasoning.

One interpretation of our results is that to capture the behavior of players with a finite

depth of reasoning, we need to consider a refinement of Bayesian-Nash equilibrium: rather

than considering all equilibria, we should consider only the equilibria that depend on beliefs

at sufficiently low order. We define such a refinement and show that this refinement indeed

captures the equilibrium behavior of finite-depth type provided that we choose the Harsanyi

type space appropriately.

Our results are not particular to equilibrium: we demonstrate that the same results hold

for (interim correlated) rationalizability, a concept that is defined by the iterated deletion of

dominated strategies (Dekel et al., 2007). The intuition behind these results is identical to

that behind the equilibrium results, suggesting that the results do not depend on the specifics
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of the solution concept.

Together, our results imply that if we are interested in the equilibrium behavior of players

with a finite depth of reasoning, then either we have to consider a refinement of Bayesian-Nash

equilibrium, or we have to work with a finite-depth type space: if we consider the Bayesian-

Nash equilibria for a Harsanyi type space, then we are bound to get too many equilibria in

some games.

The next section illustrates our main results with some simple examples. The formal

treatment starts in Section 3.

2. Examples

2.1. Harsanyi type spaces

As shown by Harsanyi (1967–1968), players’ higher-order beliefs can be represented in a

compact way using type spaces. In a Harsanyi type space, each player i is endowed with a set

Ti of types, and associating with each type ti a belief (probability measure) βi(ti) about θ and

the other player’s type. The function βi that maps each type for i into a belief is assumed to

be measurable. Each type generates a belief hierarchy, as the next example illustrates:

Example 1. The state of nature θ can be either high (H) or low (L), and each player i = a, b

has four types, labeled t1i , . . . , t
4
i . The beliefs of each type are given in Figure 1.

βa(t
1
a) H L βa(t

2
a) H L βb(t

1
b) H L βb(t

2
b) H L

t1b 1 0 t1b 0 0 t1a 1 0 t1a 0 0

t2b 0 0 t2b 0 0 t2a 0 0 t2a 0 0

t3b 0 0 t3b 1 0 t3a 0 0 t3a 1 0

t4b 0 0 t4b 0 0 t4a 0 0 t4a 0 0

βa(t
3
a) H L βa(t

4
a) H L βb(t

3
b) H L βb(t

4
b) H L

t1b 0 0 t1b 0 0 t1a 0 0 t1a 0 0

t2b 0 1 t2b 0 0 t2a 0 1 t2a 0 0

t3b 0 0 t3b 0 1 t3a 0 0 t3a 0 1

t4b 0 0 t4b 0 0 t4a 0 0 t4a 0 0

Figure 1: A (Harsanyi) type space. The beliefs for types for Ann on the left, and those for

Bob on the right; we write x for the singleton {x}.

Types and their beliefs specify players’ higher-order beliefs. For example, type t1a for
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Ann believes (with probability 1) that the state of nature is H, which specifies its first-order

belief µ1
a(t

1
a); of course, the other types ti also generate a first-order belief µ1

i (ti). Type t1a
also believes that Bob believes that θ = H (as it assigns probability 1 to type t1b , which

believes that θ = H). This specifies the second-order belief µ2
a(t

1
a) induced by t1a, which is

a probability measure on the set of states of nature and Bob’s first-order belief hierarchies

H1
b := {µ1

b(tb) : tb = t1b , . . . , t
4
b}; again, the other types likewise generate a second-order belief.

Type t1a also induces a third-order belief µ3
a(t

1
a) on the set of states of nature and Bob’s second-

order belief hierarchies H2
b := {(µ1

b(tb), µ
2
b(tb)) : tb = t1b , . . . , t

4
b}: the type believes that Bob

believes that Ann believes that θ = H (as t1b assigns probability 1 to type t1a, which puts

probability 1 on θ = H).

We can continue this way, uncovering the kth-order belief µk
a(t1a) that t1a generates for each

k, with a kth-order belief being a probability measure on the set of states of nature and Bob’s

(k − 1)th-order belief hierarchies Hk−1
b := {(µ1

b(tb), . . . , µ
k−1
b (tb)) : tb = t1b , . . . , t

4
b}. This gives

the belief hierarchy ha(t
1
a) = (µ1

a(t
1
a), µ

2
a(t

1
a), . . .) induced by (or generated by) t1a. /

We want to model belief hierarchies that potentially have a finite depth of reasoning.

Let us start by considering the case of an infinite depth. We say that a belief hierarchy

ha = (µ1
a, µ

2
a, . . .) for Ann has an infinite depth (of reasoning) if for each k, the kth-order belief

µk
a can assign a probability to each event induced by Bob’s (k − 1)th-order belief hierarchies.

This is the case only if the σ-algebra on which µk
a is defined can distinguish between the

(k − 1)th-order belief hierarchies for Bob that differ in their (k − 1)th-order belief.

Hence, the belief hierarchy (µ1
a, µ

2
a, . . .) has an infinite depth of reasoning if the first-order

belief µ1
a is a probability measure on FΘ; the second-order belief µ2

a is a probability measure

on the σ-algebra FΘ × F1
b , where F1

b is the σ-algebra on Bob’s first-order belief hierarchies

that includes the events expressible in his beliefs about Θ; and so on.

More precisely, we define F1
b to be the coarsest σ-algebra on Bob’s first-order belief hier-

archies that contain the sets

{µ1
b : E ∈ Σ(µ1

b), µ
1
b(E) ≥ p},

with Σ(µ1
b) the σ-algebra on which µ1

b is defined, for any event E ∈ FΘ and every probability

p ∈ [0, 1]. For general m, assume that for each player i, the σ-algebra Fm−2
i on player i’s

(m− 2)th-order belief hierarchies has been defined. Then, let Fm−1
b be the coarsest σ-algebra

on Bob’s (m− 1)th-order belief hierarchies that contains the sets{
(µ1

b , µ
2
b , . . . , µ

m−1
b ) : E ∈ Σ(µm−1

b ), µm−1
b (E) ≥ p

}
(2.1)

for every probability p ∈ [0, 1] and every event E in FΘ×Fm−2
a concerning θ and Ann’s (m−

2)th-order belief hierarchies; the σ-algebra Fm−1
a on Ann’s (m− 1)th-order belief hierarchies
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is defined similarly. Then, the belief hierarchy (µ1
a, µ

2
a, . . .) has an infinite depth of reasoning

if the first-order belief µ1
a is a probability measure on FΘ, and for m > 1, the mth-order belief

µm
a is a probability measure on the σ-algebra FΘ × Fm−1

b on Θ and Bob’s (m − 1)th-order

belief hierarchies.4

Going back to Example 1, the belief of each type ta for Ann is defined on the σ-algebra on

Bob’s type set that distinguishes each individual state (θ, tb). This means in particular that

for any k, the kth-order belief µk
a(ta) induced by Ann’s type can distinguish the (k−1)th-order

belief hierarchies induced by Bob’s types that differ in their (k − 1)th-order beliefs.5 So, the

belief hierarchy induced by the type has an infinite depth of reasoning. The same is true, in

fact, for any type in a Harsanyi type space, as should be expected; see Observation 1 below.

2.2. Finite depth of reasoning

We want to extend the Harsanyi approach to allow types to induce a belief hierarchy of

finite depth, where, loosely speaking, a belief hierarchy has depth k <∞ if it can form a belief

only about the state of nature and the other players (k − 1)th-order beliefs. To capture this,

we restrict the set of events that a type can assign a probability to, that is, we let the type’s

belief be defined on a coarser σ-algebra. The next example demonstrates that Ann can form

a belief only about Bob’s first-order beliefs whenever the belief of a type for Ann about Bob’s

types is defined on a σ-algebra that distinguishes Bob’s types only when they differ in their

first-order belief (but not when their beliefs differ exclusively at higher order).

Example 2. Consider the type space in Figure 2. Each type t̃a for Ann is endowed with the

σ-algebra Σa(t̃a) generated by the partition {{t̃1b , t̃2b}, {t̃3b , t̃4b}}, and likewise for the types for

Bob.

Each type t̃a for Ann generates a first-order belief µ1
a(t̃a). Type t̃1a, for example, believes

that the state of nature is H. Each type t̃a also induces a second-order belief µ2
a(t̃a). Type

t̃1a, for example, assigns probability 1 to the event that Bob has type t̃1b or t̃2b (i.e., to {t̃1b , t̃2b}),
and thus to the event that Bob believes that the state of nature is H (since both t̃1b and t̃2b
assign probability 1 to H). However, type t̃1a cannot say whether or not Bob believes that

Ann believes that θ = H. The reason is that t̃1b and t̃2b differ in their beliefs about Ann’s belief

about nature, and t̃1a cannot assign a probability to the individual types. The third-order

belief µ3
a(t̃

1
a) therefore cannot assign a probability to every event involving Bob’s second-order

4Definition 1 below is of a different form, but it is equivalent to the current one, by Lemma A.2. Taking

Fm−1
b to be the coarsest σ-algebra that contains the sets in (2.1) is standard.

5Of course, the formal result requires relating the σ-algebra on Bob’s type set to the σ-algebra Fk−1
b on

Bob’s (k − 1)th-order beliefs. The proof of Lemma 5.1 makes this connection. Also see Corollary 5.3.
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βa(t̃
1
a) H L βa(t̃

2
a) H L βb(t̃

1
b) H L βb(t̃

2
b) H L

{t̃1b , t̃2b} 1 0 {t̃1b , t̃2b} 0 0 {t̃1a, t̃2a} 1 0 {t̃1a, t̃2a} 0 0

{t̃3b , t̃4b} 0 0 {t̃3b , t̃4b} 1 0 {t̃3a, t̃4a} 0 0 {t̃3a, t̃4a} 1 0

βa(t̃
3
a) H L βa(t̃

4
a) H L βb(t̃

3
b) H L βb(t̃

4
b) H L

{t̃1b , t̃2b} 0 1 {t̃1b , t̃2b} 0 0 {t̃1a, t̃2a} 0 1 {t̃1a, t̃2a} 0 0

{t̃3b , t̃4b} 0 0 {t̃3b , t̃4b} 0 1 {t̃3a, t̃4a} 0 0 {t̃3a, t̃4a} 0 1

Figure 2: A type space in which types have depth 2.

belief. /

To model that players can have a finite depth of reasoning (and potentially different

depths), we define a type space in which a player’s belief can be defined on different σ-algebras.

Thus, we endow Bob’s type set Tb with a collection Sb of σ-algebras, rather than a single one,

as in Harsanyi type spaces. The belief βa(ta) of a type ta for Ann about Bob’s type is defined

on a σ-algebra Σa(ta) in Sb, and similarly with the player labels interchanged. The σ-algebra

Σa(ta) specifies the events that ta can reason about: the type can assign a probability only to

events in Σa(ta), but not to other events. In Example 2, type t̃1a can assign a probability to

the event that Bob has type t̃1b or t̃2b (and thus to the event that Bob believes that θ = H),

but not to the event that Bob has type t̃1b (and therefore not to the event that Bob believes

that Ann believes that θ = H).

Types for Ann that have a different σ-algebra have a different depth of reasoning, as we will

see; likewise for Bob. This means that players may be uncertain about the depth of reasoning

of their opponent; see Example 7 below for an illustration.

We say that a belief hierarchy ha = (µ1
a, µ

2
a, . . .) has finite depth of reasoning k <∞ if for

any m ≤ k, the mth-order belief µm
a can assign a probability to all events expressible in terms

of Bob’s (m−1)th-order belief hierarchies, as before, while for m > k, its mth-order belief can

assign a probability only to those events regarding Bob’s (m − 1)th-order belief hierarchies

that are expressible in terms of his (k − 1)th-order belief hierarchies. That is, ha has finite

depth (of reasoning) k <∞ if

• for m ≤ k, the mth-order belief µm
a is defined on FΘ×Fm−1

b on Θ and Bob’s (m− 1)th-

order belief hierarchies, as in (2.1); and

• for m > k, the mth-order belief µm
a is defined on the σ-algebra FΘ ×Fm−1

b,k−1, with Fm−1
b,k−1

the coarsest σ-algebra that contains the events that are expressible in terms of Bob’s
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(k − 1)th-order belief hierarchies, that is, the events{
(µ1

b , µ
2
b , . . . , µ

m−1
b ) : E ∈ Σ(µk−1

b ), µk−1
b (E) ≥ p

}
for E ∈ FΘ×Fk−2

a and p ∈ [0, 1], and Fm−1
b,k−1 ( F

m−1
b,k , where we define Fm−1

b,m−1 := Fm−1
b .

(The condition that Fm−1
b,k−1 is a strict subset of Fm−1

b,k ensures that the depth of a belief hierarchy

is well-defined; see Definition 1 below.) With some abuse of terminology, we say that a type

has depth k if it generates a belief hierarchy of depth k.

In Example 2, the higher-order beliefs µk
a(t̃1a), k ≥ 2, induced by t̃1a can assign a probability

only to events that are expressible in terms of the state of nature and Bob’s first-order beliefs:

the σ-algebra Σa(t̃
1
a) separates the types for Bob if and only if they differ in their beliefs about

the state of nature, but lumps them together otherwise. This means that any event in Σa(t̃
1
a)

can be described in terms of Bob’s first-order beliefs. The same is true for the other types. It

follows that every type has depth 2.

Of course, if we let the σ-algebras in Sa and Sb be arbitrary, then a type need not generate

a belief hierarchy of a well-defined depth. Lemma 3.1 and Theorem 5.2 demonstrate, though,

that if we relax the condition that belief maps be measurable (as required in Harsanyi type

spaces) in an appropriate way, then each type generates a belief hierarchy of a well-defined

depth.

2.3. Equilibrium

2.3.1. Definition

What can we say about the equilibrium play of players with a finite depth of reasoning? It

will be convenient to restrict attention to type spaces in which each type has the same depth

of reasoning k ≤ ∞. We refer to type spaces in which all types have the same finite depth k

as a depth-k (type) space; recall that a type space in which every type has an infinite depth

of reasoning is a Harsanyi type space. Then, a strategy profile σ = (σa, σb) is an equilibrium

if for each player i = a, b, the following hold:

• for each type ti, the expected utility of ti of each action si that i might play is well-defined

if j 6= i follows the strategy σj; and

• for each type ti, every action si that is played with positive probability under σi(ti) is a

best response to σj, j 6= i.

This definition of course coincides with the definition of Bayesian-Nash equilibrium when

k =∞. If the first condition holds, then we say that σj is comprehensible for tj. A sufficient

9



condition for a strategy to be comprehensible for a type is that it is measurable (with respect

to the σ-algebra of the type).

The next example illustrates that at least in some games, the equilibrium play of types

with a finite depth and types with an infinite depth coincides:

Example 3. Consider the game in Figure 3, where Ann is the row player, and Bob is the

column player. Suppose that players’ beliefs are given by the type space in Example 2, in

which the depth of reasoning of each type equals 2.

s1
b s2

b s1
b s2

b

s1
a 1,1 1,0 s1

a 0,0 0,1

s2
a 0,1 0,0 s2

a 1,0 1,1

θ = H θ = L

Figure 3: A game with dominant actions.

It is easy to see that this game has a unique equilibrium in which types t̃1a and t̃2a play s1
a

(with probability 1), as s1
a is a dominant action for types that believe that θ = H, and types

t̃3a and t̃4a play s2
a, as s2

a is dominant for types that believe that θ = L; and likewise for Bob.

Now suppose players’ beliefs are given by the type space in Example 1. This type space

generates the same second-order belief hierarchies as the type space in Example 2; for example,

types t1a and t̃1a (in Example 1 and 2, respectively) both believe that θ = H and that Bob

believes that θ = H. However, each type in Example 1 has an infinite depth of reasoning.

Again, there is a unique equilibrium in which types t1a and t2a play s1
a (with probability 1), and

types t3a and t4a play s2
a, and similarly for Bob’s types. /

Example 3 shows that for some depth-2 spaces and some games, there exist Harsanyi type

spaces with the same set of equilibria. We want to know whether we can always find a Harsanyi

type space that “mimics” the equilibrium predictions of a given finite-depth type space.

2.3.2. Strategic equivalence

To answer that question, we need some more definitions. A game G specifies a set of

actions for each player, as well as the players’ payoffs for each action profile and state of

nature. A model is a pair (G, T ), with G a game, and T a type space. Roughly speaking, a

Harsanyi type space T H is strategically equivalent to a depth-k space T k if for any game G,

the set of equilibria of the Harsanyi model (G, T H) “coincides” with the set of equilibria of

the finite-depth model (G, T k), in the following sense: if T H and T k have the same type sets

(i.e., TH
i = T k

i for each player i), then the spaces are strategically equivalent if

10



(1) any equilibrium of the depth-k model (G, T k) is an equilibrium of the Harsanyi model

(G, T H); and

(2) any equilibrium of the Harsanyi model (G, T H) is an equilibrium of the depth-k model

(G, T k).

If the type sets in T H and T k are allowed to differ, then the definition is more involved; we

leave the details for Section 6.2.

Conditions (1) and (2) are satisfied for the game in Figure 3 by the type spaces in Example

3. The question is whether for a given depth-k type space, there is a Harsanyi type space that

satisfies (1) and (2) for every game.

2.3.3. Harsanyi extensions

We first ask whether, for a given depth-k type space T k, condition (1) holds (for all games

G), that is, of there is a Harsanyi type space T H such that for any game G, for any equilibrium

σk of the game when beliefs are given by T k, there is a corresponding equilibrium σ of the

game when beliefs are given by T H. Not surprisingly, this does not hold for all Harsanyi type

spaces:

Example 4. Consider the game in Figure 4, and consider the following type space. Each

player i = a, b has two types, labeled t1i , t
2
i . Each type ti is endowed with the trivial σ-algebra

{{t1j , t2j}, ∅} on the type set of the other player j. Type t1a assigns probability 9
10

to the event

that θ = H (and that Bob has a type in {t1b , t2b}), and the complementary probability to the

event that θ = L. Type t2a assigns probability 4
5

to the event that θ = H, and the remaining

probability to the event that θ = L. The beliefs for Bob’s types are defined similarly. Since

the σ-algebra on which the types’ beliefs are defined lumps together types that differ in their

first-order beliefs, each type has depth 1.

s1
b s2

b s1
b s2

b

s1
a 1,1 -2,0 s1

a -2,-2 -2,0

s2
a 0,-2 0,0 s2

a 0,-2 0,0

θ = H θ = L

Figure 4: A risky coordination game.

It is easy to see that this model has an equilibrium σ in which type ti plays the risky action

s1
i , for i = a, b. Clearly, if beliefs are given instead by a (Harsanyi) type space in which all

types have very different first-order beliefs than t1i and t2i , i = a, b, – for example, assigning

high probability to θ = L –, then this may no longer be an equilibrium.
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However, even if beliefs are given by a (Harsanyi) type space which contains types that

have the same beliefs as t1i and t2i , there may not be an equilibrium in which types that assign

a high probability to θ = H play the risky action s1
i . To wit, we can construct a Harsanyi type

space T H that for each player i = a, b, contains types tH,1
i and tH,2

i that generate the same

first-order beliefs as t1i and t2i , respectively, yet in every equilibrium of the game, types tH,1
i

and tH,2
i play the safe action s2

i . We can do this by including a type t∗ in T H that believes that

θ = L, so that the safe action is strictly dominant for t∗, and then choose tH,1
i and tH,2

i such

that these types have the same first-order beliefs as t1i and t2i , respectively, and that believe

that the other player believes. . . that the other player has type t∗ (cf. Rubinstein, 1989). /

Example 4 suggest that a necessary condition for (1) to hold is that T H does not include

types that have different kth-order beliefs than the types in T k. More precisely, say that a

Harsanyi type space is a Harsanyi extension of a depth-k type space T k if it generates exactly

the same kth-order belief hierarchies as T k, and this is common belief. For example, the

type space in Example 1 is a Harsanyi extension of the depth-2 space in Example 2.6 So, the

example suggests that a necessary condition for (1) to hold is that the Harsanyi type space

T H is a Harsanyi extension of the finite-depth space T k.

Theorem 6.2 shows that this is true, and that the converse also holds: (1) holds for any

Harsanyi extension of the finite-depth space. To see this, note that the possibilities for prof-

itable deviations do not change when we “increase” the depth of a type, while the condition

that strategies be comprehensible in equilibrium becomes easier to satisfy.

Since there is a Harsanyi extension of a large class of depth-k spaces (Lemma 6.1), it follows

that for any depth-k space T k in that class, there is a Harsanyi type space T H such that for

every game G, for every equilibrium of the depth-k model (G, T k), there is a a corresponding

equilibrium of the Harsanyi model (G, T k). However, the converse of this result is false, as we

discuss next.

2.3.4. A negative result

The next example illustrates why the converse may be false:

Example 5. Consider the game in Figure 5. When the action set is restricted to {s1
i , s

2
i } for

each player i, then players play a game with dominant actions, a coordination game, or an

anti-coordination game, depending on the state. When players coordinate on (s2
a, s

3
b), their

payoffs are independent of the state.

6Of course, type spaces have many different Harsanyi extensions. For example, any variant of the type

space in Example 1 in which t1a puts probability p on (H, t1b) and 1 − p on (H, t2b) for some p ∈ [0, 1] is a

Harsanyi extension of the type space in Example 2. The proof of Lemma 6.1 constructs the “canonical”

Harsanyi extension for a given depth-k space that contains all other Harsanyi extensions.
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s1
b s2

b s3
b

s1
a 1, 1 1, 0 1, 0

s2
a 0, 1 0, 0 0, 0

s3
a 0, 1 0, 0 1, 1

θ = θ1

s1
b s2

b s3
b

s1
a 0, 0 0, 1 0, 0

s2
a 1, 0 1, 1 1, 0

s3
a 0, 0 0, 1 1, 1

θ = θ2

s1
b s2

b s3
b

s1
a 1, 1 0, 0 0, 0

s2
a 0, 0 1, 1 0, 0

s3
a 0, 0 0, 0 1, 1

θ = θ3

s1
b s2

b s3
b

s1
a 0, 0 1, 1 0, 0

s2
a 1, 1 0, 0 0, 0

s3
a 0, 0 0, 0 1, 1

θ = θ4

Figure 5: A game for which some equilibria depend on second-order beliefs (given the type

space).

Consider the type space T 2, defined as follows. Each player i = a, b has eight types, labeled

t1i , . . . , t
8
i , and each type ti for player i is endowed with the σ-algebra Fj on j’s type set that

is generated by the pairs {t1j , t2j}, {t3j , t4j}, {t5j , t6j}, and {t7j , t8j}, where j 6= i. The beliefs for

player i = a, b are given by:

βi(t
1
i )(θ1, {t1j , t2j}) =1, βi(t

2
i )(θ1, {t3j , t4j}) =1;

βi(t
3
i )(θ2, {t1j , t2j}) =1, βi(t

4
i )(θ2, {t3j , t4j}) =1;

βi(t
5
i )(θ3, {t1j , t2j}) =1, βi(t

6
i )(θ3, {t3j , t4j}) =1;

βi(t
7
i )(θ4, {t5j , t6j}) =1, βi(t

8
i )(θ4, {t7j , t8j}) =1,

where j 6= i. It is straightforward to verify that the σ-algebra Fj separates the types for j if

they differ in their first-order belief, but not if they differ in their beliefs at higher order, so

that each type ti has depth 2.

Clearly, the strategy profile σ in which each type for player i plays s3
i (with probability 1)

is an equilibrium. Does this model have another equilibrium? For types t1a and t2a for Ann, it

is a best response to play s1
a, given their beliefs. Likewise, it is a best response for t3a and t4a

to play s2
a. In that case, the unique best response for type t5b for Bob is to play s1

b , while the

unique best response for t6b is to play s2
b .

We cannot identify a best response for type t7a to such a strategy, however. The problem

is that we cannot calculate the expected payoff of t7a to each of Ann’s actions, i.e., Bob’s

strategy is not comprehensible. Similarly, we cannot calculate the expected payoff to t7b . And,

of course, if we cannot determine the optimal behavior of t7a and t7b , then it is unclear what

the optimal play for t8a and t8b is. Hence, there is no equilibrium in which for some player i,

types t1i and t2i play s1
i , and types t3i and t4i play s2

i . /

The problem here is that there is a tension between the requirement that players choose a

best response and the requirement that players’ expected utility be well-defined. This tension

does not arise in Harsanyi type spaces:
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Example 5 (cont.). Refer back to the game in Figure 5, but now suppose that players’ beliefs

are given by the Harsanyi type space T H, defined as follows. Again, each player i = a, b has

eight types, labeled tH,1
i , . . . , tH,8

i , and each type tHi for player i is endowed with the power set

on j’s type set, where j 6= i. The beliefs for player i are given by:

βHi (tH,1
i )(θ1, t

H,1
j ) =1, βHi (tH,2

i )(θ1, t
H,3
j ) =1;

βHi (tH,3
i )(θ2, t

H,2
j ) =1, βHi (tH,4

i )(θ2, t
H,4
j ) =1;

βHi (tH,5
i )(θ3, t

H,2
j ) =1, βHi (tH,6

i )(θ3, t
H,3
j ) =1;

βHi (tH,7
i )(θ4, t

H,5
j ) =1, βHi (tH,8

i )(θ4, t
H,7
j ) =1,

where j 6= i.

It is easy to see that type tH,m
i generates the same second-order belief hierarchy as type

tmi in the original depth-2 space T 2. Indeed, this type space is a Harsanyi extension of T 2.

Clearly, the strategy profile in which every type for player i plays s3
i is still an equilibrium of

this model.

But now there is another equilibrium σ in which types tH,1
a and tH,2

a play s1
a, and types tH,3

a

and tH,3
a play s2

a. In this case, the unique best responses for types tH,5
b and tH,6

b are s1
b and s2

b ,

respectively. Given this, the unique best response for tH,7
a is to play s2

a, and the unique best

response for type tH,8
b is s1

b ; the best responses for the other types when tH,1
b and tH,2

b play s1
b

and types tH,3
b and tH,3

b play s2
b can be determined likewise. /

In Example 5, the strategy profile σ is an equilibrium of the Harsanyi model, but not of

the depth-2 model.

Theorem 6.4 shows that this holds generally: for every depth-k type space T k, and for

every Harsanyi extension T H of T k, there is a game G and an equilibrium of the Harsanyi

model (G, T H) such that there is no corresponding equilibrium in the depth-k model (G, T k).

The critical insight behind Theorem 6.4 is that a type ti (say, type t7a in Example 5) has

depth 2 only if its opponent has two types tj, t
′
j (say, t5b and t6b) that have the same first-order

belief, but differ in their second-order belief; otherwise, ti has depth at least 3.7 In that case,

type ti cannot distinguish tj and t′j. However, it may be optimal for tj and t′j to play differently,

as in the game in Figure 5. But if that is the case, the expected utility for ti need not be

well-defined.

Note that there are games G such that a depth-k model (G, T k) does not have an equilib-

rium, even if for any Harsanyi extension T H of T k, the model (G, T H) has an equilibrium; a

variant of the game in Example 5 in which the action set of each player i = a, b is restricted

7Note that if no such types tj , t
′
j exist, then ti can form beliefs about the second-order beliefs of player j;

also see Corollary 5.3.
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to {s1
i , s

2
i } is an example. While it may be desirable to have a prediction for a large class of

games, we do not view the fact that certain (finite) models do not have an equilibrium as an

anomaly: it simply reflects the fact that some equilibrium strategies are too complicated for

players to reason about if they have limited cognitive resources. Indeed, in such a case, it

may be more reasonable to assume nonequilibrium behavior; see, e.g., Brocas et al. (2009),

Crawford and Iriberri (2007), Strzalecki (2009), and Heifetz and Kets (2013).8

2.4. Outline

The remainder of this paper is organized as follows. We construct players’ belief hierarchies

in Section 3. Section 4 introduces the type spaces we consider, and Section 5 shows that each

type generates a belief hierarchy with a well-defined depth of reasoning. Section 6 presents

the main results. Section 7 treats a number of conceptual and technical issues, and Section 8

discusses the related literature. Most proofs are relegated to the appendices.

3. Belief hierarchies

We now begin the formal treatment. In this section, we provide an explicit model of players’

higher-order beliefs about the state of nature, by constructing their belief hierarchies. We do

so in a way that every belief hierarchy has a well-defined depth of reasoning. Section 4 provides

an implicit description of these beliefs, by generalizing the familiar Harsanyi representation.

3.1. Preliminaries

We start with some preliminaries. For a set X and σ-algebra F on X, we write ∆(X,F)

for the set of probability measures on F (i.e., on the measurable space (X,F)), and we endow

∆(X,F) with the σ-algebra F∆(X,F) generated by the sets{
µ ∈ ∆(X,F) : µ(E) ≥ p

}
: E ∈ F , p ∈ [0, 1].

This σ-algebra naturally separates beliefs (probability measures) according to the probability

they assign to events; this makes it possible to talk about “beliefs about beliefs,” and so on

(Heifetz and Samet, 1998). Moreover, this σ-algebra coincides with the Borel σ-algebra in the

8However, Theorem 6.4 does not follow directly from the fact that some finite-depth models do not have

an equilibrium even if some models based on a Harsanyi extension of the finite-depth space do have equilibria.

For this, one would have to show that for every depth-k type space, with arbitrary type sets, there is a game

for which the depth-k model does not have an equilibrium, while the corresponding Harsanyi model does have

an equilibrium for every Harsanyi extension of the depth-k space.
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common case that ∆(X,F) is endowed with the weak topology, X is metrizable, and F is the

Borel σ-algebra on X.

As is standard, the product of measurable spaces is endowed with the product σ-algebra,

and a subset Y of a space X, endowed with a σ-algebra FX , has the relative σ-algebra, denoted

by FY . If µ is a probability measure on a product space X × Y , then its marginal on X is

denoted by margX µ.

For any family of spaces {Xz : z ∈ Z}, with Xz endowed with the σ-algebra Fz, z ∈ Z,

the union X :=
⋃

z∈Z Xz is endowed with the σ-algebra F that contains precisely the subsets

E ⊆ X such that E ∩ Xz ∈ Fz for all z ∈ Z. That is, (X,F) is the sum of the measurable

spaces (Xz,Fz), z ∈ Z.9 In particular, if S is a collection of σ-algebras on a space Y , then

the space ∆(Y,S ) :=
⋃
Q∈S ∆(Y,Q) is endowed with the σ-algebra generated by sets of the

form {
µ ∈ ∆(Y,S ) : Σ(µ) = Q, µ(E) ≥ p

}
: Q ∈ S , E ∈ Q, p ∈ [0, 1],

where Σ(µ) is the σ-algebra on which the belief µ is defined.

3.2. Construction

There is a set N of players, who are uncertain about the state of nature θ ∈ Θ. The set

Θ of states of nature is endowed with a σ-algebra FΘ, and is assumed to contain at least two

elements. For simplicity, we focus on the case of two players for much of the paper and write

N = {a, b}; the results generalize to the case of three or more players with minor changes, see

the online appendix. Throughout this paper, if we fix a player i, then the player other than i

is denoted by j, i.e., j 6= i.

Players form beliefs about θ, about their opponent’s beliefs about θ, and so on. We define

spaces of belief hierarchies to model players’ higher-order beliefs, building on the construction

of Mertens and Zamir (1985) for the Harsanyi case. We define the belief hierarchies in such a

way that each belief hierarchy has a well-defined depth of reasoning; see Section 3.3.

Generalizing Definition 2.1 of Mertens and Zamir, we define a space of belief hierarchies to

be a sequence C = (C1,C2, . . .), with Cm =
∏

i∈N C
m
i for all m, that satisfies the following

conditions:

(i) For each player i ∈ N , C1
i ⊆ ∆(Θ,FΘ), and for m = 2, 3, . . .,

Cm
i ⊆ Cm−1

i ×∆(Θ× Cm−1
j ,S m

i (Cm−1)),

where the collection S m
i (C) of σ-algebras is defined below;

9We implicitly assume here that the spaces Xz are disjoint. This is without loss of generality: we can

replace any space Xz with an isomorphic copy if needed.
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(ii) For each player i ∈ N , m = 1, 2, . . ., and (µ1
i , . . . , µ

m
i ) ∈ Cm

i , we have margΘ µ
2
i = µ1

i , and

margΘ×Cm−2
j

µm
i = µm−1

i for m > 2.

(iii) For each player i ∈ N and m = 1, 2, . . ., the projection of Cm+1
i into Cm−1

i × ∆(Θ ×
Cm−1

j ,S m
i (Cm−1)) equals Cm

i .

An example of such a space of belief hierarchies is the universal type space of Mertens and

Zamir (1985); see Example 6 below.

Condition (i) says that an mth-order belief hierarchy (µ1
i , . . . , µ

m
i ) ∈ Cm

i consists of an

(m− 1)th-order belief hierarchy (µ1
i , . . . , µ

m−1
i ) and a belief µm

i about the state of nature and

the other player’s (m−1)th-order belief hierarchy. The belief µm
i is called the mth-order belief

(induced by the hierarchy). We return to condition (i) below. Condition (ii) is a standard

coherency condition that says that beliefs at different orders cannot contradict each other

(cf. Mertens and Zamir, 1985; Brandenburger and Dekel, 1993). Condition (iii) says that

every mth-order belief hierarchy can be extended to an (m+ 1)th-order belief hierarchy. It is

straightforward to show that this condition can be satisfied whenever Cm−1
i is nonempty for

every player i.

Thus, we obtain a sequence C1
i , C

2
i , . . . of spaces of finite-order belief hierarchies for each

player i. A belief hierarchy for player i (in C) is a sequence (µ1
i , µ

2
i , . . .) of mth-order beliefs

µm
i , m ≥ 1, such that for every `, we have (µ1

i , . . . , µ
`
i) ∈ C`

i . Thus, the set of belief hierarchies

for player i (in C) is

Hi(C) := {(µ1
i , µ

2
i , . . .) : for all `, (µ1

i , . . . , µ
`
i) ∈ C`

i }.

Returning to Condition (i), we note that it generalizes a similar condition of Mertens and

Zamir (1985, Definition 2.1) by allowing the beliefs of player i at a given order m to be defined

on different σ-algebras. The collection S m
i (Cm−1) of σ-algebras on which an mth-order belief

µm
i can be defined is given by

S m
i (Cm−1) :=

{
FΘ × {Cm−1

j , ∅},FΘ ×Fm−1
j,1 (Cm−1), . . . ,FΘ ×Fm−1

j,m−1(Cm−1)
}
,

where, for ` ≤ m, Fm−1
j,`−1(Cm−1) is the σ-algebra generated by the sets of the form{

(µ1
j , . . . , µ

m−1
j ) ∈ Cm−1

j : Σ(µ`−1
j ) = FΘ ×F , µ`−1

j (E) ≥ p
}

(3.1)

for FΘ×F ∈ S `−1
j (C`−2), E ∈ FΘ×F and p ∈ [0, 1].10 The σ-algebra Fm−1

j,`−1(Cm−1) contains

precisely the subsets of (m − 1)th-order belief hierarchies in Cm−1
j that can be described in

terms of the first ` − 1 orders of beliefs. In other words, every event E ⊆ Cm−1
j in this

10For ` = 2, Fm−1
j,`−1(Cm−1) is the σ-algebra generated by the sets

{
(µ1

j , . . . , µ
m−1
j ) ∈ Cm−1

j : µ`−1
j (E) ≥ p

}
for E ∈ FΘ and p ∈ [0, 1].
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σ-algebra can be characterized by some restriction on the (` − 1)th-order belief hierarchies:

every (m−1)th-order belief hierarchy in E satisfies that restriction, and, conversely, E contains

every belief hierarchy in Cm−1
j that satisfies this restriction. Thus, the events in this σ-algebra

are completely determined by player j’s belief up to order ` − 1. In particular, the events in

Fm−1
j,m−1(C) are determined by j’s belief up to order m − 1. On the other hand, the trivial σ-

algebra {Cm−1
j , ∅} does not distinguish the belief hierarchies in any way. Thus, the σ-algebras

in S m
i (C) form a filtration:

{Cm−1
j , ∅} ⊆ Fm−1

j,1 (C) ⊆ . . . ⊆ Fm−1
j,m−2(C) ⊆ Fm−1

j,m−1(C).

With this selection of σ-algebras, the depth of reasoning of a belief hierarchy is well-defined,

as we show in Section 3.3.

Before discussing the depth of reasoning of belief hierarchies, we consider a few examples.

We first consider the space of belief hierarchies constructed by Mertens and Zamir (1985) and

others, in which every mth-order belief µm
i is defined on the σ-algebra that describes other

player’s belief up to order m− 1, for every m:

Example 6. (Mertens and Zamir, 1985) To construct this space, we make some topo-

logical assumptions; this will allow us to show that the space of belief hierarchies we construct

defines a type space, which will be useful for showing that certain Harsanyi type spaces exist

(Lemma 6.1). We assume that the set Θ of states of nature is Polish; examples of Polish

spaces include finite and countable sets, and closed subsets of the real line (under their usual

topologies). For any topological space X, its Borel σ-algebra is denoted by B(X). The set

∆(X,B(X)) of Borel probability measures is endowed with the topology of weak convergence;

if X is Polish, then so is ∆(X,B(X)). As is well-known, the σ-algebra F∆(X,B(X)) coincides

with the Borel σ-algebra B(∆(X,B(X))) whenever X is Polish.

We endow the set Θ of states of nature with its Borel σ-algebra, i.e., FΘ = B(Θ). For each

i ∈ N , take CU ,1i to be the set ∆(Θ,FΘ) of all probability measures on Θ. For m = 2, 3, . . .,

let CU ,mi be the set of mth-order belief hierarchies (µ1
i , . . . , µ

m
i ) (satisfying conditions (i)–(iii)

above) such that µm
i is defined on FΘ ×Fm−1

j,m−1(CU).11 Note that Fm−1
j,m−1(CU) = B(CU ,m−1

j ).

By standard arguments, the spaces CU ,mi are Polish and nonempty for every i and m.

Moreover, for every m and ` < m, the σ-algebra Fm−1
j,`−1(CU) is a proper sub-σ algebra of

Fm−1
j,m−1(CU). This implies that the set of mth-order beliefs that we include is a strict subset

of the set of all mth-order beliefs.

11That is, we take CU,mi := {(µ1
i , . . . , µ

m
i ) ∈ CU,m−1

i × ∆(Θ × CU,m−1
j ,FΘ × Fm−1

j,m−1(CU )) :

margΘ×CU,m−2
j

µm
i = µm−1

i } for m > 2, and CU,mi := {(µ1
i , . . . , µ

m
i ) ∈ CU,m−1

i × ∆(Θ × CU,m−1
j ,FΘ ×

Fm−1
j,m−1(CU )) : margΘ µ

m
i = µm−1

i } for m = 2.
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The resulting set HUi := Hi(C
U) of belief hierarchies for player i is the set of belief hier-

archies constructed by Mertens and Zamir (1985) and others. Mertens and Zamir show that

every type from a Harsanyi type space can be mapped into this space in a way that preserves

beliefs. We therefore refer to the belief hierarchies (µ1
i , µ

2
i , . . .) in HUi as Harsanyi (belief)

hierarchies. /

While the space of belief hierarchies in Example 6 contains all belief hierarchies generated

by types in Harsanyi type spaces, it does not contain all belief hierarchies: it does not contain

belief hierarchies (µ1
i , µ

2
i , . . .) for which for some m, the beliefs about the other player’s mth-

order beliefs are defined on a σ-algebra that only describes the other player’s belief up to some

order `− 1 < m− 1.

The following example constructs a space of belief hierarchies that does not have this

restriction:

Example 7. Again, assume that Θ is a Polish space and that FΘ is its Borel σ-algebra B(Θ).

We endow the union X of a family of topological spaces Xz, z ∈ Z, with the topology whose

open sets are precisely the subsets U of X such that U ∩ Xz is open in Xz for every z ∈ Z.

Then, for any countable collection S of σ-algebras on a Polish space X, the union ∆(X,S )

of spaces ∆(X,F), F ∈ S , is Polish (e.g., Kechris, 1995, Prop. 3.3).

For each i ∈ N , let C∗,1i = ∆(Θ,FΘ) be the set of all probability measures on Θ, as before.

For m = 2, 3, . . ., let C∗,mi be the set of mth-order belief hierarchies (µ1
i , . . . , µ

m
i ) (satisfying

conditions (i)–(iii) above) such that µm
i is defined on any of the σ-algebras in S m

i (C∗).12

Again, the σ-algebra Fk−1
j,`−1(C∗) is a proper sub-σ algebra of Fk−1

j,k−1(C∗) for every ` < k. By

standard arguments, the space C∗,mi of mth-order belief hierarchies is nonempty and Polish.

The resulting set H∗i := Hi(C
∗) of belief hierarchies contains the space HUi of all Harsanyi

hierarchies by construction. The set H∗i additionally contains belief hierarchies (µ1
i , µ

2
i , . . .)

such that for some k < ∞, for every m ≤ k, the belief about j’s (m − 1)th-order beliefs

is defined on the σ-algebra Fm−1
j,m−1(C∗) that describes j’s (m − 1)th-order beliefs, while for

m > k, it is defined on the σ-algebra Fm−1
j,k−1(C∗) that describes j’s (k − 1)th-order beliefs.

Thus, the set H∗i strictly contains the set HUi of Harsanyi hierarchies. See the online appendix

for further details. /

Before turning to the depth of reasoning of belief hierarchies, let us note that the typical

approach in the literature is to construct a space of belief hierarchies that contains all belief

hierarchies in some sense, that is, to construct a so-called universal space. Instead, we define a

12That is, we take C∗,mi := {(µ1
i , . . . , µ

m
i ) ∈ C∗,m−1

i ×∆(Θ×C∗,m−1
j ,S m

i (C∗)) : margΘ×C∗,m−2
j

µm
i = µm−1

i }
for m > 2, and C∗,mi := {(µ1

i , . . . , µ
m
i ) ∈ C∗,m−1

i ×∆(Θ× C∗,m−1
j ,S m

i (C∗)) : margΘ µ
m
i = µm−1

i } for m = 2.

19



family of spaces of belief hierarchies, by varying C. For the Harsanyi case, the two approaches

are equivalent (under certain topological restrictions). For the present setting, this is not the

case; see Section 7.

3.3. Depth of reasoning

We define the depth of reasoning of a belief hierarchy hi = (µ1
i , µ

2
i , . . .) to be infinite if

for every m, the induced mth-order belief µm
i can assign a probability to all events that are

expressible in terms of player j’s mth-order beliefs. The belief hierarchy has a finite depth of

reasoning k if its induced mth-order belief can assign a probability only to events that can be

expressed in terms of player j’s beliefs of order at most k − 1. Formally:

Definition 1. Let hi = (µ1
i , µ

2
i , . . .) ∈ Hi(C) be a belief hierarchy. Then:

• hi has infinite depth, denoted dCi (hi) = ∞, if µm
i is a probability measure on FΘ ×

Fm−1
j,m−1(C) for all m = 1, 2, . . .;

• hi has finite depth k = 1, 2, . . ., denoted dCi (hi) = k, if the following hold:

– for each m ≤ k, µm
i is a probability measure on FΘ ×Fm−1

j,m−1(C);

– for each m > k, µm
i is a probability measure on FΘ ×Fm−1

j,k−1(C), and

Fm−1
j,k−1(C) ( Fm−1

j,k (C) ⊆ · · · ⊆ Fm−1
j,m−1(C).

By construction, the depth of reasoning of a belief hierarchy is well-defined:13

Lemma 3.1. For any belief hierarchy hi = (µ1
i , µ

2
i , . . .) ∈ Hi(C), there is a unique k =

∞, 1, 2, . . . such that dCi (hi) = k.

Intuitively, the σ-algebras in S m
i (C), m = 2, 3, . . . are chosen in such a way that for each

mth-order belief µm
i , there is some k ≤ m such that µm

i can assign a probability to precisely

those events that can be expressed in terms of the other player’s (k − 1)th-order beliefs. The

coherency condition (ii) then ensures that the depth of a belief hierarchy is well-defined: if

µm
i can assign a probability only to order-(k − 1) events for k < m, then µm+1

i can assign a

probability only to order-(k − 1) events.

13While the depth of reasoning dCi (hi) of a belief hierarchy hi ∈ Hi(C) is defined relative to C, there

is a direct relationship between the depth of reasoning of different belief hierarchies: for any C, there is a

measurable embedding of Hi(C) into the set H∗i of belief hierarchies constructed in Example 7, and any two

belief hierarchies hi ∈ Hi(C) and h′i ∈ Hi(C
′) (potentially from different spaces) that are mapped into the

same belief hierarchy h∗i ∈ H∗i have the same depth of reasoning as h∗i .
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Going back to the examples in the previous section, we see that the belief hierarchies in

HUi in Example 6 all have an infinite depth of reasoning. By contrast, the belief hierarchies

in H∗i in Example 7 can have any depth of reasoning: for every k = 1, 2, . . . ,∞, there are

hierarchies that have depth k. In addition, H∗i also contains belief hierarchies of infinite depth

that assign positive probability to belief hierarchies of finite depth, and so on; see the online

appendix for details.

4. Type spaces

While the construction of players’ belief hierarchies in the previous section allows us to

directly model their higher-order beliefs, including their depth of reasoning, it would be desir-

able to have a model that does not require us to write out the belief hierarchies explicitly, in

the vein of the type spaces introduced by Harsanyi (1967–1968). In this section, we generalize

the concept of a Harsanyi type space. As we show in Section 5, each type induces a belief

hierarchy, just like Harsanyi types do, except that the belief hierarchy can be of finite depth.

A (Θ-based) type space is a tuple

(Ti,Si,Σi, βi)i∈N

that satisfies Assumption 1 below. For each player i, Ti is a nonempty set of types, and Si is a

nonempty collection of σ-algebras on Ti. The function Σi maps the types in Ti to a σ-algebra

Σi(ti) ∈ Sj on Tj, and βi maps each type ti into a belief βi(ti) ∈ ∆(Θ× Tj,FΘ × Σi(ti)). We

refer to βi as player i’s belief map.

Assumption 1 imposes some further restrictions on the σ-algebras in Si, i ∈ N , to ensure

that each type generates a well-defined belief hierarchy. Thus, this assumption plays a similar

role as the familiar condition in the definition of Harsanyi type spaces that belief maps be

measurable, as we discuss below. To state the assumption, we need some more definitions.

We say that a σ-algebra Fi on the type set Ti of player i dominates a σ-algebra Fj on the

type set Tj of player j if for every event E ∈ FΘ ×Fj and p ∈ [0, 1],{
ti ∈ Ti : E ∈ FΘ × Σi(ti), βi(ti)(E) ≥ p

}
∈ Fi.

If Fi dominates Fj, then we write Fi � Fj; if Fi is the coarsest σ-algebra that dominates Fj,

we write Fi �* Fj. (The coarsest σ-algebra that dominates Fj exists: it is the σ-algebra that

is the intersection of all σ-algebras on Ti that dominate Fj.) Two σ-algebras Fi and Fj on

Ti and Tj, respectively, that dominate each other will be called a mutual-dominance pair. We

are now ready to state the condition:
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Assumption 1. For every player i ∈ N and any σ-algebra Fi ∈ Si such that Fi 6= {Ti, ∅},
there is a σ-algebra Fj ∈ Sj such that one of the following holds:

(a) (Fi,Fj) is a mutual-dominance pair; or

(b) Fi is the coarsest σ-algebra that dominates Fj, i.e., Fi �* Fj.

It follows immediately that each Harsanyi type space is a type space in our sense. Recall

that a (Θ-based) Harsanyi type space is a tuple T H = (THi , β
H
i )i∈N , where for each player

i, the type set THi is endowed with some fixed σ-algebra FHi , and the belief maps βHi are

measurable.14 This measurability condition is equivalent to the assumption that the σ-algebras

on the type sets form a mutual-dominance pair.15 Hence, any Harsanyi type space T H =

(THi , β
H
i )i∈N can be viewed as a type space in our sense, and we sometimes write T H =

(THi ,SHi ,ΣHi , βHi )i∈N , where SHi := {FHi } and ΣHi is the trivial mapping.

Thus, Assumption 1 relaxes the standard measurability condition for Harsanyi type spaces.

Assumption 1 is in fact strictly weaker than the measurability condition: the type space in

Example 2, for example, satisfies Assumption 1, but the belief maps are not measurable

(with respect to the players’ σ-algebras). Note that Assumption 1 is easy to verify: as with

the measurability condition for Harsanyi type spaces, we only need to consider the relation

between two σ-algebras. See Section 7 for further discussion.

5. From types to belief hierarchies

In this section, we first show that every type can be mapped into a belief hierarchy. We

then discuss the depth of reasoning of types.

5.1. Mapping types into belief hierarchies

To map each type in a type space into a belief hierarchy, we simultaneously construct the

space of belief hierarchies generated by the type space, and the functions that maps each type

into a belief hierarchy. Essentially, we use the same construction as in Section 3.2, where we

built up belief hierarchies using arbitrary subsets Cm
i of mth-order belief hierarchies for each

14This specifications covers most of the alternative definitions in the literature, such as those that require

that type sets be separable metrizable or Polish, and assume that the belief maps are Borel measurable or

continuous.
15 This can be seen by noting that a function f : X → Y is measurable (with respect to the σ-algebras FX

and FY on X and Y , respectively) if and only if the inverse images f−1(B) of subsets B ⊆ Y that generate

FY belong to FX (e.g., Aliprantis and Border, 2005, Corollary 4.24).
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player i ∈ N , except that here the subsets of mth-order belief hierarchies are derived from the

type space.

Fix a type space T = (Ti,Si,Σi, βi)i∈N and a player i ∈ N . For each player i ∈ N , we define

a mapping hT ,1i from Ti to ∆(Θ,FΘ) by hT ,1i (ti) := margΘ βi(ti). Clearly, hT ,1i (ti) ∈ ∆(Θ,FΘ).

Define CT ,1i := hT ,1i (Ti) to be the image of hT ,1i , and CT ,1 :=
∏

n∈N C
T ,1
n . Let FT ,1i,1 (CT ) be

the relative σ-algebra on CT ,1i induced by F∆(Θ,FΘ).

For m > 1, suppose that for each player i ∈ N and for each ` ≤ m − 1, the spaces CT ,`i

and CT ,` =
∏

n∈N C
`
n have been defined, and that S `

i (CT ) is a collection of σ-algebras on

Θ × CT ,`−1
j .16 Also, assume that the functions hT ,`i from Ti into CT ,`i have been defined.17

Define

S m
i (CT ) :=

{
FΘ × {CT ,m−1

j , ∅},FΘ ×Fm−1
j,1 (CT ), . . . ,FΘ ×Fm−1

j,m−1(CT )
}
,

where, for ` ≤ m, Fm−1
j,`−1(CT ) is generated by the sets{

(µ1
j , . . . , µ

m−1
j ) ∈ CT ,m−1

j : Σ(µ`−1
j ) = FΘ ×F , µ`−1

j (E) ≥ p
}
,

for FΘ × F ∈ S `−1
j (CT ), E ∈ FΘ × F , and p ∈ [0, 1]. Then, define the mapping hT ,mi from

Ti to CT ,m−1
i ×∆(Θ× CT ,m−1

j ,S T ,m
i (CT ))) by:

hT ,mi (ti) :=
(
hT ,m−1
i (ti), µ

k
i (ti)

)
,

where µk
i (ti) is the kth-order belief induced by ti, defined by

µk
i (ti)(E) = βi(ti)

({
(θ, tj) : (θ, hT ,m−1

j (tj)) ∈ E
})

for any E ⊆ Θ× CT ,m−1
j such that this probability is well-defined. Let CT ,mi be the image of

hT ,mi , and write CT ,m :=
∏

n∈N C
T ,m
n .

Lemma 5.1. For every i ∈ N and m = 1, 2, 3, . . ., the functions hT ,mi are well-defined.

The key to proving Lemma 5.1 is to relate the σ-algebra Σi(ti) ∈ Sj of type ti on Tj to

the σ-algebras on the space CT ,m−1
j of (m − 1)th-order hierarchies induced by types in Tj.

This is nontrivial, because Assumption 1 allows many different relations between the various

σ-algebras on players’ types; for example, we could have cycles of σ-algebras that dominate

each other, or infinite chains. In the proof of Lemma 5.1, we “categorize” the σ-algebras while

we are performing an induction. This gives the structure necessary to make the connection

between the σ-algebras on the type space and the σ-algebras on belief hierarchies.

16For ` = 1, we take S `
i (CT ) to be the singleton {FΘ}.

17This is with some abuse of notation: the range of hT ,`
i is in fact a superset of CT ,`

i , as can be seen below;

also see Lemma 5.1.
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We can now construct the space of belief hierarchies that are generated by some type in T .

The sequence (CT ,1,CT ,2, . . .) defines a space of belief hierarchies, i.e., it satisfies conditions

(i)–(iii) in Section 3.2. If we write µ1
i (ti) for the first-order belief margΘβi(ti) induced by ti,

then, for every type ti ∈ Ti,
hTi (ti) =

(
µ1
i (ti), µ

2
i (ti), . . .

)
is a belief hierarchy. We refer to hTi (ti) as the belief hierarchy induced (or generated) by ti.

We thus have the following result:

Theorem 5.2. For every type space T = (Ti,Si,Σi, βi)i∈N , and for each player i ∈ N , the

belief hierarchies in Hi(C
T ) are precisely those that are generated by the types in Ti. That

is,

• for each type ti ∈ Ti, there is a belief hierarchy (µ1
i , µ

2
i , . . .) ∈ Hi(C

T ) such that hTi (ti) =

(µ1
i , µ

2
i , . . .);

• for every belief hierarchy (µ1
i , µ

2
i , . . .) ∈ Hi(C

T ), there is a type ti ∈ Ti such that

(µ1
i , µ

2
i , . . .) = hTi (ti).

The proof follows directly from Lemma 5.1 and the fact that the construction above gives

a space of belief hierarchies.

5.2. Depth of reasoning

By Lemma 3.1 and Theorem 5.2, each type ti generates a belief hierarchy hTi (ti) of well-

defined depth. With some abuse of terminology, we refer to the depth dC
T

i (hTi (ti)) of reasoning

of the hierarchy induced by a type ti as the depth of reasoning of the type, and write dTi (ti) for

dC
T

i (hTi (ti)). As we discuss now, the depth of reasoning of a type can be determined directly

from the type space.

The first step is to recognize that there is a tight connection between the σ-algebras on

the type sets and the σ-algebras on the belief hierarchies. In the course of proving Lemma

5.1, we establish the following result, which we note for reference:

Corollary 5.3. For every player i ∈ N and type ti ∈ Ti, if ti has depth k <∞, then

Σi(ti) =
{{

tj ∈ Tj : hT ,k−1
j (tj) ∈ Bk−1

j

}
: Bk−1

j ∈ Fk−1
j,k−1(CT )

}
(5.1)

(
{{

tj ∈ Tj : hT ,kj (tj) ∈ Bk
j

}
: Bk

j ∈ Fk
j,k(CT )

}
;

otherwise, if ti has an infinite depth of reasoning, then

Σi(ti) ⊇
{{

tj ∈ Tj : hT ,mj (tj) ∈ Bm
j

}
: Bm

j ∈ Fm
j,m(CT )

}
(5.2)

for all m.
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Thus, if type ti has depth k < ∞, then its σ-algebra is generated by the function that

maps its opponent’s types into their (k − 1)th-order belief hierarchies. If ti has an infinite

depth of reasoning, then its σ-algebra contains all subsets of types that can be distinguished

on the basis of their finite-order belief hierarchies. Using Corollary 5.3, it is straightforward

to show that the σ-algebra of a type ti of depth k separates the types in Tj if and only if these

types for j differ in their (induced) (k − 1)th-order beliefs; similarly, if ti has infinite depth,

then its σ-algebra separates the types in Tj if the induced beliefs of these types differ at some

order.18 For future reference, we denote the σ-algebra in (5.1) by σ(hT ,k−1
j ).

While the expressions in (5.1) and (5.2) refer to the hierarchy mappings hT ,kj , and thus to

the spaces of belief hierarchies, it is in fact possible to determine the depth of reasoning of a

type directly from the σ-algebras on the type sets, without references to hierarchy mappings

or belief hierarchies. For example, types from Harsanyi type spaces have an infinite depth, as

should be expected:

Observation 1. (Harsanyi type spaces) If T H is a Harsanyi type space, and ti is a type

in T H, then dT
H

i (ti) =∞.

The proof follows directly from Lemma 5.1, and is thus omitted. For example, as is well-

known, the space CU of belief hierarchies constructed in Example 6 defines a type space, the

so-called universal (Harsanyi) type space (e.g., Mertens and Zamir, 1985), and every type in

this type space has an infinite depth of reasoning.

As a second example, it is easy to characterize the type spaces in which all types have the

same finite depth k:

Observation 2. (Uniform finite depth) Fix a type space T = (Ti,Si,Σi, βi)i∈N .

(a) Suppose that for each player i ∈ N , every type ti ∈ Ti is endowed with the same σ-algebra

Fj ∈ Sj, and that Fa does not dominate Fb or vice versa. Then there is k = 1, 2, . . .

such that for each i ∈ N , the σ-algebra Fi dominates exactly k−1 σ-algebras in Sj, and

the depth of each type equals k.

(b) Conversely, suppose that each type has the same finite depth. Then for each player

j ∈ N , there is a σ-algebra Fj ∈ Sj such that every type ti ∈ Ti is endowed with the

σ-algebra Σi(ti) = Fj, and Fa does not dominate Fb or vice versa.

18Recall that a σ-algebra F on a space X separates two (distinct) elements x, x′ of X if there is a subset

B ∈ F such that x ∈ B and x′ 6∈ B. As is well-known, the σ-algebra Σi(ti) of a type that has infinite

depth may separate two types tj , t
′
j even if the types induce the same belief hierarchy (i.e., the type space is

redundant) (e.g., Mertens and Zamir, 1985).
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Again, the proof follows directly from Lemma 5.1. An example of a type space with uniform

finite depth is the type space in Figure 2: every type for player i = a, b is endowed with the

σ-algebra F∗j , and F∗a does not dominate F∗b or vice versa. Moreover, the σ-algebras F∗a and

F∗b dominate only the trivial σ-algebra (on Bob’s and Ann’s type set, respectively), so that

every type has depth 2.

While the observations above apply to type spaces in which every type has the same (finite

or infinite) depth, there are also type spaces in which types can have different depths of

reasoning, so that there can be uncertainty about a player’s depth. For example, the online

appendix shows that the space C∗ of belief hierarchies in Example 7 defines a type space such

that for every k, finite or infinite, there exists a type for each player with depth k. Also for the

general case, it is possible to determine a type’s depth directly from the type space, so that

we do not have to write out its belief hierarchy to know its depth, essentially by counting the

number of σ-algebras that the type’s σ-algebra dominates (details available upon request).

6. Main results

6.1. Preliminaries

We start with some preliminaries. As in much of the paper, we focus here on the case

of two players. The results extend immediately to the general case. In the remainder of the

paper, we assume that the set Θ of states of nature is finite, to avoid technicalities, and we

endow Θ with its usual (discrete) σ-algebra FΘ.

A (Θ-based) game is a tuple G = (Si, ui)i∈N , where for each player i, Si is a (nonempty)

finite set of actions, endowed with its standard σ-algebra FSi
, and ui : S ×Θ→ R is a payoff

function (where S :=
∏

i Si). A (Θ-based) (Bayesian) model is a pair (G, T ), where G is a

game, and T is a type space.

For simplicity, we write ∆(Si) and ∆(Θ) for ∆(Si,FSi
) and ∆(Θ,FΘ), respectively. Also,

if µ is a probability measure on a product space X × Y , and E is a measurable subset of X,

we sometimes write µ(E) for margXµ(E).

Fix a game G = (Si, ui)i∈N and a type space T = (Ti,Si,Σi, βi)i∈N . A strategy for player

i ∈ N is a mapping σi : Ti → ∆(Si), with σi(ti)(si) the probability that type ti plays action

si. The (interim) expected utility of type ti of action si ∈ Si given strategy σj of the other

player is given by

Ui(si, σj; ti) :=

∫
Sj×Θ×Tj

ui(si, sj, θ)σj(tj)(sj)dβi(ti).

If the expected utility Ui(si, σj; ti) is well-defined for each action si, we say that the strategy
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σj is comprehensible for ti. A sufficient condition for σj to be comprehensible for ti is that σj

is measurable with respect to Σi(ti) and the usual σ-algebra on ∆(Sj).
19

We are now ready to define the equilibrium concept.

Definition 2. Let G be a game, and let T be a type space. A strategy σ = (σi)i∈N is a

(Bayesian-Nash) equilibrium of the model (G, T ) if for each player i ∈ N and type ti ∈ Ti, the

following hold:

• the strategy σj is comprehensible for ti; and

• for each action si ∈ Si such that σi(ti)(si) > 0,

Ui(si, σj; ti) ≥ Ui(s
′
i, σj; ti)

for every action s′i ∈ Si.

It can be checked that this is the standard Bayesian-Nash equilibrium concept when T is

a Harsanyi type space. The second condition in Definition 2 is just the familiar best-reply

condition; the first condition is needed to ensure that each type can calculate its expected

payoffs if the other player follows the equilibrium strategy. This condition is standard, but,

as we observed in Example 5, it can have more “bite” for finite-depth types than for Harsanyi

types.

From now on, we focus primarily on type spaces in which every type has the same depth;

the results extend directly to the general case, see Remark 2 below. We refer to a type space

in which every player has depth k < ∞ as a depth-k (type) space; also, recall that a type

space in which every type has infinite depth is a Harsanyi type space. To abstract from the

issue that the set of equilibria can depend on the presence of redundant types –an issue that

is orthogonal to the focus of the present paper –, we restrict attention throughout this section

to type spaces that are nonredundant in the sense that no two types generate the same belief

hierarchy (cf. Mertens and Zamir, 1985). Thus, a Harsanyi type space T H is nonredundant

if for each player i, the hierarchy mapping hT
H

i is injective, and a depth-k space T k is (kth-

order) nonredundant if the kth-order hierarchy mapping hT
k,k

i is injective. The restriction to

nonredundant type spaces is not essential.

19The condition that a strategy σj be measurable for ti is generally not necessary for it to be comprehensible

for the type: a strategy σj is comprehensible for ti even if it is not measurable for the type if (1) σj is measurable

only on a support of βi(ti); or (2) for each mixed action αi ∈ ∆(Si), the function ui(αi, σj(·), ·) : Tj ×Θ→ R
(where ui is extended to mixed actions in the usual way) is measurable with respect to Σi(ti) × FΘ. The

equilibrium strategies in a “report-your-kth-order-beliefs” game (e.g., Dekel et al., 2006) are not measurable

for types of depth k, but satisfy (2), and are thus comprehensible for such types.
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6.2. Strategic equivalence

Our aim is to understand whether the equilibrium behavior of types with a finite depth can

be described by the standard equilibrium concept applied to Harsanyi type spaces. Formally:

Definition 3. Fix a depth-k space T k = (Ti,Si,Σi, βi)i∈N , and let T H = (THi , β
H
i )i∈N be a

Harsanyi type space such that there is a surjective mapping ψi from THi to Ti for each player

i ∈ N . The type spaces T H and T k are strategically equivalent if for each game G, the following

hold:

(1) for every equilibrium σk = (σk
i )i∈N of (G, T k), there is a corresponding equilibrium of

(G, T H), that is, the strategy profile σ, with σi = σk
i ◦ ψi for i ∈ N , is an equilibrium of

(G, T H); and

(2) for every equilibrium σ = (σi)i∈N of (G, T H), there is a corresponding equilibrium of

(G, T k), that is, the strategy profile σk = (σk
i )i∈N , with σi = σk

i ◦ ψi for i ∈ N , is an

equilibrium of (G, T k).

If (1) holds for every game G, we say that T H contains the equilibria of T k; and, conversely,

if (2) holds for every game G, we say that T k contains the equilibria of T H. Note that if the

function ψi is not surjective, then σk
i (ti), with σk

i defined by σi = σk
i ◦ ψi, is not defined for

some types ti.

As noted in Section 2, when T k and T H have the same type sets (i.e., for each player

i, we have THi = Ti and ψi is the identity function), this definition simply requires that the

set of equilibria in (G, T H) and (G, T k) coincide for every game G. Allowing arbitrary type

sets strengthens our negative result (Theorem 6.4 below), without substantially weakening the

other results.

6.3. Equilibrium

We first consider the question whether for a given a depth-k space T k, there is a Harsanyi

type space T H with the property that for every game G, for any equilibrium of the finite-

depth model (G, T k), there is a corresponding equilibrium in the Harsanyi model (G, T H).

As illustrated by Example 4, this does not hold for arbitrary Harsanyi type spaces. We

characterize the subclass of Harsanyi type spaces with this property.

Let k = 1, 2, . . . and fix a depth-k space T k = (Ti,Si,Σi, βi)i∈N ; note that there is a unique

σ-algebra Fk
i ∈ Si such that Σj(tj) = Fk

i for all tj ∈ Tj (Observation 2). We define a family

of Harsanyi type spaces T H that extend T k in the sense that the beliefs of each type in T H

up to order k are consistent with the kth-order beliefs of a type in T k.
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Formally, a Harsanyi type space T H = (THi , {FHi },ΣHi , βHi )i∈N is a Harsanyi extension of

the depth-k space T k if for each player i ∈ N , there is a surjective mapping ϕi : THi → Ti

such that:

• ϕi is measurable (with respect to Fk
i and FHi ); and

• for each tHi ∈ THi and E ∈ FΘ ×Fk
j , we have

βi(ϕi(t
H
i ))(E) = βHi (tHi )

(
{(θ, tHj ) : (θ, ϕj(t

H
j )) ∈ E}

)
.

Thus, the mappings ϕi, i ∈ N , preserve the belief structure of T k in a similar way as so-called

type morphisms do in the context of Harsanyi type spaces (cf. Mertens and Zamir, 1985). We

therefore refer to ϕ := (ϕi)i∈N as an (extended) type morphism (from T H to T k), and, with

some abuse of terminology, we sometimes refer to the pair (T H, ϕ) as a Harsanyi extension

of T k.20 For any depth-k type ti ∈ Ti, a type tHi ∈ THi is said to be an extension of ti if

ϕi(t
H
i ) = ti. Note that a type in T k can have multiple extensions in T H. It can be shown that

the Harsanyi extensions of T k are precisely the Harsanyi type spaces in which the kth-order

belief hierarchies are given by those in T k, and there is common belief in that event. Hence,

the current definition coincides with the definition given in Section 2.

The next result shows that a Harsanyi extension exists for broad class of type spaces.

Lemma 6.1. Suppose that T k is kth-order nonredundant, and that for each i ∈ N , the type

set Ti is Polish and that the Borel σ-algebra B(Ti) is generated by the kth-order hierarchy

mapping hT
k,k

i , i.e., B(Ti) = σ(hT
k,k

i ). Then T k has a Harsanyi extension.

The proof is relegated to the online appendix. The next result states that a Harsanyi type

space contains the equilibria of a depth-k space if and only if it is a Harsanyi extension of the

depth-k space:

Theorem 6.2. Let T k be a depth-k type space and let T H be a Harsanyi type space such

that there is a surjective mapping ϕi for each player i from i’s type set in T H to her type set

in T k. The following are equivalent:

• For every game G and every equilibrium σk of (G, T k), the strategy profile σ, with

σi = σk
i ◦ ϕi for i ∈ N , is an equilibrium of (G, T H);

• (T H, ϕ) is a Harsanyi extension of T k.

20The extended type morphisms as defined here do not fully generalize the type morphism of Mertens and

Zamir (1985), as the type morphism of Mertens and Zamir need not be surjective. It is straightforward to

define a such a generalization, but we do not need it here.
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Proof. The proof that T H contains the equilibria of T k whenever T H is a Harsanyi extension

of T k uses standard techniques and is therefore relegated to the appendix. To prove the

converse, fix a depth-k space T k = (Ti,Si,Σi, βi)i∈N , and recall that for each i ∈ N and ti ∈ Ti,
we have that Σi(ti) = Fk

j for some σ-algebra Fk
j on Tj. Let T H = (THi , {FHi },ΣHi , βHi )i∈N be

a Harsanyi type space such that for each player i ∈ N , there is a surjective mapping ϕi from

THi to Ti which is measurable with respect to FHi and Fk
i .

Suppose that (T H, ϕ) is not a Harsanyi extension of T k. We claim that there is a game G
and an equilibrium σk of (G, T k) such that the strategy profile σ, with σi = σk

i ◦ ϕi is not an

equilibrium of (G, T H).

Since T H is not a Harsanyi extension of T k, there is a player i ∈ N , a type tHi ∈ THi ,

θ ∈ Θ, and B ∈ Fk
j such that

βHi (tHi )({(θ, tHj ) : ϕj(t
H
j ) ∈ B}) 6= βi(ti)(θ, B) (6.1)

where we have defined ti := ϕi(t
H
i ). Also, it is without loss of generality to assume that

βi(ti)(θ, B) > 0. We consider the case where βHi (tHi )(θ) > 0; we treat the complementary case

in the appendix.

Define the game Gy = (Sn, un)n∈N as follows. For each player n ∈ N , let Sn := {s1
n, s

2
n}.

For each state θ′ 6= θ and every action profile s ∈ S, let un(s, θ′) := 0. The payoffs in state θ

are given by (with i the row player):

s1
j s2

j

s1
i y, 0 0,0

s2
i 1,0 1,0

where

y := 1 +
βi(ti)(θ, Tj \B)

βi(ti)(θ, B)
.

Consider the strategy σk
j for player j, defined by:

σk
j (tj) :=

{
s1
j if tj ∈ B;

s2
j otherwise.

Then, the strategy profile σk
j is comprehensible for every type t′i ∈ Ti, and type ti is indifferent

between s1
i and s2

i . Define the strategies σk
i and σ̃k

i as follows. Let σk
i (ti) and σ̃k

i (ti) assign

probability 1 to s1
i and s2

i , respectively, and for t′i 6= ti, let σk
i (t′i) and σ̃k

i (t′i) assign probability

1 to s1
i if

βi(t
′
i)(θ, B)(y − 1)− βi(t′i)(θ, Tj \B) ≥ 0,
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and probability 1 to s2
i otherwise. Then all types choose a best response under σk

j , σk
i , and

σ̃k
i , and each of these strategies is comprehensible for the types of the other player. Hence,

the strategy profiles (σk
i , σ

k
j ) and (σ̃k

i , σ
k
j ) are equilibria of (G, T k).

Now consider the case where beliefs are given by T H. If {(θ, tHj ) : ϕj(t
H
j ) ∈ B} 6∈ FHj ,

then σj = σk
j ◦ ϕj is not comprehensible for tHi , so the strategy profiles in T H corresponding

to (σk
i , σ

k
j ) and (σ̃k

i , σ
k
j ) are not an equilibrium of (G, T H).

So suppose {(θ, tHj ) : ϕj(t
H
j ) ∈ B} ∈ FHj . If βHi (tHi )({(θ, tHj ) : ϕj(t

H
j ) ∈ B}) > βi(ti)(θ, B),

then (σ̃k
i , σ

k
j ) is not an equilibrium of (G, T H); otherwise, the strategy profile (σk

i , σ
k
j ) is not

an equilibrium of (G, T H). �

We next ask whether for a given depth-k space T k, there is a Harsanyi type space T H such

that T k contains the equilibria of T H. Given that we are interested in finding Harsanyi type

spaces that are strategically equivalent to T k, Theorem 6.2 allows us to restrict attention to

Harsanyi extensions of T k. (However, our results do not depend on this restriction.)

The next result shows that it is without loss of generality to restrict attention to order-k

extensions for our purposes, where an order-k extension is a Harsanyi extension in which the

higher-order beliefs of each type are completely determined by its kth-order beliefs. Formally,

a Harsanyi type space T H is of order k if the following conditions hold:

• for each player i ∈ N and pair of types tHi , t̃
H
i in T H, we have that hT

H,k
i (t̃Hi ) = hT

H,k
i (tHi )

implies hT
H

i (t̃Hi ) = hT
H

i (tHi ); and

• there is a player i ∈ N and a pair of types tHi , t̃
H
i in T H such that hT

H,k−1
i (t̃Hi ) =

hT
H,k−1

i (tHi ) and hT
H

i (t̃Hi ) 6= hT
H

i (tHi ).

The first condition says that beliefs are determined completely by players’ kth-order beliefs;

the second says that beliefs are not determined by the (k − 1)th-order beliefs of players.

This ensures that the order of a Harsanyi type space is well-defined. An order-k (Harsanyi)

extension of a depth-k space T k is a Harsanyi extension of T k that is of order k.21

Lemma 6.3. Let T k be a depth-k space that is kth-order nonredundant, and let (T H, ϕ)

be a Harsanyi extension of T k. If for every game G, for every equilibrium σ of (G, T H), the

strategy profile σk, with σi = σk
i ◦ ϕi for i ∈ N , is an equilibrium of (G, T k), then T H is an

order-k extension of T k. Moreover, if T H is nonredundant, then it is without loss of generality

to take the type sets in T H to be equal to those in T k, i.e., THi = Ti for i ∈ N .

21For depth-k spaces with countable type sets, an order-k extension can easily be shown to exist, but

existence cannot be shown in general. (While every belief of a depth-k type can be extended to a belief on an

appropriately finer σ-algebra (under certain topological conditions), as in the proof of Lemma 6.1, the resulting

belief map need not be measurable.)
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We are now ready to prove our negative result. Theorem 6.4 shows that a converse of

Theorem 6.2 does not hold, at least for depth-k type spaces that are nontrivial in the sense

that kth-order beliefs are potentially strategically relevant. Formally, a depth-k space T k is

nontrivial if there is a player i, a type ti for i, and an event E ⊆ Tj contained in the support

of βi(ti) with the property that there exist types tj, t
′
j ∈ E such that hT

k,k−1
j (tj) = hT

k,k−1
j (t′j)

and hT
k,k

j (tj) 6= hT
k,k

j (t′j). If a depth-k space does not satisfy this condition, then each type

assigns probability one to events that are not refined further by describing the other player’s

kth-order beliefs, so that only lower-order beliefs can be strategically relevant.

Theorem 6.4. Let T k be a nontrivial depth-k type space and let (T H, ϕ) be a Harsanyi

extension of T k. Then there is a game G and an equilibrium σ of the Harsanyi model (G, T H)

such that σk, with σi = σk
i ◦ ϕi for i ∈ N , is not an equilibrium of (G, T k).

Proof. Since we restrict attention to nonredundant type spaces, by Lemma 6.3, it is without

loss of generality to consider order-k extensions T H of T k in which every player has the same

type set as in T k. We show that there is a game G and a strategy profile σ such that for every

such Harsanyi extension T H, the strategy profile σ is an equilibrium of (G, T H), but it is not

an equilibrium of (G, T k).

We focus on the case k ≥ 2; the proof for the case k = 1 is similar and can be found

in the online appendix. Let i ∈ N . By Corollary 5.3, the σ-algebra of each type ti ∈ Ti

is generated by the (k − 1)th-order hierarchy mapping hT
k,k−1

j , i.e., Σi(ti) = σ(hT
k,k−1

j ) (Eq.

(5.1)). Moreover, the σ-algebra σ(hT
k,k−1

j ) is a proper sub-σ algebra of σ(hT
k,k

j ). Hence, there

are types ti, t
′
i ∈ Ti that differ only in their kth-order beliefs, that is, hT

k,k−1
i (ti) = hT

k,k−1
i (t′i)

and hT
k,k

i (ti) 6= hT
k,k

i (t′i). As T k is nontrivial, it is without loss of generality to assume that ti

and t′i belong to the support of the belief of some type for j.

It follows that there exist θ ∈ Θ and B ∈ σ(hT
k,k−1

j ) \ σ(hT
k,k−2

j ) such that

βi(ti)(θ, B) > 0, βi(t
′
i)(θ, B) 6= βi(ti)(θ, B).

Without loss of generality, assume that βi(ti)(θ, B) − βi(t′i)(θ, B) = ε for some ε > 0. Note

that for any Harsanyi extension T H (with THi = Ti and ϕi the identity function for every

i ∈ N), we have that βHi (ti)(θ, B) = βi(ti)(θ, B), and likewise for t′i.

Consider the following game, denoted Gx. Each player n has two actions, denoted by s1
n

and s2
n. Payoffs are given by:

s1
j s2

j

s1
i x, 0 0, 0

s2
i 1, 1 1, 1

θ

s1
j s2

j

s1
i 0, 0 0, 0

s2
i 1, 1 1, 1

θ′ 6= θ
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where

x =
1

βi(ti)(θ, B)
+ ε.

Clearly, the model (Gx, T k) has an equilibrium in which every type ti of player i plays s2
i

(with probability 1), and every type tj of player j plays s2
j ; by Theorem 6.2, any model (Gx,

T H) such that T H is a Harsanyi extension of T k has a corresponding equilibrium.

We show that there is another strategy profile σ = (σi, σj) that is an equilibrium of (Gx,

T H) for any Harsanyi extension T H (with THi = Ti for every i ∈ N) which is not an equilibrium

of the depth-k model (Gx, T k). Define the strategy σj for player j by

σj(tj)(s
1
j) = 1 if tj ∈ B;

σj(tj)(s
2
j) = 1 if tj 6∈ B.

Note that σj is comprehensible for each type of player i. Then the difference in expected

payoffs for ti between s1
i and s2

i is

Ui(s
1
i , σj; ti)− Ui(s

2
i , σj; ti) = βi(ti)(θ, B)x− 1.

Likewise, the difference in expected payoffs for t′i between s1
i and s2

i is

Ui(s
1
i , σj; t

′
i)− Ui(s

2
i , σj; t

′
i) = βi(t

′
i)(θ, B)x− 1.

It can be verified that type ti strictly prefers s1
i , and type t′i strictly prefers s2

i . If we set

σi(ti)(s
1
i ) = 1, σi(t

′
i)(s

2
i ) = 1, and for t̃i 6= ti, t

′
i, we define σi(t̃i)(s

1
i ) = 1 if Ui(s

1
i , σj; t̃i) −

Ui(s
2
i , σj; t̃i) ≥ 0, and σi(t̃i)(s

2
i ) = 1 otherwise, then σ = (σi, σj) is an equilibrium of (Gx, T H)

for any Harsanyi extension T H (with THi = Ti for every i ∈ N). But σ is not an equilibrium

of (Gx, T k), as ti and t′i differ only in their kth-order beliefs and play different actions. Thus,

in T k, the strategy σi is not comprehensible for the types for j (regardless of the strategies

chosen by the types t̃i 6= ti, t
′
i), and indeed the expected utility is not well-defined for some

types for j in T k. �

The intuition behind Theorem 6.4 is that there is a tension between the conditions in

Definition 2 that players choose a best response given their type, and that strategies be

comprehensible. Because there are types in a depth-k space that have different kth-order

beliefs (but have the same (k − 1)th-order beliefs), as demonstrated in Corollary 5.3, it may

be optimal for these types to take different actions, given the other player’s strategy. But this

violates the condition that equilibrium strategies be comprehensible.

The following result then follows directly from Theorems 6.2 and 6.4:
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Corollary 6.5. Fix k <∞ and a nontrivial depth-k type space T k. Then there is no Harsanyi

type space that is strategically equivalent to T k.

Remark 1. The proofs of Theorems 6.2 and 6.4 use games in which players are indifferent

among their actions. This makes it possible to clearly bring out the intuition behind the

results. One could prove the same results, however, using games in which players are not

indifferent. /

Remark 2. While we have restricted attention to depth-k spaces here for simplicity, Theorems

6.2 and 6.4 (and Corollary 6.5) directly extend to arbitrary type spaces, where players can be

uncertain about the depth of reasoning of their opponent (as in, e.g., Example 7). /

6.4. Rationalizability

Results analogous to Theorems 6.2 and 6.4 can be derived for a finite-depth version of

(interim correlated) rationalizability (Dekel et al., 2007). Fix a depth-k space T k and a game

G. For each player i ∈ N and type ti ∈ Ti, define RG,T
k,0

i (ti) := Si, and for m > 0, define

RG,T
k,m

i (ti) :=

si ∈ Si :

there is σj : Θ× Tj → ∆(Sj) s.t.

(1) σj is measurable w.r.t. Σi(ti);

(2) σj(θ, tj)(sj) > 0 implies that sj ∈ RG,T
k,m−1

j (tj);

(3) si ∈ arg maxs′i∈Si

∫
ui(s

′
i, sj, θ)σj(θ, tj)(sj)βi(ti);

 .

to be the set of best replies for ti to the (m− 1)th-order rationalizable actions of player j. As

in the Harsanyi case, define the set of (interim correlated) rationalizable actions for type ti

by RG,T
k

i (ti) :=
⋂

mR
G,T k,m
i (ti).

22 Define strategic equivalence (with respect to rationalizable

behavior) in the obvious way.

It is possible to show that results analogous to Theorems 6.2 and 6.4 hold, so that we have

the following analogue of Corollary 6.5:

Corollary 6.6. Fix k <∞ and a nontrivial depth-k type space T k. Then there is no Harsanyi

type space that is strategically equivalent (with respect to rationalizable behavior) to T k.

To understand the intuition behind Corollary 6.6, note that the profile (RG,T
k

i (ti))i∈N,ti∈Ti

is the fixed point of a best-response correspondence (cf. Dekel et al., 2007, Proposition 4).

22While a full epistemic treatment of rationalizability, as in Battigalli et al. (2011), is beyond the scope of

the present paper, we note that this definition has the following nice interpretation: a player with a finite depth

k has an imperfect understanding of the higher-order beliefs of the other player, but can apply the best-reply

operator as many times as she wishes (since this does not require complex reasoning, just bookkeeping). This

is in line with a view of rationalizability as an “algorithmic” solution concept.
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Since it is a fixed point, similar issues arise as with equilibrium: the best response to a

conjecture that describes the play of depth-k types need not be comprehensible for depth-k

types. Thus, our negative results are not due to the requirement that beliefs need to be correct

in equilibrium; also see Section 7.

6.5. Finite-order equilibrium

Our negative result (Theorem 6.4) raises the question whether it is possible to charac-

terize the strategy profiles that form a (Bayesian-Nash) equilibrium in a game for types of

a finite depth by considering a Harsanyi extension of the finite-depth type space. We define

an equilibrium refinement, called finite-order equilibrium, such that for each game, the set of

equilibria of a finite-depth model corresponds precisely to the set of finite-order equilibrium

of the corresponding Harsanyi model.

We use that every nondegenerate Harsanyi type space that is nonredundant is the extension

of some finite-depth space:

Lemma 6.7. Every nonredundant Harsanyi type space whose type sets contain at least two

elements is a Harsanyi extension of some finite-depth space (using a straightforward general-

ization of the definition of a Harsanyi extension that allows the types in the finite-depth space

to have different depths of reasoning).

The proof of Lemma 6.7 is straightforward, and therefore omitted. Fix a Harsanyi type

space T H, and suppose it is a Harsanyi extension of the finite-depth type space T . Without

loss of generality, we can take the type sets in T to be the same as in T H. Fix a game G,

and suppose for simplicity that T H and T are nonredundant, and that a strategy that is

comprehensible for a type in T is measurable with respect to the σ-algebra of that type.

Say that a strategy profile σ is a finite-order equilibrium of the Harsanyi model (G, T H)

if it is a (Bayesian-Nash) equilibrium of (G, T H) and for each player i, the strategy σi is

measurable with respect to i’s (kj − 1)th-order beliefs, where kj is the minimum depth of a

type for player j in T .23 It is straightforward to show that a strategy profile σ is a finite-order

equilibrium of the Harsanyi model (G, T H) if and only if it is an equilibrium of the finite-depth

model (G, T ).

That is, the equilibrium behavior of players with a finite depth of reasoning can be de-

scribed with a refinement of Bayesian-Nash equilibrium that rules out equilibria that depend

on players’ beliefs at high order. It can be shown that there are Harsanyi models that have

23The reason that the measurability condition is linked to the minimum depth of the types in T is that the

comprehensibility condition is strongest for the types of the lowest depth.
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a (Bayesian-Nash) equilibrium that is not a finite-order equilibrium, even if the depth of

reasoning of types is arbitrarily high. Analogous results hold for rationalizability.

The strategies that are measurable with respect to a player’s (k − 1)th-order beliefs in

T H can be found using the notion of dominance (applied to T H) introduced in Section 4.

This means that these strategies can be identified without having to specify players’ belief

hierarchies. This gives a simple method to study the equilibrium behavior of players with

a finite depth of reasoning that uses only Harsanyi type spaces, and that does not require

modeling players’ depth of reasoning or their belief hierarchies explicitly.

7. Discussion

Alternative solution concepts We have shown that Harsanyi type spaces do not capture

the behavior of types with a finite depth of reasoning under (Bayesian-Hash) equilibrium or

(interim correlated) rationalizability, unless one considers the appropriate refinements (Section

6.5). Since the tension between the best-response condition and comprehensibility is at the

core of these results, one may ask whether it is appropriate to consider concepts like conjec-

tural or self-confirming equilibrium (e.g., Battigalli, 1987; Dekel et al., 2004) or analogy-based

expectations equilibrium (Jehiel, 2005) in the present context.

These solution concepts presume that players may lump certain states of the world together,

as we do here. Unlike the present setting, there is no tension between the best-response prop-

erty and a comprehensibility or measurability condition.24 The reason is that these concept

assume that a player, say, Ann, believes that the other player, say, Bob, chooses some mix-

ture of actions in the states she lumps together, where the mixture puts positive probability

only on the actions that Bob actually chooses in these states. Thus, while a player may not

have correct beliefs about the actions of the other player in any particular state, her beliefs

are required to be correct “on average.” Since the behavior of her opponent is assumed to

be constant on the set of states she lumps together, expected payoffs are well-defined, which

means that there is no binding comprehensibility condition.

While it is possible to define the analogues of such concepts here, the motivation for these

concepts seems weak at best in the present setting. To wit, concepts like conjectural and

self-confirming equilibrium and analogy-based expectations equilibrium are have a learning

motivation: players play the same game many times, and receive partial feedback on outcomes.

Players lump together states of the world that they cannot distinguish based on their coarse

feedback. For example, a player may learn only his own payoffs after playing the game, and

24These concepts do require strategies or conjectures to be measurable (and thus comprehensible), just like

Bayesian-Nash equilibrium, but this condition does not have a bite as it does here.
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thus lumps together states of the world that differ only in others’ payoffs.

To translate this learning motivation to the present setting, we would have to assume that

a player of depth k receives feedback on the strategy of her opponent as a function of his

(k − 1)th-order belief, but not on his strategy as a function of his kth-order belief. This does

not seem to be a very realistic assumption. It is an open question whether it is possible to

find a motivation for such solution concepts that relies on less problematic assumptions about

player feedback.

Assumption 1 revisited. As noted in Section 4, Assumption 1 relaxes the condition in

the definition of Harsanyi type spaces that belief maps be measurable. Assumption 1 plays an

important role in the characterization of the σ-algebra of each type in terms of the hierarchy

mappings in the proof of Lemma 5.1, which plays a central role in the paper. To see how, note

that every σ-algebra F1
i on Ti that dominates the trivial σ-algebra {Tj, ∅} contains the subsets

of i’s types that can be distinguished on the basis of their beliefs about θ, i.e., in terms of their

first-order belief hierarchies; in turn, every σ-algebra F2
j on Tj that dominates F1

i contains the

subsets of types for j that are can be distinguished on the basis of their beliefs about player

i’s first-order belief hierarchies, i.e., in terms of their second-order belief hierarchies, and so

on. Assumption 1 ensures that for each type ti, either its σ-algebra Σi(ti) is part of a finite

chain

Σi(ti) �* F `
i �* F `−1

j �* · · · �* F1
m �* {Tn, ∅}

of σ-algebras that are the coarsest σ-algebras that dominate each other (where n ∈ N and

m 6= n), so that ti has a finite depth; or Σi(ti) dominates all σ-algebras (on Ti) that are part

of such chains, in which case ti has an infinite depth.

The requirement that the σ-algebra of each type is either part of a finite chain as the one

above, or dominates all such chains is essentially equivalent to Assumption 1 (in the sense that

the same spaces of belief hierarchies can be modeled under both conditions). Since Assumption

1 requires one to consider only the relation between two σ-algebras at the time, just like the

measurability condition, instead of requiring one to construct chains of σ-algebras of arbitrary

length, we have chosen the present formulation.

Finally, we note that it is possible to relax the requirement that the σ-algebras in the chains

be the coarsest to dominate each other, and just require that they dominate each other. Under

this weaker condition, σ-algebras corresponding to a finite depth may include events that are

unrelated to a type’s depth of reasoning (i.e., events that cannot be described in terms of the

hierarchy mappings). In that case, it may not be possible to compare two types of a given

player that have the same depth (in a given type space) in terms of the events that they can

reason about. Further study of such phenomena and their strategic implications is beyond the
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scope of the present paper.

A universal space? For the present purpose of studying equilibrium behavior, it is not

necessary to construct a universal type space for our class of type spaces, as Mertens and Zamir

(1985) and others have done for Harsanyi type spaces. One might nevertheless wonder whether

such a type space, which embeds all other type spaces (in the sense that there is a unique

type morphism from each type space into the space), can be constructed for the class of type

spaces that we consider. One observation is that for any space C of belief hierarchies, there

is a measurable mapping from each type space into the type space in Example 7. However,

the images of such mappings in
∏

iH
∗
i will generally not form a belief-closed subset, as is the

case for Harsanyi type spaces (Mertens and Zamir, 1985). We leave a full exploration of such

issues for future research.

8. Related literature

Level-k and cognitive hierarchy models. An important literature in experimental and

behavioral economics studies the behavior of players with a finite depth of reasoning, where

it is assumed that a player of depth k < ∞ applies the best-response operator k times: a

level-0 player is non-strategic and follows some exogenously specified strategy, while for k > 0,

a level-k player chooses a best response to a belief that his opponents are of a lower level; see

footnote 1 for references, and see Crawford et al. (2012) for an excellent survey. We depart

from this literature in two ways.

First, while much of the literature in experimental and behavioral economics has focused

on games with complete information about payoffs,25 we study games with incomplete infor-

mation. This is of interest because in games with incomplete information, limitations on a

players’ depth of reasoning can affect behavior even beyond the initial periods of play. While

in games with complete information, there is no remaining higher-order uncertainty once play

has converged to equilibrium (as it often does in experiments), higher-order uncertainty con-

25Notable exceptions include Brocas et al. (2009), Crawford and Iriberri (2007), and Rogers et al. (2009),

who present behavioral models for specific classes of games with incomplete information and test these models

experimentally. However, these authors do not develop a theoretical framework to analyze behavior in games

beyond the specific applications that they consider, like we do in the present paper. Strzalecki (2009) introduces

type spaces to model uncertainty about other players’ depth of reasoning in games with complete information.

While his framework can be used to analyze games with incomplete information in the agent-normal form

(when type sets are countable), his type spaces only allow for uncertainty about players’ depth of reasoning,

not about payoffs. Heifetz and Kets (2013) define a framework based on the framework presented here to

study robustness questions.
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tinues to play a role in games with incomplete information, so that the behavior of players with

a finite depth of reasoning may differ from that of players with an infinite depth of reasoning

even if players have ample experience in playing the game.

Second, while the existing literature has focused on nonequilibrium concepts, we consider

an extension of Bayesian-Nash equilibrium. This allows us to isolate the effect of the assump-

tion that players have a finite depth of reasoning from the effect of the assumption of nonequi-

librium play, and to investigate whether we can use Harsanyi type spaces and Bayesian-Nash

equilibrium to describe the equilibrium behavior of players with a finite depth of reasoning.

The innovation of our approach is that we model a player’s depth by the set of events

she can reason about, rather than by a single number, as in the rest of the literature. This

extends the notion of a small world, introduced by Savage (1954) in the context of single-person

decision problems, to a strategic setting. A state (of the world) in a small world describes the

possible uncertainties a decision-maker faces in less detail than a state in a larger world, by

neglecting certain distinctions between states. This means that “a state of the smaller world

corresponds not to one state of the larger, but to a set of states” (Savage, 1954, p. 9, emphasis

added). In the present framework, a player may ignore the distinction between types for the

other player that differ only in the beliefs they generate at high order, by lumping together

these types into a single set in her σ-algebra. A player with a lower depth of reasoning makes

fewer distinctions between states than a player with a higher depth of reasoning, and thus has

a smaller world.

This approach allows us to extend the Bayesian-Nash concept to a setting with players

with an infinite depth of reasoning, which does not seem to be straightforward in models

where a player’s depth is simply given by a number, as in Strzalecki (2009) and Heifetz and

Kets (2013). In addition, the present approach can be used to show that players with a finite

depth of reasoning can attain common knowledge under certain conditions, which solves an

important puzzle in philosophy (Kets, 2013).

Robustness of predictions. While it is well-known that game-theoretic predictions can be

sensitive to small changes in higher-order beliefs (see, e.g., Rubinstein, 1989; Weinstein and

Yildiz, 2007; Ely and Peski, 2011, among many others), the existing literature does not address

the question whether Harsanyi type spaces can be used to model the behavior of players with

a finite depth; and indeed, our results do not follow from existing results. Specifically, a key

insight from our analysis is that if a type has depth k, then there are types that differ only in

their kth-order beliefs. We then show that for each finite order k, for every pair of types that

differ in their kth-order beliefs, there is a game in which these types have distinct optimal

actions. The existing literature, by contrast, shows that the behavior of some types is sensitive
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to the specification of their beliefs at some order, possibly very high.

Measurable structures on type sets. One insight of the present paper is that, by choosing

the measurable sets on which a type’s belief is defined, we can get types that can reason

about only finitely many orders of beliefs. Indeed, a technical contribution of this paper is to

formulate a condition on the type space (Assumption 1) that guarantees that the σ-algebra of

a type with a finite depth k lumps together precisely the types that induce belief hierarchies

that coincide up to order k − 1 (Lemma 5.1 and Corollary 5.3). The idea that a type’s σ-

algebra can determine its depth of reasoning fits in with a broader literature that studies how

the measurable structure associated with types in Harsanyi type spaces can implicitly impose

restrictions on reasoning, i.e., on belief hierarchies (e.g., Brandenburger and Keisler, 2006;

Friedenberg and Meier, 2012); see Friedenberg and Keisler (2011) for an excellent discussion

and further references.

Appendix A Proofs for Sections 3–5

A.1 Proof of Lemma 3.1

The result follows directly from the coherency condition (ii). If µk−1
i is defined on the

σ-algebra FΘ×Fk−2
j,`−2(C) for ` < k, then any probability measure µk

i in ∆(Θ×Ck−1
j ,S k

i (C))

that satisfies (ii) (i.e., is such that margΘ×Ck−2
j

µk
i = µk−1

i ) is defined on the σ-algebra FΘ ×
Fk−1

j,`−2(C). Similarly, if µk−1
i is defined on FΘ × {Ck−2

j , ∅}, then any probability measure µk
i

in ∆(Θ × Ck−1
j ,S k

i (C)) that satisfies the coherency condition is defined on FΘ × {Ck−1
j , ∅}.

Finally, if µk−1
i is defined on the σ-algebra FΘ × Fk−2

j,k−2(C), then a probability measure µk
i

in ∆(Θ × Ck−1
j ,S k

i (C)) is coherent with µk−1
i only if it is defined on FΘ × Fk−1

j,k−1(C) or on

FΘ ×Fk−1
j,k−2(C). �

A.2 Proof of Lemma 5.1

It will be useful to introduce some notation and state some preliminary results. For any

nonempty set X and any nonempty collection E of subsets of X, let σ(E) be the coarsest

σ-algebra on X that contains the sets in E , that is, σ(E) is the σ-algebra generated by E .

The following preliminary result says that taking inverse images preserves σ-algebras:

Lemma A.1. Let f : X → Y be a function from X into Y , and let E be a nonempty collection

of subsets of Y . Then,

σ
({
f−1(E) : E ∈ E

})
=
{
f−1(E) : E ∈ σ(E)

}
.
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The proof is standard, and thus omitted. To state the second preliminary result, let X

be some nonempty set, and let S be a nonempty collection of σ-algebras on X. As before,

∆(X,S ) is the collection of probability measures that are defined on some σ-algebra in S .

Let A be the family of sets of the form

{µ ∈ ∆(X,S ) : Σ(µ) = F , µ(E) ≥ p} : F ∈ S , E ∈ F , p ∈ [0, 1],

and let A′ be the family of sets of the form

{µ ∈ ∆(X,S ) : E ∈ Σ(µ), µ(E) ≥ p} : F ∈ S , E ∈ F , p ∈ [0, 1],

and let σ(A) and σ(A′) be the σ-algebras on ∆(X,S ) generated by A and A′, respectively.

In general, these two σ-algebras can be different. However, as we show now, in an important

class of cases, σ(A) and σ(A′) coincide:

Lemma A.2. Suppose S is countable and forms a filtration, and suppose there is F ∈ S

such that F ⊆ F for all F ∈ S . Then σ(A) = σ(A′).

Proof. We first show that σ(A′) ⊆ σ(A). It suffices to show that A′ ⊆ σ(A). Fix F ∈ S ,

E ∈ F , and p ∈ [0, 1], and define

F ′ := {µ ∈ ∆(X,S ) : E ∈ Σ(µ), µ(E) ≥ p},

so that F ′ ∈ A′. It is immediate that F ′ ∈ σ(A): Since for every F ′ ∈ S , either E ∈ F ′ or

E 6∈ F ′, F ′ is a countable union of sets in A:

F ′ =
⋃

F ′∈S :E∈F ′
{µ ∈ ∆(X,S ) : Σ(µ) = F ′, µ(E) ≥ p}.

Hence, F ′ ∈ σ(A).

We next show that σ(A) ⊆ σ(A′). Again, fix F ∈ S , E ∈ F , and p ∈ [0, 1], and define

F := {µ ∈ ∆(X,S ) : Σ(µ) = F , µ(E) ≥ p},

so that F ∈ A. If we show that ∆(X,F) is an element of σ(A′), then we are done, because F

is then the intersection of two elements of σ(A′):

F = {µ ∈ ∆(X,S ) : E ∈ Σ(µ), µ(E) ≥ p} ∩∆(X,F).

It remains to show that ∆(X,F) ∈ σ(A′). Using that S is a countable filtration with a

minimum element F , we can label the σ-algebras in S as

F =: F1 ( F2 ( · · ·
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Then,

∆(X,F1) = ∆(X,S ) \ {µ ∈ ∆(X,S ) : E2 ∈ Σ(µ), µ(E2) ≥ 0}

for any E2 ∈ F2\F1, so ∆(X,F1) ∈ σ(A′). For k > 1, assume that ∆(X,F1), . . . ,∆(X,Fk−1) ∈
σ(A′). Then,

∆(X,Fk) = ∆(X,S ) \
(
{µ ∈ ∆(X,S ) : Ek+1 ∈ Σ(µ), µ(Ek+1) ≥ 0}∪

∆(X,F1) ∪ · · · ∪∆(X,Fk−1)
)

for any Ek+1 ∈ Fk+1 \ Fk, so ∆(X,Fk) ∈ σ(A′). Since this holds for every k, and F = Fk for

some k, we have ∆(X,F) ∈ σ(A′). �

We can now prove Lemma 5.1. We will prove the result by induction. As part of the proof,

we construct an inductive structure, in the following way. For each k = 1, 2, . . ., we define a

σ-algebra Qk
i on Ti for each player i ∈ N . (The σ-algebras Qk

i will be the σ-algebras σ(hT ,ki ),

defined below.) We then show that the σ-algebra of each type is either coincides with Qm
i for

some m < k, or is a superset of Qk
i . This gives us the inductive structure needed to prove the

result. Note that Assumption 1 does not, by itself, provide such an order. In particular, it

does not imply that Si is a (countable) filtration.26

To prove the result, we define σ(hT ,1i ) to be the σ-algebra on Ti that is generated by the

function hT ,1i , that is,

σ(hT ,1i ) := {{ti ∈ Ti : hT ,1i (ti) ∈ B} : B ∈ F1
i,1(CT )}.

It will be notationally convenient to introduce the function hT ,0i : Ti → {x}, where x is an

arbitrary singleton, defined in the obvious way; thus, the σ-algebra σ(hT ,0i ) on Ti generated

by the function hT ,0i is simply the trivial σ-algebra {Ti, ∅}.
Lemmas A.3–A.5 help order the σ-algebras with which types are endowed, using the σ-

algebras σ(hT ,0i ) and σ(hT ,1i ). Lemma A.3 is an auxiliary result that gives a useful characteri-

zation of σ(hT ,1i ).

Lemma A.3. The σ-algebra σ(hT ,1i ) is the coarsest σ-algebra on Ti that dominates σ(hT ,0j ),

i.e., σ(hT ,1i ) �* σ(hT ,0j ).

26Indeed, it is possible to have Fi,F ′i ∈ Si such that Fi 6⊆ F ′i and vice versa, or to have

F1
i ,F2

i , . . . ,F
−1
i ,F−2

i , . . . ∈ Si such that · · · �* F−1
i �* Fi �* F1

i �* F2
i �* · · · . It follows from the proof

that for any such σ-algebra Fi, we have Fi ⊇ Qm
i for all m, so that such σ-algebras do not affect the inductive

structure.
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Proof. Note that

σ
(
hT ,1i

)
=

{{
ti ∈ Ti : margΘβi(ti) ∈ B

}
: B ∈ F1

i,1(CT )
}

= σ
({{

ti ∈ Ti : margΘβi(ti)(E) ≥ p
}

: E ∈ FΘ, p ∈ [0, 1]
})

= σ
({{

ti ∈ Ti : E ′ ∈ FΘ × Σi(ti), βi(ti)(E
′) ≥ p} : E ′ ∈ FΘ × σ(hT ,0j ), p ∈ [0, 1]

})
,

where the second equality uses Lemma A.1. �

Lemma A.4. For each type ti ∈ Ti, we have Σi(ti) ( σ(hT ,1j ) or Σi(ti) ⊇ σ(hT ,1j ).

Proof. If Σi(ti) = {Tj, ∅}, then clearly, Σi(ti) ⊆ σ(hT ,1j ). If Σi(ti) 6= {Tj, ∅}, then, by As-

sumption 1, there is Fi ∈ Si such that Σi(ti) dominates Fi. Since any σ-algebra Fi ∈ Si is at

least as fine as the trivial σ-algebra {Ti, ∅}, i.e., Fi ⊇ {Ti, ∅}, Σi(ti) dominates {Ti, ∅}. But,

by Lemma A.3, the σ-algebra σ(hT ,1j ) is the coarsest σ-algebra that dominates {Ti, ∅}. Hence,

Σi(ti) ⊇ σ(hT ,1j ). �

Lemma A.5. For each ti ∈ Ti, if Σi(ti) ( σ(hT ,1j ), then Σi(ti) = σ(hT ,0j ).

Proof. Suppose Σi(ti) ( σ(hT ,1j ). Then, by Assumption 1, either Σi(ti) = {Tj, ∅} = σ(hT ,0j ),

or there is a σ-algebra Fi ∈ Si such that Σi(ti) dominates Fi. If there is such a σ-algebra

Fi ∈ Si, then an argument similar to the one in the proof of Lemma A.4 gives that Σi(ti) ⊇
σ(hT ,1j ), a contradiction. �

For k > 1, assume inductively that for any ` ≤ k − 1 and i ∈ N , the set CT ,`i has been

defined and that the functions hT ,`i are well-defined. Let

σ(hT ,`i ) = {{ti ∈ Ti : hT ,`i (ti) ∈ B} : B ∈ F `
i,`(C

T )}

be the σ-algebra on Ti that is generated by the function hT ,`i . Also, assume that the following

hold:

• the σ-algebra σ(hT ,`i ) is the coarsest σ-algebra on Ti that dominates the σ-algebra

σ(hT ,`−1
j );

• for each type ti ∈ Ti, we have Σi(ti) ( σ(hT ,`j ) or Σi(ti) ⊇ σ(hT ,`j );

• for each type ti ∈ Ti, if Σi(ti) ( σ(hT ,`j ), then there is m < ` such that Σi(ti) = σ(hT ,mj ).

The next result shows that the function hT ,ki is well-defined:
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Lemma A.6. For each type ti ∈ Ti, we have hT ,ki (ti) ∈ CT ,k−1
i ×∆(Θ× CT ,k−1

j ,S k
i (CT )).

Proof. By the induction hypothesis, we have that the claim holds if and only if µk
i (ti) =

βi(ti) ◦ (IdΘ, h
T ,k−1
j )−1 is a probability measure in ∆(Θ × CT ,k−1

j ,S k
i (CT )), where IdΘ is

the identity function on Θ. By the induction hypothesis, Σi(ti) ( σ(hT ,k−1
j ) or Σi(ti) ⊇

σ(hT ,k−1
j ). First suppose Σi(ti) ⊇ σ(hT ,k−1

j ). Then, for each E ∈ FΘ × Fk−1
j,k−1(CT ), we have

(IdΘ, h
T ,k−1
j )−1(E) ∈ FΘ×Σi(ti), so that µk

i (ti) is a probability measure on FΘ×Fk−1
j,k−1(CT ) ∈

S k
i (CT ). Next suppose that Σi(ti) ( σ(hT ,k−1

j ). By the induction hypothesis, there is

m < k − 1 such that Σi(ti) = σ(hT ,mj ); let m′ be the largest m′ < k − 1 for which this

holds. By a similar argument as before, it follows that µk
i (ti) is a probability measure on

FΘ ×Fk−1
j,m′ (C

T ), and this σ-algebra belongs to S k
i (CT ). �

By Lemma A.6, we can define the σ-algebra

σ(hT ,ki ) := {{ti ∈ Ti : hT ,ki (ti) ∈ B} : B ∈ Fk
i,k(CT )}

on Ti that is generated by the function hT ,ki . We next establish the analogues of Lemmas

A.3–A.5 for general k, to order the σ-algebras on the type sets.

Lemma A.7. The σ-algebra σ(hT ,ki ) is the coarsest σ-algebra on Ti that dominates σ(hT ,k−1
j ),

i.e., σ(hT ,ki ) �* σ(hT ,k−1
j ).

Proof. By Lemma A.1, σ(hT ,ki ) is the coarsest σ-algebra that contains the sets in σ(hT ,k−1
i )

as well as the sets {
ti ∈ Ti : Σ(µk

i (ti)) = F , µk
i (ti)(E) ≥ p

}
(A.1)

for F ∈ S k
i (CT ), E ∈ F , and p ∈ [0, 1]. Since beliefs are coherent, that is, for all ` ≤ k − 1,

margΘ×CT ,`−1
j

µk
i (ti) = µ`

i(ti),

the σ-algebra σ(hT ,ki ) is the σ-algebra generated by the sets in (A.1). Since S k
i (CT ) is

a countable filtration with a minimal element, it follows from Lemma A.2 that σ(hT ,ki ) is

generated by the sets {
ti ∈ Ti : E ∈ Σ(µk

i (ti)), µ
k
i (ti)(E) ≥ p

}
for F ∈ S k

i (CT ), E ∈ F , and p ∈ [0, 1]. Using that for each F ∈ S k
j (CT ), we have

F ⊆ FΘ ×Fk−1
j,k−1(CT ), we have that σ(hT ,ki ) is generated by the sets{

ti ∈ Ti : E ∈ Σ(µk
i (ti)), µ

k
i (ti)(E) ≥ p

}
for E ∈ FΘ ×Fk−1

j,k−1(CT ), and p ∈ [0, 1], or, equivalently, the sets{
ti ∈ Ti : E ′ ∈ FΘ × Σi(ti), βi(ti)(E

′) ≥ p
}
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for E ∈ FΘ × σ(hT ,k−1
j ), and p ∈ [0, 1]. Hence, σ(hT ,ki ) �* σ(hT ,k−1

j ). �

Lemma A.8. For each ti ∈ Ti, we have Σi(ti) ⊆ σ(hT ,kj ) or Σi(ti) ⊇ σ(hT ,kj ).

Proof. If Fi = {Ti, ∅}, then clearly Fi ⊆ σ(hT ,ki ). So suppose Fi 6= {Ti, ∅}. By Assumption

1, one of the following holds:

(a) Fi is part of a mutual-dominance pair, that is, there is Fj ∈ Sj such that Fi � Fj and

vice versa; or

(b) Fi is part of a finite chain, that is, there exist m < ∞ and (distinct) σ-algebras

F1
j ,F3

j , . . . ,Fm
j ∈ Sj and F2

i ,F4
i . . . ,Fm

i ∈ Si such that

Fi �* F1
j �* F2

i �* · · · �* Fm
j = {Tj, ∅}

if m is odd, and

Fi �* F1
j �* F2

i �* · · · �* Fm
i = {Ti, ∅}

if m is even; or

(c) Fi is part of a cycle or infinite chain, that is, there exist σ-algebras F1
j ,F3

j , . . . ∈ Sj and

F2
i ,F4

i , . . . ∈ Si (where F `
n,Fm

n are not necessarily distinct, n ∈ N) such that

Fi �* F1
j �* F2

i �* F3
j �* · · · .

We claim that if (a) or (c) is the case, then Fi ⊇ σ(hT ,ki ). We present the argument for case

(c); the argument for (a) is similar and thus omitted. Note that F1
j ⊇ σ(hT ,0j ) = {Tj, ∅}. By

the induction hypothesis, therefore, Fi ⊇ σ(hT ,1i ). By a similar argument, F1
j ⊇ σ(hT ,1j ). Since

Fi dominates F1
j , it follows from the induction hypothesis and Lemma A.7 that Fi ⊇ σ(hT ,2i ).

Repeating this argument gives the desired result.

It remains to consider (b). We consider the case that m is odd; the argument for the case

that m is even is similar. If m ≤ k, then by the induction hypotheses and Lemma A.7, we

have Fi = σ(hT ,mi ) ⊆ σ(hT ,ki ). If m > k, then we have Fm−k
j = σ(hT ,kj ) or Fm−k

i = σ(hT ,ki ),

depending on whether k is odd or even. We treat the case that Fm−k
j = σ(hT ,kj ); the argu-

ment for the case Fm−k
i = σ(hT ,ki ) is similar. Since Fm−k−1

i dominates Fm−k
j ⊇ σ(hT ,k−1

j ),

it follows from Lemma A.7 that Fm−k−1
i ⊇ σ(hT ,ki ) ⊇ σ(hT ,k−1

i ). By a similar argument,

Fm−k−2
j ⊇ σ(hT ,kj ) ⊇ σ(hT ,k−1

j ). Repeating this argument gives Fi ⊇ σ(hT ,ki ). �

Lemma A.9. For each ti ∈ Ti, if Σi(ti) ( σ(hT ,kj ), then there is m < k such that Σi(ti) =

σ(hT ,mj ).
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Proof. Suppose Σi(ti) ( σ(hT ,kj ). If Fi ( σ(hT ,k−1
i ), then the result follows from the induction

hypothesis. So suppose Fi is not a strict subset of σ(hT ,k−1
i ). By the induction hypothesis, we

have Fi ⊇ σ(hT ,k−1
i ). If Fi = σ(hT ,k−1

i ), then we are done. So suppose Fi ) σ(hT ,k−1
i ). The

proof is complete if we show that the joint hypothesis Fi ( σ(hT ,ki ) and Fi ) σ(hT ,k−1
i ) leads

to a contradiction. To derive a contradiction, use an argument similar to the one in the proof

of Lemma A.8 to show that Fi ( σ(hT ,ki ) implies that Fi is not part of a mutual-dominance

pair, cycle or infinite chain. It then follows from Assumption 1 that Fi is part of a finite chain.

But then Fi ⊇ σ(hT ,ki ), or Fi = σ(hT ,mi ) for some m ≤ k − 1, a contradiction. �

This completes the induction. It follows that for each player i ∈ N and k = 1, 2, . . ., we

have that hT ,ki : Ti → CT ,k−1
i × ∆(Θ × CT ,k−1

j ,S k
i (CT )) is well-defined. Also, note that for

each ti ∈ Ti, either Σi(ti) = σ(hT ,k−1
j ) ( σ(hT ,kj ), or Σi(ti) ⊇ σ(hT ,mj ) for all m. �

Appendix B Proofs for Section 6

B.1 Proof of Theorem 6.2 (continued)

We first complete the proof of the claim that if T H is not a Harsanyi extension of T k,

then we can find a game and an equilibrium of the depth-k model such that the corre-

sponding strategy profile is not an equilibrium of the Harsanyi model, by considering the

case in which βHi (tHi )(θ) = 0 (with i, tHi , ti, and θ as defined in the proof in the main

text). Note that βi(ti)(θ) > 0 by assumption, where we recall that ti = ϕi(t
H
i ). Fix

z ≥ (10 − 10βi(ti)(θ))/βi(ti)(θ), and consider the game G with action sets Si = {s1
i , s

2
i }

and Sj = {sj}, and payoffs given by:

sj

s1
i z,0

s2
i 0,0

θ

sj

s1
i −10,0

s2
i 0,0

θ′ 6= θ

It is easy to see that the depth-k model (G, T k) has an equilibrium in which ti plays s1
i

with positive probability, while in any equilibrium of the Harsanyi model (G, T H), type tHi
plays s2

i with probability 1. This concludes the proof that if T H is not a Harsanyi extension of

T k, then there is a game and an equilibrium of the depth-k model such that the corresponding

strategy profile is not an equilibrium of the Harsanyi model.

We next prove the converse. Specifically, we show that for any game G, and any Harsanyi

extension (T H, ϕ) of T k, if σk = (σk
i )i∈N is an equilibrium of (G, T k), then σ = (σi)i∈N , with
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σ = σk
i ◦ ϕi for i ∈ N , is an equilibrium of (G, T H). Fix a Harsanyi extension (T H, ϕ) of T k.

Let G be a game, and suppose σk is an equilibrium of (G, T k)

Since σk is an equilibrium of (G, T k), the strategy σk
i is comprehensible for each type for j

in T k. It is straightforward to show that the strategy σk
i ◦ ϕi is comprehensible for each type

for j in T H. Also, for each player i ∈ N , Harsanyi type t̃Hi ∈ THi , and action si ∈ Si such that

σk
i (ϕi(t̃

H
i ))(si) > 0, we have that for all bi ∈ Si,∫

Θ×THj
ui(si, sj, θ)σ

k
j (ϕj(t

H
j ))(sj)dβ

H
i (t̃Hi ) =

∫
Θ×Tj

ui(si, sj, θ)σ
k
j (tj)(sj)dβi(t̃i)

≥
∫

Θ×Tj

ui(bi, sj, θ)σ
k
j (tj)(sj)dβi(t̃i)

=

∫
Θ×THj

ui(bi, sj, θ)σ
k
j (ϕj(t

H
j ))(sj)dβ

H
i (t̃Hi ),

where t̃i := ϕi(t̃
H
i ). The first and third lines use the standard change-of-variables result and

that ϕ is a type morphism, and the second line uses the best-response property. �

B.2 Proof of Lemma 6.3

We start with an auxiliary result.

Lemma B.1. Let T k be a depth-k space that is kth-order nonredundant, and let (T H, ϕ) be

a Harsanyi extension of T k. For each i ∈ N and tHi , t̃
H
i ∈ THi , we have that ϕi(t

H
i ) = ϕi(t̃

H
i ) if

and only if hT
H,k

i (tHi ) = hT
H,k

i (t̃Hi ).

The proof is standard, and is included in the online appendix. We are now ready to prove

Lemma 6.3. Let T k be a depth-k space that is kth-order nonredundant, and let (T H, ϕ) be a

Harsanyi extension of T k. Suppose that for every game G, for every Bayesian-Nash equilibrium

σ = (σi)i∈N of (G, T H), there is a corresponding equilibrium of (G, T k). Fix a game G, and

let σ be a Bayesian-Nash equilibrium of (G,T H). Since there is a corresponding equilibrium

of (G, T k), that is, the strategy profile σk with σi = σk
i ◦ ϕi for i ∈ N is an equilibrium of (G,

T k), we have that for any tHi , t̃
H
i ∈ THi ,

ϕi(t
H
i ) = ϕi(t̃

H
i ) =⇒ σi(t

H
i ) = σi(t̃

H
i ).

By Lemma B.1, therefore, it follows that for any tHi , t̃
H
i ∈ THi ,

hT
H,k

i (tHi ) = hT
H,k

i (t̃Hi ) =⇒ σi(t
H
i ) = σi(t̃

H
i ). (B.1)

Since for each Harsanyi type space T̃ H, there is a game G̃ and a Bayesian-Nash equilibrium

σ̃ of (G̃, T̃ H) such that (B.1) does not hold if hT
H,m

i (tHi ) 6= hT
H,m

i (t̃Hi ) for some m ≥ k,27 we

27For instance, take G̃ to be the game in the proof of Theorem 6.4.
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must have that

hT
H,k

i (tHi ) = hT
H,k

i (t̃Hi ) =⇒ hT
H,m

i (tHi ) = hT
H,m

i (t̃Hi )

for all m ≥ k. That is, T H is an order-k extension of T k. If T H is nonredundant, it is thus

without loss of generality to take THi = Ti for each i ∈ N . �
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