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1 Introduction

Many markets feature platforms mediating the interactions among the various sides of the market.

Examples include media outlets mediating the interactions between readers/viewers on one side and

content providers and advertisers on the other side; video-game consoles mediating the interactions

between gamers and video-game developers; operating systems mediating the interactions between

end-users and software developers; e-commerce websites mediating the interactions between buyers

and sellers; employment agencies mediating the interactions between employers and job seekers; and

dating agencies mediating the search of partner-seekers.

The literature on two-sided markets has studied the role of prices in implementing such mediated

interactions.1 The assumption commonly made in this literature is that preferences on each side of

the market are commonly known. This assumption implies that, given the prices set by the platforms,

each agent from each side can perfectly predict the participation decisions of all other agents. In

equilibrium, such predictions are accurate and coincide with the platforms’ predictions.

While a convenient modelling shortcut, the assumption that preferences are commonly known

does not square well with most markets. Preferences over the products and services of different

platforms typically reflect personal traits, making it difficult for an agent to predict the behavior of

other agents. This is especially so when the product offered by one (or multiple) platform is relatively

new. Due to network effects, predicting how many agents from the opposite side will choose a given

platform is key to an agent’s own decision about which platform to join. (Think of a consumer

trying to determine whether or not he needs an iPad at the time the latter was launched to the

market; his willingness to purchase the new tablet increases with his expectation about the number

of applications that will be developed).

In this paper, we develop a tractable, yet rich, model of platform pricing under dispersed informa-

tion, where the distribution of preferences in the cross-section of the population is unknown to both

the platforms and to each individual agent, and where each agent possibly has private information

about his own preferences as well as about the distribution of preferences in the population. Part of

the contribution is in showing how such dispersion of information, by introducing heterogeneity in

the users’ expectations about the participation rates, shapes the elasticity of demand on each side.

We then use such a characterization to examine the effects of the dispersion of information on the

equilibrium prices and on the network allocations that they induce. Finally, we examine the plat-

forms’ incentives to change the information available to each side through informative advertising

and marketing campaigns, as well as their incentives to invest in product design so as to change the

way their product is likely to be perceived relative to those offered by the competitors.

Model preview. We consider a market in which two platforms compete on two sides. Each

side is populated by a continuum of agents. Each agent derives a direct utility from each of the two

1Early contributions include Caillaud and Jullien (2001,2003), Rochet and Tirole (2003, 2006), and Armstrong

(2006). See Rysman (2009) and Weyl (2010) for excellent overviews and more recent developments.
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platforms’ products hereafter referred to as the agent’s "stand-alone valuation".2 In addition, each

agent derives an indirect (reduced-form) utility from interacting with the other side of the market that

is proportional to the number of agents from the other side who join the same platform; hereafter, we

refer to this component of the agent’s utility as "network effect".3 Each agent is uncertain about the

distribution of stand-alone valuations in the population at the time he must choose which platform to

join.4 In addition, each agent may face uncertainty about his own stand-alone valuations, reflecting

the idea that agents need not know which products and services serve best their needs.5

For simplicity, but also to isolate the novel effects brought in by the dispersion of information,

we consider markets in which all agents from the same side attach the same value to interacting

with agents from the opposite side.6 However, because different agents hold different expectations

about how many agents from the opposite side are likely to join each platform, the model de facto

accommodates a particular form of heterogeneity in the estimated network effects.

We allow for the possibility that the network effects are negative but restrict attention to markets

in which they are positive on one side (for example, in the case of a media outlet competing for readers,

or viewers, on one side and for advertisers on the other side, it is reasonable to assume that network

effects are negative on the readers’ side–most readers dislike advertisement–but positive on the

advertisers’ side). We also assume that stand-alone valuations are positively correlated between any

two agents from the same side but possibly negatively correlated between two agents from opposite

sides (think of the market for operating systems; a system that appeals to software developers need

not necessarily appeal to end-users, for the latter typically value features of the operating system

differently from the developers–e.g., they may value the simplicity of the key tasks more than the

flexibility and sophistication of the code).

2Other expressions favored in the literature are "intrinsic benefit" – e.g., Armstrong and Wright (2007) – and

"membership benefit" – e.g., Weyl (2010).
3Other expressions favored in the literature are "usage value" – e.g., Rochet and Tirole (2006) – "cross-side

externality" – e.g., Armstrong (2006) – and "interaction benefit" – e.g., Weyl, (2010).
4 In the baseline version of the model we do not allow agents to multi-home (that is, to join both platforms). Later in

the paper, however, we relax this assumption and show that multihoming does not obtain under reasonable parameter

configurations if one assumes that platforms cannot set negative prices (see Armstrong and Wright (2006), Bergemann

and Bonatti (2011), Athey, Calvano and Gans (2012), and Ambrus, Calvano and Reisingerx (2013) for models that

allow for multihoming under complete information, and Amelio and Jullien (2010) for how the impossibility to set

negative prices may lead to tying).
5We consider a one-shot interaction between the platforms. In future work it will be interesting to extend the

analysis to a dynamic setting where the platforms affect the speed of individual and social learning through their

pricing strategies. We see the static analysis in the present paper as a necessary first step towards the analysis of

such richer settings (see Mitchell and Skrzypacz (2006), and Cabral (2011) for dynamic models of network competition

focusing, however, on different issues).
6The role of the heterogeneity in the values assigned to the network effects under complete information is studied

in Weyl (2010), Veiga and Weyl (2011), and White and Weyl (2012). These papers, however, do not consider the

possibility that preferences are correlated across sides, which is one of the key forces behind the mechanism we consider

in the present paper.
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We build on the global-game literature7 by assuming that the distribution of the stand-alone

valuations can be parametrized by the realization of a random vector hereafter referred to as the

"aggregate state". Each agent receives a noisy signal about the aggregate state that he uses to

estimate his own stand-alone valuations as well as to predict the participation decisions on the other

side of the market. This inference problem introduces novel effects that are missing under complete

information and that are at the core of our analysis.

Implications for equilibrium prices. As in most of the literature, we abstract from price

discrimination and assume that platforms compete by setting access fees on each side of the market.

By paying the fee, an agent is granted access to the platform’s product and thereby also to the

other side of the market. We also assume that the platforms do not possess any private information

relative to the rest of the market. This permits us to abstract from the signaling role of prices and

isolate the novel effects that emerge when agents extrapolate from their own preferences to estimate

the participation decisions on the other side of the market.8

The advantage of casting the analysis within a global-game framework is twofold: (i) it facilitates

the analysis of how the dispersion of information impacts the equilibrium prices; (ii) it also guarantees

that the equilibrium demand functions are unique (thus avoiding the usual "chicken and egg" problem

of many two-sided markets9). In particular, for any given vector of prices there is a unique distribution

of users over the two platforms (note that this is true despite the fact that platforms, in our model,

compete in simple access fees–as they do in most markets–which do not condition on participation

rates from the opposite side).10 ,11

A key difference relative to complete information is that each agent’s beliefs about the partici-

pation decisions on the opposite side depend on the agent’s own estimated stand-alone valuations.

As the platform changes its price on one side, the marginal agent’s beliefs about the participation

rate on the opposite side thus also change (the marginal agent is the one who is indifferent between

joining one platform or the other). Dispersed information thus induces a specific form of correlation

between the estimated stand-alone valuations and the estimated network effects. Importantly, the

endogeneity of such correlation has important implications for the equilibrium prices that differ from

those obtained by assuming an exogenous correlation structure within each side.12

7See, among others, Carlsson and Van Damme (1993), and Morris and Shin (2003).
8We also abstract from within-side externalities and heterogeneity in users’ attractiveness. See Damiano and Li

(2007), Gomes and Pavan (2013), and Veiga and Weyl (2012) for models that combine certain forms of price discrim-

ination with heterogeneity in attractiveness. See also Ambrus and Argenziano (2009) for a model with heterogenous

network effects in which platforms discriminate by offering multiple networks.
9See, e.g., Caillaud and Jullien (2003).
10Weyl (2010) and White and Weyl (2012) study how multiplicity can be eliminated if platforms may offer tariffs

where the price on each side is a function of the participation rate on the other side–also known as "insulating tariffs".
11Another advantage of this modelization is that the unique equilibrium in the continuation game where users choose

which platform to join, if any, coincides with the unique rationalizable strategy profile. It thus does not require a high

ability to coordinate with other agents. This is appealing, especially in large markets, which are the focus of the paper.
12See, e.g., Weyl (2010).
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Suppose, for example, that network effects are positive on both sides (meaning that all agents

benefit from a higher participation rate on the opposite side) and that preferences are positively

correlated between the two sides (so that a high stand-alone valuation is "good news" about partic-

ipation from the opposite side). Then suppose that a platform were to raise its price on, say, side

1. Because the marginal agent from side 1 who is excluded is the most "pessimistic" about side 2’s

participation, among those who join the platform, the drop in expected demand is smaller than in a

world where all agents share the same beliefs about the other side’s participation (as is necessarily

the case under complete information). In other words, when preferences are positively correlated

between the two sides and network effects are positive on both sides, the dispersion of information

contributes to a reduction in the own-price elasticity of the demand functions. As a result of this new

effect, the equilibrium price on each side increases with the intensity of that side’s network effects

when preferences are positively correlated between the two sides, and decreases otherwise.13

Despite the complexity of the strategic interactions, the model yields an extremely simple formula

for the equilibrium duopoly prices. Holding fixed the ex-ante distribution of estimated stand-alone

valuations (which amounts to fixing the ex-ante degree of differentiation between the two platforms),

the equilibrium prices depend on the distribution of information only through a coefficient of mutual

forecastability. The latter is an increasing transformation of the correlation coefficient between the

signals of any two agents from opposite sides.

The reason why the equilibrium prices respond to the dispersion of information in such a coarse

way is that each side values its ability to forecast the distribution of preferences on the other side

only insofar this permits it to forecast participation decisions on the other side. For example, suppose

that side-1 agents possess high-quality information that permits them to predict well the needs and

true preferences of the side-2 agents. In contrast, suppose that the side-2 agents possess low-quality

information. Then, the side-1 agents will expect the side-2 agents to not respond much to variations

in their true stand-alone valuations, making the information of the side-1 agents of limited value. As

a result, the equilibrium prices on the two sides will not differ significantly from a situation where

both sides possess low-quality information. The implications of the aforementioned result are most

striking in the case of a market that is perfectly symmetric under complete information (meaning that

the intensity of the network effects is the same across the two sides and so is the ex-ante distribution

of stand-alone valuations). In this case, the equilibrium prices remain symmetric under dispersed

information, despite possible asymmetries in the distribution of information.

Implications for advertising, marketing, and product design. The results described

above have important implications for the platforms’ incentives to change the information available

to each side, possibly through advertising and marketing campaigns as well as various information

13 In contrast, under complete-information, irrespective of the degree of correlation of preferences between the two

sides, the equilibrium price on each side is invariant in that side’s intensity of network effects, when the importance

that each agent assigns to such network effects is independent of his own stand-alone valuation (see, e.g., Armstrong,

2006, and Rochet and Tirole, 2006).
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disclosures aimed at affecting the agents’ ability to estimate both their own valuations as well as the

distribution of valuations on the other side of the market.

We show that campaigns that increase the agents’ ability to estimate their own stand alone

valuations always increase profits. This is because such campaigns, by increasing the sensitivity of

individual demands to information increase the ex-ante degree of differentiation between the two

platforms (equivalently, they reduce the elasticity of the residual demands), thus softening competi-

tion.14

In contrast, campaigns whose role is primarily to help the agents predict the participation deci-

sions on the opposite side of the market increase profits if and only if the correlation of stand-alone

valuations between the two sides is of the same sign as the sum of the intensity of the network

effects. In particular, such campaigns increase profits when network effects are positive on both

sides and stand-alone valuations are positively correlated (as is probably the case in the market for

video-game consoles). On the contrary, they decrease profits when either (a) stand-alone valuations

are negatively correlated and network effects are positive on both sides (as is possibly the case for

some operating systems), or (b) stand-alone valuations are (weakly) positively correlated but one

side suffers from the presence of the other side more than the other side benefits from its presence

(as is possibly the case for certain media outlets).

This last result comes from the fact that an increase in one of the two sides’ ability to forecast the

stand-alone valuations on the opposite side triggers a change in the own-price and cross-price elasticity

of the demand on both sides, as captured by the coefficient of mutual forecastability. When network

effects are positive on both sides, and stand-alone valuations are positively correlated between the two

sides, the own-price elasticity of each side’s demand decreases with either side’s ability to estimate the

stand-alone valuations on the opposite side. Because the effect on the own-price elasticities prevail

over the effect on the cross-price elasticities, in this case informative campaigns contribute positively

to profits. Likewise, when network effects are positive on both sides, but stand-alone valuations

are negatively correlated, the own-price elasticity of each side’s demand increases with either side’s

ability to forecast the stand-alone valuations on the opposite side. In this case, informative campaigns

contribute negatively to profits. Finally, when network effects are positive on one side but negative

on the other, an increase in one side’s ability to forecast the other side’s stand-alone valuations

comes with opposite effects on the elasticities of the demand on the two sides. In this case, the

overall effect of informative campaigns on the duopoly profits naturally depends on the intensity of

the total network effects.

We also investigate how equilibrium profits change with variations in the prior distribution from

which stand-alone valuations are drawn. These comparative statics, contrary to the ones pertaining

to the quality of information, are meant to shed light on a platform’s incentives to differentiate

its product from the competitor’s, without knowing the exact distribution of preferences on either

14A similar result is obtained in Anderson and Renault (2010) in the contest of an ex-ante symmetric one-sided

market.

5



side of the market. For instance, we show that raising the similarity with the opponent’s product

always reduces the equilibrium profits by intensifying competition. On the other hand, aligning the

preferences of the two sides by favoring product dimensions that are appealing to both sides increases

profits for positive network effects but reduces them when the sum of the network effects is negative

(that is, when one side suffers from the presence of the other side more than the other side benefits

from its presence).

Outline. The rest of the paper is organized as follows. Below we wrap up the Introduction

with a brief discussion of the contribution of the paper relative to the pertinent literature. Section 2

presents the model. Section 3 introduces some preliminary results concerning the ability of each side

to forecast its own preferences and the cross-sectional distribution of preferences on the other side

of the market, and discusses the benchmark case with no network effects. Section 4 characterizes

optimal prices for a monopolistic platform. Section 5 contains the main results for the duopoly case.

Section 6 contains implications for advertising and product design. Section 7 offers a few concluding

remarks. All proofs are in the Appendix.

(Most) pertinent literature. The paper contributes to three lines of inquiry. The first is

the one examined in the two-sided-market literature. This literature is too vast to be successfully

summarized here. We refer the reader to Rysman (2009) and Rochet and Tirole (2006) for excellent

overviews.15 The closest papers to ours are Armstrong (2006), Rochet and Tirole (2006), Weyl

(2010), and White and Weyl (2012). The first two papers study monopoly and duopoly pricing

in a market with differentiated products, assuming homogenous network effects. Our model is the

incomplete-information analog of the model studied in these papers. Weyl (2010) extends this model

by allowing for heterogenous network effects, focusing on a monopolistic platform, while White and

Weyl (2012) extends the analysis in Weyl (2010) to a duopoly (see also Ambrus and Argenziano

(2009) who were the first to introduce heterogenous network effects and show how the latter can lead

to asymmetric networks under coalition-rationalizable strategies).

The key contribution of our paper relative to this literature is in uncovering the implications

of dispersed information about participation decisions. We identify a new channel by which the

dispersion of information affects the elasticity of the demands on the two sides and thereby the

equilibrium prices. This in turn permits us to uncover novel effects. For example, under complete

information, it is the discrepancy between the importance assigned to network effects by the marginal

user and by the average user that is responsible for distortions in prices and in network allocations,

along the lines of those identified in Spence (1975) (see Weyl, 2010). In contrast, under dispersed

information, it is the discrepancy between the participation rates expected by the marginal user on

each side and the participation rates expected by the two platforms that is responsible for novel

distortions.

Our paper focuses on dispersed information at the subscription stage. In contrast, Halaburda

15The paper is also related to the literature on one-sided markets with network effects. See Katz and Shapiro (1985)

for a pioneering contribution and Farrell and Klemperer (2006) for a recent overview.
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and Yehezkel (2013) analyze a model where two homogenous platforms compete by offering access

fees and menus of trades and where buyers and sellers privately learn their valuations and costs only

after joining a platform but before transacting with the other side. While the two papers address

very different questions, they both point to the importance of asymmetric information for platforms’

pricing decisions.

The second line of inquiry the paper contributes to is the one considered in the literature on

coordination under incomplete information, and in particular in the global-games literature. To

the best of our knowledge, this is the first paper to examine a global-game in which two distinct

populations (the two sides) coordinate under dispersed information and where the outcome of such

coordination is shaped by two competing "big players" (the platforms). The paper in this literature

closest to ours is Argenziano (2008). That paper uses a global-game approach to study efficiency

under product differentiation in the contest of a one-sided network duopoly. The questions addressed

in that paper are fundamentally different from those addressed in the present paper which are largely

motivated by the two-sideness of the problem under examination. We also allow for a richer class of

information structures which permits us to study the platforms’ incentives to change the information

available to the two sides via advertising and marketing campaigns, as well as product design. In

this respect, another difference with respect to the global-games literature is that, in our work, the

dispersion of information is a central part of the phenomenon under examination, as opposed to a

convenient tool to arrive at equilibrium selection.

The third line of inquiry is the one that studies informative advertising and marketing campaigns

(for recent contributions see, among others, Anderson and Renault (2006, 2009), Johnson and Myatt

(2006) and the references therein). Our results about the effects on profits of campaigns that help

the agents understand their own needs and preferences are in the same spirit of those established

in this literature. The main contribution is in investigating the effects of campaigns that help the

agents forecast the preferences and behavior of other agents from the opposite side, which is new

and brings novel implications.

2 Model

Players. Two platforms, indexed by k = A,B, compete on two sides, i = 1, 2. Each side is populated

by a measure-one continuum of agents, indexed by l ∈ [0, 1].
Actions and payoffs. Each agent l ∈ [0, 1] from each side i = 1, 2 must choose which platform

to join, if any.16. The payoff Ukil that agent l from side i derives from joining platform k is given by

Ukil = u
k
il + γim

k
j − pki

where ukil is the idiosyncratic stand-alone valuation of joining platform k (think of this as the direct

utility from consuming the platform’s product), mk
j ∈ [0, 1] is the mass of agents from side j �= i that

16Below we will also discuss the possibility that the agents may choose to join both platforms (multihoming).
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join platform k, γi ∈ R is a parameter that controls for the intensity of the network effects on side i
and pki is the price (the access fee) charged by platform k to side i.

We assume that the network effects are positive on at least one of the two sides but allow them

to be negative on the opposite side; that is, we assume that γi > 0 for some i ∈ {1, 2}.
The payoff that each agent l ∈ [0, 1] from each side i = 1, 2 obtains from not joining any platform

is assumed to be equal to zero.

Each platform’s payoff Πk is the total revenue from collecting the prices from the two sides:17

Πk = pk1m
k
1 + p

k
2m

k
2.

All players are risk-neutral expected-utility maximizers.

Horizontal differentiation and information. We assume that the stand-alone valuations

are given by

uAil = si −
1

2
vil and u

B
il = si +

1

2
vil

i = 1, 2, k = A,B, l ∈ [0, 1], where si ∈ R is a known scalar whose role is to control for the agents’
payoff relative to their outside options.18 The above specification is chosen so that the difference in

stand-alone valuations is vil ≡ uBil − uAil .
The "aggregate state" of the market corresponds to the joint distribution of stand-alone valua-

tions and of the agents’ information. We parametrize this state by a pair θ ≡ (θ1, θ2) and assume

that θ is drawn from a bivariate Normal distribution with mean (0, 0) and variance-covariance matrix

Σθ =

�
(α1)

−1 ρθ√
α1α2

ρθ√
α1α2

(α2)
−1

�

where the parameter ρθ denotes the coefficient of linear correlation between θ̃1 and θ̃2.
19

Neither the platforms nor the agents observe θ. Furthermore, each agent may have an imperfect

knowledge of his own valuations. We formalize this by assuming that each agent l from each side

i = 1, 2 privately observes a signal xil that is imperfectly correlated with both θ and vil. More

precisely we assume that

vil = zi (θi + εil) and xil = θi + ηil

where zi is a non-negative scalar and where the variables (ε̃il, η̃il) are idiosyncratic terms drawn from

a bivariate Normal distribution with mean (0, 0) and variance-covariance matrix

Σi =

⎡⎣ (βεi )
−1 ρi√

βεi ·βηi
ρi√
βεi ·βηi

(βηi )
−1

⎤⎦
17All results extend to the case where the platforms incur costs to provide access to the users. Because these costs

do not play any role, we disregard them to facilitate the exposition.
18As it will become clear in a moment, si coincides with the unconditional average stand-alone valuation of each

side-i’s agent for each of the two products.
19Throughout, we will use tildes "~" to denote random variables and denote their realization without the tildes.
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with the parameter ρi ≥ 0 denoting the coefficient of linear correlation between ε̃i and η̃i. The pairs

(εil, ηil)l∈[0,1],i∈{0,1} are drawn independently across agents and independently from θ.

Timing.

• At stage 1, platforms simultaneously set prices on each side.

• At stage 2, after observing the prices (pki )k=A,Bi=1,2 , and after receiving the information xil, each

agent l ∈ [0, 1] from each side i = 1, 2, simultaneously chooses which platform to join, if any.

• Finally, at stage 3, payoffs are realized.

Comment. The above specification has the advantage of being tractable, while at the same

time rich enough to capture a variety of situations. Thanks to Normality, the "aggregate state"

(i.e., the cross-sectional distribution of preferences and information) is uniquely pinned down by the

bivariate variable θ = (θ1, θ2). The information about θ is dispersed so that different agents have

different beliefs about θ.

The pure common-value case where all agents from side i have identical stand-alone valuations

for the two platforms but different information about the stand-alone differential is captured as

the limit in which βεi → ∞, in which case, almost surely, vil = ziθi all l ∈ [0, 1]. The parameter
αi is then a measure of differentiation between the two platforms, as perceived by side i. Letting

α1 = α2 and ρθ = 1 while allowing βη1 �= βη2 then permits us to capture situations where the quality

differential between the two platforms is the same on both sides, but where one side may have

superior information than the other. Letting zi = 0 in turn permits us to capture situations where

agents on side i do not care about the intrinsic quality differential between the two platforms but

nonetheless possess information about the distribution of preferences on the opposite side (as in the

case of advertisers who choose which media platform to place ads on entirely on the basis of their

expectation of the platform’s ability to attract readers and viewers from the opposite side).

More generally, allowing the correlation coefficient ρθ to be different from one permits us to

capture situations where the quality differential between the two platforms differs across the two

sides (including situations where it is potentially negatively correlated), as well as situations where

one side may be able to perfectly predict the behavior of each agent from that side but not the

behavior of agents from the opposite side (which corresponds to the limit in which βηi →∞).
The model can also capture situations in which different users from the same side have different

preferences for the two platforms. This amounts to letting the variance of ε̃il be strictly positive

or, equivalently, βεi <∞. Depending on the degree of correlation ρi between ε̃il and η̃il, agents may

then possess more or less accurate information about their own stand-alone valuations. For example,

the case where each agent perfectly knows his own valuations but is imperfectly informed about the

valuations of other agents (from either side) is captured as the limit in which ρi → 1. The extreme

case of independent private values then corresponds to the limit in which αi →∞ and βεi <∞.
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Also note that the scalars (z1, z2) only serve the purpose of parametrizing the quality of the

agents’ information about their own stand-alone valuations relative to the quality of their information

about the distribution of stand-alone valuations on the other side of the market. These parameters

are not crucial and could have been dispensed with by introducing two separate signals for each agent,

one for θ̃1, the other for θ̃2. This, however, would have made the subsequent analysis significantly less

tractable by essentially requiring that we describe the equilibrium strategies in terms of semi-planes

as opposed to simple cut-off rules.

Finally note that, as mentioned already, the remaining parameters (s1, s2) play a role only for

the agents’ decision to opt out of the market by not joining any platform.

3 Preliminaries

Reduced-form representation. The key determinant of the equilibrium allocations (prices and

participation decisions) will be the agents’ ability to forecast their own stand-alone valuations, as

well as the distribution of such valuations on the other side of the market. As described above, the

information of each agent l from each side i is encoded in a single signal xil. This signal is drawn for

a Normal distribution with zero mean and variance
1

βxi
≡ var (x̃il) = αi + βηi

αiβ
η
i

. (1)

Notice that the agents’ signals are correlated both within sides and across sides. The important

correlation is the one across sides. For any two agents l and l’ from opposite sides, the coefficient of

linear correlation of their signals is

ρx ≡ cov (x̃1l, x̃2l�)#
var (x̃1l) var (x̃2l�)

= ρθ

&
βη1β

η
2

(α1 + βη1 ) (α2 + βη2 )
. (2)

Based on the signal xil, each agent i then believes that the differential ṽil in his stand-alone

valuations is Normally distributed with mean

Vil ≡ E [ṽil | xil] = κixil with κi ≡ cov[ṽil, x̃il]

var[x̃il]
= zi

βηi + ρiαi
#

βηi /β
ε
i

βηi + αi
. (3)

Hereafter, we will refer to Vil ≡ E [ṽil | xil] as to the estimated stand-alone differential. Note that Vil
uniquely pins down not only the differential but also the agent’s estimated stand-alone valuations.

Next, consider the agents’ ability to forecast the participation decisions on the other side of the

market. Because each agent observes only a noisy signal of his valuations, the best an agent can

do to predict participation decisions on the other side of the market is to use his own signal xil to

forecast the distribution of signals on the other side. Now observe that each agent l from each side

i, after observing a signal xil, believes that each agent l� from the opposite side received a signal

x̃jl� = θ̃j + η̃jl� drawn from a Normal distribution with mean

E[x̃jl� | xil] = ρx

&
βxi
βxj
xil (4)
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and variance

var[x̃jl� | xil] = 1− ρ2x
βxj

. (5)

It is then easy to see that, by varying the coefficient ρi of correlation between the two idiosyncratic

terms (ε̃il, η̃il) while keeping all other parameters fixed, one can capture variations in the agents’

ability to estimate their own stand-alone valuations, holding fixed the agents’ ability to estimate the

participation decisions on the other side of the market. Likewise, by varying ρx (for example by

varying ρθ) holding fixed all other parameters, one can capture variations in the agents’ ability to

estimate the participation decisions on the other side of the market, holding constant their ability to

estimate their own stand-alone valuations.

For the first part of the paper, the key parameters of the model will be (βx1 ,β
x
2 , ρx), which

parametrize the agents’ information20, and the parameters (s1, s2,κ1,κ2) which define the individual

estimated stand-alone valuations for given information.

In the second part of the paper, we will discuss how deeper parameters such as ρi or ρθ affect

the equilibrium and how firms can modify them with marketing and advertising campaigns, as well

as product design.

Benchmark: Absence of network effects. As a warm-up (but also as a useful step to fix

ideas and introduce notation that will be used throughout the rest of the analysis), consider for a

moment a market without network effects. In our framework this corresponds to setting γ1 = γ2 = 0.

In this case the demand on each side is independent of the pricing and participation decisions on the

other side of the market.

Consider first the case where platform A is a monopolist. Given the price pAi on side i, each agent

l from side i buys only if his estimated stand-alone valuation for the platform’s product is above the

price; that is, only if E[ũAil | xil]− pAi ≥ 0. Using the fact that E[ũAil | xil] = si − 1
2κixil we have that

the agent buys only if his signal is low enough,

xil < x̂i ≡ 2
	
si − pAi

κi



.

Notice that, by choosing the price, the platform chooses the signal of the marginal consumer x̂i. The

total demand mA
i on side i then depends on the realization of θ̃i, which pins down the distribution

of stand-alone valuations, and which is unknown to the platform at the time the platform sets its

price. Letting Φ denote the c.d.f. of the standard Normal distribution and φ its density, we then

have that the demand the platform expects on side i when it sets a price pAi (equivalently, when it

chooses a marginal agent x̂i) is given by

QAi = E[m̃A
i ] = Pr (xil < x̂i) = Φ(

#
βxi x̂i). (6)

20Formally, one should consider also the correlation of signals within sides, but this will play no role in the analysis.
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Now let

μi (xi) = − Q
A
i

dQAi
dpAi

=
κi
2

QAi
dQAi
dxi

=
κi
2

Φ
�#

βxi xi
�#

βxi φ(
#

βxi xi)
(7)

denote the inverse semi-elasticity of the stand-alone demand evaluated at the price pAi = si− 1
2κix̂i.

21

Recall that production costs have been assumed to be equal to zero to facilitate the exposition. The

monopoly price pAi is then given by the usual first-order condition

pAi = μi (x̂i)⇔ si − 1
2
κix̂i = μi (x̂i) .

Next, consider a duopoly in which platforms A and B set prices simultaneously on each side.

Assuming full participation (that is, each agent who does not choose platform A chooses platform

B), we then have that each agent l from side i buys from A if E[ũBil − ũAil | xil] < pBi − pAi and from
B if the inequality is reversed.22 Using the fact that E[ũBil − ũAil | xil] = E[ṽil | xil] = κixil, we then

have that the demand that platform A expects when the prices are pAi and p
B
i is given by

QAi = E[m̃A
i ] = Φ

�#
βxi x̂i

�
= 1−QBi , with x̂i =

pBi − pAi
κi

where x̂i is the signal of the marginal agent (the agent who is indifferent between purchasing from

A and purchasing from B). Now let

μdi (x) = −
QAi

dQAi
dpAi

���
pBi =const

= κi
Φ
�#

βxi x
�#

βxi φ
�#

βxi x
� (8)

denote the inverse semi-elasticity of the residual demand curve of platform A, evaluated at the price

pAi = p
B
i − κix. It is then easy to see that in the unique symmetric duopoly equilibrium each agent l

from side i buys from platform A if xil < x̂di = 0 and from platform B if xil > x̂
d
i = 0. In equilibrium,

each firm serves half of the market (i.e., QAi = Q
B
i = 1/2) and the equilibrium prices are given by

pAi = p
B
i = μdi (0) . (9)

Using (3), note that the equilibrium semi-elasticity of the residual stand-alone demands is given by

μdi (0) =
κi#

βxi 2φ (0)
=

$
var[Ṽil]

2φ (0)
. (10)

where var[Ṽil] is the ex-ante dispersion of the estimated stand-alone differentials Vil = E[ṽil | xil].
Not surprisingly, a higher dispersion of estimated stand-alone differentials is isomorphic to a higher

degree of differentiation between the two platforms, which lessens competition and thus results in

higher equilibrium prices.
21This semi-elasticity is referred to as the market power in Weyl (2010).
22When E[ũAj − ũBj | xil] = pAi − pBi , the consumer is indifferent. Because this event has zero probability, the way

such indifference is resolved is inconsequential for the choice of the optimal prices.
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4 Monopoly

We now turn to the model with network effects. We start by considering the case of a monopolistic

market, in which only platform A is active.

Given the prices (pA1 , p
A
2 ), each agent l from each side i finds it optimal to join the platform only

if

E[ũAil | xil] + γiE[m̃A
j | xil]− pAi ≥ 0. (11)

The first term in (11) is the agent’s expected stand-alone valuation, whereas the second term is the

agent’s expected network effect (this latter term combines the importance γi the agent assigns to

interacting with agents from the opposite side with the participation rate the agent expects from the

other side).

Now let γ−i ≡ min{γi; 0} and γ+i ≡ max{γi; 0}. It is immediate to see that any agent whose
expected stand-alone valuation E[ũAil | xil] is less than (pAi − γ+i ) finds it dominant not to join,

whereas any agent whose expected stand-alone valuation E[ũAil | xil] is greater than pAi − γ−i finds

it dominant to join. Using E[ũAil | xil] = si − κixil/2, we then have that iterated deletion of strictly

dominated strategies leads to a pair of thresholds xi = xi(p
A
1 , p

A
2 ) and x̄i = x̄i(p

A
1 , p

A
2 ) for each side

i = 1, 2 such that it is iteratively dominant for each agent l from each side i to join for xil < xi and

not to join for xil > x̄i. These observations also suggest existence of a continuation equilibrium in

threshold strategies whereby each agent l from each side i joins if and only if xil ≤ x̂i. In any such
continuation equilibrium, the participation rate on side j (i.e., the measure of agents from side j who

join the platform) is given by

mA
j = Pr (x̃jl ≤ x̂j | θj) .

We refer to an allocation with this property as a threshold allocation (x̂1, x̂2). Notice that mA
j

decreases with θj , since a higher θj means fewer agents with a high stand-alone valuation for the

platform’s product. Using (4) and (5), we then have that, from the perspective of agent l from side

i, the expected participation rate on side j �= i is given by

E[m̃A
j | xil] = Pr (x̃jl ≤ x̂j | xil) = Φ

⎛⎝&
βxj

1− ρ2x

�
x̂j − ρx

&
βxi
βxj
xil

�⎞⎠ .
Now, for any i, j ∈ {1, 2}, i �= j, any (x̂1, x̂2), let MA

j (x̂1, x̂2) ≡ E[m̃A
j | xil = x̂i] denote the

expected participation rate on side j from the perspective of the marginal agent on side i (the one

with signal x̂i). Then

MA
j (x̂1, x̂2) = Φ (Xji (x̂1, x̂2)) where Xji (x1, x2) ≡

$
βxj xj − ρx

#
βxi xi#

1− ρ2x
, j, i = 1, 2, i �= j.

Letting

Ω ≡ ρx#
1− ρ2x

, (12)
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we then have that the function Xji can be expressed as follows

Xji (x1, x2) =
#
1 + Ω2

$
βxj xj − Ω

#
βxi xi. (13)

Hereafter, we will refer to the term Ω as to the coefficient of mutual forecastability. Note that |Ω|
is increasing in each side’s ability to forecast the distribution of information on the opposite side. As

anticipated in the Introduction, this term will play an important role in determining the equilibrium

prices.

Using (11), we then have that, in any threshold equilibrium, the thresholds (x̂1, x̂2) must jointly

solve the following system of conditions

Gi (x̂1, x̂2) = p
A
i i = 1, 2 (14)

where

Gi (x1, x2) = si − κixi/2 + γiM
A
j (x1, x2). (15)

Note that the function Gi (x1, x2) represents the payoff, gross of payments, of joining platform A for

an agent on side i whose signal is equal to the threshold signal xi when he expects all users from

side j �= i to join if and only if their signal is smaller than xj . To ensure that, for any vector of

prices, a continuation equilibrium in threshold strategies exists, we assume that the function Gi is

decreasing in xi. This is the case, for all xi, if and only if the following condition holds, which we

assume throughout:

Condition (M): The parameters of the model are such that 2μi (0) + γiΩ > 0.

Note that the above condition imposes that, when side i values interacting with the other side–

that is, when γi > 0–the preferences on the two sides be not too negatively correlated. Symmet-

rically, the condition requires the correlation between θ̃1 and θ̃2 to be sufficiently small when side i

dislikes the presence of the other side, that is when γi < 0. This is intuitive. Consider the case where

γi > 0; if θ̃1 and θ̃2 were strongly negatively correlated (relative to γi, of course), then an increase in

the appreciation by agent l from side i of the platform’s product could make the agent less willing

to join as a result of the fact that the agent may expect a significant drop in the participation by

agents from the opposite side.

We then have the following preliminary result:

Lemma 1 For any vector of prices p = (pA1 , p
A
2 ), there exists at least one solution to the system of

conditions given by (14), which implies that a threshold continuation equilibrium always exists.

Now, to guarantee that the continuation equilibrium is unique, for all possible prices, we assume

that the strength of the network effects is not too large, given the distribution of the stand-alone

valuations, in the sense of Condition (Q) below, which we assume throughout the rest of the analysis.

Condition (Q). The parameters of the model are such that

γ1γ2 <
[2μ1 (0) + γ1Ω] [2μ2 (0) + γ2Ω]#

(1 + Ω2) + Ω2
.
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We then have the following result:

Lemma 2 For any vector of prices (pA1 , p
A
2 ), the continuation equilibrium is unique.

The proof in the Appendix first shows that, when Conditions (M) and (Q) hold, then, for

any vector of prices, there exists a unique pair of thresholds x̂i = x̂i(p
A
1 , p

A
2 ), i = 1, 2, that solve

the system of equations defined by the indifference conditions (14). Standard arguments from the

global-games literature based on iterated deletion of strictly dominated strategies then imply that

the unique monotone equilibrium defined by the thresholds x̂i, i = 1, 2, is the unique equilibrium

of the continuation game. Notice that Condition (Q) implies Condition (M) if γ1 and γ2 are both

positive, while Condition (M) implies Condition (Q) if network effects have opposite sign on the two

sides.

The above result implies that there exists a unique pair of demand functions. For any vector

of prices (pA1 , p
A
2 ), the demand on side i in state θ = (θ1, θ2) is given by mA

i = Φ(
#

βηi (x̂i − θi)),

while the unconditional expected demand is QAi = Φ
�#

βxi x̂i
�
, where the thresholds x̂i = x̂i(pA1 , p

A
2 ),

i = 1, 2, are the unique solution to the system of equations given by (14).

Given the above results, we can now consider the choice of prices by the monopolist. For any

pair of prices (pA1 , p
A
2 ), the monopolist’s profits are equal to

ΠA(pA1 , p
A
2 ) =

�
i=1,2

pAi Φ
�#

βxi x̂i(p
A
1 , p

A
2 )

�
.

Notice that the system of demand equations (14) defines a bijective relationship between
�
pA1 , p

A
2

�
and (x̂1, x̂2) . The monopolist’s problem can thus also be seen as choosing a pair of thresholds (x̂1, x̂2)

so as to maximize

Π̂A (x̂1, x̂2) ≡
�
i=1,2

Gi (x̂1, x̂2)Φ
�#

βxi x̂i

�
(16)

where Gi (x̂1, x̂2) (defined in (15)) is the expected gross surplus of the marginal agent on side i whose

signal is equal to the threshold x̂i. In other words, the uniqueness of the demand systems that obtains

under incomplete information permits one to examine the monopolist’ problem either in terms of a

choice over prices, or in terms of a choice over participation rates.

Next, for i = 1, 2, let

G−i (x) ≡
�
si − κi

2
x+ γ−i

 
Φ
�#

βxi x
�

where recall that γ−i ≡ min{γi; 0}. Throughout, we will assume that the following condition also
holds, which guarantees that the optimal prices will be interior.

Condition (W). The parameters of the model are such that, for any i, j = 1, 2, j �= i,

maxx∈RG−i (x) > |γj |.
Notice that Condition (W) is trivially satisfied when si are large enough.23 The condition simply

guarantees that it is always optimal to induce a strictly positive participation rate on both sides,
23That the function G−i has a maximum follows from the fact that it is continuous, positive for x̂i < 2(si + γ−i )/κi,

negative for x̂i > 2(si + γ−i )/κi and such that limx̂i→−∞ gi(x̂i) = 0.
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despite the possibility that one side may suffer from the presence of the other side. We then have

the following result:

Lemma 3 A vector of prices
�
pA1 , p

A
2

�
maximizing firm A’s profits always exists. Furthermore any

such vector must satisfy pAi = Gi (x̂1, x̂2) , i = 1, 2, with (x̂1, x̂2) solving the system of conditions

given by24

Gi (x̂1, x̂2)
#

βxi φ
�#

βxi x̂i

�
+

∂Gi (x̂1, x̂2)

∂xi
Φ
�#

βxi x̂i

�
+

∂Gj (x̂1, x̂2)

∂xi
Φ
�$

βxj x̂j

�
= 0. (17)

To shed light on what lies underneath the first-order conditions for the monopolist’s profit-

maximizing prices, note that the latter are equivalent to

pAi +
dpAi
dQAi

����
QAj =const

QAi +
dpAj

dQAi

�����
QAj =const

QAj = 0 (18)

where QAi = E[m̃A
i ] is the demand on side i, as expected by the platform. These first-order conditions

are the incomplete-information analogs of the familiar complete-information optimality conditions

according to which, at the optimum, profits must not vary when the monopolist changes the price

on side i and, at the same time, adjusts the price on side j so as to maintain the expected demand

on side j constant.

Notice that, under complete information about θ = (θ1, θ2) , the demand on each side i = 1, 2

expected by the platform coincides with the demand expected by the marginal agent from the

opposite side (that is, MA
i = Q

A
i for i = 1, 2). This leads to the familiar optimality condition

25

pAi = μi (x̂i)− γjQ
A
j ,

according to which the monopolist’s price on each side equals the usual one-sided inverse semi-

elasticity, adjusted by the effect of a variation in the side-i’s participation rate on the side-j’s revenues

(the second term)–see, for example, Weyl (2010).

What is interesting here is how incomplete information affects the slope of the demand functions

on the two sides and thereby the prices. While, with complete information, these slopes are the same

irrespective of whether they are computed by the platform or by any other agent, this is not the case

with dispersed information. In particular, even if the platform adjusts the price on side j so as to

maintain the threshold x̂j fixed (which amounts to maintaining the side-j’s demand QAj constant, as

24While we did not prove that a solution (x̂1, x̂2) to the system of equations given below is unique, we conjecture

that this is the case. Importantly, our results are independent of whether or not such a solution is unique. What is

important is that, for any vector of prices, the continuation equilibrium is unique. This is what permits us to establish

the properties of the equilibrium prices described below.
25Uniqueness of the continuation equilibrium obtains also under complete information when the parameters of the

model are such that Condition (Q) above holds in the limit as αi → +∞, i = 1, 2, which amount to Ω→ 0.
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perceived by the platform), from the perspective of the new marginal agent on side i, the expected

side-j’s demand changes in response to variations in the side-i’s price. Formally,

∂MA
j (x̂1, x̂2)

∂x̂i
= −Ω#βxi φ (Xji (x̂1, x̂2)) �= 0 if Ω �= 0. (19)

This in turn affects the slope of the side-i’s (inverse) demand function. Indeed as the side-i demand

QAi = Φ
�#

βxi x̂i
�
changes in response to a variation in the side-i’s price, the side-j’s participation

expected by the side-i’s marginal consumer also changes according to the relationship:

dMA
j

dQAi

�����
QAj =const

=

∂MA
j (x̂1,x̂2)

∂x̂i
dQAi
dx̂i

= −Ωφ (Xji (x̂1, x̂2))

φ
�#

βxi x̂i
� , (20)

where we use
dQAi
dx̂i

=
#

βxi φ
�#

βxi x̂i

�
. (21)

The conditions above highlight a key difference with respect to complete information. Even if

the platform adjusts the price on side j in response to a variation in the price on side i so as to

maintain the expected demand QAj on side j constant, the slope

dpAi
dQAi

����
QAj =const

= −μi (x̂i)

QAi
+ γi

dMA
j

dQAi

�����
QAj =const

= −μi (x̂i)

QAi
− γiΩ

φ (Xji (x̂1, x̂2))

φ
�#

βxi x̂i
� (22)

of the side-i’s (inverse) demand curve naturally depends on the intensity γi of the side-i’s own network

effects (in contrast, under complete information the second term on the right hand side disappears

and the slope is independent of γi)̇. This new effect, of course, plays an important role for the

equilibrium prices.

There is a second difference with respect to complete information. The variation in the side-i’s

demand that the platform expects to trigger by changing the price pAi and then adjusting the price

pAj to keep the expected side-j demand Q
A
j constant need not coincide with the variation in the side-i

demand expected by the marginal agent on side j, which is given by

∂MA
i (x̂1, x̂2)

∂x̂i
=

#
1 + Ω2

#
βxi φ (Xij (x̂1, x̂2)) . (23)

Comparing (21) with (23), one can then see that the variation in the side-i’s demand expected by the

marginal agent on side j differs from the variation expected by the platform when Ω �= 0. This effect
in turn impacts the adjustment in the side-j price that the platform must undertake to maintain the

side-j expected demand constant, as it can be observed from the following decomposition:

dMA
i

dQAi

����
QAj =const

=

∂MA
i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

=
#
1 + Ω2

φ (Xji (x̂1, x̂2))

φ
�#

βxi x̂i
� �= 1 if Ω �= 0. (24)
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The above two effects, combined, lead to the following first-order condition

pAi +

⎡⎣−μi (x̂i)

QAi
+ γi

dMA
j

dQAi

�����
QAj =const

⎤⎦QAi +
⎡⎣γj

dMA
i

dQAi

����
QAj =const

⎤⎦QAj = 0 (25)

where the first bracket term is the change in pAi for one unit of extra sale on side i, while the second

bracket term is the change in pAj required to maintain the expected side-j demand constant.

The following proposition combines the above observations into a formula for the monopolist’s

equilibrium prices that will turn useful when considering competition between the two platforms (the

proof follows from the arguments above):

Proposition 1 The monopolist’s profit-maximizing prices, expressed as a function of the demand

thresholds they induce, satisfy the following conditions:

pAi = μi (x̂i) + γi

�
Ω
φ (Xji (x̂1, x̂2))

φ
�#

βxi x̂i
� �

QAi − γj

�#
1 + Ω2

φ (Xij (x̂1, x̂2))

φ
�#

βxi x̂i
� �

QAj i = 1, 2 (26)

where x̂1 and x̂2 are implicitly defined by the system of equations given by (14), μi (x̂i) denotes the

inverse-semi-elasticity of the stand-alone demand curves, as defined in (7), and QAi = Φ
�#

βxi x̂i
�

and QAj = Φ
�$

βxj x̂j

�
denote, respectively, the side-i and the side-j demands, as expected by the

platform.

The first term in the price equation (26), which corresponds to the inverse semi-elasticity of

the demand curve in the absence of network effects, expressed in terms of thresholds as opposed to

prices, is completely standard and entirely driven by the distribution of the estimated stand-alone

valuations. In our model it depends on the information structure only because the latter also affects

the distribution of the estimated stand-alone valuations.

The third-term in (26) captures the familiar extra cost of raising prices in a two-sided market

due to a reduction of demand (or equivalently of price) on the other side. When side j benefits from

the presence of side i, that is, when γj > 0, this term is known to contribute negatively to the price

charged by the monopolist on side i (see e.g., Armstrong, 2006). As discussed above, the novelty

relative to complete information comes from the fact that the variation in the side-i demand that

the platform expects to trigger by raising pAi now differs from the variation expected by the side-j

marginal agent. This novel effect is captured in the bracket in the third term, which measures the

sensitivity of the beliefs of the side-j marginal agent to changes in the average demand on side i.

The second term in (26) is absent under complete information. As explained above, this term

originates in the fact that a variation in the side-i demand now implies a variation in the side-

i’s expectation about side-j’s participation (this effect is present despite the fact that, from the

platform’s perspective, the side-j expected demand does not change, given the adjustment in the side-

j price). Whether this new term contributes positively or negatively to the side-i own price elasticity
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(and thus ultimately to the monopolist’s profit-maximizing price) depends on the interaction between

(a) the sign of side-i network effects, γi, and (b) the sign of the correlation between the two sides’

stand-alone valuations (Formally, the sign of this new term is the sign of γiρθ.). For a given increase

in expected demand QAi , the extra adjustment in the side-i price that the platform must undertake

due to this novel effect is given by γi dM
A
j /dQ

A
i

���
x̂j=const

, which corresponds to the change in the

network effects expected by the marginal agent on side i. To understand this effect, recall that, by

lowering the price pAi , the monopolist raises the threshold x̂i. Equivalently, it lowers the estimated

stand-alone valuation of the marginal agent who is just indifferent between joining and staying home.

When stand-alone valuations are positively correlated between the two sides, this means that the new

marginal agent will also expect that fewer agents from the opposite side will like the platform and

thus join. When side i values positively the participation of the side-j agents, this new effect thus

reduces the slope of the side-i inverse demand (see (22)) and thus contributes to a higher optimal

price.

It is interesting to contrast our results with the analysis in Weyl (2010). In that paper, informa-

tion is complete but consumers are heterogenous in the importance that they assign to the network

effects. This possibility can be captured in our model by letting α1 and α2 go to infinity, with

ρx = 0, but then allowing the coefficient γil to vary across agents. To preserve the property that

the heterogeneity among the agents is parametrized by xil, then let γi (xil) = E[γ̃il | xil] and assume
that κix− 2γi (x) is increasing in x, so as to preserve the threshold property of the demand curves.
Then, both in Weyl (2010) and in our model, the intensity of the network effects is correlated with

the perceived stand-alone valuations:

E[ũAil + γ̃ilm̃
A
j | xil] = si −

κi
2
xil + γi (xil)Q

A
j with heterogenous network effects,

E[ũAil + γ̃ilm̃
A
j | xil] = si −

κi
2
xil + γiM

A
j (xil, x̂j) with dispersed information.

The equilibrium prices with heterogenous network effects are then given by

pAi = μi (x̂i)−
�
γ�i (x̂i)

dx̂i

dQAi
QAj

�
QAi, +* -

μI

− γ̂jQ
A
j

where γ̂j = γj (x̂j) and where the term μI corresponds to what in Weyl is called classical market
power. Notice that the market power μI differs from the usual stand-alone market power because

of the correlation between the stand-alone valuations and the importance of the network effects. In

our model, a similar formula obtains under dispersed information, but with different interpretations

of μI and γ̂j . In our model,

μI = μi (x̂i)−
⎡⎣γi

dMA
j

dQAi

�����
QAj =const

QAi

⎤⎦
19



differs from the usual stand-alone market power index μi (x̂i) because of the correlation between

the stand-alone valuations across the two sides, as opposed to the correlation between stand-alone

valuations and the importance of the network effects within the same side. Interestingly, the sign of

μI −μi (x̂i) in our model depends on two primitive variables, the sign of the network effects, γi, and

the sign of the correlation coefficient, ρθ.

Next, consider the term γ̂j . As pointed out in Weyl (2010), this term reflects the fact that the

monopolist internalizes only the effect of variations in the side-i participation on the utility of the

marginal consumer on the opposite side. Because γ̂j = γj (x̂j) differs from the average importance

E [γj (x̃jl) | x̃jl ≤ x̂j ] assigned to the network effects by the side-j participating agents, the monopo-
list’s optimal price exhibits a distortion along the lines of Spence (1975). In our model too

γ̂j = γj
dMA

i

dQAi

����
QAj =const

differs from the average value of the marginal network effects among the side-j’s participating agents,

which is equal to26

E
�
γj

∂MA
i (x̂i, x̃jl)

∂x̂i

dx̂i

dQAi
| x̃jl ≤ x̂j

�
= γj

MA
j

QAj
. (27)

This difference, however, comes from the difference in beliefs about the participation rates as opposed

to the difference in the importance assigned to the network effects.

We conclude this section by comparing the profit-maximizing prices with the prices that a benev-

olent planner maximizing total welfare (sum of the monopolist’s profits and of consumers’ surplus)

would choose. It is easy to see that the planner would set prices so that the corresponding partici-

pation rates are given by QAi = Φ
�#

βxi x
W
i

�
, with the thresholds xWi , i = 1, 2, implicitly defined by

the first-order conditions

Gi(x
W
1 , x

W
2 )

#
βxi φ

�#
βxi x

W
i

�
+

� xWj

−∞

∂Gj
�
xWi , x

�
∂xWi

$
βxj φ

�$
βxj x

�
dx = 0, i, j = 1, 2, j �= i. (28)

These conditions are the analogs of those in Lemma 3 for the monopolist. The first term in (28)

is the direct effect on side-i welfare of bringing on board the marginal agent with signal xWi . This

benefit is equal to the marginal agent’s gross utility Gi(xW1 , x
W
2 ), scaled by the agent’s density. The

second term in (28) is the indirect effect that comes from adding this marginal agent to the matching

sets of the side-j participating agents. As we show in the Appendix, this last term is equal to� xWj

−∞

∂Gj
�
xWi , x

�
∂xWi

$
βxj φ

�$
βxj x

�
dx = γjM

A
j (x

W
1 , x

W
2 )

#
βxi φ

�#
βxi x

W
i

�
. (29)

The welfare-maximizing thresholds are thus the unique solutions to the system of equations

Gi(x
W
1 , x

W
2 ) = −γjM

A
j (x

W
1 , x

W
2 ) i, j = 1, 2, j �= i. (30)

26See the proof of condition (30).
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It is easy to see that the participation decisions corresponding to such thresholds can be induced by

setting prices pAi = Gi(x
W
1 , x

W
2 ), i = 1, 2. We thus conclude that the welfare-maximizing prices are

given by

pAi = −γjM
A
j (x

W
1 , x

W
2 ), i, j = 1, 2, j �= i, (31)

where (xW1 , x
W
2 ) are the unique solutions to (30). Notice that the externalities are evaluated for a

mass MA
j instead of the unexpected mass QAj of consumers on side j, which reflects the correlation

between the values of on the two sides.27

Comparing these prices with those in Proposition 1, we then have that the welfare-maximizing

prices differ from the profit-maximizing ones by the usual distortions. First, the monopolist internal-

izes that bringing more people on board from side i requires lowering the side-i price, as indicated in

(22). This concern is clearly not warranted by the planner. Second, as discussed above, the monop-

olist internalizes only the effect of a higher side-i participation on the utility of the marginal agent

from side j, whereas the planner takes into account the effect of a higher side-i participation on the

utility of all participating agents from side j. Interestingly, note that, for given intensity of the net-

work effects, and for given distribution of the estimated stand-alone valuations, the extent to which

such distortions contribute to lower or higher prices depends in a non-trivial way on the distribution

of information between the two sides, as captured by the coefficient of mutual forecastability Ω.

5 Competition

We now reintroduce platform B and examine the outcome of the duopoly game where the two

platforms simultaneously compete in prices on each side, assuming full participation and singlehoming

(both assumptions will be discussed at the end of the section).

Consider the continuation game that starts in stage 2, given the prices (pA1 , p
A
2 , p

B
1 , p

B
2 ). Each

agent l from each side i = 1, 2 chooses platform A when

E[ũAil − ũBil | xil] + γiE[m̃A
j − m̃B

j | xil] > pAi − pBi (32)

and platform B when the inequality is reversed. Using the fact that, with full participation and

singlehoming, mA
i +m

B
i = 1, i = 1, 2, and (3), we can rewrite Condition (32) as

−κixil + 2γiE[m̃A
j | xil]− γi > p

A
i − pBi .

Now suppose that each agent l from side j �= i follows a threshold strategy according to which he
chooses platform A if xjl < x̂j and B if xjl > x̂j . When this is the case, the measure of agents from

side j on platform A is a decreasing function of θj and is given by mA
j = Pr (x̃jl ≤ x̂j | θj) . Given

27The total externality on side j is γjE m̃A
i m̃

A
j . We then have

dE(m̃A
i m̃

A
j )

dQAi QAj =const

= QAj
dE(m̃A

i |x̃jl≤x̂j)
dQAi

= MA
j

from equation (27).
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the expectation that each agent from side j �= i follows such a strategy, each agent l from side i then

finds it optimal to choose platform A if

−κixil + 2γi Pr (x̃jl ≤ x̂j | xil)− γi > p
A
i − pBi . (33)

Under Condition (M), the left hand side in (33) is decreasing in xil. Applying the same logic to

each side, we then conclude that a monotone continuation equilibrium is characterized by a pair of

thresholds (x̂1, x̂2) that jointly solve

−κix̂i + 2γiM
A
j (x̂1, x̂2)− γi = p

A
i − pBi i, j = 1, 2, j �= i. (34)

Notice that the left-hand side of (34) is the gross payoff differential of joining platform A relative

to joining platform B for the marginal agent x̂i on side i, when users on both sides follow threshold

strategies with respective cutoffs x̂1 and x̂2.

Recognizing that

−κix̂i + 2γiM
A
j (x̂1, x̂2)− γi = 2Gi (x̂1, x̂2)− 2si − γi

where Gi are the functions defined above for the monopolist, we then have that many of the properties

identified above for the monopolist case carry over to the duopoly case. In particular, for any vector

of prices p = (pA1 , p
A
2 , p

B
1 , p

B
2 ), there always exists a solution to the system of conditions given by (34),

which implies that a threshold continuation equilibrium always exists. Furthermore, under Condition

(Q), this continuation equilibrium is the unique continuation equilibrium, which implies that we can

associate to any vector of prices a unique system of demands given, in each state θ = (θ1, θ2) by

mA
i = Φ(

$
βηi (x̂i − θi)) = 1−mB

i i = 1, 2.

Thus consider the choice of prices by the two platforms. For any p = (pA1 , p
A
2 , p

B
1 , p

B
2 ), we have

QAi = E[m̃A
i ] = Φ

�#
βxi x̂i

�
and the two platforms’ profits are equal to

ΠA(pA1 , p
A
2 , p

B
1 , p

B
2 ) =

�
i=1,2

pAi Φ
�#

βxi x̂i

�
and

ΠB(pA1 , p
A
2 , p

B
1 , p

B
2 ) =

�
i=1,2

pBi

�
1− Φ

�#
βxi x̂i

��
with the thresholds (x̂1, x̂2) uniquely defined by the system of equations in (34).

Now fix
�
pB1 , p

B
2

�
and consider the choice of prices by platform A. Given the bijective relationship

between
�
pA1 , p

A
2

�
and (x̂1, x̂2) given by

pAi = p
B
i + 2Gi (x̂1, x̂2)− 2si − γi

we have that the prices
�
pA1 , p

A
2

�
constitute a best-response for platform A if and only if the corre-

sponding thresholds (x̂1, x̂2) solve the following problem:

max
(x̂1,x̂2)

Π̂A (x̂1, x̂2) ≡
�
i=1,2

�
pBi + 2Gi (x̂1, x̂2)− 2si − γi

�
Φ
�#

βxi x̂i

�
. (35)
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Arguments similar to those for the monopolist case then easily permit us to verify that, under

Condition (Q), for any vector of prices
�
pB1 , p

B
2

�
set by platform B, the thresholds (x̂1, x̂2) that

maximize platform A’s profits must be a solution to the system of first-order conditions given by

�
pBi + 2Gi (x̂1, x̂2)− 2si − γi

�#
βxi φ

�#
βxi x̂i

�
+ 2

∂Gi (x̂1, x̂2)

∂xi
Φ
�#

βxi x̂i

�
(36)

+2
∂Gj (x̂1, x̂2)

∂xi
Φ
�$

βxj x̂j

�
= 0.

The above conditions are the duopoly analogs of the optimality conditions (18) for the monopoly case;

they describe the relation between the profit-maximizing thresholds and the corresponding prices.

Following steps similar to those in the previous section, we can then show that the combination of

optimal prices and corresponding thresholds for platform A must satisfy the following conditions

pAi = κi
QAi
dQAi
dx̂i

− 2γi
⎛⎝ ∂MA

j (x̂1,x̂2)

∂x̂i
dQAi
dx̂i

⎞⎠QAi + 2γj
⎛⎝ ∂MA

i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

⎞⎠QAj (37)

along with pAi = p
B
i + 2Gi (x̂1, x̂2)− 2si − γi, i = 1, 2. The advantage of the above representation is

that it highlights the analogy with the monopolist’s case (the only difference is that the optimality

conditions now apply to the residual demands). It also permits us to identify the unique prices that

are sustained in a symmetric equilibrium.

Proposition 2 In the unique symmetric equilibrium, the prices that both platforms charge on each

side are given by

p∗i = μdi (0) + γiΩ− γj
#
1 + Ω2 i, j = 1, 2, j �= i, (38)

where μdi (0) is the inverse semi-elasticity of the stand-alone residual demand curve and where Ω is

the coefficient of mutual forecastability between the two sides.

As in the monopolist’s case, the first term in (38) is the inverse semi-elasticity of the component of

the demand on side i that comes from the stand-alone valuations, accounting for the relation between

information and estimated stand-alone valuations. Notice that it coincides with the equilibrium price

in the absence of network effects (see (9)).

The last two terms in (38) capture the interaction between the network effects and the dispersion

of information. To appreciate the role of these terms assume that Condition (Q) holds also under

complete information (i.e., in the limit as αi → ∞, or, equivalently, Ω → 0). Then observe that,

under complete information, in the unique symmetric equilibrium, the duopoly prices are given by

pci = μd;ci (0)− γj , i = 1, 2, (39)

where μd;cc (0) is the complete-information inverse semi-elasticity of the component of the side-i
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demand that comes from the stand-alone valuations.28 The term γiΩ in (38) captures the effects of

dispersed information on side-i own-price elasticity. As in the monopolist’s case, whether this term

contributes positively or negatively to the equilibrium prices depends on the sign of the network

effects γi on side i and on the correlation ρθ between the stand-alone valuations on the two sides

(recall that sign(Ω) = sign(ρθ)). Finally, the third term in (38) captures the cost of increasing the

price on side i due to the effect that this has on the platform’s profits on the other side of the market.

As in the case of complete-information, this effect contributes to a lower equilibrium price when side

j benefits from the presence of side i, i.e., when γj > 0, and to a higher price when γj < 0. Contrary

to complete information, though, the impact of this effect now depends on the ability of side-j agents

to forecast variations in the side-i demand, which, as discussed above, depend on the coefficient of

mutual forecastability Ω2 (see also the discussion below).

We summarize the implications of the above result in the following corollary:

Corollary 1 As in the complete-information case, equilibrium duopoly prices (i) increase with the

inverse-semi-elasticity of the component of the demand that comes from the estimated stand-alone

valuations and (ii) decrease with the intensity of the network effect from the opposite side. However,

contrary to complete information, equilibrium prices under dispersed information (a) increase with

the intensity of the own-side network effects when stand-alone valuations are positively correlated

between the two sides, and (b) decrease when they are negatively correlated.

A second important observation is that, despite the sophistication of the strategic effects at play,

the formula for the equilibrium duopoly prices is extremely simple. In particular, fixing the ex-ante

distribution of the estimated stand-alone valuations (the first term in the price equation (38)), the

equilibrium price on each side depends on the properties of the information structure only through

the coefficient of mutual forecastability Ω. Recall that

Ω =
ρx#
1− ρ2x

.

As anticipated above, the sign of Ω is what determines whether an agent becomes more or less

optimistic about the other side’s participation as his appreciation for the platform’s product increases.

As a result, the sign of Ω is what determines whether the equilibrium price pi on each side increases

or decreases with the intensity γi of that side’s own network effects. In contrast, when it comes to

28Note that this formula is qualitative the same as in Armstrong (2006). It can be obtained in our setting by

considering the limit in which αi →∞, i = 1, 2, where any aggregate uncertainty vanishes. The precise value of

μd;ci (0) =
var[Ṽil]

2φ (0)
= zi

ρi βηi /β
ε
i

βηi 2φ (0)

then depends on whether or not one assumes that the agents know their own stand-alone valuations (and if not, on the

correlation between the taste-shocks ε̃i and the noise shocks η̃i). Irrespective of what one assumes about (zi,β
η
i ,β

ε
i ),

in the absence of aggregate uncertainty Ω = 0, which gives the formula in (39).
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the impact on equilibrium prices of the intensity of the network effects γj on the opposite side, what

matters is only the square of Ω. To interpret this result, use the variance decomposition var(x̃il)−
var

�
x̃il − ρx

%
βxj
βxi
x̃jl�

�
= ρ2xvar(x̃il) to see that

Ω2 =
var(x̃il)

var[x̃il − E[x̃il|x̃jl� ]] − 1.

Hence Ω2 measures the ability of side j to forecast variations in participation decisions on side i

triggered by variations in prices.29 It is then natural that the sensitivity of the equilibrium price on

side i to the intensity γj of the network effects on the opposite side depends on Ω only through Ω2.

The above properties also suggest that equilibrium prices need not be too sensitive to the specific

way the information is distributed across the two sides. Fixing again the ex-ante distribution of the

estimated stand-alone valuations (equivalently, the inverse semi-elasticity of the component of the

demands that comes from the stand-alone valuations), we have that any two information structures

that result in the same coefficient of mutual forecastability yield the same equilibrium prices.

This observation is particularly sharp in the case of a market whose primitives are perfectly

symmetric under complete information. That is, consider a market where both the intensity of the

network effects and the inverse semi-elasticity of the stand-alone demand is the same across the two

sides, i.e., γ1 = γ2 = γ and μdi = μd, i = 1, 2. Using (39), we then have that the complete-information

equilibrium prices are given by

pci = μd;c (0)− γ, i = 1, 2.

Not surprising, these prices are the same across the two sides. Perhaps more surprising, the equilib-

rium prices continue to be the same across the two sides, even when the distribution of information

is not symmetric. This is because, holding fixed the distribution of the estimated stand-alone val-

uations, and assuming that the intensity of the network effect is the same across the two sides, a

variation in the quality of information on side i has an identical effect on the elasticity of demand

on each of the two sides.

To gauge some intuition, consider the case where preferences are perfectly correlated between

the two sides so that θ̃1 = θ̃2 almost surely (in which case α1 = α2 and ρθ = 1). Now suppose that

information is very precise on side one, while very imprecise on side two, so that βη1 → ∞ while

βη2 → 0.30 Because participation decisions on side two do not vary much with the aggregate state,

the value of the information held by the side-1 agents is pretty much the same as if side-1 itself was

uninformed about the distribution of the side-2’s valuations.

More generally, the result in Proposition 2 implies that shocks that affect the agents’ ability to

forecast the distribution of valuations in an asymmetric way across the two sides have nonetheless
29Note that Ω2 is reminiscent of the "coefficient of fit" R2 for the regression of x̃i on x̃j . The difference is in the

denominator, which here is the variance of the residual, while it is the total variance in R2.
30Recall that one can always use the parameters (zi, ρi,βεi ) to guarantee that, despite possible differences in infor-

mation, the distribution of the estimated stand-alone valuations is the same over in the two sides.
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a symmetric effect on the equilibrium prices, as long as the intensity of the network effect is the

same across the two sides. This is because, holding fixed the ex-ante distribution of estimated stand-

alone valuations, the value that each side assigns to being able to predict the realized distribution of

estimated stand-alone valuations on the opposite side comes entirely from its ability to coordinate its

participation decisions with those on the opposite side. When the importance of the network effects

is the same across the two sides (that is, when γ1 = γ2), the two platforms then equalize the prices

over the two sides, despite possibly asymmetries in the distribution of information.

Finally notice that, while in general shocks that affect the ability of each side to forecast the

participation decisions of the other side affect the level of the equilibrium prices and the level of

ex-ante welfare, such shocks need not affect the efficiency of the duopoly equilibrium. In fact, the

latter is invariant in the level of the equilibrium prices as long as the two platforms set identical

prices.31

We conclude this section with two results that show that, under plausible additional assump-

tions, the equilibrium prices characterized above (along with the participation decisions they induce)

continue to remain equilibrium outcomes when agents can choose to "opt out" of the market, or to

"multihome" by joining both platforms. These results should be interpreted as (minimal) robustness

checks aimed at showing that the above results are not unduly driven by the choice of simplifying

the analysis by abstracting from these possibilities. In future work, it would be interesting to extend

the analysis to markets in which multihoming and partial market-coverage occur in equilibrium.

We start with the following result that pertains to our assumption of full market-coverage:

Proposition 3 There exist finite scalars (si)i=1,2 such that, for any (si)i=1,2 with si > si, i = 1, 2,

the equilibrium of the game in which agents must join one of the two platforms is also an equilibrium

of the game where agents can "opt out" of the market by choosing not to join any platform.

The reason why the equilibrium prices in the game with compulsory participation need not

remain equilibrium prices in the game in which agents can opt out of the market is the following.

First, when platforms set the prices at the level of Proposition 2, some agents may experience

a negative equilibrium payoff and hence prefer to opt out. Because the equilibrium prices p∗i in
Proposition 2 are independent of the levels of the stand-alone valuations (formally, of s1 and s2) this

possibility can be ruled out by assuming that the marginal agents’ equilibrium payoffs are positive,

which amounts to assuming that si + γi/2 ≥ p∗i , i = 1, 2. Under these conditions, no agent finds

it optimal to opt out, given that any agent’s equilibrium payoff is at least as high as that of the

marginal agents.

This condition, however, does not suffice. In fact, platforms may have an incentive to raise one

of their prices above the equilibrium levels of Proposition 2 if they expect that, by inducing some
31 It is also easy to verify that the allocations sustained in the duopoly equilibrium are efficient (meaning that they

coincide with those induced by a benevolent planner maximizing total welfare) as long as efficiency entails both (i) full

participation and (ii) singlehoming.

26



agents to opt out, their demand will fall less than that of the other platform, relative to the case

in which participation is compulsory. Consider, for example, a deviation by platform A to a vector

of prices (pA1 , p
A
2 ) with p

A
1 > p∗1. Now suppose that, in the unique continuation equilibrium of the

game where participation is compulsory, the payoff of the marginal agent x̂1(pA1 , p
A
2 , p

∗
1, p

∗
2) on side

1 is negative (that is, below his outside option). This means that, in the game where participation

is voluntarily, some agents in a neighborhood of x̂1(pA1 , p
A
2 , p

∗
1, p

∗
2) may now decide to opt out. Note

that some of these agents were joining platform B in the game with compulsory participation. When

network effects are positive, this in turn implies that such a deviation may be profitable for firm A

if the measure of agents on side 1 who would have joined platform B in the game with compulsory

participation and that now decide to opt out is larger than the measure of agents who would have

joined platform A and now opt out. That is, when the platform expects a larger drop in the rival’s

demand than in its own (relative to the case where participation is compulsory), then a deviation

that was not profitable in the game in which participation is compulsory may now become profitable.

For this to be the case, however, it must be that the intensity of the network effects is sufficiently

strong to prevail over the direct effect coming from the stand-alone valuations. The proof in the

Appendix shows that this is never the case when s1 and s2 are sufficiently large.

Next, consider the possibility that agents multihome by choosing to join both platforms. We

assume that, by doing so, each agent l from each side i obtains a gross payoff equal to (2 − κ)si +

γi(m
A
j + μBj ), where μBj is the measure of agents from side j who join platform B without joining

platform A (to avoid double counting), and where κ ∈ [0, 1] parametrizes the loss of utility stemming
from combining the two platforms’ products.32 We then have the following result:

Proposition 4 Consider the variant of the game in which agents from each side of the market

can multihome, as described above. For any vector of prices (pA1 , p
A
2 , p

B
1 , p

B
2 ) such that p

A
i + p

B
i ≥

γi + 2(1− κi)si, i = 1, 2, there exists a continuation equilibrium in which each agent from each side

singlehomes. Conversely, such a continuation equilibrium fails to exist for any vector of prices for

which pAi + p
B
i < γi + 2(1− κi)si, for some i ∈ {1, 2}.

As we show in the Appendix, the condition in the proposition guarantees that any agent who

expects all other agents to singlehome (according to the same threshold rule as in the game in which

multihoming is not possible) prefers to join his most preferred platform to multihoming. As the

proposition makes clear, the condition is also necessary, in the sense that, when it is violated, then

in any continuation equilibrium some agents necessarily multihome. The following corollary is then

an immediate implication of the above result:

Corollary 2 Let (p∗1, p∗2) be the equilibrium prices in the game in which multihoming is not possible,

as defined in (38), and assume that p∗i ≥ γi + 2(1 − κi)si, i = 1, 2. Suppose that platforms cannot

32Note that (2− κi)si + γi(m
A
j + μBj ) = u

A
i + u

B
i − κisi + γi(m

A
j + μBj ).
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set negative prices. The equilibrium in the game in which agents are not allowed to multihome then

continues to be an equilibrium in the game in which multihoming is possible.

Because equilibrium prices are increasing in the ex-ante dispersion of the estimated stand-alone

valuations (formally in μdi (0)) and because such dispersion measures the ex-ante degree of differenti-

ation between the two platforms, the result in Corollary 2 is consistent with the finding in Armstrong

and Wright (2007) that strong product differentiation on both sides of the market implies that agents

have no incentive to multihome when prices are restricted to be non-negative (As argued in that pa-

per, and in other contexts as well, the assumption that prices must be non-negative can be justified

by the fact that negative prices can create moral hazard and adverse selection problems).

Together, the results in Proposition 3 and Corollary 2 imply that, when the stand-alone valu-

ations of the marginal agents are neither too high nor too low (intermediate si) and when the two

platforms are seen as sufficiently differentiated on both sides of the market (the ex-ante distribution

of the estimated stand-alone valuations is sufficiently diffuse), then the unique symmetric equilibrium

of the baseline game is also an equilibrium in the more general game where agents can multihome

and opt out of the market.

6 Implications for advertising and product design

We now turn to the effects on equilibrium profits of variations in (i) the quality of the agents’

information and (ii) the prior distribution from which stand-alone valuations are drawn. These

comparative statics results have implications for advertising and product design.

We start by showing how the equilibrium prices depend on the various structural parameters of

the model. From Proposition 2, the relevant terms for the equilibrium prices are (a) the inverse semi-

elasticities μdi of the stand-alone demands and (b) the coefficient Ω of mutual forecastability. The

inverse semi-elasticities of the stand-alone demands (evaluated at the equilibrium prices) are in turn

proportional to the dispersion of the estimated stand-alone differentials (see (10)):

μdi (0) =

$
var[Ṽil]

2φ(0)
with var[Ṽil] = z

2
i

�
βηi + ρiαi

#
βηi /β

ε
i

�2
(αi + βηi )αiβ

η
i

. (40)

As one can see from (40), var[Ṽil] increases with the correlation ρi between the noise η̃il in the agents’

information and the idiosyncratic taste shock ε̃il in the stand-alone differentials. It also increases with

zi, which parametrizes the overall sensitivity of the agents’ stand-alone differentials to common and

idiosyncratic shocks (θ̃i and ε̃il, respectively). Finally, it decreases with βεi , for a higher β
ε
i implies a

lower dispersion of idiosyncratic taste shocks.

On the other hand, var[Ṽil] is typically non-monotone in αi and in βηi . The non-monotonicity

with respect to αi (which parametrizes the precision of the prior about θi) reflects the fact that a

higher αi implies a lower dispersion of stand-alone differentials but also a higher precision of the
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agents’ information. Because the latter effect makes the agents respond more to their information,

it contributes to a higher dispersion of estimated differentials. The non-monotonicity with respect

to the precision βηi of the agents’ information in turn reflects the fact that, holding constant the

correlation coefficient ρi, a higher β
η
i implies a lower covariance between the noise in the signals and

the idiosyncratic taste shocks in the differentials. Because a lower covariance between the noise in

the signals and the taste shock in turn contributes to a lower sensitivity of estimated differentials to

the agents’ signals, the net effect of a higher βηi on var[Ṽil] is typically non-monotone.

Next, consider the coefficient Ω of mutual forecastability. As illustrated above, Ω is an increasing

transformation of the coefficient ρx of correlation between signals from the two sides, which in turn

determines the two sides’ ability to forecast each other. To be precise, we measure the ability of

side i to forecast the information on side j by the (inverse of the) variance of the forecast errors

x̃jl� − E[x̃jl� |x̃il], which can be decomposed as follows

var[x̃jl� − E[x̃jl� |x̃il]] = var[θ̃j − E[θ̃j |x̃il]] + 1

βηj
. (41)

Clearly, the ability of side i to forecast the information (and hence the valuations) on side j increases

as the noise in the side-j’s signals decreases (that is, as βηj increases). It also increases with the side-i’s

ability to forecast the correlated taste shock θ̃j in the side-j signals, which is inversely proportional

to

var[θ̃j − E[θ̃j |x̃il]] =
	
1− ρ2θ

βηi
αi + βηi



1

αj
. (42)

Not surprisingly, the ability of side i to forecast θ̃j increases with |ρθ| and βηi , and decreases with αi.

Building on these observations, we now investigate the firms’ incentives to take actions that

affect either (i) the agents’ ability to estimate their own stand-alone valuations as well as those of

the agents from the opposite side (e.g., through informative advertising and marketing campaigns,

as well as through personalized disclosures aimed at allowing consumers to learn of their personal

match with the product’s characteristics), or (ii) the distributions from which the agents’ stand-alone

valuations are drawn (e.g., through product design). We examine each of the two channels separately.

6.1 Informative advertising campaigns

Think of a software firm entering the market with a new operating system. The firm must decide

how much information to disclose to the public about the various features of its product. We think

of these disclosures as affecting both the developers’ and the end-users’ ability to estimate their own

stand-alone valuations (both in absolute value and relative to the operating system produced by an

incumbent firm), as well as their ability to forecast the distribution of valuations on the other side

of the market.

Formally, we think of these disclosure and advertising campaigns as affecting the information

available to the two sides of the market, for fixed distribution of the true stand-alone valuations.
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That is, fix the parameters (α1,α2, ρθ,βε1,β
ε
2, z1, z2) defining the prior join distribution from which

individual stand-alone valuations are drawn and consider the effects on profits of variations in the

agents’ ability to estimate (i) their own stand-alone valuations (as measured by the inverse of the

volatility of the forecast error var[ṽil − Ṽil]), and (ii) the distribution of stand-alone valuations on
the other side of the market (as measured by the inverse of (41)). Hereafter, we isolate the effects of

the variations in (i) by looking at changes in the coefficient ρi of correlation between the noise η̃il in

the signals and the idiosyncratic taste shock ε̃il. We then isolate the effects of the variations in (ii)

by looking at joint changes in (βηi , ρi)i=1,2 that leave var[ṽil − Ṽil], i = 1, 2 fixed.

Proposition 5 Informative advertising and marketing campaigns that increase the agents’ ability to

estimate their own stand-alone valuations without affecting their ability to forecast the distribution

of (true or estimated) stand-alone valuations on the other side of the market always increase profits.

Conversely, campaigns that increase the agents’ ability to forecast the distribution of (true or

estimated) stand-alone valuations on the other side of the market without affecting their ability to

estimate their own stand-alone valuations increase profits if ρθ(γ1 + γ2) > 0 and reduce profits if the

above inequality is reversed.

The first part of the result is intuitive. Campaigns that help agents understand their own needs

and preferences, without affecting their ability to forecast other agents’ preferences, make agents more

responsive to their own idiosyncrasies. As such, these campaigns increase the ex-ante dispersion of

estimated stand-alone valuations, thus reducing the semi-price elasticity of the part of the demand on

each side that comes from the stand-alone valuations. These campaigns are thus similar to those that

increase the degree of differentiation between the two platforms under complete information (e.g.,

Johnson and Myatt, 2006). By reducing the intensity of the competition between the two platforms,

such campaigns unambiguously contribute to higher prices and hence to higher equilibrium profits.

Next, consider campaigns whose primary effect is to make agents more informed about what

is likely to be "hip" on the other side of the market (formally, that help agents better predict

the distribution of stand-alone valuations on the other side). As we show in the Appendix, these

campaigns impact the coefficient of mutual forecastability Ω, without affecting the ex-ante volatility

of the estimated stand-alone valuations, var[Ṽi]. From the equilibrium price equation (38), one can

then see that, depending on the intensity of the network effects, such campaigns may either increase

or decrease the equilibrium prices. Their total effect on equilibrium profits, which in a symmetric

equilibrium are given by

Π∗ =
1

2
(p∗1 + p

∗
2) =

1

2

!
μd1 (0) + μd2 (0) + (γ1 + γ2)

�
Ω−

#
1 + Ω2

�"
, (43)

is then determined by (i) the sign of the intensity of the total network effects, γ1+γ2, and (ii) whether

increasing the agents’ ability to forecast the distribution of stand-alone valuations on the other side

(which, by (41), corresponds to an increase in the precisions βηi , i = 1, 2, of the agents’ information)

increases or decreases the coefficient of mutual forecastability Ω. Because the latter is increasing in
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the quality of the agents’ information βη1 and βη2 if and only if preferences are positively correlated

between the two sides (that is, if and only if ρθ > 0), we then have that the effect of such campaigns

on profits is positive if and only if the correlation of preferences between the two sides is of the same

sign as the sum of the intensity of the network effects (that is if and only if ρθ(γ1 + γ2) > 0).

To better understand this result, recall that the term γiΩ in the price equation captures the effect

of the dispersion of information on side-i’s own-price elasticity. From the discussion in the previous

section, when network effects are positive and preferences are positively correlated between the two

sides, then γiΩ increases in either of the two sides’ quality of information (that is in either β
η
1 or β

η
2 ).

This effect comes from the fact that more precise information on side i makes the marginal agent

on both sides more responsive to his private information. When preferences are positively correlated

and network effects are positive, this effect in turn contributes to a higher equilibrium price on each

side by making each side’s demand less elastic.

At the same time, more precise information also implies a higher sensitivity of both demands to

variations in prices on the other side (in other words, it contributes to a higher cross-price elasticity

of the demands). These effects, which are captured by the terms γj
√
1 + Ω2 in the price equations,

contribute negatively to the equilibrium prices. While the net effect on the equilibrium price on each

side then depends on the relative strengths of the network effects γ1 and γ2, the net effect on total

profits is unambiguously positive when the sum of the network effects is positive (more generally,

when it is of the same sign as the correlation of preferences between the two sides). This is because

any loss of profits on one side is more than compensated by an increase in profits on the opposite

side, as one can see from (43).

What is interesting about the results in the proposition is that they identify two fairly general

channels through which information affects profits, without specifying the particular mechanics by

which advertising and marketing campaigns operate. In reality, most campaigns operate through

both channels. That is, they affect both the agents’ ability to understand their own preferences

and their ability to understand what agents from the opposite side are likely to find attractive.

The results in the proposition then indicate that such campaigns unambiguously increase profits in

markets in which (i) preferences are positively correlated between the two sides and (ii) the sum of

the network effects is positive (which is always the case when each side benefits from the presence

of the other side). In contrast, in markets in which the sum of the network effects is positive but

in which preferences are negatively correlated between the two sides (or, vice versa), profits may

decrease with the agents’ ability to forecast other agents’ preferences and platforms may find it

optimal to conceal part of the information they have.

Note that the above results refer to informative campaigns. They do not apply to campaigns

that distort the average perception the agents have about the quality differential between the two

platforms. These campaigns could be modelled in our framework by allowing the platforms to

manipulate the mean of the distributions from which the signals are drawn. However, because in

our environment platforms do not possess any private information and the agents are fully rational,
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the effect of such campaigns on profits is unambiguously negative. This is because each agent can

always “undo” the manipulation by adjusting the interpretation of the information he receives. As

discussed in the "signal-jamming" literature (e.g., Fudenberg and Tirole (1986)), platforms may then

be trapped into a situation in which they have to invest resources in such campaigns, despite the

fact that, in equilibrium, such campaigns have no effect on the agents’ decisions.

6.2 Product design

We conclude by considering the effects on profits of changes in the distribution from which the

true stand-alone valuations are drawn. As anticipated in the Introduction, these effects–formally

captured by variations in the parameters (α1,α2, ρθ,βε1,β
ε
2, z1, z2)–should be interpreted as the result

of product design. For example, an increase in α1 and α2 should be interpreted as the choice to enter

the market with a product that is more similar to the one provided by the incumbent firm. An

increase in ρθ, instead, should be interpreted as the choice to favor product characteristics that are

expected to appeal to both sides. We then have the following result:

Proposition 6 Fix the quality of information on either side (that is, fix (βηi , ρi), i = 1, 2). An

increase in the similarity between the two platforms (as captured by an increase in (α1,α2)) always

reduces the equilibrium profits. The same is true for a reduction in the dispersion of the stand-alone

valuations (as captured by an increase in (βε1,β
ε
2)).

Conversely, an increase in the alignment of the stand-alone valuations between the two sides

(as captured by an increase in ρθ) increases profits if γ1 + γ2 > 0 and reduces profits if the above

inequality if reversed.

That a higher similarity in the two platforms’ products and/or a smaller relevance of those

dimensions that are responsible for idiosyncratic appreciations contribute negatively to profits is

easy to understand, given that both effects contribute to a reduction in the ex-ante dispersion of the

estimated stand-alone valuations, and hence to fiercer competition.

The result pertaining to the decision to favor dimensions that appeal to both sides is less obvious.

Observe from the price equation (38) that an increase in the alignment of preferences (which amounts

to an increase in the coefficient Ω of mutual forecastability) may increase prices on one side while

decreasing prices on the other side. To see this, suppose that the network effects are positive on both

sides and consider a design that increases ρθ. The new design reduces the own-price elasticity of

the demand on each side by making the marginal agent’s beliefs about participation decisions on the

opposite side more sensitive to his private information. As discussed above, this effect contributes to

higher equilibrium prices on both sides. At the same time, a higher ρθ also implies a higher sensitivity

of the other side to variations in the side-i price, which contributes negatively to the equilibrium

prices. While the net effect on the equilibrium price on each side depends on the importance that

the two sides attach to interacting with one another, the proposition shows that the net effect on

total profits is always unambiguously positive.
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When the network effects are positive on side one but negative on side two, the price equation (38)

shows that an increase in ρθ, by triggering an increase in the coefficient Ω of mutual forecastability,

leads to a higher price on side one and a lower price on side two. The net effect on profit is then

ambiguous. The proposition shows that the effect that dominates is the effect on the side with the

strongest network effects, in absolute terms. When the sum of the network effects is positive, then

any loss of revenues on one side is more than compensated by an increase in revenues on the opposite

side. In this case, increasing the alignment of stand-alone valuations between the two sides increases

profits. The opposite conclusion obtains when the sum of the network effects is negative.

Note that the above result implies that, in a market for media outlets, for example, favoring

dimensions that appeal to both viewers and advertisers is likely to be profit-enhancing if the viewers’

tolerance towards advertisement is high, whereas it may reduce profits otherwise.

7 Conclusions

We examine the effects of dispersed information on market outcomes in a simple, yet flexible, model

of platform pricing with differentiated products. Dispersed information naturally introduces hetero-

geneity in the users’ expectations about participation decisions on the two sides of the market, which

is realistic and brings novel effects to the equilibrium pricing equations.

The analysis identifies a channel through which the dispersion of information interacts with the

network effects in determining the elasticity of the demand on each side and thereby the equilibrium

prices. We use such a characterization to show how equilibrium profits are affected by variations

in (i) the prior distribution from which stand-alone valuations are drawn and (ii) the quality of

information available to each side. Finally, we use these results to shed light on the platforms’

incentives to invest in product design to align the preferences of the two sides and/or to engage

in advertising and marketing campaigns affecting the agents’ ability to understand their own needs

and/or the distribution of stand-alone valuations on the other side of the market.

The analysis is conducted in a static framework. This is a natural starting point and permits

us to uncover a few novel effects. However, participation decisions are an intrinsically dynamic

phenomenon. In future work it is thus important to extend the analysis to a dynamic setting and

investigate the platforms’ incentives to price aggressively at the early stages so as to build a user

base as a barrier to entry and to future competition. Allowing for dynamics would also permit one

to investigate how the platforms’ pricing strategies affect the speed of individual and social learning

and thereby the dynamics of technology adoption.

In future work, it would also be interesting to consider equilibria without full coverage and/or

in which some agents multihome. While in the paper we identify conditions that guarantee that,

in equilibrium, all agents participate and singlehome, it seems important to relax these conditions

and investigate the implications for equilibrium prices and market coverage. In the same vein, it is

interesting to construct asymmetric equilibria whereby the two platforms set their prices differently
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on one or both sides.

Another direction for future research consists in allowing for the possibility of price discrim-

ination, whereby the platforms grant differential access to the participating population from the

opposite side.33

Lastly, we expect interesting new effects to emerge by introducing decreasing returns to scale

to network effects and within-side network externalities (e.g., congestion). Such externalities play

an important role, for example, in advertising. In the presence of such externalities, participation

decisions on each side are determined by the agents’ ability to forecast the joint distribution of

preferences on the two sides of the market. This is a challenging extension, but worth examining.
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A Appendix

Proof of Lemma 1. Fix (pA1 , p
A
2 ). Under Condition (M), Gi (x1, x2) is a continuous decreas-

ing34 function onto R of x̂i. Thus for any x2 there exists a unique value x1 = ξ1 (x2) that solves

G1 (ξ1 (x2) , x2) = p
A
1 . Thus consider the function

F (x2) ≡ G2 (ξ1 (x2) , x2)− pA2 .

This is a continuous function, positive for x2 small enough and negative for x2 large enough. Thus

a solution to F (x2) = 0 always exists, which establishes the result.

Proof of Lemma 2. To fix ideas, we assume here that γ1 ≥ 0. The proof for the case where
γ1 < 0 ≤ γ2 is symmetric to the one for the case where γ2 < 0 ≤ γ1 which is covered below. Consider

again the function F (x2) ≡ G2 (ξ1 (x2) , x2) introduced in the proof of Lemma 1, where ξ1 (x2) is

the unique solution to G1 (ξ1 (x2) , x2) = pA1 . From the implicit function theorem, and given that

∂Gi (x1, x2) /∂xi < 0, we have that the sign of
dF (x2)
dx2

is the sign of

∂G2 (ξ1 (x2) , x2)

∂x1

∂G1 (ξ1 (x2) , x2)

∂x2
− ∂G2 (ξ1 (x2) , x2)

∂x2

∂G1 (ξ1 (x2) , x2)

∂x1
.

Using

∂Gi (x1, x2)

∂xi
= −κi/2− γiΩ

#
βxi φ (Xji(x1, x2))

∂Gi (x1, x2)

∂xj
= γi

#
1 + Ω2

$
βxj φ (Xji(x1, x2))

after some algebra, we obtain that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(44)

=
�
γ1γ2

#
1 + Ω2

#
βx1β

x
2φ (X12(x1, x2))−

κ2
2

γ1Ω
#

βx1

�
φ (X21(x1, x2))

− κ1
2

γ2Ω
#

βx2φ (X12(x1, x2))−
κ1κ2
4
.

34To see this note that ∂Gi(x1,x2)
∂xi

= −κi/2− γiΩ
αiβ

x
i

αi+β
x
i
φ (Xji(x1, x2)) .Hence, when γiΩ ≥ 0, ∂Gi(x1,x2)∂xi

< 0 while

for γiΩ < 0,
∂Gi(x1,x2)

∂xi
≤ −κi/2− γiΩ

αiβ
x
i

αi+β
x
i
φ (0) which is again negative by Condition (M).
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Now we claim that, under Condition (Q), the expression in (44) is strictly negative for any

(x1, x2). To see this, suppose, on the contrary, that there exists (x1, x2) for which the sign of the

expression in (44) is nonnegative. Consider first the case where γ1, γ2,Ω ≥ 0. Then for the expression
in (44) to be nonnegative, it must be that

γ1γ2
Ω2

#
βx1β

x
2

ρ2x
φ (X12(x1, x2))− κ2

2
γ1Ω

#
βx1 > 0

which in turn implies that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
(45)

≤
�
γ1γ2

#
1 + Ω2

#
βx1β

x
2φ (X12(x1, x2))−

κ2
2

γ1Ω
#

βx1

�
φ (0)

− κ1
2

γ2Ω
#

βx2φ (X12(x1, x2))−
κ1κ2
4
.

Because the right-hand side of (45) can also be rewritten as�
γ1γ2

#
1 + Ω2

#
βx1β

x
2φ (0)−

κ1
2

γ2Ω
#

βx2

�
φ (X12(x1, x2))− κ2

2
γ1Ω

#
βx1φ (0)−

κ1κ2
4

(46)

for the sign of the expression in (46) to be nonnegative, by the same reasoning as above, it must be

that the sign of the first term in (46) is also strictly positive. It must then be that�
γ1γ2

#
1 + Ω2

#
βx1β

x
2φ (0)−

κ1
2

γ2Ω
#

βx2

�
φ (0)− κ2

2
γ1Ω

#
βx1φ (0)−

κ1κ2
4

≥ 0 (47)

which is impossible when Condition (Q) holds.

Next assume that γ1, γ2 ≥ 0 > Ω. Then, by the same arguments as above, the existence of a pair
(x̂1, x̂2) for which the sign of the expression in (44) is nonnegative contradicts the assumption that

Condition (Q) holds.

Next, assume that γ1,Ω ≥ 0 > γ2. It follows that

∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
≤ −κ1

2
γ2Ω

#
βx2φ (X12(x1, x2))−

κ1κ2
4

(48)

For the expression in the right-hand-side of (48) to be nonnegative, it must then be that

−γ2Ω
#

βx2φ (0)−
κ2
2
≥ 0

which is impossible under Condition (M).

Next consider the case where γ1 ≥ 0 > Ω, γ2. We then have that
∂G2 (x1, x2)

∂x1

∂G1 (x1, x2)

∂x2
− ∂G2 (x1, x2)

∂x2

∂G1 (x1, x2)

∂x1
≤ −κ2

2
γ1Ω

#
βx1φ (0)−

κ1κ2
4

< 0

where the last inequality is again by Condition (M).

We conclude that the function F (·) is strictly decreasing which implies that the threshold con-
tinuation equilibrium of Lemma 1 is unique. Standard global-game arguments then imply that there

do not exist continuation equilibria other than the threshold one, which establishes the result.
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Proof of Lemma 3. Existence of a maximizer. Because of the bijective relation between�
pA1 , p

A
2

�
and (x̂1, x̂2) it suffices to show that there exists a vector of thresholds (x̂1, x̂2) that maximize

(16). To see this, note that, for any pair (x̂1, x̂2) ,

Π̂A (x̂1, x̂2) ≡
�
i=1,2

�
si − κi

2
x̂i + γiM

A
i (x̂1, x̂2)

 
Φ
�#

βxi x̂i

�
which means that�

i=1,2

�
si − κi

2
x̂i + γ−i

 
Φ
�#

βxi x̂i

�
≤ Π̂A (x̂1, x̂2) ≤

�
i=1,2

�
si − κi

2
x̂i + γ+i

 
Φ
�#

βxi x̂i

�
(49)

Next, consider the function

G+1 (xi) ≡
�
si − κi

2
xi + γ+i

 
Φ
�#

βxi xi

�
and note that this function is bounded from above but not from below.35 By looking at the right-

hand side of (49), it is then immediate that, for any i = 1, 2, there exists a finite x̄i such that

Π̂A (x̂1, x̂2) < 0 for any (x̂1, x̂2) such that x̂i ≥ x̄i. Because the platform can always guarantee itself

zero profits by setting prices equal to zero, this means that, to find a maximizer of Π̂A (x̂1, x̂2), one

can restrict attention to pairs (x̂1, x̂2) such that x̂i ≤ x̄i, i = 1, 2.
Next, note that limxi→−∞G

+
1 (xi) = 0. This means that for any i = 1, 2, j �= i and ε > 0

arbitrarily small, there exists a finite xi such that, for any (x̂1, x̂2) with x̂i ≤ xi,

Π̂A (x̂1, x̂2) ≤ ε+
�
sj − κj

2
x̂j + γ+j

 
Φ
�$

βxj x̂j

�
(50)

Now take any x̂#i ∈ argmaxxG−i (x) and note that any such x̂#i is such that x̂#i > xi. This means,
for any (x̂1, x̂2) with x̂i ≤ xi, the inequality in (50) holds whereas the following inequality

Π̂A (x̂1, x̂2) > G
−
i (x̂

#
i ) +

�
sj − κj

2
x̂j + γ−j

 
Φ
�$

βxj x̂j

�
(51)

holds for (x̂#i , x̂j). By Condition (W), we then have that, for any i = 1, 2, any pair (x̂1, x̂2) with x̂i ≤
xi, there exists a pair (x̂

�
1, x̂

�
2) with x̂

�
i = x̂

#
i and x̂

�
j = x̂j such that Π̂

A (x̂�1, x̂�2) > Π̂A (x̂1, x̂2) .Together
with the result above, this means that, when looking for maximizers of Π̂A(x̂1, x̂2) one can restrict

attention to pairs (x̂1, x̂2) such that xi ≤ x̂i ≤ x̄i, i = 1, 2. Because the above is a compact set,

and because the function Π̂A(x̂1, x̂2) is continuous and differentiable, this proves that a maximizer

to Π̂A(x̂1, x̂2) always exists.

Necessity of the first order conditions. By construction of the intervals [xi, x̄i], any maxi-

mizer of Π̂A(x̂1, x̂2) is necessarily interior to the rectangular [x1, x̄1]× [x2, x̄2] and thus must satisfy
the first-order conditions (17).

35This follows from the fact that the standard Normal distribution satisfies the property that limx→−∞ xΦ(x) = 0.
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Proof of Proposition (1). Instead of proving equivalence with (17), we rewrite Condition (18)

as ,

pAi
dQAi
dx̂i

dx̂i

dpAi

����
x̂j=const

+QAi + γj
∂MA

i (x̂1, x̂2)

∂x̂i

dx̂i

dpAi

����
x̂j=const

QAj = 0.

Then using
dx̂i

dpAi

����
x̂j=const

=
1

−κi/2 + γi
∂MA

j (x̂1,x̂2)

∂x̂i

we have that

pAi =
κi
2

QAi
dQAi
dx̂i

− γi
∂MA

j (x̂1, x̂2)

∂x̂i

QAi
dQAi
dx̂i

− γj

∂MA
i (x̂1,x̂2)
∂x̂i
dQAi
dx̂i

QAj = 0

which gives the result.

Proof of Conditions (27), (30), and (29).. For any pair of thresholds (xW1 , x
W
2 ), ex-ante

welfare is equal to

W =
�

i,j=1,2, j 	=i

� xwi

−∞
Gi(x, x

W
j )

#
βxi φ

�#
βxi x

�
dx

where

Gi(x, x
W
j ) = si − κi

x

2
+ γiM

A
j (x, x

W
j )

The first-order condition for x̂i is the condition in (28) in the main text. Notice that the second term

of (28) is equal to� xWj

−∞

∂Gj
�
xWi , x

�
∂xWi

$
βxj φ

�$
βxj x

�
dx =

� xWj

−∞
γj

∂Mi(x
W
i , x)

∂xWi

$
βxj φ

�$
βxj x

�
dx.

We now show that this term is equal to

γjM
A
j

�
xW1 , x

W
2

�#
βxi φ

�#
βxi x

W
i

�
as claimed in (29). To see this, note that� xWj

−∞

∂Gj
�
xWi , x

�
∂xWi

$
βxj φ

�$
βxj x

�
dx =

� xWj

−∞
γj

∂Φ(Xij(x
W
i , x))

∂xWi

$
βxj φ

�$
βxj x

�
dx

= γj

� xWj

−∞

⎡⎣ ∂

∂xWi
Φ

⎛⎝#
βxi x

W
i − ρx

$
βxj x#

1− ρ2x

⎞⎠⎤⎦$
βxj φ

�$
βxj x

�
dx

= γj

� xWj

−∞

#
βxi#

1− ρ2x

$
βxj φ

⎛⎝#
βxi x

W
i − ρx

$
βxj x#

1− ρ2x

⎞⎠φ
�$

βxj x
�
dx

Using the fact that the density of the Gaussian distribution satisfies the property

φ(a)φ(b) =
1√
2π

φ
�#

a2 + b2
�
, for any a, b ∈ R,
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we have that

� xWj

−∞

∂Gj
�
xWi , x

�
∂xWi

$
βxj φ

�$
βxj x

�
dx = γj

� xWj

−∞

#
βxi

$
βxj#

1− ρ2x

1√
2π

φ

⎛⎜⎜⎝
)(('βxi

�
xWi

�2
+ βxj x

2 − 2ρx
#

βxi x
W
i

$
βxj x

1− ρ2x

⎞⎟⎟⎠ dx

= γj

� xWj

−∞

#
βxi

$
βxj#

1− ρ2x

1√
2π

φ

⎛⎜⎜⎝
)(('

βxi
�
xWi

�2
+

�$
βxj x− ρx

#
βxi x

W
i

�2
1− ρ2x

⎞⎟⎟⎠ dx

= γj

� xWj

−∞

#
βxi#

1− ρ2x

$
βxj φ

�#
βxi x

W
i

�
φ

⎛⎝
$

βxj x− ρx
#

βxi x
W
i#

1− ρ2x

⎞⎠ dx
= γj

#
βxi φ

�#
βxi x

W
i

�
Φ

⎛⎝
$

βxj x
W
j − ρx

#
βxi x

W
i#

1− ρ2x

⎞⎠
= γj

#
βxi φ

�#
βxi x

W
i

�
MA
j

�
xW1 , x

W
2

�
as claimed in the main text.

Finally, to establish Condition (27), note that� x̂j

−∞
γj

∂Mi(x̂i, x)

∂x̂i

$
βxj φ

�$
βxj x

�
dx = QAj E

�
γj

∂MA
i (x̂i, x̃jl)

∂x̂i
| x̃jl ≤ x̂j

�
.

Using (29) and the fact that dQAi /dx̂i =
#

βxi φ
�#

βxi x̂i
�
, we then have that

QAj E
�
γj

∂MA
i (x̂i, x̃jl)

∂x̂i
| x̃jl ≤ x̂j

�
= γj

dQAi
dx̂i

MA
j (x̂1, x̂2)

which reduces to (27).

Proof of Proposition 2. By definition, in a symmetric equilibrium, pAi = p
B
i , i = 1, 2. Under

Conditions (M), (Q) and (W), the unique continuation equilibrium is then a threshold equilibrium

with thresholds x̂1 = x̂2 = 0 and expected demands QAi = E[m̃A
i ] = 1/2, i = 1, 2. Substituting x̂i = 0

and QAi = 1/2, i = 1, 2, into the the formulas for dQAi /dx̂i, dM
A
j /dx̂i, and dM

A
i /dx̂i (as given by

(21), (19) and (23), respectively) and replacing these formulas into the optimality Conditions (37),

we then have that the equilibrium prices are given by

p∗i =
κi

2
#

βxi φ (0)
+ γiΩ− γj

#
1 + Ω2

Noticing that κi
2
√
βxi φ(0)

= μdi (0) then gives the result.

Proof of Proposition 3. First note that, when si > p
∗
i −γ−i , in the proposed equilibrium where

participation to one of the two platforms is compulsory, each agent obtains more than his outside
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option (normalized to zero). Now suppose that platform B offers the equilibrium prices and consider

the problem faced by platform A (the problem faced by platform B is symmetric). Clearly, for any

deviation entailing a reduction in the price offered to each side, one can construct a continuation

equilibrium where each agent behaves exactly as in the game where participation is compulsory, in

which case the deviation is unprofitable. Next, for any i = 1, 2, let x#i be implicitly defined by

si +
1

2
κix

#
i + γ−i = p

∗
i

and observe that, no agent from side i receiving a signal xi > x
#
i will ever opt out, irrespective of

the prices charged by platform A, for, irrespective of the other agents’ decisions, he can obtain a

positive surplus by joining platform B.

Now observe that the equilibrium prices p∗i , i = 1, 2, are independent of si and that x
#
i is

strictly decreasing in si, going to −∞ as si goes to +∞. Suppose now that there exists a vector of
prices (pA1 , p

A
2 ) such that, in any of the continuation equilibria that follow the selection of the prices

(pA1 , p
A
2 , p

∗
1, p

∗
2), platform A is strictly better off than under the monotone equilibrium that follows

the selection of the equilibrium prices (p∗1, p∗2, p∗1, p∗2). Clearly, for this to be possible, there must exist
i ∈ {1, 2} such that x̂i(pA1 , pA2 , p∗1, p∗2) ≤ x#i , where x̂i(p

A
1 , p

A
2 , p

∗
1, p

∗
2)i=1,2 are the thresholds defined

by (34) in the game where participation is compulsory. Finally, let x+i (p
A
1 , p

A
2 , p

∗
1, p

∗
2) be implicitly

defined by

si − 1
2
κix

+
i + γ+i = p

A
i

and observe that no agent from side i with signal xi > x+i (p
A
1 , p

A
2 , p

∗
1, p

∗
2) will ever join platform A,

irrespective of his beliefs about the other agents’ participation decisions. Now, letting side i be the

one for which x̂i(pA1 , p
A
2 , p

∗
1, p

∗
2) ≤ x#i , observe that, necessarily,

x+i (p
A
1 , p

A
2 , p

∗
1, p

∗
2) < x̂i(p

A
1 , p

A
2 , p

∗
1, p

∗
2) + 2|γi|/κi. (52)

To see this, let q(·) and r(·) be the function defined by

q(xi) ≡ si − 1
2
κixi + γ+i − pAi and

r(xi) ≡ si − 1
2
κixi + γiΦ

⎛⎝&
βxj

1− ρ2x

�
x̂j − ρx

&
βxi
βxj
xil

�⎞⎠− pAi

where, again, x̂i(pA1 , p
A
2 , p

∗
1, p

∗
2)i=1,2 are the thresholds defined by (34) in the game where participation

is compulsory. Note that, for any xi, 0 ≤ q(xi) − r(xi) ≤ |γi|. Because r(x̂i) < 0, it follows that

q(xi) ≤ |γi|. Given the linearity of q(·) in xi, we then have that the unique solution x+i to q(x+i ) = 0
must necessarily satisfy (52).

Having established that x#i , x
+
i , x̂i all converge (uniformly) to −∞ as si → +∞, we then have

that, in the limit as si → +∞, mA
i (p

A
1 , p

A
2 , p

∗
1, p

∗
2)→ 0 and mB

i (p
A
1 , p

A
2 , p

∗
1, p

∗
2)→ 1, exactly as in the

game where participation is compulsory. This means that, when si goes to infinity, i = 1, 2, platform

41



A’s payoff given the prices (pA1 , p
A
2 , p

∗
1, p

∗
2) under any continuation equilibrium in the game where

participation is voluntarily must converge to its’ payoff in the unique continuation equilibrium of the

game where participation is compulsory. Because the latter is necessarily less then the platform’s

payoff under the equilibrium prices, and because, by quasi-concavity of payoffs, there existsK,M > 0

such that, in the game where participation is compulsory

ΠA(p∗1, p
∗
2, p

∗
1, p

∗
2)−ΠA(pA1 , pA2 , p∗1, p∗2) > K

for any (pA1 , p
A
2 , p

∗
1, p

∗
2) for which there exists i ∈ {1, 2} such that pAi > M , we conclude that, no matter

the selected continuation equilibrium, any deviation resulting in partial participation is necessarily

unprofitable. This completes the proof.

Proof of Proposition 4. Recall that each agent l from each side i prefers joining platform A

to joining platform B if and only if

E
�
zi(θ̃i + ε̃il) | xil

 
+ γiE

�
m̃B
j − m̃A

j | xil
� ≤ pBi − pAi . (53)

The same agent then prefers joining platform A to multihoming if and only if

(1− κi)si +
1

2
E
�
zi(θ̃i + ε̃il) | xil

 
+ γiE

�
μ̃Bj | xil

�− pBi ≤ 0. (54)

Note that Condition (54) is implied by Condition (53) if and only if

2(1− κi)si + 2γiE
�
μ̃Bj | xil

�− γiE
�
m̃B
j − m̃A

j | xil
� ≤ pAi + pBi (55)

In any continuation equilibrium where all agents singlehome mB
j = μBj = 1−mA

j , in which case the

inequality in (55) becomes equivalent to γi + 2(1− κi)si ≤ pAi + pBi . The same conclusion applies to
those agents that prefer platform B to platform A. From the results above, we know that the game

where multihoming is not possible always admits a continuation equilibrium. We then conclude that,

when pAi + p
B
i ≥ γi + 2(1− κi)si such a continuation equilibrium is also a continuation equilibrium

in the game where agents can multihome.

Conversely, when pAi + p
B
i < γi + 2(1 − κi)si, there exists no continuation equilibrium where

all agents singlehome, for, if such equilibrium existed, then it would satisfy mB
j = μBj = 1 − mA

j .

Inverting the inequalities above, we would then have that some agent from side i would necessarily

prefer to multihome.

Proof of Proposition 5. Recall that agent l’s (from side i) ability to forecast his own stand-

alone valuations is measured by the inverse of

var[ṽil − Ṽil] = z2i
αi + βεi
αiβεi

− z2i

�
βηi + ρiαi

#
βηi /β

ε
i

�2
(αi + βηi )αiβ

η
i

(56)
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Likewise, the agent’s ability to forecast the distribution of true stand-alone valuations on the other

side of the market is measured by the inverse of

var[θ̃j − E[θ̃j |x̃il]] =
	
1− ρ2θ

βηi
αi + βηi



1

αj
.

Finally, the agent’s ability to forecast the estimated valuations of any agent l� from side j is given

by the inverse of

var[x̃jl� − E[x̃jl� |x̃il]] = var[θ̃j − E[θ̃j |x̃il]] + 1

βηj
.

Finally, recall that the ex-ante distribution of estimated stand-alone valuations on each side i = 1, 2

of the market is Normal with zero mean and variance

var[Ṽi] = z
2
i

(βηi + ρiαi
#

βηi /β
ε
i )
2

(αi + βηi )αiβ
η
i

(57)

Now observe that the equilibrium profits are given by ΠA = ΠB = Π∗ ≡ 1
2(p

∗
1 + p

∗
2) with

p∗i =

$
var[Ṽi]

2φ(0)
+ γiΩ− γj

#
1 + Ω2

and

Ω ≡ ρθ

&
βη1β

η
2

α1α2 + βη1α2 + βη2α1 + (1− ρ2θ)β
η
1β

η
2

.

Because the prior distribution is fixed, so are the parameters (α1,α2, ρθ,βε1,β
ε
2, z1, z2). It is then

immediate from (56) and (57) that campaigns that increase the agents’ ability to forecast their own

stand-alone valuations increase the ex-ante dispersion of estimated stand-alone valuations. From the

formula for the equilibrium prices, it is then easy to see that, when such campaigns do not affect

the agents’ ability to forecast the distribution of true (and estimated) stand-alone valuations on the

other side of the market (that is, when they leave βη1 and βη2 unchanged), they necessarily increase

equilibrium prices and hence equilibrium profits.

Next consider campaigns that leave unchanged the agents’ ability to forecast their own stand-

alone valuations (and hence the ex-ante dispersion of estimated stand-alone valuations). Then such

campaigns increase profits if and only if they increase (γ1 + γ2)
�
Ω−√1 + Ω2

�
which is the case if

and only if
∂Ω

∂βηi
(γ1 + γ2) ≥ 0 i = 1, 2.

Using the fact that Ω is increasing in βη1 and βη2 if and only if ρθ ≥ 0, we then have that such

campaigns increase profits if and only if ρθ(γ1 + γ2) ≥ 0, thus establishing the result.

Proof of Proposition 6. The results concerning the comparative statics with respect to

(α1,α2,β
ε
1,β

ε
2) follow directly from inspecting the formula for the equilibrium prices and observing

that the ex-ante dispersion of estimated stand alone-valuations var[Ṽil] on each side i = 1, 2 decreases
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with (αi,βεi ) and is independent of (αj ,β
ε
j ), whereas the coefficient of mutual forecastability Ω is

independent of (α1,α2,βε1,β
ε
2).

Next, consider the comparative statics with respect to the coefficient of correlation ρθ. The

result then follows from observing that

∂Π∗

∂ρθ
=
1

2
(γ1 + γ2)

∂Ω

∂ρθ



1− Ω√

1 + Ω2

�
which is positive if and only if γ1 + γ2 ≥ 0.
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