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Abstract

This paper considers a model of reference-dependent utility in which the in-

dividual makes a conscious choice of her reference point for future consumption.

The model incorporates the combination of loss aversion and anticipatory utility as

competing forces in the determination of the optimal reference point: anticipating

better outcomes boosts current utility but also raises the reference level for future

consumption, making the individual more susceptible to losses. A central focus of

the paper is on the implications of this model of Optimal Anticipation for attitudes

toward risk in dynamic environments. The main representation is formulated in an

infinite-horizon framework, and axiomatic foundations are provided. I also describe

special cases and show in particular that recursive expected utility in the sense of

Epstein and Zin (1989) and Kreps and Porteus (1978) can be reinterpreted in terms

of optimal anticipation and loss aversion. Finally, I describe a homogeneous version

of the model and apply it to a portfolio choice problem. I show that asset pricing

for the Optimal Anticipation model is based on simple modifications of standard

Euler equations. While maintaining tractability, this model is rich enough to per-

mit first-order risk aversion and can overcome several deficits of standard expected

utility, such as the equity premium puzzle and Rabin’s paradox.
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1 Introduction

1.1 Motivation

When faced with any uncertain prospect, an individual’s satisfaction with the outcome

often depends not only on its intrinsic value, but also on how it compares to what was

anticipated. For example, a moderate return on an investment may be disappointing

if an exceptional return was anticipated; a week-long vacation at the beach may not

seem quite so enjoyable to an individual who had anticipated taking a month-long yacht

cruise; an individual may be pleased with a low-wage employment opportunity if she had

anticipated being unemployed. Insights of this sort are now well-established in economics

and are examples of what is referred to as reference-dependent utility.

The incorporation of reference dependence and loss aversion into economic theory

dates back to Markowitz (1952) and Kahneman and Tversky (1979). Markowitz first

proposed defining utility in terms of gains and losses in order to refine the Friedman-

Savage hypothesis.1 Kahneman and Tversky found that subjects in experiments exhib-

ited a wide variety of violations of expected-utility theory; further, they showed that

many of these observations could be explained if individuals evaluate the same outcome

differently depending on whether it is a gain or a loss. However, to determine if an out-

come will be viewed as a gain or a loss, one must take a stand on what the reference

point will be in a particular context. Therefore, an important aspect of any model of

reference-dependent utility is the specification of reference-point formation. Two popular

approaches suggested in recent work are “history-dependent” reference-point formation

(Benartzi and Thaler (1995); Barberis and Huang (2001); Barberis, Huang, and Santos

(2001)) and forward-looking “equilibrium-based” reference-point formation (Kőszegi and

Rabin (2006, 2007)).

In this paper, I develop an alternative approach to reference-point formation based on

optimality. I consider an individual who (optimally) engages in psychological planning

to better prepare herself mentally for the future outcomes that might arise. I refer

to this process of mental preparation as anticipation. For example, an individual may

choose to look forward to a good outcome or alternatively prepare herself for a bad

one. This choice of anticipation by the individual then forms a reference point against

which future outcomes are measured. Since the future reference point is based on current

anticipation and is chosen optimally, the behavior in this model will be described as

Optimal Anticipation.

The individual in this model is unconstrained in her choice of reference point, but what

1To explain why individuals might purchase both insurance and lotteries at all wealth levels,
Markowitz suggested that gains and losses be evaluated relative to current wealth using a gain-loss
function that is convex for small-to-moderate gains.
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factors should determine her optimal choice? I assume the optimal level of anticipation

balances two competing forces. The first is loss aversion—bad outcomes are more painful

when a good outcome was anticipated. The second is anticipatory utility—the individual

receives a boost in current utility from looking forward to a good outcome in the future.

The first feature is common to most models of reference-dependent utility, and provides

a benefit to lowering the reference point. In other models of loss aversion, the individual

would always like to lower her reference point, but does not have the freedom to do so

since the reference point is disciplined by either expectations or history. In contrast,

in this model the individual can make a conscious choice of her reference point, and

therefore always has the option to “prepare for the worst.” However, she might choose

to anticipate a better outcome in order to enjoy higher anticipatory utility, even though

this raises her reference point for future consumption.

The trade-off between loss aversion and anticipatory utility is an important novel

aspect of this paper, and is arguably quite intuitive in situations involving risk. For

example, an individual may enjoy looking forward to an upcoming vacation. But if for

some reason she is ultimately unable to take the vacation, she will experience a loss,

presumably a larger one if she spent a great deal of time looking forward to the trip. The

extent to which the individual anticipates the vacation therefore naturally depends on

how likely it is to be feasible. If it is very unlikely, she would spend little time looking

forward to it to lessen her disappointment in the event she cannot go. On the other hand,

if the vacation becomes more likely, she might allow herself to enjoy greater anticipation

since the risk of disappointment is smaller.

The main focus of this paper is on the effect of optimal anticipation and loss aversion

on attitudes toward risk. Using a simple two-period version of the model, I illustrate

how several deficits of the standard expected-utility model—the equity premium puzzle

and Rabin (2000)’s paradox—can be overcome using the Optimal Anticipation model.

The tractability of the model also facilitates more sophisticated applications in general

dynamic environments. In particular, it is easily formulated recursively in an infinite-

horizon setting. One of the main results is an axiomatic analysis of this recursive model,

which characterizes its straightforward behavioral implications. I then describe a ho-

mogeneous version of the model and apply it to a portfolio choice problem. I show that

asset pricing for the Optimal Anticipation model is based on simple modifications of stan-

dard Euler equations. While maintaining tractability, these conditions are rich enough

to overcome many limitations of standard expected utility, such as the aforementioned

puzzles.
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1.2 Model Overview

Before describing the general model, I begin by formalizing the compromise between

loss aversion and anticipatory utility using several illustrative examples. To simplify the

exposition of ideas in the introduction, I restrict to a two-period version of the model,

and defer the infinite-horizon model to Section 3.

In the first example of the Optimal Anticipation representation, anticipatory utility

and loss aversion both enter into overall utility in a linear way.

Example 1 (Linear Gain-Loss Function) Consider the following utility representa-

tion for consumption ct in the current period t and consumption in t + 1 given by the

random variable ct+1:

ut(ct) + βmax
γ∈R

Et
[
φ
(
ut+1(ct+1)

∣∣γ)] (1)

where

φ(u|γ) = αu︸︷︷︸
consumption

utility

+ (1− α)γ︸ ︷︷ ︸
anticipatory

utility

+

{
a(u− γ) if u < γ

b(u− γ) if u ≥ γ︸ ︷︷ ︸
gain-loss
utility

for some parameters α ∈ [0, 1] and a ≥ b ≥ 0. The scalar γ in this utility representation

can be interpreted as a choice of anticipation by the individual at time t about her utility

at time t + 1. Under this interpretation, the term (1 − α)γ in the definition of φ(·|γ)

is the anticipation utility of the individual—by choosing anticipation level γ, she gets a

fixed anticipatory utility of (1−α)γ, regardless of the realized consumption at t+ 1. The

term αu corresponds to standard consumption utility, and the parameter α determines

the relative weight of anticipatory utility and consumption utility. The last term in the

definition of φ(·|γ) incorporates gain-loss utility relative to the reference point γ. Thus,

anticipation at time t forms a reference point for consumption at time t + 1, and losses

relative to this reference level have a greater impact on utility than gains.

In Example 1, consumption utility and gain-loss utility appear as two separate com-

ponents of overall utility in the function φ(·|γ). While this separation could potentially

be appealing from a conceptual point of view, it is in fact without loss of generality to

consolidate these two components: The linear gain-loss function in this example can be

expressed as

φ(u|γ) = γ +

{
λl(u− γ) if u < γ

λg(u− γ) if u ≥ γ,
(2)

where λl ≡ α+a ≥ λg ≡ α+b. This simplified formulation of the linear gain-loss function

makes some of its key properties more transparent. It is immediate from Equation (2)
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that φ(u|γ) = u if u = γ. Moreover, the slope of φ(·|γ) to the left of γ is λl, and the

slope to the right of γ is λg. Note that standard additively-separable expected utility

corresponds to the special case of λl = λg = 1.

u

φ(·|γ)

γ

φ(·|γ̂)

γ̂

Figure 1: Illustration of linear gain-loss
function from Example 1

u

φ(·|γ)

γ

φ(·|γ̂)

γ̂

Figure 2: Illustration of non-linear gain-loss
function from Example 2

Figure 1 provides an illustration of the linear gain-loss function when λl > 1 > λg > 0.

In this case, φ(u|γ) < u for all u 6= γ. Thus, for any deterministic future consumption,

the individual will optimally choose the anticipation level γ = ut+1(ct+1). Intuitively, it

is desirable to correctly target anticipation if possible—the individual would like to an-

ticipate higher future utility due to the current enjoyment it brings, but does not wish to

overshoot in her anticipation due to the loss she will feel from falling short of this bench-

mark. Of course, for stochastic future consumption, realized future utility will necessarily

differ from any choice of γ with positive probability. To show the individual’s trade-off

when facing random consumption, Figure 1 illustrates that increasing anticipation from γ

to γ̂ has two effects: First, it increases anticipation utility and therefore results in higher

overall utility for high realizations of ut+1. Second, for low realizations of ut+1, overall

utility is decreased due to loss aversion. The individual chooses γ to balance these two

effects. In particular, I show in Section 4.1 that her optimal choice of γ for this linear

gain-loss function is a quantile of ut+1(ct+1) determined by the parameters λl and λg; in

the case of a continuous distribution, the formula is Pr[ut+1(ct+1) ≤ γ] = 1−λg
λl−λg .

The gain-loss function in Equation (2) will prove useful in several applications de-

scribed later, but it is just one possible specification. The following example illustrates

a non-linear alternative.

Example 2 (Exponential Gain-Loss Function) Consider a utility representation for

two-period consumption as in Equation (1), but where the gain-loss function takes the
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form

φ(u|γ) = γ +
1

θ
− 1

θ
exp(−θ(u− γ))

for some parameter θ > 0. For fixed γ, the function φ(·|γ) is a standard exponential utility

function with coefficient of absolute risk aversion θ, normalized so that φ(u|γ) ≤ u, with

equality at u = γ. Since losses relative to the reference level γ have a greater impact on

overall utility than gains, higher γ is better for high realizations of ut+1 and worse for low

realizations of ut+1, similar to the previous example. Figure 2 provides an illustration of

this gain-loss function.

In both of the preceding examples, the anticipation choices were utility values γ.

However, individuals may be able to engage in psychological preparation that is more

sophisticated than simply planning for a particular ex post utility value. For instance,

it is conceivable that individuals prepare themselves differently for large-scale risks than

small-scale risks. As a concrete example, perhaps in addition to targeting a utility level

γ, they are also able to decrease the concavity of the gain-loss function by sacrificing

some anticipatory utility. To model such behavior, at least a two-parameter gain-loss

function is required. In general, there could be many strategies of mental preparation or

anticipation available to an individual. Thus, while the parametric gain-loss functions

in these examples are analytically simple and useful in practice, the general Optimal

Anticipation model will permit a non-parametric collection of anticipation strategies.

The parametric family of gain-loss functions {φ(·|γ) : γ ∈ R} in Equation (1) can be

extended easily to a non-parametric family of functions Φ. Maintaining the two-period

setting for simplicity, the general Optimal Anticipation representation takes the form

ut(ct) + β sup
φ∈Φ

Et
[
φ
(
ut+1(ct+1)

)]
, (3)

where Φ is any collection of nondecreasing functions φ : R→ R that satisfies

sup
φ∈Φ

φ(u) = u, ∀u ∈ R. (4)

Examples 1 and 2 both had the feature that φ(u|γ) ≤ u, with equality at u =

γ. Equation (4) is a generalization of this property: it ensures that for deterministic

consumption streams, the Optimal Anticipation model reduces to standard additively-

separable utility ut(ct) + βut+1(ct+1). However, overall utility could be lower than in the

standard model in the case of stochastic consumption:

sup
φ∈Φ

Et
[
φ
(
ut+1(ct+1)

)]
≤ Et

[
sup
φ∈Φ

φ
(
ut+1(ct+1)

)]
= Et

[
ut+1(ct+1)

]
.

5



Thus, one important implication of anticipatory utility and loss aversion in this model

is an increase in risk aversion. Intuitively, if accurate anticipation is needed to obtain

the maximum overall utility from a particular outcome, then randomness in the outcome

makes it difficult to plan optimally.

In addition to allowing for increased risk aversion, the Optimal Anticipation model

also permits risk preferences that are not possible with expected utility. In particular, if

the gain-loss function is kinked as in Example 1, then preferences exhibit first-order risk

aversion (Segal and Spivak (1990)). This is an important feature of the model that will

prove useful in applications. Closely related is the model’s ability to explain both the

equity premium puzzle and Rabin’s paradox (see Section 2). And as with many other

models of non-expected-utility preferences, it also resolves the classic Allais paradox.

Although the model permits non-expected-utility preferences, there is an important

connection to standard expected utility that enhances the tractability of the model. After

choosing her anticipation φ ∈ Φ in period t, the individual evaluates risky consumption

ct+1 using the composite expected-utility function φ◦ut+1. Moreover, this same expected-

utility function also captures her attitude toward nearby gambles. In particular, if the

global utility function is Fréchet differentiable then this is a local expected-utility function

in the sense of Machina (1982, 1984). That is, the individual’s preferences for small

changes in risk—such as incremental adjustments to portfolio or insurance decisions—are

well approximated using expected-utility analysis on φ◦ut+1. While Machina’s techniques

relied on Fréchet differentiability of the global utility function, which is not generally

required in this model, many of his insights still apply.2

1.3 Outline

The remainder of the paper is organized as follows. Section 2 illustrates the implications

of the Optimal Anticipation model for attitudes toward risk by showing that the linear

gain-loss function from Example 1 can be used to resolve both the equity premium puzzle

and Rabin’s paradox. To make the exposition as straightforward as possible, this section

again restricts attention to the two-period version of the model.

In Section 3, I describe the infinite-horizon framework and define the Optimal An-

ticipation representation formally. Following the approach in Epstein and Zin (1989),

the recursive utility representation is formulated by applying the certainty equivalent

for static risks described above to continuation values in each period. After defining the

representation, I also establish the existence of a value function and provide an axiomatic

analysis.

2For example, Proposition 1 relates nondecreasing local utility functions φ to first-order stochastic
dominance monotonicity of the overall representation. Also, the optimality conditions for the portfolio
choice problems in Sections 2.1 and 6 are based on the local utility function.
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A more detailed analysis of several parametric special cases is contained in Section 4.

In Section 4.1, the quantile formula for the optimal anticipation for the linear gain-loss

function from Example 1 is derived. In Section 4.2, I show that recursive expected utility

in the sense of Epstein and Zin (1989) and Kreps and Porteus (1978) (see also Weil (1989,

1990)) can be expressed a special cases of the Optimal Anticipation representation.3

Example 2 can be used to demonstrate one instance of this equivalence: Theorem 5 (in

particular, Corollary 2) shows that for any distribution of future consumption ct+1,

ut(ct) + βmax
γ∈R

Et
[
γ +

1

θ
− 1

θ
exp
(
−θ(ut+1(ct+1)− γ)

)]
(5a)

= ut(ct)− β
1

θ
logEt

[
exp
(
−θut+1(ct+1)

)]
. (5b)

The first expression is the exponential gain-loss function from the example, and the second

expression is a special case of the Kreps-Porteus expected utility. The connection between

these two models provides a useful alternative interpretation to the class of Kreps-Porteus

preferences based on reference-dependent utility. Instead of treating the exponential and

logarithmic transformations in Equation (5b) as fundamental parameters of the model,

Equation (5a) suggests they could be a reduced-form expression for an underlying process

of anticipation and loss aversion.4

Sections 5 and 6 develop an application to portfolio choice. To facilitate the anal-

ysis, I first find conditions on the parameterized Optimal Anticipation representation

that generate homothetic preferences in Section 5. In particular, both of the examples

of gain-loss functions described in the introduction are shown to lead to such preferences

when combined with the appropriate CES utility function u for consumption in each

period. Then, in Section 6, I apply the homothetic model to a portfolio choice prob-

lem. I find that asset returns satisfy Euler equations that slightly generalize the standard

conditions obtained for the additively-separable expected-utility model. Despite their

relative simplicity, these conditions have the potential to accommodate a variety of em-

pirically observed pricing phenomenon that cannot be matched with the standard model,

such as the combination of a large equity premium, a low and nonvolatile risk free rate,

and a counter-cyclical risk premium. Expanding the analysis to obtain more complete

qualitative predictions for asset prices and performing a calibration exercise to check the

quantitative predictions of the model are the subject of ongoing research.

3Note that the Optimal Anticipation model nests Kreps-Porteus expected-utility, but the converse is
clearly not true. For instance, any special case of the Optimal Anticipation representation that admits
first-order risk aversion (such as Example 1) is necessarily incompatible with expected utility.

4Kreps and Porteus (1979) provided a related analysis of preferences induced by some action on the
part of the individual, and they determined conditions under which such induced preferences could be
represented using Kreps-Porteus utility. Machina (1984) and Ergin and Sarver (2011) extended this idea
to broader classes of preferences.
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I conclude in Section 7 with a more detailed discussion of related literature. In

Section 7.1, I highlight some additional conceptual distinctions between the model of

reference-point formation proposed in this paper and the other approaches mentioned

earlier in the introduction. In Section 7.2, I describe the connection between the model in

this paper and another important class of non-expected-utility preferences: betweenness

preferences. In Section 7.3, I discuss several other models related to optimal anticipation,

including models of anxiety about future uncertainty, distortion of beliefs about the

future, and physical adjustment costs in consumption.

2 The Equity Premium Puzzle and Rabin’s Paradox

In this section, I describe two limitations of expected-utility theory and how they can be

overcome using the Optimal Anticipation model. I show in Sections 2.1 and 2.2 that both

the equity premium puzzle and Rabin’s paradox can be resolved using the linear gain-

loss function from Example 1. As I discuss in these sections, the two puzzles are both

manifestations of a single feature of expected utility—the manner in which it connects

attitudes toward gambles of small or moderate size to attitudes for larger gambles—that

the Optimal Anticipation representation is able to relax.

This model is certainly not the first to address these puzzles; however, its ability to

address them in an intuitive and analytically tractable manner suggest that it may be a

useful model for applied work. For simplicity, I will focus on the two-period version of

the model throughout this section, but the results easily generalize to the infinite-horizon

model that will be presented later.

2.1 The Equity Premium and Risk-Free Rate Puzzles

For the period 1889–1978, the average real return on US stocks and riskless securities

were approximately 7% and 1%, respectively. Qualitatively, expected returns on stocks

should be higher to compensate for their additional risk (standard deviation of 16% in

this sample period); however, there is a quantitative question of precisely how large the

difference in expected returns should be. Mehra and Prescott (1985) showed that the

additively-separable expected-utility model fails on this quantitative dimension: match-

ing the observed equity premium of 6% given the low historic volatility of consumption

growth requires an implausibly high coefficient of relative risk aversion. This observation

is referred to as the equity premium puzzle (see also Kocherlakota (1996) for a survey and

Cochrane (2005, Chapter 21) for a recent textbook treatment).

A convenient way to formulate the equity premium puzzle is using Hansen and Ja-

gannathan (1991) bounds. This approach will also make it transparent why the Optimal
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Anticipation model is able to resolve the puzzle. Formally, suppose an individual has

additively-separable expected-utility preferences with CES utility u(c) = cρ

ρ
in each pe-

riod. This individual consumes ct in period t, and her investment decisions result in

stochastic consumption ct+1 in the subsequent period. Consider any asset and denote its

stochastic returns by rt+1. The first-order condition for her current level of investment

in the asset to be optimal yields the following standard Euler equation:

1 = βEt
[u′(ct+1)

u′(ct)
rt+1

]
= βEt

[(ct+1

ct

)ρ−1

rt+1

]
. (6)

This pricing equation can be summarized as Et[Mt+1rt+1] = 1, whereMt+1 = β( ct+1

ct
)ρ−1

is the stochastic discount factor. Let rft+1 denote the risk-free rate, which by the preceding

pricing equation satisfies rft+1 = 1
Et[Mt+1]

. Then, the excess return returns rt+1 − rft+1 for

any asset must satisfy

0 = Et[Mt+1(rt+1 − rft+1)] = cov(Mt+1, rt+1 − rft+1) + Et(Mt+1)Et(rt+1 − rft+1).

Rearranging terms yields the Hansen-Jagannathan bounds:

Et(rt+1 − rft+1)

σt(rt+1)
= −corrt(Mt+1, rt+1 − rft+1)

σt(Mt+1)

Et(Mt+1)
≤ σt(Mt+1)

Et(Mt+1)
. (7)

The expression on the left-hand side of Equation (7) is the Sharpe ratio. The equity

premium of 6% and standard deviation of 16% from the period 1889–1978 implies a

Sharpe ratio of 0.375. Estimates using postwar US data put this number closer to 0.5

(see Campbell (1999)). These values place a lower bound on the volatility of the stochastic

discount factor on the right-hand side of Equation (7). These bounds can be related to

consumption and risk aversion by observing that for Mt+1 = β( ct+1

ct
)ρ−1 the term σt(Mt+1)

Et(Mt+1)

is approximately equal to the product of the coefficient of relative risk aversion 1− ρ and

standard deviation of log consumption growth.5 In the original sample period used by

Mehra and Prescott, the standard deviation of consumption growth was roughly 3.6%,

implying a lower bound for risk aversion of 1− ρ ≥ 0.375
0.036

= 10.4. Using postwar data, the

volatility of consumption growth is closer to 1%, which together with the larger Sharpe

ratio of 0.5, gives a lower bound of 50.

Mehra and Prescott (1985), Lucas (2003), and others have argued that values of the

CRAA greater than 10—and certainly greater than 50—are absurdly high and incon-

5To illustrate, consider the case of log-normal consumption growth. That is, log( ct+1

ct
) = g +

ξt+1, where ξt+1 ∼ N(0, σ2
c ). Then, tedious but standard calculations show that σt(Mt+1)

Et(Mt+1) =√
exp((1− ρ)2σ2

c )− 1. Taking the first-order approximation of the exponential function simplifies this
further to (1− ρ)σc.
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sistent with evidence from large-scale risks (e.g., wage premiums for occupations with

high earnings risk). Moreover, Weil (1989) observed that even if such a large CRRA were

permitted, it would result in a risk-free rate well above 1% for any discount factor β < 1.6

This implies that it is impossible to simultaneously match the equity premium and the

risk-free rate with the additively-separable model for any CRRA, an observation referred

to as the risk-free rate puzzle (see also Kocherlakota (1996) and Campbell (1999)).

Turn now to the Optimal Anticipation representation. Consider the parameterized

version of the model from Equation (1), and let γ∗ denote the optimal anticipation when

faced with the random variable ct+1. Assuming that φ(·|γ∗) is differentiable at all but

finitely many points and ct+1 is continuously distributed, the returns rt+1 to any asset

must satisfy the following modified Euler equation:7

1 = βEt
[
φ1

(
cρt+1/ρ

∣∣γ∗)(ct+1

ct

)ρ−1

rt+1

]
,

where φ1(·|·) denotes the partial derivative of φ(·|·) with respect to its first argument.

For concreteness, focus on the case where φ(·|γ) is the linear gain-loss function from

Equation (2). This gain-loss function is differentiable everywhere except at γ (with slope

of λl below γ and λg above γ), and the pricing equation simplifies to8

1 = βEt
[(
λg + (λl − λg)1[cρt+1/ρ≤γ∗]

)(ct+1

ct

)ρ−1

rt+1

]
.

If λl = λg = 1, this expression simplifies to the standard condition from Equation (6). To

illustrate to new aspects of asset pricing associated with this model of reference-dependent

utility, I instead consider the case of λl > 1 > λg and ρ = 1 (so u(c) = c). Then, the

Euler equation for asset returns becomes

1 = βEt
[(
λg + (λl − λg)1[ct+1≤γ∗]

)
rt+1

]
.

The model’s ability to resolve the equity premium puzzle is easily demonstrated by

examining the Hansen-Jagannathan bounds in Equation (7) for the stochastic discount

factor Mt+1 = β(λg+(λl−λg)1[ct+1≤γ∗]). In Theorem 4, I will show that for any continuous

6Intuitively, in the standard model, increasing risk aversion also lowers the elasticity of substitution
between periods. Since the average consumption growth rate is between 1% and 2%, individuals would
need to be compensated for this nonsmooth consumption by a large risk-free rate.

7The derivation of this condition is analogous to that of Equation (6) in the standard model. Suppose
the individual considers changing her investment in the asset by α dollars. Her resulting utility is then
u(ct − α) + βmaxγ∈R Et[φ(u(ct+1 + αrt+1)|γ)]. If no additional purchase or short-sale of the asset can
improve her utility, then α = 0 must be optimal for γ = γ∗. Taking the first-order condition with respect
to α yields the above Euler equation.

8Here, 1[cρt+1/ρ≤γ∗] denotes the indicator function for the event [cρt+1/ρ ≤ γ∗].
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distribution, the optimal γ∗ for the linear gain-loss function satisfies Pr(ct+1 ≤ γ∗) =
1−λg
λl−λg . Therefore,

Et(Mt+1) = β
[
λg + (λl − λg)Pr(ct+1 ≤ γ∗)

]
= β,

Et(M2
t+1) = β2

[
(λg)2 + 2λg(λl − λg)Pr(ct+1 ≤ γ∗) + (λl − λg)2Pr(ct+1 ≤ γ∗)

]
= β2(λl + λg − λlλg),

and hence

σt(Mt+1)

Et(Mt+1)
=

√
β2(λl + λg − λlλg)− β2

β
=
√

(λl − 1)(1− λg).

The parameters λl and λg can easily be chosen to match the data. For example, if λl

and λg are symmetric about 1, so that λl = 1 + κ and λg = 1 − κ, then this expression

simplifies to κ. By choosing κ ≥ 0.5, the model delivers Hansen-Jagannathan bounds

large enough to be consistent with the Sharpe ratios calculated above.9

Notice that the linear gain-loss utility can also resolve the risk-free rate puzzle. The

calculations above show that rft+1 = 1
Et(Mt+1)

= 1
β

is independent of both the parameters

λl and λg and the distribution of consumption growth. Thus, choosing λl and λg to give

the correct equity premium does not force up the risk-free rate, and the desired rate of

1% is obtained for β = 1
1.01

.

It is natural to question whether the Optimal Anticipation model “solves” the eq-

uity premium puzzle only because it introduces another free parameter that effectively

increases risk aversion. To address this point, it is useful to recall the reasons for criti-

cizing high values of the CRRA within the expected-utility model. The first issue with

increasing risk-aversion is the aforementioned risk-free rate puzzle. However, models that

separate risk aversion from elasticity of intertemporal substitution (such as the Epstein-

Zin-Kreps-Porteus expected-utility model discussed in Sections 4.2 and 5.2.2) are able to

match both the equity premium and risk-free rate by increasing the CRRA while at the

same time maintaining a high elasticity of intertemporal substitution (see Kocherlakota

(1996)). Nonetheless, fitting the data using expected utility with high CRRA still evokes

the concerns expressed by Lucas (2003): in environments where the risk to consumption

9Note that the Hansen-Jagannathan bounds only provide a lower bound on the volatility of the
stochastic discount factor, and a larger value of κ may in fact be needed. If Mt+1 and rt+1 − rft+1

are not perfectly negatively correlated, then the first equality in Equation (7) requires a larger value of
σt(Mt+1)/Et(Mt+1). For the expected utility model, it has been shown that the low correlation between
consumption growth and excess returns increases the required volatility of the stochastic discount factor
by a factor of roughly 5. Thus, in addition to the equity premium puzzle, there is a correlation puzzle.
However, for the Optimal Anticipation model, the same correlation between consumption growth and
excess returns may translate into different correlation between Mt+1 and excess returns, so addition
study is needed to determine the extent to which correlation affects the required value of κ.
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is of a larger scale, the implied aversion to risk from a CRRA greater than 50 is completely

inconsistent with both introspection and empirical evidence.

While it is the case that taking λl > 1 > λg increases risk aversion, it does so in a man-

ner different than simply increasing the CRRA within an expected-utility model. One

illustration of the distinction can be found in the expressions for the Hansen-Jagannathan

bounds for the two models. For standard expected utility, recall that the bounds are

(roughly) proportional to the standard deviation of consumption growth. Intuitively, ex-

pected utility becomes approximately linear as variation in consumption becomes small,

so either large variation in consumption or large risk aversion is required to generate

a large premium for bearing risk. On the other hand, the kink in the linear gain-loss

function implies that the actual volatility of consumption growth does not influence the

bounds—the value of the stochastic discount factor is λl (λg, respectively) for any re-

alized consumption below (above, respectively) γ∗, no matter how small the deviation

from γ∗. The fact that the Hansen-Jagannathan bounds for the linear gain-loss function

do not change as the size of consumption risk increases implies it can generate the aver-

sion to moderate risk in aggregate consumption that is needed to explain the observed

equity premium without imposing an excessive aversion to larger idiosyncratic risks to

consumption. In the next section, I provide another simple illustration of this feature of

the model by showing that it can be used to explain Rabin’s paradox.

2.2 Rabin’s Paradox

Rabin (2000) performed a calibration exercise for expected utility and showed that atti-

tudes toward gambles on the order of $100 can have striking implications for attitudes

toward risks on the order of $1,000 to $10,000. He found that plausible rejection of certain

small gambles implied absurdly high aversion to larger gambles.

Suppose an individual has a concave expected-utility function, and at any wealth level

below $300,000, she would reject a 50-50 lose $100/gain $110 gamble. Rabin (2000, Table

2) showed this implies that at a wealth level of $290,000, she would also reject any of the

following 50-50 gambles:

lose gain

$1,000 $718,190

$2,000 $12,210,880

$4,000 $60,528,930

$10,000 $1,300,000,000

While the rejection of a lose $100/gain $110 gamble seems quite plausible, the rejection

of the gambles listed in the table is completely unbelievable; hence the paradox for

expected utility.
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The intuition for Rabin’s result is the following. Suppose an expected-utility maxi-

mizing individual would not accept the -$100/+$110 gamble at a wealth level of $290,000.

It could be that that her utility function is very concave around this current wealth level

(perhaps even kinked), but approximately linear elsewhere. If this is the case, then the

individual would reject any gambles proportional to -$100/+$110, but could potentially

accept a gamble with a proportionally larger gain, such as -$4,000/+$5,000. The key

to Rabin’s conclusion is the stronger assumption that the individual would reject the

-$100/+$110 bet at every wealth level below $300,000. This implies that not only is

her marginal utility dropping rapidly between $289,900 and $290,110, but also between

w − $100 and w + $110 for any w ≤ $300, 000. The cumulative effect of these moderate

declines in marginal utility over small intervals is an extreme drop in marginal utility

over larger intervals, leading to the rejection of the gambles listed above.

To see how Rabin’s paradox can be resolved using the Optimal Anticipation model,

suppose the individual has linear gain-loss utility as in Equation (2) and take ut+1(ct+1) =

ct+1. Recall that any choice of anticipation γ∗ that satisfies Pr(ct+1 ≤ γ∗) = 1−λg
λl−λg is

optimal (Theorem 4). For simplicity, suppose λl = 1 + κ and λg = 1− κ, which implies
1−λg
λl−λg = 1

2
. Then, when faced with a 50-50 lose $l/gain $g gamble at wealth level w, it is

optimal to take γ∗ = w,10 yielding an overall utility of

1

2
φ(w − l|w) +

1

2
φ(w + g|w) = w − 1

2
λll +

1

2
λgg.

The individual will therefore accept this gamble if and only if

w − 1

2
λll +

1

2
λgg ≥ w = max

γ∈R
φ(w|γ),

which simplifies to g
l
≥ λl

λg
. For example, for λl = 1.05 and λg = .95, the individual would

accept any 50-50 gamble with a gain/loss ratio exceeding λl

λg
≈ 1.105. In this case, she

would reject a 50-50 lose $100/gain $110 gamble at any wealth level, but would accept

each of the following 50-50 gambles:

10In fact, any γ∗ between w − l and w + g gives the same utility, but the calculations are simplest
by taking γ∗ = w. Note also that this reference point is consistent with Markowitz (1952)’s suggestion
of measuring gains and losses relative to recent wealth. Of course, Markowitz’s approach can only be
applied to deterministic initial wealth and overlaps with this model only when evaluating 50-50 gambles.
For more complex risks, this paper diverges in favor of a more sophisticated approach to reference-point
formation.
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lose gain

$1,000 $1,200

$2,000 $2,400

$4,000 $4,800

$10,000 $12,000

Thus, the absurd attitudes toward large gambles generated by expected utility are

not replicated by the Optimal Anticipation model. To understand how this model solves

Rabin’s paradox, recall the intuition for his result from above. Knowing that an expected-

utility maximizer rejects a -$100/+$110 gamble at one particular wealth level w has

very weak implications for attitudes toward larger gambles—there could simply be a

kink in her utility function at or near w. Knowing that this gamble will be rejected

at every wealth level is what implies marginal utility is quickly diminishing everywhere,

generating extreme risk aversion for large gambles. However, for the Optimal Anticipation

representation with linear gain-loss utility, the kink in the individual’s utility function

moves with wealth. Hence, to reject the small gamble, the local utility function φ(·|γ)

need not be very concave everywhere, only at consumption values near γ.

3 Infinite-Horizon Model

3.1 Framework and Representation

For any topological space X, let 4(X) denote the set of all (countably-additive) Borel

probability measures on X, endowed with the topology of weak convergence (or weak*

topology). This topology is metrizable if X is metrizable. For any x ∈ X, let δx denote

the Dirac probability measure concentrated at x.

The setting for the axiomatic analysis is the space of infinite-horizon consumption

problems. Let C be a compact and connected metrizable space, denoting the consumption

space for each period.11 A 1-period consumption problem is simply a choice from C.

Similarly, the space of 2-period consumption problems is C×4(C), the space of 3-period

consumption problems is C×4(C×4(C)), and so on. The following lemma shows that

there is a well-defined space D of infinite-horizon consumption problems. It follows from

standard techniques used, for example, by Mertens and Zamir (1985) and Brandenburger

11While the axiomatic analysis will be restricted to compact spaces, the applications of the model in
Section 6 will allow for the unbounded consumption space R+. It is possible to generalize the axiomatic
analysis to infinite-horizon consumption problems that use a non-compact consumption space by im-
posing bounded consumption growth rates (see Epstein and Zin (1989) for a formal description of such
a framework). However, this would result in additional technical complications and add little to the
behavioral insights of the current analysis.
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and Dekel (1993) in the context of hierarchies of beliefs and Epstein and Zin (1989) and

Gul and Pesendorfer (2004) in recursive consumption problems.

Lemma 1 If C is a compact and connected metrizable space, then there exists a compact

and connected metrizable space D such that D is homeomorphic to C ×4(D).

Proof: Mertens and Zamir (1985) showed that if C is compact, there exists a com-

pact space E such that E is homeomorphic to 4(C ×E). The metrizability of E follows

from the same arguments used in Brandenburger and Dekel (1993). Let D = C × E.

Then, D is homeomorphic to C × 4(C × E) = C × 4(D). For any topological space

D, the set 4(D) is connected. Since C is also connected, it follows that the product

C ×4(D) is connected (Theorem 23.6 in Munkres (2000)). Thus, D is connected. �

Since D is homeomorphic to C ×4(D), elements of D will typically be denoted by

(c,m), where c ∈ C and m ∈ 4(D). The primitive of the axiomatic model is a binary

relation % on the set of infinite-horizon consumption problems D.

Definition 1 An Optimal Anticipation representation is a tuple (V, u,Φ, β) consisting

of a continuous function V : D → R that represents %, a continuous and nonconstant

function u : C → R, a collection Φ of continuous and nondecreasing functions φ : V (D)→
R,12 and a scalar β ∈ (0, 1) such that

V (c,m) = u(c) + β sup
φ∈Φ

∫
D

φ
(
V (c̄, m̄)

)
dm(c̄, m̄), (8)

for all (c,m) ∈ D, and

sup
φ∈Φ

φ(v) = v, ∀v ∈ V (D). (9)

The interpretation of the Optimal Anticipation representation is the same as the in-

tuition provided in the introduction for the 2-period model—the choice of φ corresponds

to anticipation or psychological preparation about future utility. In addition, the param-

eterized examples described in the introduction in which the individual anticipates an

actual utility value γ can be applied to the infinite-horizon model (see Section 4). The

only distinction is that in the 2-period model the individual anticipated her utility in

the subsequent period in isolation, whereas in the Optimal Anticipation representation

the individual anticipates the entire continuation value V (c̄, m̄) for the subsequent period

onward. This approach allows the representation to be formulated recursively, making

the model more parsimonious and tractable.

12The set V (D) denotes the range of V .
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To better understand the connection between the Optimal Anticipation representation

and related recursive models, it is useful to reformulate the representation in slightly

different terms. Fix any Optimal Anticipation representation (V, u,Φ, β), and let a =

minV and b = maxV . Define a function W : 4([a, b])→ R by

W (µ) = sup
φ∈Φ

∫ b

a

φ(v) dµ(v). (10)

Let m ◦ V −1 denote the distribution (on [a, b]) of continuation values induced by the

measure m ∈ 4(D).13 Then, by the change of variables formula,

W (m ◦ V −1) = sup
φ∈Φ

∫ b

a

φ(v) d(m ◦ V −1)(v) = sup
φ∈Φ

∫
D

φ(V (c̄, m̄)) dm(c̄, m̄), (11)

which implies Equation (8) can be expressed as

V (c,m) = u(c) + βW (m ◦ V −1). (12)

Also, Equation (9) implies

W (δv) = v, ∀v ∈ [a, b]. (13)

In other words, W maps any deterministic continuation value back to that same value,

and hence, W is a certainty equivalent function for lotteries µ = m ◦ V −1 over contin-

uation values. In addition, since it is the supremum of a collection of expected-utility

functions by Equation (10), the certainty equivalent function W is convex; in fact, con-

vexity turns out to be the characterizing property of the Optimal Anticipation certainty

equivalent. The representation described in Equations (12) and (13) corresponds to the

general representation from Epstein and Zin (1989) (but without the assumption of CES

utility). The Optimal Anticipation representation is the special case of this general repre-

sentation where the certainty equivalent function W takes the particular form described

in Equation (10).

In contrast, existing applications of the Epstein and Zin (1989) model of recursive

utility have used alternative specifications of the certainty equivalent function. The most

prevalent special case is that of expected utility in the sense of Kreps and Porteus (1978),

and I discuss in Sections 4.2 and 5.2.2 how this special case of Epstein-Zin preferences can

be formulated as a special case of the Optimal Anticipation representation. Examples of

non-expected-utility certainty equivalents in the literature include the following: various

specializations of the betweenness preferences of Chew (1983) and Dekel (1986) were used

13This is standard notation for the distribution of a random variable. Intuitively, the probability that
m yields a continuation value in a set E ⊂ [a, b] is the probability that V (c̄, m̄) ∈ E, which is m◦V −1(E).
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by Epstein and Zin (1991) and Epstein and Zin (2001); a special case of rank-dependent

utility was used by Epstein and Zin (1990); the disappointment aversion model of Gul

(1991) was used by Bekaert, Hodrick, and Marshall (1997); and a generalization of the

disappointment aversion model (that still falls within the betweenness class of preferences)

was used by Routledge and Zin (2010).

3.2 Existence of a Value Function

Note that the value function V is included explicitly in the definition of the Optimal

Anticipation representation. However, it may be desirable to obtain such a value function

from the other parameters (u,Φ, β) of the representation. Building on techniques from

Epstein and Zin (1989), the following result shows that this is possible.

Theorem 1 Suppose β ∈ (0, 1) and u : C → R is a continuous and nonconstant func-

tion. Let [a, b] = u(C), where −∞ < a < b < +∞,14 and let I = [ a
1−β ,

b
1−β ]. Let Φ

be any collection of continuous and nondecreasing functions φ : I → R that satisfies

supφ∈Φ φ(v) = v for all v ∈ I. Then, there exists a bounded and lower semicontinuous

function V : D → I that satisfies Equation (8).

For the Optimal Anticipation representation to be well-defined, the functions φ ∈ Φ

must be defined everywhere on the set V (D). However, if V is not known and needs to be

determined from the other parameters of the representation (u,Φ, β), then the relevant

domain of the functions φ ∈ Φ is not known a priori. Nonetheless, Theorem 1 shows that

the range of V can be determined from the range of u, and hence it suffices to consider

functions φ defined on this interval I. In particular, if u ≥ 0 (u ≤ 0, respectively) then

it suffices to define φ on R+ (R−, respectively).

There are two noticeable gaps in Theorem 1. First, it does not ensure the uniqueness

of the function V . Second, it does not ensure that the function V is continuous, only

lower semicontinuous. Since resolving these issues is not central to the analysis in this

paper, obtaining a stronger version of this result is left as an interesting open question for

future research. However, it is worth noting that in the case of homothetic preferences,

it is often possible to ensure both uniqueness and continuity of the value function (see

Theorem 7 as well as related results in Marinacci and Montrucchio (2010)).

3.3 Axioms and Representation Result

In this section, I provide an axiomatic foundation for the Optimal Anticipation represen-

tation. The first three axioms are entirely standard.

14Since C is compact and connected and u is continuous, u(C) is a closed and bounded interval in R.
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Axiom 1 (Weak Order) The relation % is complete and transitive.

Axiom 2 (Nontriviality) There exist c, c′ ∈ C and m ∈ 4(D) such that (c,m) �
(c′,m).

Axiom 3 (Continuity) The sets {(c,m) ∈ D : (c,m) � (c′,m′)} and {(c,m) ∈ D :

(c,m) ≺ (c′,m′)} are open for all (c′,m′) ∈ D.

The following stationarity axiom is also standard for recursive utility models.

Axiom 4 (Stationarity) For any c, c̄, c̄′ ∈ C and m̄, m̄′ ∈ 4(D),

(c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′)) ⇐⇒ (c̄, m̄) % (c̄′, m̄′)

The following axiom applies the separability condition of Debreu (1960) to all triples

of consumption today, consumption tomorrow, and the lottery following tomorrow’s con-

sumption.

Axiom 5 (Separability) For any c, c′, c̄, c̄′ ∈ C and m̄, m̄′ ∈ 4(D),

1. (c, δ(c̄,m̄)) % (c′, δ(c̄′,m̄)) if and only if (c, δ(c̄,m̄′)) % (c′, δ(c̄′,m̄′)).

2. (c, δ(c̄,m̄)) % (c′, δ(c̄,m̄′)) if and only if (c, δ(c̄′,m̄)) % (c′, δ(c̄′,m̄′)).

Condition 1 in Axiom 5 says that the comparison of c today and c̄ tomorrow ver-

sus c′ today and c̄′ tomorrow is the same regardless of the lottery (m̄ or m̄′) following

tomorrow’s consumption. Likewise, condition 2 says that comparison of c today and

lottery m̄ following tomorrow versus c′ today and m̄′ following tomorrow is the same for

any consumption tomorrow (c̄ or c̄′). Note that Axiom 5 only applies to consumption

problems in which the one-step-ahead continuation problem is deterministic. Intuitively,

in the case of deterministic consumption problems, the optimal anticipation preferences

reduce to standard additively separable preferences.

The next axiom ensures that preferences respect the first-order stochastic dominance

order on 4(D). Recall that in the case of monetary gambles, FOSD roughly corresponds

to increasing the probability of better monetary outcomes. The same is true is this setting,

with (c̄, m̄) being a “better” continuation path than (c̄′, m̄′) if and only if (c, δ(c̄,m̄)) %
(c, δ(c̄′,m̄′)) for some c ∈ C.
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Axiom 6 (FOSD) For any c ∈ C and m,m′ ∈ 4(D), if

m
({

(c̄, m̄) : (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′))
})
≥ m′

({
(c̄, m̄) : (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′))

})
for all (c̄′, m̄′) ∈ D, then (c,m) % (c,m′).15

The final axiom is key to the optimal anticipation interpretation of the preferences.

Axiom 7 (Convexity) For any c, c′ ∈ C and m,m′ ∈ 4(D),

(c, 1
2
m+ 1

2
m′) % (c′,m) =⇒ (c,m′) % (c′, 1

2
m+ 1

2
m′)

To interpret Axiom 7 in the simplest case, let m = δ(c̄,m̄) and m′ = δ(c̄′,m̄′) for (c̄′, m̄′) �
(c̄, m̄). Suppose also that there exist c, c′ ∈ C such that (c, 1

2
m+ 1

2
m′) ∼ (c′,m); that is,

the utility gain from switching from m to 1
2
m+ 1

2
m′ is the same as the utility gain from

switching from c to c′. Note that changing from m to 1
2
m+ 1

2
m′ increases the probability

of the better outcome by 1
2
. However, when faced with 1

2
m + 1

2
m′, the individual still

may not want to anticipate the better outcome (c̄′, m̄′) since it is not certain. In contrast,

moving from 1
2
m+ 1

2
m′ to m′ again increases the probability of the better outcome by 1

2
,

but also makes it certain. The individual can therefore better target her anticipation, and

hence should have a (weakly) bigger utility gain from this change. Axiom 7 formalizes

this intuition by requiring that (c,m′) % (c′, 1
2
m+ 1

2
m′).

It is worth pointing out that since the Optimal Anticipation representation is convex

in m, preferences over continuation paths will necessarily satisfy quasiconvexity:

(c,m) % (c,m′) =⇒ (c,m) % (c, αm+ (1− α)m′).

However, it is well-known that quasiconvexity of a preference is not sufficient to guaran-

tee it admits a convex utility representation. Therefore, Axiom 7 instead leverages the

additive separability afforded by Axiom 5 to obtain convexity.

The following result provides a behavioral characterization of the Optimal Anticipa-

tion representation.

Theorem 2 The relation % satisfies Axioms 1–7 if and only if it has an Optimal Antic-

ipation representation (V, u,Φ, β).

The next result describes the uniqueness properties of the representation.

15Implicit in this axiom is the assumption that the set {(c̄, m̄) : (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′))} is Borel
measurable for each (c̄′, m̄′) ∈ D. However, if the continuity axiom is imposed, then each of these sets is
closed and hence measurable.
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Theorem 3 Two Optimal Anticipation representations (V1, u1,Φ1, β1) and (V2, u2,Φ2, β2)

represent the same preference if and only if β1 = β2 and there exist scalars α > 0 and

λ ∈ R such that V2 = αV1 + λ, u2 = αu1 + λ(1− β1), and

sup
φ2∈Φ2

∫
φ2

(
αv + λ

)
dµ(v) = α sup

φ1∈Φ1

∫
φ1(v) dµ(v) + λ, ∀µ ∈ 4(V1(D)).

3.4 Proof Sketch and Discussion

The proof of Theorem 2 is contained in Appendix B.2. In this section, I outline the key

steps in the construction of the representation.

Axioms 1 and 3 imply that % has a continuous representation V : D → R. Moreover,

using standard techniques together with results from Debreu (1960) on additively sepa-

rable utility, it can be shown that Axioms 1–6 imply that this representation V can be

chosen so as to satisfy Equation (12) for some scalar β ∈ (0, 1), continuous and noncon-

stant function u : C → R, and continuous function W : 4([a, b])→ R (where a = minV

and b = maxV ) that satisfies Equation (13).

As noted above, the Optimal Anticipation representation corresponds to the particular

specification of the representation in Equations (12) and (13) in which the certainty

equivalent function W is given by Equation (10). To obtain this particular form, Axiom 7

is first used to establish the convexity of W . Then, standard duality results can be applied

to show that W is the supremum of some collection of affine functions. Since any affine

function on 4([a, b]) can be given an expected-utility representation, this implies there

exists a collection Φ of continuous functions φ : [a, b] → R such that W is given by

Equation (10):

W (µ) = sup
φ∈Φ

∫ b

a

φ(v) dµ(v).

Then, the change of variables arguments from Equation (11) can be applied:

V (c,m) = u(c) + βW (m ◦ V −1)

= u(c) + β sup
φ∈Φ

∫ b

a

φ(v) d(m ◦ V −1)(v)

= u(c) + β sup
φ∈Φ

∫
D

φ(V (c̄, m̄)) dm(c̄, m̄).

Moreover, since W (δv) = v, we have supφ∈Φ φ(v) = v for all v ∈ [a, b].

The only remaining step is to show there exists a collection Φ satisfying Equation (10)

such that each φ ∈ Φ is a nondecreasing function. It can be shown that Axiom 6 implies

that W is monotone with respect to FOSD. Then, the following result completes the
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proof.

Proposition 1 Suppose W : 4([a, b]) → R for −∞ < a < b < +∞, and suppose

W is lower semicontinuous in the topology of weak convergence and convex. Then, the

following are equivalent:

1. W is monotone with respect to FOSD: For µ, η ∈ 4([a, b]), if µ([v, b]) ≥ η([v, b])

for all v ∈ [a, b], then W (µ) ≥ W (η).

2. There exists a collection Φ of continuous and nondecreasing functions φ : [a, b]→ R
such that

W (µ) = sup
φ∈Φ

∫
φ(v) dµ(v).

Proposition 1 is interesting in its own right, as it is a variation of one of the local

expected-utility results of Machina (1982). Machina’s approach was to assume Fréchet

differentiability of the function W and relate the global properties of W to the local

properties of its derivative. In contrast, Proposition 1 assumes W is convex and lower

semicontinuous and relates a property of W (FOSD monotonicity) to the properties of its

supporting linear (expected-utility) functions. Local expected-utility results for convex

functions have also been obtained elsewhere, but under the assumption of differentiability

or else stronger forms of continuity: For example, Machina (1984) considered convex and

Fréchet differentiable functions and therefore was able to apply many results from his

prior work (Machina (1982)). Chatterjee and Krishna (2010) relaxed the assumption

of differentiability and obtained local expected-utility results for concave and Lipschitz

continuous functions.

4 Parametric Special Cases

As in the leading examples from the introduction, it is often useful to work with the special

case of the general Optimal Anticipation model in which the collection Φ is parameterized

by some real number γ. Formally, let the index set be some interval I of real numbers,

and suppose for each γ ∈ I there is a corresponding function φ(·|γ). Then, the set of

gain-loss functions takes the form Φ = {φ(·|γ) : γ ∈ I}, and Equation (8) simplifies to

V (c,m) = u(c) + β sup
γ∈I

∫
D

φ
(
V (c̄, m̄)

∣∣γ) dm(c̄, m̄).

To simplify notation below, this representation will be expressed more compactly using

expected values:

V (c,m) = u(c) + β sup
γ∈I

Em
[
φ(V |γ)

]
. (14)
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Equation (9) in the definition of the Optimal Anticipation representation also requires

that supγ∈I φ(v|γ) = v for all v ∈ V (D). To ensure this condition is satisfied, all of the

examples below normalize the parameterization to satisfy I = V (D) and φ(v|γ) ≤ v for

all v ∈ I, with equality at v = γ. In other words, the set of continuation utility values

is itself the index set. Anticipating the correct continuation value (γ = v) returns that

same value, and anticipating incorrectly (γ 6= v) yields potentially lower values. Also,

note that by Theorem 1, even if the value function V is not known a priori, its range can

be inferred from u and β, and it suffices to take I = [ a
1−β ,

b
1−β ], where [a, b] = u(C).

The follow sections consider some important examples of parameterized representa-

tions. In Section 4.1, I analyze the linear gain-loss utility introduced in Example 1 in

greater detail. In Section 4.2, I show that Epstein-Zin-Kreps-Porteus expected utility

can be formulated as a special case of the parameterized Optimal Anticipation model.

4.1 Linear Gain-Loss Utility

In this section, I apply the linear gain-loss function from Example 1 to the recursive

Optimal Anticipation representation, and I show that there is a maximizing anticipation

level γ given by a quantile-based formula. Suppose the value function V is given by

Equation (14) and the gain-loss function is as in Equation (2):

φ(v|γ) = γ +

{
λl(v − γ) if v < γ

λg(v − γ) if v ≥ γ,
(15)

where λl ≥ 1 ≥ λg ≥ 0. The following result characterizes the optimal γ for any

distribution over continuation paths.

Theorem 4 Suppose I is a closed and bounded interval in R, and for each γ ∈ I define

φ(·|γ) : I → R by Equation (15), where λl ≥ 1 ≥ λg ≥ 0. Fix any measurable function

V : D → I and m ∈ 4(D). Then, γ is a maximizer of Em[φ(V |γ)] if and only if it

satisfies

m(V < γ) ≤ 1− λg

λl − λg
≤ m(V ≤ γ).16

While Theorem 4 focuses on the application of the linear gain-loss function to a value

function V and a probability measure m on continuation paths, it is easy to see that

the same optimality conditions for γ are necessary and sufficient for any random variable

16I am adopting the typical abbreviated notation: m(V < γ) means m({(c,m) ∈ D : V (c,m) < γ}).
Also, note that if λl = λg = 1, then this expression is indeterminate. However, it is easy to see that in
this case, Em[φ(V |γ)] = Em[V ] for all γ ∈ I. Hence, any choice of γ is optimal.
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defined on any probability space. Hence, the same quantile condition applies in the two-

period linear gain-loss model, as well as in later applications to portfolio choice (where

the value function depends on wealth and a state variable).

To better understand the condition in this result, consider first the case where m

induces a continuous distribution of the value function V , so m(V = γ) = 0 for any

γ. In this case, the optimality condition in Theorem 4 simplifies to m(V ≤ γ) = 1−λg
λl−λg .

The inequality in the theorem allows for the possibility that the distribution of V could

have atoms. For example, suppose m(V = a) = m(V = b) = 1
2

for a < b, and suppose
1−λg
λl−λg = 1

2
. Then, any γ satisfying a ≤ γ ≤ b maximizes Em[φ(V |γ)].

vγ γ + ∆

∆(1− λg)

∆(1− λl)

Figure 3: Effect of Increasing γ by ∆

Figure 3 illustrates the intuition behind Theorem 4 for parameter values λl > 1 > λg.

Fixing any initial value γ, it is easy to see that increasing anticipation slightly to γ+∆ has

the following effects: (i) for realizations v ≤ γ, utility φ(v|γ) changes by ∆(1 − λl) < 0;

(ii) for realizations v ≥ γ + ∆, utility changes by ∆(1− λg) > 0. In the limit as ∆→ 0,

the area between γ and γ + ∆ vanishes and can be ignored. Thus, the rate of change of

Em[φ(V |γ)] with respect to an infinitesimal increase in γ is

m(V ≤ γ)(1− λl) +m(V > γ)(1− λg).

A necessary condition for γ to be optimal is that this value be weakly less than 0.

Rearranging terms gives 1−λg
λl−λg ≤ m(V ≤ γ). A similar analysis for the case of a decrease

in γ gives the other inequality in the optimality condition of Theorem 4. Intuitively, since

φ(·|γ) is piecewise linear, the exact realized value of V is not import for the choice of γ,

only the probability that V is to above or below γ. Hence, the optimal level of anticipation

can be determined from a simple quantile formula, making the linear gain-loss function
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particularly amenable to applications.

4.2 Epstein-Zin-Kreps-Porteus Expected Utility

While the general formulation in Epstein and Zin (1989) permits a large variety of non-

expected-utility certainty equivalents, the most widely applied special case is expected

utility in the sense of Kreps and Porteus (1978). In this case the value function V is

given by

V (c,m) = u(c) + βh−1
(
Em
[
h(V )

])
(16)

for some strictly increasing and continuous function h : V (D)→ R. Such a value function

is typically referred to as Epstein-Zin-Kreps-Porteus (EZKP) expected utility. The usual

specification of EZKP utility gives both u and h homogeneous (CES) form; this special

case will be described in detail in Section 5.2.2.

Although preferences over lotteries m ∈ 4(D) satisfy the expected-utility axioms,

it is important to note that EZKP utility does not correspond to additively-separable

expected utility unless h(v) = v for all v ∈ V (D). As emphasized by Epstein and

Zin (1989), incorporating the function h allows for a separation between risk aversion

and intertemporal substitution that is not possible in the additively-separable model.

Since the h−1 and h transformations cancel out for deterministic consumption streams,

intertemporal substitution is determined entirely by u. However, when facing risk about

future consumption, the transformation h alters risk aversion. The commonly used (and

empirically more relevant) case is where h is a concave transformation, and therefore risk

aversion is increased.

In this section, I show that the EZKP representation with concave h corresponds to

a special case of the Optimal Anticipation model. This connection will be important

for two reasons. First, it shows that the Optimal Anticipation representation is general

enough to incorporate a class of preferences that has proved quite powerful in applied

work. Second, it provides a simple and concrete interpretation for the separation of risk

aversion and intertemporal substitution based on reference-dependent utility.

The simplest approach to establishing this connection is to utilize the role of convexity

in the Optimal Anticipation representation. Specifically, if h is concave then h−1 is

convex; thus the value function V in Equation (16) is convex in m. The construction

described in Section 3.4 can therefore be applied to obtain a collection of functions Φ

such that for all m ∈ 4(D),

h−1
(
Em
[
h(V )

])
= sup

φ∈Φ
Em
[
φ(V )

]
.

While these observations are sufficient to show that EZKP utility is a special case of
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the Optimal Anticipation representation, the following result goes a step further and

describes the specific functional form of the corresponding representation. Having such a

closed-form solution will be useful, for example, when applying the asset pricing equations

derived in Section 6 to various transformations h.

Theorem 5 Suppose h : I → R is differentiable,17 concave, and h′ > 0, where I is an

interval in R (not necessarily bounded). For any measurable function V : D → I, if h◦V
is integrable with respect to m ∈ 4(D), then

h−1
(
Em
[
h(V )

])
= max

γ∈I
Em
[
h(V )

h′(γ)
− h(γ)

h′(γ)
+ γ

]
.

Morevoer, the right-hand side is maximized by γ = h−1 (Em[h(V )]).

Proof: The concavity of h implies that h(v)− h(γ) ≤ h′(γ)(v − γ) for any γ, v ∈ I.

Rearranging terms yields
h(v)

h′(γ)
− h(γ)

h′(γ)
+ γ ≤ v,

with equality if γ = v. Taking v = h−1 (Em[h(V )]), this implies

Em
[
h(V )

h′(γ)
− h(γ)

h′(γ)
+ γ

]
=

Em[h(V )]

h′(γ)
− h(γ)

h′(γ)
+ γ ≤ h−1

(
Em
[
h(V )

])
,

with equality if γ = h−1 (Em[h(V )]). �

The connection between EZKP utility and the Optimal Anticipation representation

follows directly from this result. Suppose (V, u, h, β) is an EZKP representation as in

Equation (16). If h satisfies the conditions in Theorem 5 on I = V (D), then V corre-

sponds to the parameterized Optimal Anticipation representation in Equation (14) for

φ(v|γ) =
h(v)

h′(γ)
− h(γ)

h′(γ)
+ γ.

Note also that since h is increasing and concave, this parameterization satisfies φ(v|γ) ≤ v,

with equality at v = γ.

17Differentiability is only assumed for expositional simplicity. As is clear from the proof, if h is not
differentiable at a point γ, then h′(γ) in Theorem 5 can be replaced by any scalar α in the superdifferential
of h at γ, that is, any α greater than the right derivative of h and less than the left derivative.
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5 Homothetic Preferences

In applications to finance and macroeconomics, it is natural to focus on the case where the

consumption space in each period is the non-negative real numbers, C = R+. To improve

tractability and facilitate analysis using a representative agent, it is also useful to work

with preferences that are homothetic: the ranking of any pair of stochastic consumption

streams remain unchanged if both streams are scaled by the same multiplicative factor.

This assumption simplifies portfolio choice problems (see Section 6), since it implies the

fraction of current wealth consumed in any period and the portfolio decision will both be

independent of the actual amount of current wealth.

As in Epstein and Zin (1989), it is possible to obtain a homothetic utility represen-

tation by assuming u takes a CES form and imposing appropriate homogeneity or shift-

invariance assumptions on the certainty equivalent function. Specifically, if u(c) = cρ

ρ
for

some 0 6= ρ < 1 and the certainty equivalent is homogeneous of degree 1, then preferences

will be homothetic. The case of ρ = 0 corresponds to log utility, and when u(c) = log(c),

a shift-invariant certainty equivalent delivers homothetic preferences.

Homogeneous and shift-invariant versions of the Optimal Anticipation certainty equiv-

alent are described formally in Section 5.1. In Section 5.2, the linear gain-loss utility and

EZKP utility from Section 4 are revisited and homothetic special cases are characterized.

Section 5.3 then describes some additional continuity properties that are obtained for

homogeneous and shift-invariant certainty equivalents.

5.1 Homogeneity and Shift Invariance

The results in this section are developed to facilitate the applications in Section 6. It is

therefore useful to simplify the analysis by focusing on the parameterized version of the

model from Equation (14). As in the examples in Section 4, suppose the set of values I

for the parameter γ is the same as the set of continuation utility values, and impose the

following assumption to ensure that supγ∈I φ(v|γ) = v for every v ∈ I.

Assumption 1 For each γ ∈ I, the function φ(·|γ) : I → [−∞,∞) is nondecreasing,

concave, and satisfies φ(v|γ) ≤ v for all v ∈ I, with equality at v = γ.

Note that Assumption 1 allows the gain-loss function to take the value −∞. In order

to incorporate CES utility specifications, it is necessary to relax some of the continuity

assumptions imposed in the axiomatic analysis of Section 3 and allow functions to take

values in the extended real numbers. For example, if ρ < 0, then the utility function

u(c) = cρ

ρ
takes the value −∞ at c = 0. Similarly, several examples of gain-loss functions

used later will take φ(0|γ) = −∞ for γ > 0.
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As in Theorem 1, if the range of u includes only positive (negative, respectively)

numbers, then the range of the value function will also include only positive (negative,

respectively) numbers. Therefore, the domain I of the gain-loss functions φ(·|γ) will

depend on whether ρ > 0, ρ < 0, or ρ = 0 (log utility) in the CES specification of u. The

relevant cases are summarized as follows:

• Case 1: If u(c) = cρ

ρ
for ρ ∈ (0, 1), then u(R+) = R+. Let I = R+.

• Case 2: If u(c) = cρ

ρ
for ρ < 0, then u(R+) = [−∞, 0). Let I = (−∞, 0).18

• Case 3: If u(c) = log(c), then u(R+) = [−∞,∞). Let I = R.

In each of the three cases described above, the parameterized gain loss function gives

a certainty equivalent as in Equation (10):

W (µ) = sup
γ∈I

∫
φ(v|γ) dµ(v). (17)

The measure µ is a distribution over continuation values I. In this section, I analyze

the properties of the certainty equivalent in isolation from the rest of the Optimal An-

ticipation representation. However, it is easy to apply this certainty equivalent in a

recursive representation with value function V . For any measure m ∈ 4(D) over con-

tinuation paths, one can simply take the induced distribution over continuation values

µ = m ◦ V −1 and apply the change of variables from Equation (11).

As a brief technical aside, the integral in Equation (17) may not be defined for a

measure µ with unbounded support. However, for any measure with bounded support,

Assumption 1 ensures this expression gives a well-defined certainty equivalent. To see

this, fix any bounded interval [a, b] ⊂ I and µ ∈ 4([a, b]). Note that φ(v|γ) ≤ v ≤ b for

any γ ∈ I and v ∈ [a, b]. Therefore, the integral
∫ b
a
φ(v|γ) dµ(v) is defined and bounded

above by b for every µ ∈ 4([a, b]), although it make take the value −∞. Then, since

φ(v|a) ≥ φ(a|a) = a for all v ∈ [a, b], it follows that a ≤ W (µ) ≤ b for all µ ∈ 4([a, b]).

Since W is well-defined in this case, the results in this section will assume explicitly that

measures have bounded support. In the portfolio choice problem considered in Section 6,

bounds on returns will play the same role.

With the framework and technical assumptions in place, I now return to the desired

properties of the certainty equivalent: homogeneity and shift invariance. First, define

these properties formally for the underlying gain-loss function.

18It will be notationally more convenient in the sequel to exclude extended real numbers from the set
of parameter values I in cases 2 and 3. This is possible by adopting the convention that φ(−∞|γ) = −∞
for all γ ∈ I.
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Definition 2 Consider a parameterized function φ(·|γ) : I → [−∞,∞) for γ ∈ I.

• In the case of I = R+ or I = (−∞, 0), say φ(·|·) is homogeneous (of degree 1) if

φ(αv|αγ) = αφ(v|γ) for all α > 0 and v, γ ∈ I.

• In the case of I = R, say φ(·|·) is shift invariant if φ(α+ v|α+ γ) = α+ φ(v|γ) for

all α ∈ R and v, γ ∈ I.

The following result shows that homogeneity of φ(·|·) yields homogeneity of the cer-

tainty equivalent. Similarly, shift invariance carries over from the gain-loss function to

the certainty equivalent.

Lemma 2 Suppose φ(·|·) satisfies Assumption 1 on I.

1. In the case of I = R+ or I = (−∞, 0), if φ(·|·) is homogeneous, then for any

µ ∈ 4(I) with bounded support and α > 0,

sup
γ∈I

∫
φ(αv|γ) dµ(v) = α sup

γ∈I

∫
φ(v|γ) dµ(v).

2. In the case of I = R, if φ(·|·) is shift invariant, then for any µ ∈ 4(I) with bounded

support and α ∈ R,

sup
γ∈I

∫
φ(α + v|γ) dµ(v) = α + sup

γ∈I

∫
φ(v|γ) dµ(v).

Proof: For part 1, homogeneity implies that α
∫
φ(v|γ) dµ(v) =

∫
φ(αv|αγ) dµ(v) for

any γ ∈ I. Therefore,

α sup
γ∈I

∫
φ(v|γ) dµ(v) = sup

γ∈I

∫
φ(αv|αγ) dµ(v) = sup

γ∈I

∫
φ(αv|γ) dµ(v),

as desired. The proof of part 2 is similar. �

Lemma 2 implies that homogeneous and shift-invariant certainty equivalents are easily

characterized within the parameterized Optimal Anticipation model—simply impose the

same properties on the gain-loss function. Moreover, homogeneity or shift invariance of

the parameterized family φ(·|γ) implies that it is in fact determined by a single function.

For instance, consider the case of homogeneous φ(·|·) on I = R+. Then, φ(v|γ) = γφ( v
γ
|1)

for any γ > 0, so the parameterized gain-loss function is determined for each γ > 0 by

specifying φ(·|1). Similarly, a homogeneous gain-loss function on I = (−∞, 0) satisfies
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φ(v|γ) = −γφ( v
−γ |−1) and is therefore determined for each γ < 0 by specifying φ(·|−1).

Finally, a shift-invariant gain-loss function on I = R satisfies φ(v|γ) = γ + φ(v − γ|0),

and hence it suffices to specify φ(·|0).

This property of homogeneous and shift-invariant gain-loss functions permits ex-

amples to be easily constructed. To illustrate for the case of I = R+, any function

ϕ : I → [−∞,∞) can be chosen as a candidate for φ(·|1), so long as it is nondecreasing,

concave, and satisfies ϕ(v) ≤ v for all v ≥ 0, with equality at v = 1. For any such ϕ,

define the function φ(·|γ) : I → [−∞,∞) for γ ≥ 0 as follows:19

φ(v|γ) =

{
γϕ( v

γ
) if γ > 0,

0 if γ = 0.

Although ϕ need not be homogeneous, this construction guarantees that the function

φ(·|·) and the resulting certainty equivalent will be. Analogous constructions are possible

for homogeneous gain-loss functions on I = (−∞, 0) and shift invariant gain-loss functions

on I = R.

5.2 Examples

5.2.1 Homothetic Linear Gain-Loss Utility

Consider again the linear gain-loss function analyzed in Section 4.1. In this section,

I make the simple observation that it is both homogeneous and shift invariant, and

therefore can be applied to each of the three cases described in the previous section to

obtain homothetic preferences. For any v, γ ∈ R and α > 0,

φ(αv|αγ) = αγ +

{
λl(αv − αγ) if αv < αγ

λg(αv − αγ) if αv ≥ αγ

= αφ(v|γ).

In addition, for any v, γ ∈ R and α ∈ R,

φ(α + v|α + γ) = α + γ +

{
λl((α + v)− (α + γ)) if α + v < α + γ

λg((α + v)− (α + γ)) if α + v ≥ α + γ

= α + φ(v|γ).

19In the case of I = R+, φ(·|0) is not pinned down from ϕ, and homogeneity only requires that
φ(v|0) = αv for some α ∈ [0, 1]. Taking α = 0 will prove convenient for subsequent results. For example,
this ensures that the optimal γ is greater than 0 for any µ with support in R++ (see Theorem 6).
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Thus, the linear gain-loss function is homogeneous on both I = R+ and I = (−∞, 0),

and it is shift invariant on I = R. This implies it can be used in conjunction with the

utility function u(c) = cρ

ρ
for any 0 6= ρ < 1 or with log utility u(c) = log(c) to deliver a

homothetic value function.

5.2.2 Homothetic Epstein-Zin-Kreps-Porteus Expected Utility

It was shown in Section 4.2 that Epstein-Zin-Kreps-Porteus expected utility can be ex-

pressed as a special case of the Optimal Anticipation representation. As noted previously,

the most common specification of EZKP utility in applications takes u and h to be ho-

mogeneous functions. For example, let u(c) = cρ

ρ
and h(v) = vα/ρ for ρ, α ∈ (0, 1). Then,

Equation (16) simplifies to

V (c,m) =
cρ

ρ
+ β

(
Em
[
V α/ρ

])ρ/α
.

In this representation, the elasticity of intertemporal substitution is 1
1−ρ and the coef-

ficient of relative risk aversion is 1 − α (see Epstein and Zin (1989) for discussion of

this interpretation of the parameters). More generally, to consider any 0 6= ρ < 1 and

0 6= α < 1, define u(c) = cρ

ρ
and h(v) = α

(
ρv
)α/ρ

. These definitions ensure that u and h

are well-defined and increasing even when ρ and α take negative values. In this case, the

EZKP value function takes the form:20

V (c,m) =
cρ

ρ
+ β

1

ρ

(
Em
[(
ρV
)α/ρ])ρ/α

. (18)

The following corollary of Theorem 5 connects the homogeneous EZKP and Optimal

Anticipation representations for two cases: ρ ∈ (0, 1) and ρ < 0. The parameter restric-

tion α ≤ ρ implies that the transformation h in the EZKP representation is concave.

Corollary 1 Fix any ρ, α 6= 0 such that α ≤ ρ < 1, and define φ(·|γ) as follows:21

φ(v|γ) =

{
γ
[
ρ
α

(
v
γ

)α/ρ
+ 1− ρ

α

]
if γ 6= 0

0 if γ = 0.

1. Suppose ρ ∈ (0, 1) and V : D → R+ satisfies Equation (18). Then,

V (c,m) =
cρ

ρ
+ βmax

γ≥0
Em
[
φ(V |γ)

]
.

20This is a simple transformation of the value function considered by Epstein and Zin (1989). Letting
V̂ (c,m) = (ρV (c,m))1/ρ gives their recursive equation: V̂ (c,m) = (cρ + β(Em[V̂ α])ρ/α)1/ρ.

21To ensure φ(·|γ) is well-defined, this expression is applied only to v ≥ 0 if γ > 0 and to v ≤ 0 if
γ < 0.
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2. Suppose ρ < 0 and V : D → [−∞, 0) satisfies Equation (18). Then,

V (c,m) =
cρ

ρ
+ βmax

γ<0
Em
[
φ(V |γ)

]
.

Proof: Let h(v) = α(ρv)α/ρ, defined on R+ and [−∞, 0) for case 1 and 2, respectively.

Then, h−1(Em[h(V )]) = 1
ρ
(Em[(ρV )α/ρ])ρ/α. Adopting the usual conventions for multi-

plying or dividing by ±∞, the arguments in Theorem 5 are easily extended to functions

mapping into the extended real numbers. Note that

h(v)

h′(γ)
− h(γ)

h′(γ)
+ γ = γ

[ ρ
α

(v
γ

)α/ρ
+ 1− ρ

α

]
.

These terms are well-defined in the relevant ranges except when α < 0 < ρ, in which case
h(0)
h′(0)

= −∞
+∞ . For this case, setting φ(v|γ) = 0 for γ = 0 resolves the indeterminacy and

gives the desired equivalence. �

Corollary 1 does not consider the case of ρ = 0. In this case, CES utility takes the

form u(c) = log(c), and EZKP preferences are homothetic if the value function satisfies

V (c,m) = log(c)− β 1

θ
logEm

[
exp(−θV )

]
(19)

for some θ > 0.22 As emphasized by Tallarini (2000), after taking appropriate transfor-

mations of the value function, Equation (19) with θ = −α(1 − β) corresponds to the

limiting case of Equation (18) for ρ → 0 (see also Hansen, Heaton, Lee, and Roussanov

(2007)). In this case, the elasticity of intertemporal substitution is 1 and the coefficient

of relative risk aversion is again 1− α. The specification if Equation (19) has been used

in a number of macroeconomic applications (e.g., Hansen, Sargent, and Tallarini (1999)

and Tallarini (2000)), and has also been reinterpreted in terms of robustness to model

uncertainty.23

Corollary 2 Suppose θ > 0 and V : D → [−∞,∞) satisfies Equation (19). Then,

V (c,m) = log(c) + βmax
γ∈R

Em
[
φ(V |γ)

]
,

where φ(·|γ) is defined by φ(v|γ) = γ + 1
θ
− 1

θ
exp(−θ(v − γ)) for γ ∈ R.

22The limiting case of θ = 0 corresponds to additively-separable utility V (c,m) = log(c) + βEm[V ].
23The connection between Equation (19) and the multiplier preferences of Hansen and Sarget (2001)

has been established in a variety of settings. See, for example, Skiadas (2003), Maenhout (2004), and
Strzalecki (2011). For a detailed discussion of this reinterpretation in the context of the equity premium
puzzle, see Barillas, Hansen, and Sargent (2009).
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Proof: Again adopt the usual conventions for ±∞, and apply the formula from The-

orem 5 to h(v) = − exp(−θv). �

5.3 Continuity of Homothetic Representations

Since the utility functions u(c) = cρ

ρ
for ρ < 0 and u(c) = log(c) take the value −∞ at

c = 0, the homothetic Optimal Anticipation representation will necessarily have points

of discontinuity. However, it will be important for later results that this value function

is continuous when consumption is bounded away from zero. While the continuity of

any CES utility function u is immediate in this case, the following result shows that this

continuity is preserved by the certainty equivalent.

Theorem 6 Suppose I, φ(·|·), and the scalars a, b ∈ I satisfy one of the following sets

of assumptions:

1. I = R+, φ(·|·) satisfies Assumption 1 and homogeneity, φ(v|0) = 0, and 0 < a < b;

2. I = (−∞, 0), φ(·|·) satisfies Assumption 1 and homogeneity, and a < b < 0; or

3. I = R, φ(·|·) satisfies Assumption 1 and is shift invariant, and a < b.

Suppose also that φ(v|γ) > −∞ for all v, γ in some open set containing [a, b].24 Then,

for any µ ∈ 4([a, b]), there exists γ ∈ [a, b] that solves the maximization problem in

Equation (17), and the function W : 4([a, b])→ [a, b] defined by

W (µ) = max
γ∈I

∫
φ(v|γ) dµ(v)

is continuous in the topology of weak convergence.

Theorem 6 is based on relatively standard arguments. Using concavity of each φ(·|γ)

together with either homogeneity or shift invariance, it can be shown that φ(v|γ) ≤ φ(v|a)

for any γ < a and v ∈ [a, b]. Likewise, φ(v|γ) ≤ φ(v|b) for any γ > b and v ∈ [a, b].

This implies that one can restrict attention to γ ∈ [a, b] when solving the maximization

problem in Equation (17). The assumed properties of φ(·|·) can also be used to show

that
∫
φ(v|γ) dµ(v) is continuous in both γ ∈ [a, b] and µ ∈ 4([a, b]). The existence

of a maximizing γ then follows directly, and the continuity of the certainty equivalent

function follows from Berge’s Maximum theorem.

24If φ(·|γ) is real valued then this restriction is trivially satisfied. For another example, if I = R+ and
φ(v|γ) > −∞ for all v > 0, then any 0 < a < b will satisfy this restriction.
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6 Application to Portfolio Choice

In this section, I determine the equilibrium asset pricing conditions for a representative

agent economy. Let at ≥ 0 denote the agent’s wealth at the start of period t and ct ≥ 0

denote consumption in period t. Let Z be a finite set, representing the state of the

economy. Assume the state z ∈ Z evolves according to a stationary Markov process with

transition probabilities P (zt+1|zt). The state zt is perfectly observed by the agent at the

start of period t.

Suppose there are K assets, and the gross return to holding asset k between t and

t+1 is rk(zt+1). Let wkt denote the fraction of post-consumption wealth invested in asset

k in period t. For ct ∈ [0, at] and wt ∈ 4(K) ≡ {w ∈ RK
+ :

∑
k wk = 1}, the wealth in

period t + 1 is given by the following budget constraint: at+1 = (at − ct)(wt · r(zt+1)) =

(at − ct)(
∑

k wktrk(zt+1)).

6.1 Existence of a Value Function

In this section, I show that for the homothetic parameterized representations described

in Section 5, there exists a unique homothetic value function. These results currently

focus on the case of u(c) = cρ

ρ
for ρ ∈ (0, 1), but can also be established for ρ < 0 and log

utility (ρ = 0) (this will be done in subsequent versions of this paper).

Since the environment is stationary, it is possible to drop the period t and t + 1

subscripts and obtain a value function that depends solely on the current state and

wealth.

Theorem 7 Suppose ρ ∈ (0, 1), β ∈ (0, 1), and for every z ∈ Z and 1 ≤ k ≤ K,

rk(z) > 0 and β1/ρ

∫
rk(z

′) dP (z′|z) < 1.

Suppose φ(·|·) satisfies Assumption 1 and homogeneity on I = R+, φ(v|0) = 0, and

φ(v|γ) > −∞ for all v > 0. Then, there exists a unique homogeneous (of degree ρ) value

function J : R+ × Z → R+ satisfying

J(a, z) = max
c∈[0,a]
w∈4(K)

[
cρ

ρ
+ βmax

γ≥0

∫
Z

φ
(
J
(
w · r(z′)(a− c), z′

)∣∣∣γ) dP (z′|z)

]
. (20)

Except in a very restricted set of cases, the usual techniques from Blackwell (1965)

cannot be applied to obtain a value function in this environment. Instead, the existence

of the function J follows from an alternative fixed point theorem from Marinacci and
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Montrucchio (2010) (see Appendices A and B.4). Once the existence of a value function

is established, the existence of maximizing c, w, and γ can be obtained used the continuity

properties from Theorem 6.

6.2 Asset Returns

Since preferences are homothetic, it is possible to represent the entire economy using

a representative agent and hence obtain an Euler equation for asset returns based on

aggregate variables. Using techniques from Epstein and Zin (1989) (see also Backus,

Routledge, and Zin (2004) for a survey), the following result gives equilibrium conditions

for aggregate consumption and asset returns. To simplify notation, denote the expecta-

tion conditional on the information zt held by the agent at time t by Et(·), and write rt+1

for r(zt+1), rk,t+1 for rk(zt+1), and so on.

Theorem 8 Suppose ρ, β, r, and φ(·|·) are as in Theorem 7. If φ(·|γ) is differentiable

at all v > 0, then in equilibrium the following first-order condition is satisfied for assets

1 ≤ k ≤ K:25

βEt
[
φ1

((ct+1

ct

)ρ−1

(wt · rt+1)
∣∣∣γt)(ct+1

ct

)ρ−1

rk,t+1

]
= 1, (21)

where

γt ∈ argmax
γ≥0

Et
[
φ
((ct+1

ct

)ρ−1

(wt · rt+1)
∣∣∣γ)] . (22)

7 Discussion of Related Literature

7.1 Reference-Dependent Utility

In this section, I discuss in more detail the conceptual differences between the model of

reference-point formation proposed in this paper and the other approaches mentioned in

the introduction. One common alternative approach is to assume that reference points are

based on past experience. For example, Benartzi and Thaler (1995) (and later Barberis

and Huang (2001) and Barberis, Huang, and Santos (2001)) took a history-dependent

approach to apply reference-dependent utility in finance. They assumed that past asset

returns determine the reference point against which changes in the current value of the

portfolio are measured.26 Although it is quite plausible that past returns influence indi-

25Here, φ1(·|·) denotes the partial derivative of φ(·|·) with respect to its first argument.
26These models concern not only reference-dependence, but also narrow framing—they assume indi-

viduals are not loss averse with respect to consumption directly, but with respect to fluctuations in their
financial wealth.
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viduals’ attitudes toward current returns, in many situations it is natural to expect that

there is also a forward-looking component to reference point formation. For instance,

suppose an individual who has been earning a consistent 8% rate of return on her port-

folio receives a tip about a new investment that she believes will earn a return of 25%

in the coming year. Suppose the realized return from this investment is ultimately 9%.

The history-dependent approach would suggest that this outcome should be viewed as

a gain relative to past returns of 8%, whereas it is quite conceivable that the individual

will actually view this as a loss relative the expected returns of 25%.

As an alternative to history-dependent reference points, Kőszegi and Rabin (2006,

2007) adopted a forward-looking equilibrium-based approach. In their model, the al-

ternative the individual plans to choose becomes her reference point. The concept of

“personal equilibrium” is used to ensure no incentive to deviate from this plan, holding

fixed the reference point: The alternative will actually be chosen only if it is better than

every other alternative with itself taken as the reference point. For choice in stochas-

tic environments, the same solution concept applies, with utility determined by taking

expectations with respect to both the lottery being evaluated and the reference lottery.

Once consequence of their model is that reference points are forced upon the individual

by the lottery she faces, and therefore improvements in outcomes necessarily result in

more demanding reference points. For example, suppose an individual is told that with

some small probability ε > 0 an anonymous benefactor will give her $1,000,000. Hold-

ing fixed her reference point, this would be unambiguously good news. However, in the

Kőszegi-Rabin model, this possibility raises her reference point as well, in some cases to

the extent that the individual is actually worse off.27

This paper maintains a forward-looking approach to reference dependence, but allows

the individual more freedom in the determination of her reference point. This permits the

model to capture some intuitive aspects of individuals’ responses to risky environments

that do not fit with previous models. For instance, if an individual is told that she may

receive a large monetary payment with small probability as in the previous example, she

would likely view this as good news. Still, she might describe her attitude toward the

possibility with phrases like “not getting my hopes up,” “not getting too excited,” or

“being cautiously optimistic.” Although informal statements, these are suggestive that

anticipating better outcomes (i.e., “getting one’s hopes up” or “getting excited”) makes

the individual more sensitive to bad outcomes and, moreover, that the individual can

exert some control over her anticipation. The model in this paper captures these intuitions

by tying current anticipation to future reference points and allowing the individual to

27Kőszegi and Rabin (2007, Section 4) showed that an individual with their utility specification may
prefer to commit at an early stage to have a first-order stochastically dominating lottery made unavail-
able. In the above example, this constitutes refusing early on to accept any possible future payments
from a benefactor.
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choose her anticipation optimally.

7.2 Betweenness Preferences

This model also has a connection to the “betweenness” class of static risk preferences

considered by Chew (1983) and Dekel (1986), which have also been used successfully

to address a number of issues in macroeconomics and finance (e.g., Epstein and Zin

(1991), Bekaert, Hodrick, and Marshall (1997), Routledge and Zin (2010)). In the utility

representation for betweenness preferences, there is a local utility function similar to

the transformation φ used in the Optimal Anticipation representation. In particular, the

local utility function for the disappointment aversion representation of Gul (1991) (which

is a special case of the betweenness class) bears some resemblance to the specification of

φ(·|γ) in Example 1. Although they were not originally interpreted in such a way, these

models could also be thought of as models of reference dependence.

However, the key distinction is that the local utility function for these representations

is determined by a fixed point, rather than by optimization. Therefore, the conceptual

difference is again that the individual is not able to exert control over her own reference

point. Note that unlike the Kőszegi-Rabin model, betweenness preferences can never

violate first-order stochastic dominance as in the benefactor example from Section 7.1.

However, like the Kőszegi-Rabin model, betweenness preferences require that the refer-

ence point increases with respect to first-order stochastic dominance improvements to the

chosen lottery, even if the individual would benefit from maintaining a lower reference

point. From a practical standpoint, exploring the different implications of the Optimal

Anticipation model in applications is an important question for future research.

7.3 Other Related Models

The term anticipation has been used in a number of contexts and assigned a number

of meanings. For example, Caplin and Leahy (2001) and Epstein (2008) used the term

anticipation to refer to anxiety about future uncertainty. In these models, this anticipa-

tion or anxiety is not modeled as a choice variable of the individual. More importantly,

anticipatory utility distorts the preferences of the individual in one period relative to the

next, leading (in general) to dynamically-inconsistent behavior.

In this paper, I have assumed that beliefs are fixed and the individual is free to choose

her anticipation. There is a related literature that instead considers optimal beliefs.

These papers assume that anticipatory utility is a fixed function of future expected utility

(e.g., a scalar multiple) but the individual is able to distort her beliefs to increase her

expectations and hence her anticipatory utility. For example, Brunnermeier and Parker
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(2005) considered one such model of “optimal expectations.” The individual in their

model has the freedom to choose her beliefs in an optimistic way; however, instead of

using loss aversion to discipline the choice of beliefs, they assumed that the individual’s

future decisions will be based on her chosen beliefs. Hence the “cost” of distorted beliefs

is the poor outcomes that may result from suboptimal decisions. Similarly, Bénabou and

Tirole (2011) modeled an individual who may wish to distort her beliefs about her own

type to increase her self-esteem or anticipatory utility. The individual does not directly

choose her beliefs, but has bounded memory of her type and engages in self-signaling

using her past actions. Thus, more favorable beliefs again come at the expense of worse

actions.

Finally, there is a connection between the Optimal Anticipation model and macroe-

conomic models that incorporate costs of adjusting consumption relative to planned or

past consumption (see, e.g., Grossman and Laroque (1990), Gabaix and Laibson (2001),

and the references therein). These models typically involve some consumption pre-

commitment and a physical cost of changing consumption relative to these commitments.

The process of anticipation and loss aversion in this paper could be thought of as the

psychological version of such adjustment costs—the individual pre-commits to an antic-

ipated utility and experiences a psychological cost if realized future utility differs from

this benchmark.
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A Fixed Points of Homogeneous Functions

Theorem 9 (Marinacci and Montrucchio (2010)) Let Z be any nonempty set, and let

B(Z) denote the space of all bounded real-valued functions on Z, endowed with the supremum

norm. Let X be a closed linear subspace of B(Z) that contains the constant functions, and let

A = {f ∈ X : 0 ≤ f ≤ b} for some b > 0. Suppose T : A→ A satisfies:

1. T is monotone, i.e., f ≤ g implies Tf ≤ Tg.

2. There exists δ > 0 such that T (αf) ≥ αTf + (1− α)δ for all f ∈ A and α ∈ [0, 1].

Then, T has a unique fixed point f ∈ A. Moreover, this fixed point is globally attracting, i.e.,

‖Tng − f‖∞ → 0 for any g ∈ A.

Theorem 9 is a very slight adaptation of Theorems 10 and 11 in Marinacci and Montrucchio

(2010). The only substantive difference is that condition 2 in Theorem 9 uses a fixed δ > 0,

whereas Marinacci and Montrucchio (2010) used T (0) in the place of δ. Their version is not

sufficient for my applications of this result. However, it is clear that an immediate adaptation of

their proof would yield my result. I still include a proof because the use of a fixed δ in condition 2

allows for a different approach to proving the result, one that may be somewhat illuminating:

The conditions in Theorem 9 imply that T can be transformed using the exponential and

logarithmic functions to obtain a contraction mapping (see details below).28

Lemma 3 Let {fn} be a sequence in B(Z), and suppose f ∈ B(Z). If ‖fn − f‖∞ → 0, then

‖ exp ◦fn − exp ◦f‖∞ → 0.

Proof: Fix any ε > 0. Since f is bounded and ‖fn − f‖∞ → 0, there exists a, b ∈ R such

that a ≤ f ≤ b and a ≤ fn ≤ b for all n. Since the function x 7→ exp(x) is Lipschitz continuous

on the bounded interval [a, b], there exists K > 0 such that | exp(x)− exp(x′)| ≤ K|x− x′| for

any x, x′ ∈ [a, b]. Thus, | exp(fn(z)) − exp(f(z))| ≤ K|fn(z) − f(z)| for all z ∈ Z, and hence

‖ exp ◦fn − exp ◦f‖∞ ≤ K‖fn − f‖∞ → 0. �

Proof of Theorem 9: First, consider the case of δ ≥ b. Condition 2 with α = 0 implies

T (0) ≥ δ. Since T is monotone and maps A into A, this implies b ≤ δ ≤ T (0) ≤ Tf ≤ b, for all

f ∈ A. Thus, δ = b and Tf = b for all f ∈ A, implying f = b is the unique fixed point of T .

Next, consider the case of 0 < δ < b. Since T (0) ≥ δ by condition 2, monotonicity of T

implies δ ≤ Tf ≤ b for all f ∈ A. In particular, any fixed point f of T must satisfy δ ≤ f ≤ b.

28Marinacci and Montrucchio (2010) show that a different metric can be applied to A, one for which
T is a contraction. I take the (mathematically equivalent) approach of maintaining the supremum norm,
but transforming the function T in order to obtain a contraction.
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Since δ
b ∈ (0, 1), note that α+ (1− α) δb ≥ α

1− δ
b for any α ≥ 0.29 Therefore, for any f ∈ A and

α ∈ [0, 1], condition 2 implies

T (αf) ≥ αTf + (1− α)δ

= αTf + (1− α)
(
δ
b

)
b

≥
(
α+ (1− α) δb

)
Tf ≥

(
α1− δ

b
)
Tf.

(23)

Now, let A′ = {f ∈ B(Z) : exp ◦f ∈ A}. Note that A′ is nonempty since it contains all

constant functions less than log(b), and it is a closed subset of B(Z) by Lemma 3. Define

T ′ : A′ → A′ by T ′f = log ◦(T (exp ◦f)). To see that T ′ maps into A′, recall that 0 < δ ≤
T (exp ◦f) ≤ b for any f ∈ A′. Therefore, T ′ is well-defined and log(δ) ≤ T ′f ≤ log(b), implying

T ′f ∈ B(Z). Since, in addition, exp ◦(T ′f) = T (exp ◦f) ∈ A, this implies T ′f ∈ A′.

Fix any f ∈ A′ and k > 0, and let α = exp(−k) < 1. Then, by Equation (23),

T ′(f − k) = log ◦
(
T (α exp ◦f)

)
≥ log ◦

((
α1− δ

b
)
T (exp ◦f)

)
=
(
1− δ

b

)
(−k) + T ′f.

(24)

Therefore, by the theorem of Blackwell (1965), T ′ is a contraction. Specifically, for any f, g ∈ A′,
let k = ‖f − g‖∞. Then, f − k ≤ g, and by the monotonicity of T and Equation (24),(

1− δ
b

)
(−k) + T ′f ≤ T ′(f − k) ≤ T ′g.

This implies T ′f −T ′g ≤ (1− δ
b )‖f −g‖∞, and reversing the roles of f and g gives |T ′f −T ′g| ≤

(1− δ
b )‖f − g‖∞. Since 1− δ

b < 1, the Banach Contraction Mapping Theorem implies there is a

unique f ∈ A′ such that T ′f = f . Moreover, f is globally attracting in A′, i.e., ‖T ′ng−f‖∞ → 0

for any g ∈ A′.

Let f̂ = exp ◦f ∈ A for the fixed point f of T ′. Then, f = T ′f = log ◦(T f̂), which implies

T f̂ = f̂ . Thus, f̂ is a fixed point of T . To see that f̂ is the unique and globally attracting

fixed point of T in A, fix any g ∈ A. Then, Tg ∈ A and Tg ≥ δ as argued above, and hence

log ◦(Tg) ∈ A′. Therefore, T ′n(log ◦(Tg)) → f in the supremum norm by the preceding argu-

ments. However, since T ′n(log ◦(Tg)) = log ◦(Tn+1g), this implies ‖ log ◦(Tng)− f‖∞ → 0. By

Lemma 3, conclude that ‖Tng − f̂‖∞ → 0. �

Corollary 3 Let X be as in Theorem 9. Let A = {f ∈ X : a ≤ f ≤ 0} for some a < 0.

Suppose T : A→ A satisfies:

29This inequality was also used by Marinacci and Montrucchio (2010) in their proof and is straight-

forward to verify: The derivative of the concave function α 7→ α1− δb at α = 1 is 1 − δ
b . Likewise, the

derivative of the affine function α 7→ α+ (1−α) δb at α = 1 is 1− δ
b . Since both functions take the value

1 at α = 1, the desired inequality follows.
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1. T is monotone, i.e., f ≤ g implies Tf ≤ Tg.

2. There exists δ < 0 such that T (αf) ≤ αTf + (1− α)δ for all f ∈ A and α ∈ [0, 1].

Then, T has a unique fixed point f ∈ A. Moreover, this fixed point is globally attracting, i.e.,

‖Tng − f‖∞ → 0 for any g ∈ A.

Proof: Let A′ = −A = {f ∈ X : 0 ≤ f ≤ −a}, and define T ′ : A′ → A′ by T ′f = −T (−f)

for f ∈ A′. Then,

f ≤ g =⇒ −f ≥ −g =⇒ T (−f) ≥ T (−g) =⇒ T ′f ≤ T ′g.

Thus, T ′ is also monotone. For any f ∈ A′ and α ∈ [0, 1],

T ′(αf) = −T (α(−f)) ≥ −
[
αT (−f) + (1− α)δ

]
= αT ′f + (1− α)(−δ).

Apply Theorem 9 to conclude that T ′ has a unique and globally attracting fixed point f ∈ A′.
Then, T (−f) = −T ′f = −f , so −f ∈ A is the unique and globally attracting fixed point of T

in A. �

B Proofs

B.1 Proof of Proposition 1

Proposition 1 will be proved by means of a separation argument. Let C([a, b]) denote the set

of all continuous functions on [a, b] and let ca([a, b]) denote the set of all signed (countably-

additive) Borel measures of bounded variation on the interval [a, b]. Consider the following

subset of ca([a, b]):

F ≡
{
µ ∈ ca([a, b]) :

∫
f(x) dµ(x) ≥ 0 for every nondecreasing f ∈ C([a, b])

}
. (25)

Note that F is a cone in ca([a, b]). In addition, since the constant functions identically equal to

1 and −1 are both nondecreasing, µ([a, b]) = 0 for all µ ∈ F . The following lemma makes some

other simple observations about F that will be central to the proof of the proposition.

Lemma 4 The set F defined in Equation (25) is a weak* closed and convex subset of ca([a, b]).

Moreover, for any µ, η ∈ 4([a, b]), the following are equivalent:

1. µ first order stochastically dominates η, i.e., µ([x, b]) ≥ η([x, b]) for all x ∈ [a, b].

2.
∫
f(x) dµ(x) ≥

∫
f(x) dη(x) for every nondecreasing f ∈ C([a, b]).
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3. µ− η ∈ F .

Proof: For any f ∈ C([a, b]), the set

Ff ≡
{
µ ∈ ca([a, b]) :

∫
f(x) dµ(x) ≥ 0

}
is weak* closed and convex. The set F is the intersection of such sets Ff , with the intersection

being taken over all nondecreasing f ∈ C([a, b]). As the intersection of closed and convex sets,

F is also closed and convex. To complete the proof, note that the equivalence of 1 and 2 is a

standard result, and the equivalence of 2 and 3 is immediate. �

Proof of Proposition 1: To see that 2 implies 1, suppose Φ is a collection of continuous

and nondecreasing functions. If µ first order stochastically dominates η, then∫
φ(x) dµ(x) ≥

∫
φ(x) dη(x), ∀φ ∈ Φ.

Therefore,

sup
φ∈Φ

∫
φ(x) dµ(x) ≥ sup

φ∈Φ

∫
φ(x) dη(x).

To prove that 1 implies 2, it suffices to show that for any µ ∈ 4([a, b]) and any α < W (µ),

there exists a nondecreasing φµ,α ∈ C([a, b]) such that α ≤
∫
φµ,α(x) dµ(x) and

∫
φµ,α(x) dη(x) ≤

W (η) for all η ∈ 4([a, b]). Then, letting

Φ = {φµ,α : µ ∈ 4([a, b]), α < W (µ)},

it follows directly that

W (µ) = sup
φ∈Φ

∫
φ(x) dµ(x).

Fix any µ ∈ 4([a, b]) and any α < W (µ). The proof is completed by showing the existence of

a function φµ,α as described above. This is accomplished using a separation argument similar to

standard duality results for convex functions (see, e.g., Ekeland and Turnbull (1983) or Phelps

(1993)). The epigraph of W is defined as follows:

epi(W ) = {(η, t) ∈ 4([a, b])× R : t ≥W (η)}

Since W is convex with a convex domain 4([a, b]), epi(W ) is a convex subset of ca([a, b])× R.

Moreover, as a weak* lower semicontinuous function with a weak* closed domain, it is a standard

result that epi(W ) is a closed subset of ca([a, b])× R.30 Now, define a set Fµ,α as follows:

Fµ,α ≡ ({µ}+ F )× {α} = {µ+ ν : ν ∈ F} × {α}
30The set ca([a, b]) × R is endowed with the product topology generated by the weak* topology on

ca([a, b]) and the Euclidean topology on R.
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By Lemma 4, Fµ,α is a closed and convex subset of ca([a, b]) × R. Establishing the following

claim allows the separating hyperplane theorem to be applied.31

Claim 1 For α < W (µ), the set epi(W )− Fµ,α is convex, and (0, 0) /∈ cl(epi(W )− Fµ,α).

Proof of claim: First, note that Fµ,α ∩ epi(W ) = ∅. To see this, take any (η, t) ∈ Fµ,α.

Then, clearly t = α, and by definition, η − µ ∈ F . If η /∈ 4([a, b]), then it is trivial that

(η, t) /∈ epi(W ). Alternatively, if η ∈ 4([a, b]), then Lemma 4 implies η first order stochastically

dominates µ. In this case W (η) ≥ W (µ) > α = t, so again (η, t) /∈ epi(W ). Thus, Fµ,α and

epi(W ) are disjoint, closed, and convex sets.

Since Fµ,α and epi(W ) are convex and disjoint, epi(W )−Fµ,α is convex and (0, 0) /∈ epi(W )−
Fµ,α. Since W is weak* lower semicontinuous and has a weak* compact domain 4([a, b]), it

attains a minimum value W . Therefore, epi(W ) can be written as the union of the following

two sets:

B1 ≡ epi(W ) ∩
[
4([a, b])× [W,W (µ)]

]
= {(η, t) ∈ 4([a, b])× R : W (µ) ≥ t ≥W (η)}

B2 ≡ epi(W ) ∩
[
4([a, b])× [W (µ),+∞)

]
= {(η, t) ∈ 4([a, b])× R : t ≥ max{W (η),W (µ)}}

As the intersection of a closed set and a compact set, B1 is compact, and as the intersection

of two closed sets, B2 is closed. Since the difference of a compact set and a closed set is

closed, B1 − Fµ,α is closed. Since B1 − Fµ,α ⊂ epi(W ) − Fµ,α, this set does not contain (0, 0).

Also note that for every (ν, t) ∈ B2 − Fµ,α, it must be that t ≥ W (µ) − α > 0. Therefore,

B2−Fµ,α ⊂ ca([a, b])× [W (µ)−α,+∞), a closed set not containing (0, 0). Thus, epi(W )−Fµ,α
is contained in the union of the closed sets B1 − Fµ,α and ca([a, b])× [W (µ)− α,+∞), each of

which does not contain (0, 0). �

Continuing the proof of Proposition 1, note that ca([a, b])×R is a locally convex Hausdorff

space (Theorem 5.73 in Aliprantis and Border (2006)). Therefore, the separating hyperplane

theorem (Theorem 5.79 in Aliprantis and Border (2006)) implies there exists a weak* continuous

linear functional f : ca([a, b])→ R and λ ∈ R such that

f(ν) + λt < f(0) + λ0 = 0, ∀(ν, t) ∈ epi(W )− Fµ,α.

Since (η − µ− ν, t− α) ∈ epi(W )− Fµ,α for any (η, t) ∈ epi(W ) and ν ∈ F , this implies

f(η) + λt < f(µ) + f(ν) + λα, ∀(η, t) ∈ epi(W ), ∀ν ∈ F. (26)

Taking (η, t) = (µ,W (µ)) and ν = 0, it follows that λW (µ) < λα. Since α < W (µ), this implies

λ < 0. Therefore, setting ν = 0 in the Equation (26), conclude that for all η ∈ 4([a, b]),

f(η) + λW (η) < f(µ) + λα =⇒ W (η) > −f(η)
λ + f(µ)

λ + α

31Although epi(W ) and Fµ,α are disjoint, closed, and convex sets, standard separation theorems require
that at least one of the sets either be compact or have a nonempty interior. Therefore, a slightly more
involved argument is required here.
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Consider the weak* continuous linear functional η 7→ −f(η)
λ defined on ca([a, b]). Since the

weak* topology on ca([a, b]) is generated by C([a, b]), every weak* continuous linear functional

on ca([a, b]) corresponds to some ψ ∈ C([a, b]) (Theorem 5.93 in Aliprantis and Border (2006)).

In particular, there exists ψ ∈ C([a, b]) such that −f(η)
λ =

∫
ψ(x) dη(x) for all η ∈ ca([a, b]).

Define φµ,α ∈ C([a, b]) by φµ,α(x) = ψ(x) + f(µ)
λ +α for x ∈ [a, b]. Then, for every η ∈ 4([a, b]),

W (η) >

∫
ψ(x) dη(x) + f(µ)

λ + α =

∫ [
ψ(x) + f(µ)

λ + α
]
dη(x) =

∫
φµ,α(x) dη(x).

In addition, ∫
φµ,α(x) dµ(x) = −f(µ)

λ + f(µ)
λ + α = α.

The proof is completed by showing that φµ,α is nondecreasing. Fix any x, y ∈ [a, b] with

x < y. Note that r(δy − δx) ∈ F for all r > 0. Therefore, Equation (26) implies

f(µ) + λW (µ) < f(µ) + f(r(δy − δx)) + λα

= f(µ) + r[f(δy)− f(δx)] + λα

For this to be true for every r > 0, it must be that f(δy) ≥ f(δx). This implies −f(δy)
λ ≥ −f(δx)

λ ,

which in turn implies φµ,α(y) ≥ φµ,α(x). �

B.2 Proof of Theorem 2

Lemma 5 The relation % satisfies weak order, nontriviality, continuity, stationarity, and sepa-

rability (Axiom 1–5) if and only if there exist continuous and nonconstant functions u1 : C → R
and u2 : 4(D)→ R and a scalar β ∈ (0, 1) such that the following hold:

1. The function V : D → R defined by V (c,m) = u1(c) + u2(m) represents %.

2. For every (c̄, m̄) ∈ D, u2(δ(c̄,m̄)) = β(u1(c̄) + u2(m̄)).

Proof: The necessity of weak order, nontriviality, and continuity are immediate. It follows

from condition 2 that for any c, c̄ ∈ C and m̄ ∈ 4(D),

V (c, δ(c̄,m̄)) = u1(c) + βu1(c̄) + βu2(m̄) = u1(c) + βV (c̄, m̄).

The necessity of stationarity and separability follow directly from this expression.

For sufficiency, the first step is obtain an additively separable representation on a restricted

domain. Note that in addition to the separability conditions listed in Axiom 5, stationarity

(Axiom 4) implies that (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′)) if and only if (c′, δ(c̄,m̄)) % (c′, δ(c̄′,m̄′)). Therefore,

the assumed axioms are sufficient to apply Theorem 3 of Debreu (1960) to obtain continuous
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functions f : C → R, g : C → R, and h : 4(D)→ R such that

(c, δ(c̄,m̄)) % (c′, δ(c̄′,m̄′)) ⇐⇒ f(c) + g(c̄) + h(m̄) ≥ f(c′) + g(c̄′) + h(m̄′). (27)

Note that the previous equation only gives a partial representation for %. However, by station-

arity,

(c̄, m̄) % (c̄′, m̄′) ⇐⇒ (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′))

⇐⇒ g(c̄) + h(m̄) ≥ g(c̄′) + h(m̄′),
(28)

and hence g and h give an additive representation for %. In particular, the combination of

Equations (27) and (28) implies

g(c) + h(δ(c̄,m̄)) ≥ g(c′) + h(δ(c̄′,m̄′))

⇐⇒ f(c) + [g(c̄) + h(m̄)] ≥ f(c′) + [g(c̄′) + h(m̄′)]

Using the uniqueness of additively separable representations (see Debreu (1960) or Theorem

5.4 in Fishburn (1970)), the above implies there exists β > 0 and α1, α2 ∈ R such that:

g(c) = βf(c) + α1, ∀c ∈ C
h(δ(c̄,m̄)) = β[g(c̄) + h(m̄)] + α2, ∀(c̄, m̄) ∈ D

(29)

Define u1 : C → R and u2 : 4(D)→ R by u1(c) = g(c) + α2
β and u2(m) = h(m). Then, claims

1 and 2 follow directly from Equations (28) and (29).

It remains only to show that β < 1. Following a similar approach to Gul and Pesendorfer

(2004), this can be established using continuity. By nontriviality, there exist c∗, c∗ ∈ C such

that u1(c∗) > u1(c∗). Fix any m ∈ 4(D) and, with slight abuse of notation, define sequences

{dn} and {d′n} in D as follows:32

dn = (c∗, . . . , c∗︸ ︷︷ ︸
n

,m) and d′n = (c∗, . . . , c∗︸ ︷︷ ︸
n

,m)

By the compactness ofD, there exists {nk} such that the subsequences {dnk} and {d′nk} converge

to some d and d′ in D, respectively. By continuity, V (dnk)→ V (d) and V (d′nk)→ V (d′), where

V is defined as in condition 1. Therefore, the difference V (dnk)−V (d′nk) converges to some real

number. However, since u1 and u2 were shown to satisfy condition 2,

V (dnk)− V (d′nk) =

(
nk−1∑
i=0

βiu1(c∗) + β(nk−1)u2(m)

)
−

(
nk−1∑
i=0

βiu1(c∗) + β(nk−1)u2(m)

)

=

nk−1∑
i=0

βi[u1(c∗)− u1(c∗)].

32More precisely, d1 = (c∗,m), d2 = (c∗, δ(c∗,m)), and so on.
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Since this difference converges to a real number, it must be that β < 1. �

Lemma 6 Suppose % is represented by V (c,m) = u1(c) + u2(m) where u1 : C → R and u2 :

4(D) → R are continuous33, and % satisfies stationarity. Then, % satisfies FOSD (Axiom 6)

if and only if for any m,m′ ∈ 4(D),

m ◦ V −1({v : v ≥ v̄}) ≥ m′ ◦ V −1({v : v ≥ v̄}), ∀v̄ ∈ V (D)

=⇒ u2(m) ≥ u2(m′)
(30)

Proof: To see that FOSD implies Equation (30), consider any two measures m,m′ ∈ 4(D)

such that

m ◦ V −1({v : v ≥ v̄}) ≥ m′ ◦ V −1({v : v ≥ v̄}), ∀v̄ ∈ V (D).

Fix any (c̄′, m̄′) ∈ D, and let v̄ = V (c̄′, m̄′). By stationarity, (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′)) if and only

if V (c̄, m̄) ≥ V (c̄′, m̄′) = v̄. Therefore,

m({(c̄, m̄) : (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′))}) = m ◦ V −1({v : v ≥ v̄})
≥ m′ ◦ V −1({v : v ≥ v̄})
= m′({(c̄, m̄) : (c, δ(c̄,m̄)) % (c, δ(c̄′,m̄′))}).

Since this condition holds for all (c̄′, m̄′) ∈ D, FOSD implies (c,m) % (c,m′). Thus, u2(m) ≥
u2(m′). The argument that Equation (30) implies the FOSD axiom is similar. �

Lemma 7 Suppose % is represented by V (c,m) = u1(c) + u2(m) where u1 : C → R and

u2 : 4(D)→ R are nonconstant and continuous. Then, % satisfies convexity (Axiom 7) if and

only if u2 is convex.

Proof: To see the necessity of the convexity axiom, suppose u2 is convex and u1(c′) +

u2(m) ≤ u1(c) + u2

(
1
2m+ 1

2m
′). Then,

u1(c′)− u1(c) ≤ u2

(
1
2m+ 1

2m
′)− u2(m) ≤ u2(m′)− u2

(
1
2m+ 1

2m
′) ,

where the last inequality follows from the convexity of u2. Hence, u1(c′) + u2

(
1
2m+ 1

2m
′) ≤

u1(c) + u2(m′).

To show sufficiency, suppose that% satisfies convexity. Since u1 is nonconstant, fix c∗, c∗ ∈ C
such that u1(c∗) > u1(c∗). First, consider anym,m′ ∈ 4(D) such that |u2(m)−u2

(
1
2m+ 1

2m
′) | ≤

u1(c∗)−u1(c∗). Then, since C is connected and u1 is continuous, there exist c, c′ ∈ C such that

u1(c′)− u1(c) = u2

(
1
2m+ 1

2m
′)− u2(m).

33Continuity is not necessary for this result; measurability of u1 and u2 are sufficient.
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This implies (c′,m) ∼ (c, 1
2m+ 1

2m
′), and hence (c,m′) % (c′, 1

2m+ 1
2m
′) by the convexity axiom.

Therefore,

u2(m′)− u2

(
1
2m+ 1

2m
′) ≥ u1(c′)− u1(c) = u2

(
1
2m+ 1

2m
′)− u2(m)

=⇒ 1
2u2(m) + 1

2u2(m′) ≥ u2

(
1
2m+ 1

2m
′) .

Now, take anym,m′ ∈ 4(D). Define a function ψ : [0, 1]→ R by ψ(α) = u2(αm+(1−α)m′).

This function is continuous by the weak* continuity of v, and since its domain is compact, ψ

is therefore uniformly continuous. Thus, there exists δ > 0 such that |α − α′| ≤ δ implies

|ψ(α)−ψ(α′)| ≤ u1(c∗)−u1(c∗). By the preceding arguments, this implies ψ is midpoint convex

on any interval [ᾱ, ᾱ′] ⊂ [0, 1] with |ᾱ− ᾱ′| ≤ δ, that is, for any α, α′ ∈ [ᾱ, ᾱ′],

1
2ψ(α) + 1

2ψ(α′) ≥ ψ
(

1
2α+ 1

2α
′) .

It is a stand result that any continuous and midpoint convex function is convex. Thus, ψ is

convex on any interval [ᾱ, ᾱ′] ⊂ [0, 1] with |ᾱ − ᾱ′| ≤ δ. This, in turn, is sufficient to ensure

that ψ is convex on [0, 1]. Therefore, for any α ∈ [0, 1],

αu2(m) + (1− α)u2(m′) = αψ(1) + (1− α)ψ(0) ≥ ψ(α) = u2(αm+ (1− α)m′).

Since m and m′ where arbitrary, u2 is convex. �

Lemma 8 Suppose V , u1, u2, and β are as in Lemma 5, and suppose V and u2 satisfy Equa-

tion (30). Then, there exists a function W : 4(V (D)) → R such that u2(m) = βW (m ◦ V −1)

for all m ∈ 4(D). Moreover,

1. W (δv) = v for all v ∈ V (D).

2. W is weak* continuous and monotone with respect to FOSD.

3. If u2 is convex, then W is convex.

Proof: Proof of existence of W : First, note that since V is continuous and V (D) is compact,

any Borel probability measure on V (D) can be written as m ◦V −1 for some m ∈ 4(D) (Part 5

of Theorem 15.14 in Aliprantis and Border (2006)), that is,

{m ◦ V −1 : m ∈ 4(D)} = 4(V (D)).

Fix any µ ∈ 4(V (D)). Let W (µ) = 1
βu2(m) for any m ∈ 4(D) such that µ = m ◦ V −1. There

exists at least one such m by the preceding arguments. In addition, if µ = m ◦ V −1 = m′ ◦ V −1

for m,m′ ∈ 4(D), then u2(m) = u2(m′) by Equation (30). Thus, W is well defined, and by

construction, u2(m) = βW (m ◦ V −1) for all m ∈ 4(D).
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Proof of 1: By condition 2 in Lemma 5, u2(δ(c̄,m̄)) = βV (c̄, m̄) for every (c̄, m̄) ∈ D, and

hence

W (δV (c̄,m̄)) = W (δ(c̄,m̄) ◦ V −1) = 1
βu2(δ(c̄,m̄)) = V (c̄, m̄).

Proof of 2: To see that W is weak* continuous, take any sequence {µn} in 4(V (D)) that

converges to some µ ∈ 4(V (D)). It suffices to show that there exists a subsequence {µnk} such

that W (µnk) → W (µ).34 For each n, take any mn ∈ 4(D) such that µn = mn ◦ V −1. Since

4(D) is compact and metrizable, there is a subsequence {mnk} converging to some m ∈ 4(D).

By the continuity of V ,

mnk
w∗−−→ m =⇒ µnk = mnk ◦ V

−1 w∗−−→ m ◦ V −1.

This implication follows directly from the definition of weak* convergence, or see Part 1 of

Theorem 15.14 in Aliprantis and Border (2006). Thus, µ = m ◦ V −1. Since u2 is weak*

continuous,

W (µnk) = 1
βu2(mnk)→ 1

βu2(m) = W (µ).

Therefore, W is weak* continuous. To see that W is monotone with respect to FOSD, suppose

µ, η ∈ 4(V (D)) satisfy µ({v : v ≥ v̄}) ≥ η({v : v ≥ v̄}) for all v̄ ∈ V (D). Take any

m,m′ ∈ 4(D) such that µ = m ◦ V −1 and η = m′ ◦ V −1. Then, Equation (30) implies

u2(m) ≥ u2(m′), and hence W (µ) ≥W (η).

Proof of 3: Suppose u2 is convex. Fix any µ, η ∈ 4(V (D)) and α ∈ (0, 1). Take any

m,m′ ∈ 4(D) such that µ = m ◦ V −1 and η = m′ ◦ V −1. Then,

αµ+ (1− α)η = (αm+ (1− α)m′) ◦ V −1,

and hence

W (αµ+ (1− α)η) = 1
βu2(αm+ (1− α)m′)

≤ α 1
βu2(m) + (1− α) 1

βu2(m′) = αW (µ) + (1− α)W (η),

establishing the convexity of W . �

Proof of Theorem 2: The necessity of the axioms is straightforward. To establish

sufficiency, suppose % satisfies Axioms 1–7. By Lemmas 5, 6, 7, and 8, there exists a scalar

β ∈ (0, 1), a continuous and nonconstant function u : C → R, and a weak* continuous and

convex function W : 4(V (D))→ R such that

V (c,m) = u(c) + βW (m ◦ V −1), ∀(c,m) ∈ D.
34If W is not continuous at a point µ, there exists ε > 0 and a sequence {µn} converging to µ such

that |W (µn)−W (µ)| > ε for every n. This sequence has no subsequence with the convergence properties
described above.
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Moreover, W (δv) = v for all v ∈ V (D), and W is monotone with respect to FOSD. Since

V is continuous and D is compact and connected, V (D) = [a, b] for some a, b ∈ R. Apply

Proposition 1 to conclude there exists a collection Φ of continuous and nondecreasing functions

φ : [a, b]→ R such that

W (µ) = sup
φ∈Φ

∫
φ(v) dµ(v).

Using the change of variables formula, for every (c,m) ∈ D,

V (c,m) = u(c) + βW (m ◦ V −1)

= u(c) + β sup
φ∈Φ

∫ b

a
φ(v) d(m ◦ V −1)(v)

= u(c) + β sup
φ∈Φ

∫
D
φ(V (c̄, m̄)) dm(c̄, m̄).

In addition,

sup
φ∈Φ

φ(v̄) = sup
φ∈Φ

∫
φ(v) dδv̄(v) = W (δv̄) = v̄

for all v̄ ∈ [a, b]. �

B.3 Proof of Theorem 6

The first step in the proof is to show that in Equation (17) it is possible to restrict attention

to γ ∈ [a, b] instead of considering all γ ∈ I. This is accomplished by establishing that for

v ∈ [a, b], φ(v|γ) ≤ φ(v|a) for any γ < a and φ(v|γ) ≤ φ(v|b) for any γ > b. The following

lemma establishes that φ(·|·) is supermodular, which will then be used to prove the desired

inequalities.

Lemma 9 Suppose I and φ(·|·) satisfy the assumptions of Theorem 6 (either 1, 2, or 3). Then,

φ(·|·) is supermodular: for any γ, γ̂, v, v̂ ∈ I with γ̂ > γ and v̂ > v,

φ(v̂|γ̂) + φ(v|γ) ≥ φ(v|γ̂) + φ(v̂|γ). (31)

Proof: Consider first the case where the first set of assumptions is satisfied, that is, I = R+,

φ(·|·) satisfies Assumption 1 and is homogeneous, and φ(v|0) = 0. Fix any γ, γ̂, v, v̂ ∈ I with

γ̂ > γ and v̂ > v. If γ = 0, then Equation (31) simplifies to φ(v̂|γ̂) ≥ φ(v|γ̂), which holds since

φ(·|γ̂) is nondecreasing by Assumption 1. For γ̂ > γ > 0, homogeneity implies Equation (31) is

equivalent to the following:

γ̂φ
( v̂
γ̂

∣∣∣1)+ γφ
(v
γ

∣∣∣1) ≥ γ̂φ(v
γ̂

∣∣∣1)+ γφ
( v̂
γ

∣∣∣1). (32)
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To see this holds, note first that v̂
γ̂ and v

γ can both be expressed as convex combinations of v
γ̂

and v̂
γ :

v̂

γ̂
=
( γ̂v̂ − γv̂
γ̂v̂ − γv

)(v
γ̂

)
+
(γv̂ − γv
γ̂v̂ − γv

)( v̂
γ

)
v

γ
=
( γ̂v̂ − γ̂v
γ̂v̂ − γv

)(v
γ̂

)
+
( γ̂v − γv
γ̂v̂ − γv

)( v̂
γ

)
.

Therefore, the concavity of φ(·|1) implies

γ̂φ
( v̂
γ̂

∣∣∣1) ≥ γ̂ [( γ̂v̂ − γv̂
γ̂v̂ − γv

)
φ
(v
γ̂

∣∣∣1)+
(γv̂ − γv
γ̂v̂ − γv

)
φ
( v̂
γ

∣∣∣1)]
γφ
(v
γ

∣∣∣1) ≥ γ [( γ̂v̂ − γ̂v
γ̂v̂ − γv

)
φ
(v
γ̂

∣∣∣1)+
( γ̂v − γv
γ̂v̂ − γv

)
φ
( v̂
γ

∣∣∣1)] .
Summing these two inequalities yields Equation (32).

The proofs in the cases of the second and third sets of assumptions are similar. For homoge-

neous φ(·|·) on I = (−∞, 0), the arguments are almost identical to those above, but use the fact

that φ(v|γ) = −γφ( v
−γ | − 1). For shift invariant φ(·|·) on I = R, the claim can be established

by noting the Equation (31) is equivalent to

φ(v̂ − γ̂|0) + φ(v − γ|0) ≥ φ(v − γ̂|0) + φ(v̂ − γ|0),

then expressing v̂−γ̂ and v−γ as convex combinations of v−γ̂ and v̂−γ and using concavity. �

By Lemma 9, for any v ∈ [a, b] and γ ∈ I such that a > γ, φ(v|a)+φ(a|γ) ≥ φ(a|a)+φ(v|γ).

Since φ(a|a) = a ≥ φ(a|γ) by Assumption 1, this implies that φ(v|a) ≥ φ(v|γ), as desired.

Likewise, for any v ∈ [a, b] and γ ∈ I such that γ > b, φ(b|γ) + φ(v|b) ≥ φ(v|γ) + φ(b|b). Since

φ(b|b) = b ≥ φ(b|γ), this implies φ(v|b) ≥ φ(v|γ). Thus, it is possible to restrict attention

γ ∈ [a, b]:

sup
γ∈I

∫
φ(v|γ) dµ(v) = sup

γ∈[a,b]

∫
φ(v|γ) dµ(v).

Next, to see that a maximizer exists in the interval [a, b], begin by showing some continuity

properties of φ(·|·).

Lemma 10 Suppose I, φ(·|·), and a, b ∈ I satisfy the assumptions of Theorem 6 (either 1, 2,

or 3). Fix any sequences {vn} and {γn} in [a, b]. Then,[
vn → v, γn → γ

]
=⇒ φ(vn|γn)→ φ(v|γ). (33)

Consequently, γn → γ implies φ(·|γn)→ φ(·|γ) uniformly on [a, b].

Proof: Consider the case where the first set of assumptions is satisfied. By homogeneity

and the real-valued assumption, for any γ ∈ [a, b] and v in a neighborhood of [a, b], γφ( vγ |1) =
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φ(v|γ) > −∞. Since φ(·|1) is concave by Assumption 1, this implies φ(·|1) is continuous at each
v
γ for v, γ ∈ [a, b]. Therefore, if γn → γ ∈ [a, b] and vn → v ∈ [a, b], then

φ(vn|γn) = γnφ
(vn
γn

∣∣∣1)→ γφ
(v
γ

∣∣∣1) = φ(v|γ),

proving Equation (33). The proofs in the cases of the second and third sets of assumptions are

similar.

It is a standard result that Equation (33) implies the asserted uniform convergence property.

For completeness, this property is established as follows: Suppose for a contradiction that φ(·|γn)

does not converge to φ(·|γ) uniformly. Then, there exists ε > 0, a subsequence {γkn}, and a

sequence {vn} ⊂ [a, b] such that |φ(vn|γkn)− φ(vn|γ)| ≥ ε for all n. Since [a, b] is compact, it is

without loss to assume that vn → v for some v ∈ [a, b]. But then

ε ≤
∣∣φ(vn|γkn)− φ(vn|γ)

∣∣ ≤ ∣∣φ(vn|γkn)− φ(v|γ)
∣∣+
∣∣φ(v|γ)− φ(vn|γ)

∣∣.
Since both of the terms on the right converge to 0 by Equation (33), this is a contradiction. �

Now, define f : [a, b]×4([a, b])→ R by

f(γ, µ) =

∫
φ(v|γ) dµ(v).

To see that f is continuous, suppose γn → γ and µn
w∗−−→ µ. Fix any ε > 0. Since φ(·|γ) is

continuous by Equation (33), the definition of weak convergence implies there exists N such

that n ≥ N implies |f(γ, µn) − f(γ, µ)| < ε. In addition, since φ(·|γn) → φ(·|γ) uniformly by

Lemma 10, there exists N ′ such that n ≥ N ′ implies |φ(v|γn) − φ(v|γ)| < ε for all v ∈ [a, b].

Consequently, for any η ∈ 4([a, b]), n ≥ N ′ implies

|f(γn, η)− f(γ, η)| ≤
∫
|φ(v|γn)− φ(v|γ)| dη(v) ≤ ε.

Thus, n ≥ max{N,N ′} implies

|f(γn, µn)− f(γ, µ)| ≤ |f(γn, µn)− f(γ, µn)|+ |f(γ, µn)− f(γ, µ)| < 2ε.

Hence, f is continuous.

Since [a, b] is compact, continuity of f implies that for every µ ∈ 4([a, b]), there exists

γ̂ ∈ [a, b] such that f(γ̂, µ) = supγ∈[a,b] f(γ, µ), that is,∫
φ(v|γ̂) dµ(v) = sup

γ∈[a,b]

∫
φ(v|γ) dµ(v) = sup

γ∈I

∫
φ(v|γ) dµ(v).
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Moreover, by Berge’s Maximum theorem (see, e.g., Theorem 17.31 in Aliprantis and Border

(2006)), the function W : 4([a, b])→ [a, b] defined by

W (µ) = max
γ∈[a,b]

f(γ, µ) = max
γ∈I

∫
φ(v|γ) dµ(v)

is continuous.

B.4 Proof of Theorem 7

Let B(Z)+ denote the set of all bounded and nonnegative functions from Z into R. The

following lemma establishes the existence of a value function for unit wealth.

Lemma 11 Suppose ρ, β, r, and φ(·|·) are as in the statement of Theorem 7. Then, there

exists a unique function L ∈ B(Z)+ such that

L(z) = sup
c∈[0,1]
w∈4(K)

[
cρ

ρ
+ (1− c)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρL(z′)
∣∣∣γ) dP (z′|z)

]
. (34)

Proof: Define T : B(Z)+ → RZ by

Tf(z) = sup
c∈[0,1]
w∈4(K)

[
cρ

ρ
+ (1− c)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) dP (z′|z)

]
.

The proof consists of showing that T has a unique fixed point L.

By the assumptions on r and the finiteness of Z, there exists r > 0 such that βrρ < 1 and∫
rk(z

′) dP (z′|z) ≤ r for all z ∈ Z and 1 ≤ k ≤ K. Fix any b > 0. Recall that φ(v|γ) ≤ v for

all v ≥ 0, and hence for any f ∈ B(Z)+ with f ≤ b,

φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) ≤ (w · r(z′))ρf(z′) ≤ b(w · r(z′))ρ.

Together with Jensen’s inequality, this implies that for any f ∈ B(Z)+ with f ≤ b,

sup
w∈4(K)
γ≥0

∫
Z
φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) dP (z′|z) ≤ b sup

w∈4(K)

∫
Z

(w · r(z′))ρ dP (z′|z)

≤ b sup
w∈4(K)

(∫
Z
w · r(z′) dP (z′|z)

)ρ
≤ brρ.

(35)
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Now, fix any b ≥ 1
ρ(1−βrρ) and let A = {f ∈ B(Z) : 0 ≤ f ≤ b}. Then, 1

ρ + βbrρ ≤ b, so

Equation (35) implies that for f ∈ A,

Tf(z) ≤ sup
c∈[0,1]

(
cρ

ρ
+ (1− c)ρβbrρ

)
≤ 1

ρ
+ βbrρ ≤ b.

Thus, Tf ∈ A for all f ∈ A. To show that T has a unique fixed point in A, it suffices to verify

that T satisfies the conditions of Theorem 9 on this set A. Since each φ(·|γ) is nondecreasing,

monotonicity of T is immediate. To verify the second condition of Theorem 9, first let c̄ ∈ (0, 1)

denote the unique solution to cρ−1 = ρ(1− c)ρ−1βbrρ, that is, c̄ = [1 + (ρβbrρ)1/(1−ρ)]−1. Note

that for any f ∈ A, we can restrict attention to c ∈ [c̄, 1]:

Tf(z) = sup
c∈[c̄,1]
w∈4(K)

[
cρ

ρ
+ (1− c)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) dP (z′|z)

]
.

This equality holds because the supremum over c ∈ [0, 1] is attained by a unique maximizing c,

given by

cρ−1 = ρ(1− c)ρ−1β sup
w∈4(K)
γ≥0

∫
Z
φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) dP (z′|z).

It therefore follows from Equation (35) that this maximizing c is weaker larger than c̄. Let

δ = c̄ρ

ρ > 0. Then, for any f ∈ A and α ∈ [0, 1], the homogeneity property from Lemma 2

implies35

T (αf)(z) = sup
c∈[c̄,1]
w∈4(K)

[
cρ

ρ
+ α(1− c)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) dP (z′|z)

]

≥ sup
c∈[c̄,1]
w∈4(K)

[
α
cρ

ρ
+ (1− α)

c̄ρ

ρ
+ α(1− c)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρf(z′)
∣∣∣γ) dP (z′|z)

]

= αTf(z) + (1− α)δ.

Since the conditions of Theorem 9 are satisfied, conclude that T has a unique fixed point

L in A. To see that L is the unique fixed point in B(Z)+, fix any function f ∈ B(Z)+. Since

b ≥ 1
ρ(1−βrρ) was arbitrary, the preceding arguments hold if we take b ≥ f for this function f .

It follows that f can only be a fixed point of T if f = L. �

35Strictly speaking, this equality follows from applying Lemma 2 to the distribution of (w · r(·))ρf(·)
under the probability measure P (·|z) and using the change of variables formula. Alternatively, the
arguments used to prove that lemma can be immediately adapted to expectations of integrable random
variables.
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Taking L as in Lemma 11, define J : R+×Z → R+ by J(a, z) = aρL(z). Then, Equation (34)

together with the homogeneity property from Lemma 2 imply

sup
c∈[0,a]
w∈4(K)

[
cρ

ρ
+ β sup

γ≥0

∫
Z
φ
(
J
(
w · r(z′)(a− c), z′

)∣∣∣γ) dP (z′|z)

]

= sup
c∈[0,a]
w∈4(K)

[
cρ

ρ
+ β sup

γ≥0

∫
Z
φ
((
w · r(z′)(a− c)

)ρ
L(z′)

∣∣∣γ) dP (z′|z)

]

= sup
c∈[0,a]
w∈4(K)

[
cρ

ρ
+ (a− c)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρL(z′)
∣∣∣γ) dP (z′|z)

]

= aρ sup
ĉ∈[0,1]
w∈4(K)

[
ĉρ

ρ
+ (1− ĉ)ρβ sup

γ≥0

∫
Z
φ
(

(w · r(z′))ρL(z′)
∣∣∣γ) dP (z′|z)

]

= aρL(z) = J(a, z).

It remains only to show that there exist maximizing c, w, and γ that attain the supremum

in this expression. It is clear from the expressions for J(a, z) given above that a maximizing

c ∈ [0, a] exists. To see the existence of maximizing w and γ, first fix any z ∈ Z and c ∈ [0, a].

Then, define a function G : 4(K)→ R by

G(w) = sup
γ≥0

∫
Z
φ
((
w · r(z′)(a− c)

)ρ
L(z′)

∣∣∣γ) dP (z′|z).

It suffices to show that the supremum over γ in this expression is attained and that G is

continuous in w. If c = a, then the supremum is attained by γ = 0, and G(w) = 0 for any

w ∈ 4(K). Alternatively, consider the case of c < a. The finiteness of Z and K together

with the assumption rk(z) > 0 imply there exists r > 0 such that rk(z) ≥ r for all z ∈ Z.

It is also clear from Equation (34) that L(z) ≥ 1
ρ for all z ∈ Z. Let L = maxz∈Z L(z) and

r = max1≤k≤K maxz∈Z rk(z). Then, letting l ≡ (r(a− c))ρ 1
ρ and u ≡ (r(a− c))ρL, we have

0 < l ≤
(
w · r(z′)(a− c)

)ρ
L(z′) ≤ u, ∀w ∈ 4(K), z′ ∈ Z.

Therefore, for any w ∈ 4(K), the distribution of (w · r(·)(a− c))ρL(·) has support in the closed

and bounded interval [l, u]. Therefore, Theorem 6 implies that the supremum over γ is attained

by some γ ∈ [l, u]. Moreover, wn → w implies the random variable (wn · r(·)(a − c))ρL(·)
converges pointwise (hence, almost surely) to (w · r(·)(a − c))ρL(·) on Z. Since almost-sure

convergence of a sequence of random variables implies weak convergence of their distributions,

the continuity established in Theorem 6 is sufficient to conclude that G is a continuous function.

Therefore, it is maximized by some w ∈ 4(K).
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