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Abstract

We propose to strengthen Popper’s notion of falsifiability by adding the

requirement that when an observation is inconsistent with a theory, there must

be a “short proof” of this inconsistency. We model the concept of a short

proof using tools from computational complexity, and provide some examples

of economic theories that are falsifiable in the usual sense but not with this

additional requirement. We consider several variants of the definition of “short

proof” and several assumptions about the difficulty of computation, and study

their different implications on the falsifiability of theories.

1 Introduction

Popper’s notion of falsifiability is a foundational concept in philosophy of science that

has been influential in economic theory. According to Popper, a theory is scientific if

something could potentially occur that would contradict the theory’s assertions. That

is, if a theory is false, then there is some observation that conflicts with a prediction

of the theory. The scientific assertions of a theory are then those that, if wrong, can

be demonstrated as such.

The concept of falsifiability is illustrated in the following quote of Albert Einstein:

“No amount of experimentation can ever prove me right; a single experiment can prove

me wrong.” What does it mean for an experiment to prove Einstein wrong? Such
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an experiment produces an outcome that is incompatible with some prediction of

Einstein’s theory. Note, however, that theories are rarely formulated as collections of

predictions, but by a set of laws which possibly include some unspecified parameters,

from which the predictions of the theory can be derived. Thus, to prove Einstein

wrong, i.e. to falsify his theory, one has to provide an experimental outcome and

an argument that shows that the theory predicts that this outcome should not have

occurred.

In this paper we propose an additional desideratum to Popper’s notion of falsifi-

ability: If a theory is wrong, then there should be an experiment or an observation

that demonstrates this incorrectness by means of a “short” proof. Without this addi-

tional requirement, it could be that there exists a false theory and experiments whose

conclusions conflict with the theory, but such that these conclusions cannot be shown

to contradict the theory in a reasonably short amount of time. We call a theory that

satisfies Popper’s notion and our additional requirement tractably falsifiable.

A good analogy to bear in mind is that of a court of law. Imagine a plaintiff

claiming that some theory is wrong. The burden of proof is on the plaintiff, and

he must produce some body of evidence against the theory. This evidence includes

observations from the world and an argument that these observations contradict the

theory. The court, in turn, has a protocol specifying the procedure for viewing evi-

dence and examining arguments, after which it issues a verdict. Our main point is

that the court is bounded in the amount of time it can allocate to the case. Therefore,

any protocol specifying procedures must terminate in a “short” time: We rule out a

situation in which the plaintiff’s argument that the evidence contradicts the theory

and the court’s evaluation of this argument will only terminate after the universe no

longer exists.

To model the concept of a protocol that terminates in a short amount of time we

appeal to the tools of computational complexity. This discipline establishes a dis-

tinction between short and long protocols and arguments, formalized by polynomial-

time and super-polynomial-time. At the core of computational complexity theory

are numerous widely believed but yet unproven assumptions about the difficulty of

computation, the most celebrated of which is the conjecture that P 6= NP .

As mentioned, our starting point is that both the protocol and the plaintiff’s

argument should be short. In the formalism of computational complexity, a short

argument is of size that is polynomial in the amount of evidence. A short protocol
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is given by a polynomial-time algorithm that receives as input some observations

and an argument by the plaintiff claiming that these observations conflict with the

theory, and outputs a verdict. Importantly, the notion of polynomial-time, as well as

all other notions from computational complexity, are asymptotic in nature. In this

formulation, a protocol runs in polynomial-time if there exists some polynomial p

such that the protocol decides whether a given evidence violates the theory in time

at most p(n), where n is the amount of evidence.

Choice theory provides several examples of what we have in mind. Consider

first a theory that asserts that an agent’s preferences can be rationalized by a linear

order over alternatives – that is, when choosing between a set of alternatives he

picks the one that is ranked highest in his order. At first glance, if some observed

choice behavior violates this theory, then this violation can be easily demonstrated

– the demonstration would simply consist of a list of all linear orders, along with a

demonstration that none would have led to the observed choice behavior. However,

this proof is not “short” – a full listing of all such orders is too long. Fortunately,

there is a better way to prove the inconsistency of the theory, given by the strong

axiom of revealed preference: A violation is given by a cycle in the agent’s choice

behavior. Such a cycle proves the inconsistency, and does so in a concise way. The

fact that the strong axiom of revealed preference characterizes choice functions that

are consistent with the theory renders the theory tractably falsifiable in our sense:

If the theory is not true—that is, if the agent’s choices cannot be rationalized by a

linear order—then there must be an observation (namely, a collection of choices) that

violates the theory and a short argument (namely, a cycle) that a plaintiff can present

to demonstrate this violation.

A contrasting example from choice theory is given by a model of choice by multiple

rationales due to Kalai et al. (2002). According to this theory, an agent is endowed

with multiple linear orders (say, two), and when confronted by a set of alternatives

he chooses one that is highest ranked in either of his orders. Once again, observed

choice behavior can in principle be demonstrated to be in violation of this theory

by enumerating all pairs of linear orders, but this demonstration will take much too

long. Unlike the previous example, however, in this case there is no alternative short

way to demonstrate this violation whenever it occurs.

As we shall see, this point is closely related, though not equivalent, to the fact,

proved by Demuynck (2010), that it is anNP-complete problem to determine whether
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choice behavior is rationalizable by two linear orders. Similar proofs ofNP-completeness

of rationalization have been given for other economic theories – see Kalyanaraman

and Umans (2008, 2009), Apesteguia and Ballester (2010), and Demuynck (2011). In

general, economists have been skeptical about the implication and meaning of these

results, especially because of the worst-case assumption behind computational com-

plexity analysis. Our focus is somewhat different than of the aforementioned papers:

We are not concerned with the difficulty of rationalizing per se, but only with its

implication about the falsifiability of the theory. What matters for us is whether

there exists a short way to demonstrate that a theory is wrong. We view this as a

desirable, though idealistic, property of a scientific theory.

Our definition of a theory identifies a theory with its predictions. This approach,

which is already strongly influenced by Popper’s falsifiability stipulation, takes ob-

servable objects as primitive. Different theories make different predictions about

relationships between these same observables, as in the examples of rational choice

and choice by multiple rationales mentioned above. Economic theories fit this frame-

work well, since the observables, such as choices and prices, have (or at least are

assumed to have by economic theorists) a well defined meaning independent of the

economic theory. In contrast, this approach is not suitable for formalizing physical

theories since “physical observables” are such as weight, time, electric current are al-

ready theory laden: they change their meaning from one physical theory to another,

a point which is central in Pierre Duhem’s (1954) argument.

Our paper is related to a recent paper of Chambers et al. (2010). They call a

theory “completely falsifiable” if, whenever the theory is incorrect, there exists some

data set that falsifies it. Chambers et al. (2010) emphasize the requirement that the

data set that falsifies a theory be finite. A typical example is the theory that the

choice of an agent can be rationalized by a real-valued utility function, as opposed

to a linear order. In this case, if the underlying set of alternatives is infinite, it may

be that observed preference will admit no such rationalization but no finite data set

will reveal this. Our notion of tractable falsifiability is more restrictive: Not only

do we require that the data set that falsifies a theory be finite, we also require that

the plaintiff be able to prove the falsification quickly. Consider again the theory that

an agent’s choice can be rationalized by two linear orders. This theory is completely

falsifiable in the sense of Chambers et al. (2010): Even if the domain of alternatives is

infinite, for every choice function that cannot be rationalized by a pair of linear orders
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over alternatives there is always a finite set of choices that cannot be rationalized.

However, as we already mentioned, this theory is not tractably falsifiable, since it

may be the case that there is no short proof that this data set has no rationalization:

The plaintiff can produce evidence (a finite data set), but he has no quick way to

show that this evidence is indeed inconsistent with the theory’s predictions.

Our paper is also somewhat related to the paper of Echenique et al. (2011), which

also involves falsifiability and computational complexity, but in a very different way.

Echenique et al. (2011) study the question of whether computational considerations

affect the scientific assertions of various theories. Their definition of “scientific asser-

tions,” however, is the one derived from the standard notion of falsifiability, without

any computational considerations. The interface between falsifiability and compu-

tational complexity also plays role in Chambers et al. (2011). They study general

revealed preference theories that are axiomatized by an existential quantifier over

some unobserved relations. In particular, they argue that the problem of deciding

whether a set of observations is consistent with the theory is in NP .

There are other allusions in the literature for the relevance of computational com-

plexity considerations to falsifiability. For example, Demuynck (2010) writes, “From

an empirical point of view, the fact that the verification of a certain choice model is

NP-complete shows that empirical refutation or acceptance of these models might

be extremely difficult.” Our contribution is to provide a formal framework to analyze

such assertions and to pin down the complexity assumptions on which they rely.

The relationship between falsifiability and computability was also suggested in the

economic literature about testing stochastic forecasts. In that setup an expert pro-

poses a theory about some data generating process and this theory is put to test using

the observed realization of the process. The literature studies manipulation of the

test by strategic experts. Olszewski and Sandroni (2011) emphasize the implications

to falsifiability of stochastic theories. Hu and Shmaya (2012) adds the requirement

that the test will be computable, which means that if some observed realization is

inconsistent with the theory according to the test then there will be some finite proof

for this inconsistency. Fortnow and Vohra (2009) requires the test to be polynomial,

which, in light of Hu and Shmaya’s argument and the argument of this paper means

that there exists a short proof that demonstrate the inconsistency.

We consider several possible approaches for proving that evidence falsifies a theory

and several possible assumptions about the difficulty of computation, and study their
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implications for the notion of falsifiability. In Section 2 we formalize the concepts

of theory and evidence in a way that make them susceptible to complexity analysis.

In Section 3 we give our first definitions of argument and court’s protocol and the

derived notion of tractable falsifiability, and provide examples of theories that are not

tractably falsifiable under the assumption that NP 6= coNP (the class coNP is the

complement of NP , and the statement NP 6= coNP , while stronger than the famous

P 6= NP , is still widely believed). In Section 4 we consider a more general definition

of a proof, in which the court is allowed to challenge the plaintiff with questions, and

show that with this definition more theories become tractably falsifiable. In Section 5

we then study the implication of the assumption that the universe is limited in the

complexity of objects it can produce, so that we are only interested in falsifications of

theories relative to this assumption. The appendix contains some formal definitions

from computational complexity that we use. Our approach and examples should be

intelligible without the definitions in the appendix, but we appeal to them in our

proofs and in places where the reference might be useful for readers who are familiar

with computational complexity.

2 A formal model for theories

Definition 2.1 (theory) A theory is a subset T ⊆ {0, 1}∗, where {0, 1}∗ is the set

of all binary strings.

Consider the following simple example.

Example 2.2 A society is a graph whose nodes are called individuals, and in which

two individuals are connected by an edge if they know each other. Every society can

be encoded as an element of {0, 1}∗ by the adjacency matrix of its graph1. The theory

Tcl is the set of all elements in {0, 1}∗ that represent a graph of some size n with a

clique of size log n.

This simple example illustrates our formalization of a theory. There is some set of

conceivable objects (in this case conceivable societies, which may or may not have a

large clique), and each object can be encoded as a binary string. A theory, modeled

1The adjacency matrix of an n-node graph is an n×n matrix in which the ij’th entry is 1 if node
i is connected to node j, and 0 otherwise.
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as a set of codes, says that only some of these objects (i.e. those whose codes are

elements of the theory) can actually occur in our world. The description of the

theory is usually not given by a list of the codes of these objects (which is usually

infinite) but as a general property that all these objects satisfy. The theory Tcl says

that in every society that occurs in our world there is a large set of individuals who

know each other.

The coding of objects is necessary for complexity considerations, which are asymp-

totic in the length of the code. There is a strong sense in which all natural codes (i.e.

codes that are not overly redundant and are simple to encode and decode) lead to the

same computational consequences and are therefore equivalent for our purposes. For

more on this issue, see for example Section 1.2.1 of Goldreich (2008). In the sequel

we usually do not explicitly specify the code, and, slightly abusing terminology, iden-

tify an object with its code. (Strictly speaking, it is also possible that some string

x ∈ {0, 1}∗ is not a proper encoding of an object. For instance, in Example 2.2 it

could be that x /∈ Tcl because |x| 6= n2 for any n. For our purposes, however, this will

not matter, since we assume that the properness of encodings is simple to check.)

We now return to the examples from the introduction – the theory of rational

choice and the multiple rationales theory of Kalai et al. (2002).

Example 2.3 The observed choice behavior of an individual is a collection of pairs

(S, a), where S is a set of alternatives represented by a subset of {1, . . . ,m} for some

m, and a is the element of S that is the individual’s choice. Every observed choice

behavior can be encoded as an element of {0, 1}∗. The theory TRC is the set of all

elements C ∈ {0, 1}∗ that represent observed choice behavior satisfying the following

condition: There exists a linear order over {1, . . . ,m} for some m such that for every

set of alternatives S in the collection C, the corresponding choice a is maximal in S

for that linear order.

Example 2.4 The theory TKRS is the set of all elements C ∈ {0, 1}∗ that represent

observed choice behavior of an individual satisfying the following condition: There

exists a pair of linear orders over {1, . . . ,m} for some m such that for every set of

alternatives S in the collection C, the corresponding choice a is maximal in S for at

least one of the two linear orders.

If x is an object such that x /∈ T then the theory T predicts that the object x will
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never occur in our world. Thus, our definition of a theory identifies a theory with its

predictions.

3 Tractably falsifiable theories

In principle, existence of an object that is not in the theory is a falsification of the

theory: For the theory Tcl such a falsification will be a society that doesn’t admit a

large clique; for the theory TKRS such a falsification will be an individual’s observed

choice behavior that cannot be rationalized by two linear orders. In Definition 3.1

below, we propose to add the requirement that the assertion that the object is not in

the theory should be demonstrable.

More formally, consider some theory T and an object x ∈ {0, 1}∗, and suppose

that x /∈ T . In order to prove that x /∈ T , the plaintiff may provide an argument

y ∈ {0, 1}∗. Here, again, we identify the argument with its coding as a binary

string. The court then follows a protocol, which is abstracted by an algorithm V ,

that operates on both x and y. If V (x, y) = 1 then the court concludes that indeed

x /∈ T . If, however, x ∈ T , then it should be the case that regardless of the argument

y provided by the plaintiff, the protocol V (x, y) = 0. Since we want a short proof, we

will require that the algorithm V terminate in a reasonable amount of time, and this

is formalized by the requirement that V be a polynomial-time algorithm. Finally,

since we want V to be polynomial in the observation x, but V takes both x and y

as input, we require the length of the argument y to be at most polynomial in the

length of x.

Consider for example the theory Tcl and an object x that is some observed choice

behavior. Suppose that x /∈ TRC, meaning that the choice behavior x falsifies the

model of rational choice. In order to prove that x /∈ TRC, the plaintiff may provide

an argument y – in this case, the argument would be a subset of the pairs of sets

and choices y = {(S1, a1), . . . , (Sk, ak)} that are contained in the observed behavior x

and form a cycle. The court’s protocol here would be the following. Given x and y,

the algorithm V checks that the elements of y are indeed in x, then checks that all

the ai’s are distinct, and finally checks that y induces a cycle: Namely, that for each

i ∈ {1, . . . , k} and j = (i mod k) + 1 it holds that aj ∈ Si. If all these are satisfied,

then V (x, y) = 1, and otherwise V (x, y) = 0.
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Now, if x /∈ TRC then the plaintiff can always provide such a y, and then when

V (x, y) = 1 the court can conclude that indeed x /∈ TRC. If, however, x ∈ TRC,

then regardless of the argument y provided by the plaintiff, the protocol V (x, y) will

output 0, since there will never be a cycle. Note that in this example, y is shorter

than x (and so in particular it is polynomial in the length of x). Also, note that the

algorithm V that makes the checks above runs in polynomial time.

Definition 3.1 (tractably falsifiable theories) A theory T ⊆ {0, 1}∗ is tractably

falsifiable if there exists a polynomial p(n) and a polynomial-time algorithm V such

that the following two conditions hold:

1. For every x /∈ T there exists a y ∈ {0, 1}∗ of length at most p(|x|) such that

V (x, y) = 1.

2. For every x ∈ T and every y ∈ {0, 1}∗ it holds that V (x, y) = 0.

A pair (x, y) as in the first bullet is called a falsification, where x is the evidence and

y is the argument for x /∈ T . The algorithm V is called the falsification protocol for

T .

The first requirement in Definition 3.1 states the completeness of the falsification

protocol: if the theory is wrong, i.e. if an object x such that x /∈ T does pop up in

our world, then when x is observed there is an argument, or a way to demonstrate

the fact that x refutes the theory. The second requirement states the soundness : the

plaintiff cannot convince the court that a theory is wrong if the evidence x does not

contradict the theory.

Definition 3.1 is essentially the definition of the complexity class coNP , and we

thus propose to identify the class of tractably falsifiable theories with this class.

coNP is the complement of the class NP – see Appendix A for a formal definition.

As we discussed in the introduction, we think about the argument y against x in

Definition 3.1 as a demonstration that a plaintiff can present in court to show that x

violates the theory. The demonstration must be short, but we make no assumptions

about the complexity of finding it.

We now return to the examples from the beginning of the section:

Example 3.2 Assume NP 6= coNP . Then the theories Tcl and TKRS from Exam-

ples 2.2 and 2.4 are not tractably falsifiable.
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Thus, if NP 6= coNP it may be the case that the theories are violated in our

world, i.e. that there exists a society without a large clique and individuals whose

observed choice behavior cannot be rationalized by two linear orders, but still there

is no short way to demonstrate the violations of the theories. We emphasize that

these assertions do not rely solely on the assumption that P 6= NP , but rather on

the stronger assumption that NP 6= coNP .

The statement of Example 3.2 follows from the facts that Tcl and TKRS are NP-

complete (see Demuynck (2010) for a proof of the latter) and from Observation 3.3

below.

Observation 3.3 Assume that NP 6= coNP . If a theory T is NP-complete then T

is not tractably falsifiable.

This observation follows from our definition of tractable falsifiability as a theory in

the complexity class coNP and the fact that if NP 6= coNP then no theory that is

NP-complete can be in coNP (see for example Section 2.4.3 of Goldreich (2008) for

a proof).

Note that if a theory is in P , then it is tractably falsifiable, since P ⊆ coNP .

Note also that even if a theory T 6∈ P , this does not immediately imply that T is not

tractably falsifiable – in particular, it could be the case that T ∈ coNP \ P .

It is also interesting to note that in principle there is no direct implication between

the predictive power of a theory and the difficulty of demonstrating that a given

outcome violates the theory. For a pair of theories T and T ′ let us say that T ′ has

more predictive power than T if T ⊆ T ′ (i.e., if any observation that is compatible

with T is also compatible with T ′). The theory TRC is a sub-theory of TKRS, and, as

we have argued before, the former is tractably falsifiable while the latter is not. On

the other hand, consider again the framework of Example 2.2 and let T ′ be the theory

that in every society there is a pair of individuals that know each other. Clearly Tcl

is a sub-theory T ′, but the former is not tractably falsifiable while the latter is.

The last example also shows that our definition of tractable falsifiability is de-

manding in the sense that we require the existence of a short demonstration for every

object that violates the theory. So, even if the theory is not tractably falsifiable, it

may be that some of its predictions can be easily checked. For example, the theory

Tcl implies that in every society there is at least one pair of people who knows each

other. This prediction is easy to check, and a demonstration that a society includes
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no such pair will a fortiori demonstrate violation of Tcl.
2

4 Interaction

Under the analogy of a court of law, in order to falsify a theory the plaintiff presents

evidence and a short argument claiming that the evidence violates a theory, and the

court bases its decision on the evidence and argument. In this section we relax the

definition of tractable falsifiability by allowing for interaction between the plaintiff

and the court – that is, we allow the court to present questions to the plaintiff, for

which he must give answers as part of the protocol. The court would then base its

decision on both the evidence and the plaintiff’s answers to the court’s questions.

The possibility of interaction enlarges the set of theories that are falsifiable in a

short amount of time. Interaction also might provide a way to think about academic

dialogue and peer review. For example, suppose some researcher were to produce

evidence that he claims is incompatible with some prediction of Einstein’s theory.

In addition to presenting this evidence, he may also be challenged by his peers and

will have to provide an argument to defend his claim. If the researcher successfully

counters these challenges this could count as strong evidence that his claim against

Einstein’s theory is valid. This is the essence of interaction.

With interaction, there is a need to specify the protocol for both the court and the

plaintiff, which we model using a two-party protocol. A two-party protocol consists of

two alternating algorithms that map a common input x and the history of messages

thus far to a next message. More formally, what we mean by interaction of an

algorithm V with an algorithm P on common input x is a sequence of messages

x0, y0, x1, x2, . . . , xk, yk such that

x0 = x,

yi = V (x0, y0, x1, y1, . . . , xi−1) , and

xi = P (x0, y0, . . . , xi−1, yi−1) .

In the following we will also require that V run in polynomial time, and this will

include the requirements that k and the length of all messages are polynomial in |x|.
2A similarly demanding approach was taken by Chambers et al. (2011). They define a theory to

be completely falsifiable if every instance that violates the theory includes some finite data set that
reflects this violation.
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The output of the interaction is yk.

Definition 4.1 (interactively falsifiable theories) A theory T ⊆ {0, 1}∗ is

interactively falsifiable if for every ε > 0 there exists a two-party protocol with an

algorithm P and a probabilistic polynomial-time algorithm V such that the following

two conditions hold:

1. For every x /∈ T , the algorithm V outputs 1 with probability at least 1− ε after

interacting with P on common input x.

2. For every x ∈ T and algorithm P ∗, V outputs 0 with probability at least 1− ε

after interacting with P ∗ on common input x.

The algorithms V is called the interactive falsification protocol for T . The algorithm

P is called the argument or of the plaintiff.

The first requirement of Definition 4.1 states the completeness of the falsification

protocol: if x is indeed a falsification of T then the plaintiff has a way to convince the

court that T is wrong – namely, he follows the procedure P . The second requirement

states soundness: If x does not falsify the theory T , then regardless of the argument

P ∗ made by the plaintiff the court will not be convinced otherwise. Note that while

the court is limited to a polynomial time algorithm V , the plaintiff is not restricted.

Definition 4.1 is very close to the definition of interactive proofs, initially introduced

by Goldwasser et al. (1989) and Babai (1985), and characterized by the complexity

class IP (see Appendix).

To see the power of interaction, contrast the following with Example 3.2.

Example 4.2 The theories Tcl and TKRS from Examples 2.2 and 2.4 are interactively

falsifiable.

This holds because of the following observation.

Observation 4.3 If T is in NP then T is interactively falsifiable.

Many economic theories, particularly those claiming that behavior can be rational-

ized, are in the class NP (see also Chambers et al. (2011)). Observation 4.3 then

implies that these theories can be interactively falsified. The proof of Observation 4.3

makes use of a deep theorem in complexity theory proved by Shamir (1993), and we

therefore defer the proof to the appendix.
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5 Tractable Universe

The definitions of tractable falsifiability and interactive falsifiability are “worst-case”

definitions, in the sense that the falsification protocol must be short for any object

that contradicts a given theory. In this section we add another twist to our framework

and restrict our attention to objects that “typically” appear in the universe, and study

the implication of this restriction on falsifiability. Of course, an immediate difficulty is,

what is typical? This question is addressed by the theory of average-case complexity

initiated by Levin (1986).

Levin’s theory begins with the Church-Turing thesis. The Church-Turing thesis

was formulated in the beginning of the twentieth century following the work of var-

ious authors, most notably and Alan Turing and Alonzo Church, to formally define

the intuitive notion of effective computability. In its most simple form the hypothesis

identifies effective computability with Turing Machine computability. A more ex-

treme version states that the outcome of any physical process is a Turing computable

function possibly with appeal to pure randomness. There is an extensive literature

in philosophy about the ramification and implication of the physical Church-Turing

thesis. The Church-Turing thesis also appears in economic literature. For example

it is natural to assume that the choice of an economic agent, as the outcome of a

physical or cognitive process, is a computable function of the given set of choices.

Intuitively, the physical Church-Turing thesis implies that the universe can be sim-

ulated by a computer with unlimited time and memory resources and access to pure

randomness. Levin’s theory relies on a stronger version of the hypothesis, sometimes

called the Strong Church-Turing thesis, that the objects that appear in the universe

can be created in polynomial-time (in the size of their canonical description). We call

a universe that satisfies this assumption tractable.3

Recall that in order for a theory to be tractably falsifiable (Definition 3.1), for

every instance x that violates the theory there must be a way to demonstrate this

violation. In the following we modify the definition by requiring an argument only

against “typical” instances, which are those that can be produced in a tractable

universe. However, because we also assume some randomness in the universe, we

need to allow for a small probability that the universe does end up producing an

3The Strong Church-Turing thesis is challenged by quantum computers, which seems to be phys-
ically realizable in principle but cannot be simulated efficiently on a Turing Machine (Bernstein and
Vazirani (1997)).
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instance that violates the theory, even though this violation cannot be demonstrated.

We follow Levin’s theory of average-case complexity, which analyzes the complex-

ity of a decision problem according to the time it takes to answer it over instances that

are drawn from a distribution that can be sampled in polynomial time. The following

definition is very similar to Definition 3.1, except that the universe is restricted to

produce objects using some probabilistic polynomial-time algorithm A.

Definition 5.1 (tractably falsifiable theories in a tractable universe) A the-

ory T ⊆ {0, 1}∗ is tractably falsifiable in a tractable universe if for every probabilistic

polynomial-time algorithm A and every ε > 0 there exists a polynomial p(n) and a

polynomial-time algorithm V such that the following two conditions hold:

1. If x ∈ T then V (x, y) = 0 for every y ∈ {0, 1}∗.

2. If x = A(0n) then

P
(
x /∈ T and V (x, y) = 0 for all y ∈ {0, 1}∗ such that |y| ≤ p(n)

)
< ε,

where the probability is over the internal randomization of A.

While in standard (worst-case) complexity theory there are various conjectures

about the difficulty of problems, many of which are strongly believed to be true, the

world of average-case complexity is significantly more complex. Impagliazzo (1995)

considers various scenarios that are possible in terms of the average-case difficulty of

problems, and calls each a possible world. For our purposes, consider the world he

calls Heuristica. In this world problems in NP might be intractable in the worst-

case, but are still tractable on average when the input is randomly drawn from a

polynomial-time algorithm. Thus, for every probabilistic polynomial-time algorithm

A as in Definition 5.1 there exists an algorithm that determines whether an output

of A is in T with running time which is, with high probability, polynomial.

With the weaker definition of tractable falsifiability stated in Definition 5.1 we get

the following example, which once again stands in contrast to Example 3.2.

Example 5.2 In Heuristica, the theories Tcl and TKRS from Examples 2.2 and 2.4

are tractably falsifiable in a tractable universe.

This holds because of the following observation:
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Observation 5.3 In Heuristica, every theory that is in NP is tractably falsifiable

in a tractable universe.

Proof: Fix A and ε as in Definition 5.1, and let q be a polynomial and B be

an algorithm for deciding membership T such that P
(
TIME(B, x) > q(n)

)
< ε for

x = A(0n), where TIME(B, x) is the running time of B on x. Such an algorithm

B exists in Heuristica. Let V (x, y) = B(x) if TIME(B, x) ≤ q(n) and V (x, y) = 0

otherwise.

A Definitions from Computational Complexity

In this section we briefly and somewhat informally provide the computational com-

plexity background used in this paper. See Goldreich (2008) or any other textbook

on computational complexity for further details.

While in this paper we study theories, as defined in Definition 2.1, the standard

nomenclature for the same object in the field of computational complexity is called

a decision problem. The corresponding problem is to decide, for a given input x ∈
{0, 1}∗ whether x ∈ T . For every code x ∈ {0, 1}∗ we denote its length by |x|. An

algorithm A is called polynomial-time algorithm if Time(B, x) < p(|x|) for every x ∈
{0, 1}∗ where Time(B, x) is the running time (more specifically, number of operations)

of B on x.

A decision problem T is in the class P if there is a polynomial-time algorithm A

such that that, for any input x ∈ {0, 1}∗, A(x) = 1 if and only if x ∈ T .

A decision problem T is in the class NP if there exists a polynomial p(n) and a

polynomial-time algorithm V such that the following two conditions hold:

1. For every x ∈ T there exists a y ∈ {0, 1}∗ of length at most p(|x|) such that

V (x, y) = 1.

2. For every x /∈ T and every y ∈ {0, 1}∗ it holds that V (x, y) = 0.

Roughly, this is the class for which there is a polynomial-time algorithm that verifies

that x ∈ T with the aid of a witness y. Clearly P ⊆ NP . The widely believed

assumption that P = NP is at the core of computational complexity theory.

The hardest problems in NP are called NP-complete. We don’t provide the

formal definition here since we don’t make use of the concept of NP-completentess
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in our definitions, but we use of the fact that the decisions problems in Examples 2.2

and 2.4 are NP-complete.

The class coNP is the class of complements of decision problems in NP – it

contains those decision problems {{0, 1}∗ \ T : T ∈ NP}. Definition 3.1 characterizes

this class. It is widely believed that NP 6= coNP . This assumption is stronger than

P 6= NP . (Indeed, if P = NP then P = NP = coNP since the class P is closed

under complement.)

B Proof of Observation 4.3

The proof makes use of a non-trivial theorem of complexity theory. Before describing

the theorem we define two additional complexity classes: PSPACE and IP .

The class PSPACE contains all decision problems T for which there is an algo-

rithm that, on any input x, determines whether or not x ∈ T , and such that the

following holds: The number of bits of memory used by the algorithm must be at

most polynomial in |x|. It is easy to verify that NP ⊆ PSPACE .

A decision problem T ⊆ {0, 1}∗ is in the class IP if for every ε > 0 there exists a

two-party protocol with an algorithm P and a probabilistic polynomial-time algorithm

V such that the following two conditions hold:

1. For every x ∈ T , the algorithm V outputs 1 with probability at least 1− ε after

interacting with P on common input x.

2. For every x /∈ T and algorithm P ∗, V outputs 0 with probability at least 1− ε

after interacting with P ∗ on common input x.

Shamir (1993) proved that the classes IP and PSPACE are identical. We use

Shamir’s theorem in the proof of Observation 4.3.

Proof of Observation 4.3: According to definition 4.1, a theory T is interactively

falsifiable if and only if its complement is in IP . Indeed, an interactive proof that

x /∈ T can be viewed as an interactive proof that x ∈ T c, and vice versa. Shamir

(1993) proved that the classes IP and PSPACE are equal. Since PSPACE is closed

under complement, it follows that a theory is interactively falsifiable if and only if it

is in PSPACE . The observation follows from the fact that NP ⊆ PSPACE .
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