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Ronen Gradwohl†

Abstract

In most implementation frameworks, agents care only about the outcome

and not at all about the way in which it was obtained. Additionally, typical

mechanisms for full implementation involve the complete revelation of all pri-

vate information to the planner. In this paper I consider the problem of full

implementation with agents who may prefer to protect their privacy. I analyze

the extent to which privacy-protecting mechanisms can be constructed under

various assumptions about agents’ predilection for privacy and the permissible

game forms.

Keywords: Nash implementation, subgame perfect implementation, privacy.

1 Introduction

The recent privacy-related charges made by the Federal Trade Commission against

Facebook and Google are typical examples of individuals’ growing concerns about the

exposure of their private information. These concerns, however, are not specific to

the case of digital privacy and actually arise in many diverse strategic situations. For

example, a cabinet member who casts a vote in a cabinet meeting may care about the

actual effect of his vote, but if the position he prefers is perceived as unfavorable by

his constituents, he may be hesitant to expose his preference. A buyer who negotiates

the trade of a good with a seller may prefer to keep his valuation of the good private,
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because revelation of this information may weaken his bargaining position in future

dealings with other sellers. An individual who testifies in a court of law or participates

in a government hearing may wish to keep certain information private if it casts him

in an unfavorable light or causes him some embarrassment. In all these examples,

individuals are concerned not only with the final material outcome of their actions,

but also with the private information that is revealed in the course of interaction.

The core of this paper is a model in which agents have such information-sensitive

preferences—they care not only about the outcomes of an interaction, but also about

the type and amount of private information that is revealed. There are many reasons

agents might care about such information revelation: for example, the information

that is potentially revealed may have material consequences in later interactions,

but it may be difficult to model all future interactions and determine how they are

affected by this information. Additionally, in some situations a planner may only have

control over a particular interaction, even if the information that is revealed in that

interaction may have material consequences for the agents in the future. So when a

planner designs a mechanism for his particular interaction, he must view the agents

as having information-sensitive preferences. In any case, such information-sensitive

preferences cannot be captured by standard models in economics or game theory.

The goal of this paper is twofold. First, it highlights the subtleties involved in

modeling and reasoning about such information-sensitive preferences. And second,

it initiates a study of implementation for agents with such preferences—it delineates

the line between what is possible and what is impossible, and in particular contrasts

this with implementation in the standard setting.

More specifically, in this paper I study the strategic effects of information-sensitive

preferences in the context of full implementation1 with complete information. With

complete information, agents already know each other’s private information, so all

privacy concerns are vis-à-vis the planner and other outside observers. In this frame-

work, the presence of information-sensitive preferences introduces two issues into the

theory of implementation: The first is that known mechanisms for full implemen-

tation may no longer work, since the set of equilibria under information-sensitive

preferences may be different from the set of equilibria under standard preferences.

1With full implementation, the desideratum is a mechanism in which all equilibria lead to so-

cially optimal outcomes. For various surveys of this vast literature, see Jackson (2001), Maskin and

Sjöström (2002), or Palfrey (2002). The case of partial implementation, in which only one equilib-

rium must lead to a socially optimal outcome, is also affected to some degree by the presence of

information-sensitive preferences—see Section 6.1.
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The second issue arises from the observation that in most known mechanisms for full

implementation, all private information is revealed.2 But if agents prefer to keep their

information private, it may be desirable to design mechanisms that preserve privacy

to some extent.

In this paper I examine both of the following questions: Are there mechanisms

that are information-sensitive implementations, in which all equilibria with respect

to information-sensitive preferences achieve a social optimum? And are there mecha-

nisms that are privacy-protecting, in which some equilibria reveal none of the agents’

private information other than what is implied by the outcome itself?

Observe that the first question is not specifically about privacy, but rather about

information-sensitive preferences more generally. In particular, this question and the

answers that will follow apply also in settings where agents want to disclose some

or all of their private information. The second question is specific to privacy, and

an assumption that will underlie some of the answers is that agents prefer privacy.

However, the possibility results for this question can actually be extended to a setting

in which agents have more nuanced preferences over what information is revealed and,

in particular, to a setting in which they want to reveal some or all of their private

information.3

A Simple Example To illustrate the difficulties of implementation with information-

sensitive preferences, as well as provide an overview of the results of this paper, I

describe a simple example with three agents and two alternatives {0, 1}. Each agent

can be one of two types {t0, t1}, where type ti intrinsically prefers outcome i to

outcome 1 − i. This means that type ti prefers outcome i to 1 − i when all pri-

vate information—namely, the profile of all players’ types—is revealed. Furthermore,

agents’ information-sensitive preferences are such that, for any fixed outcome, they

strictly prefer that their true type not be revealed, regardless of the information re-

vealed about other players’ types. That is, they prefer both privacy, in which the

planner does not learn their true type, and deception, in which the planner incor-

rectly learns their type, to the true revelation of their type. I will later specify the

agents’ information-sensitive preferences when the outcome is not fixed.

Suppose a planner wishes to implement the majority of agents’ intrinsic prefer-

ences. He may design a simple voting mechanism: each agent reports an action that

2See, for example, Maskin (1999) and Moore and Repullo (1988).
3Section 6.2 discusses this extension.
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can be 0 or 1, and the outcome is the majority of the actions. Suppose also that the

planner expects agents to vote truthfully—they vote for i if their type is ti. Now,

voting truthfully is an equilibrium with standard preferences, but is it an equilibrium

with information-sensitive preferences?

When preferences are information sensitive, equilibria relate to both the outcomes

and revealed information as follows. For each profile of types, each action profile

corresponds to a pair (a, S), where a is the outcome obtained by the action profile and

S is the set of possible types that the planner believes are possible. An equilibrium is

then a strategy profile in which the pairs (a, S) obtained in equilibrium are preferred

by all agents to pairs (b, T ) obtained by unilateral deviations. But where do the sets

of possible types come from? Suppose that agents play a strategy profile s, and some

action profile is realized. Then the set of possible types consists of all type profiles R

that could have led to the realized action profile.

In the majority example, the profile in which agents always vote truthfully leads

to full revelation of information, since any realized action profile uniquely identifies

all agents’ types. However, this is not an equilibrium. To see this, suppose all agents

are of type t0. Then one agent’s unilateral deviation will not change the outcome,

since the majority will still be 0. However, a unilateral deviation by an agent will

lead to a different set of possible types in which the planner incorrectly believes this

agent is of type t1. Agents prefer deception over revelation, and so this deviation is

profitable.

An additional problem with the simple voting mechanism is that it is not a full

implementation—there are other strategy profiles that are equilibria but that do not

yield the majority. A simple example is the profile in which all agents always vote

for 0.

To address both of these difficulties, one might turn to more-complex mechanisms.

Maskin (1999) shows that under some conditions that are satisfied in the majority

example, his mechanism is a full implementation. But is it a full implementation also

with information-sensitive preferences? It turns out that under a mild assumption

about the planner’s beliefs at action profiles that are not reachable in equilibrium,

truthfulness is an information-sensitive equilibrium of this mechanism.4 However,

4The difficulty is that a unilateral deviation may lead to an action profile that is not reachable in

equilibrium, and so the planner may be unable to invert this off-equilibrium profile and derive the

possible types. The mild assumption—called one-deviation consistency—is roughly the following:

For an off-equilibrium action profile that is “close” to the equilibrium path in the sense that it is

reachable by type profiles belonging to a set U but allowing for a unilateral deviation, the set of
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whether or not there are other, undesirable equilibria depends on some aspects of

agents’ information-sensitive preferences that I have not yet specified. While agents

prefer privacy over revelation when the outcome is fixed, what is their preferences when

it is not? In particular, does type ti prefer outcome i with revelation of information

or outcome 1 − i with privacy? If he prefers the latter, then full implementation is

impossible, and there will always be equilibria that do not yield the majority. This is

formalized in Proposition 3.1, which shows that without restrictions on information-

sensitive preferences, implementation by any mechanism may be impossible. If type

ti prefers outcome i with revelation, however, then the mechanism of Maskin (1999)

is a full implementation. This is a consequence of Proposition 5.1. In fact, that

proposition shows that if agents’ preferences are such that they are willing to re-

veal their private information for some better outcome, then full implementation is

possible with information-sensitive preferences whenever it is possible with standard

preferences.

Even if the mechanism of Maskin (1999) works, however, there is still a problem:

In that mechanism, agents must reveal all their private information. But do there

exist mechanisms for full implementation of majority that do not reveal information

beyond the outcome? Theorem 4.2 shows that this is impossible. Furthermore,

under some conditions, the unique non-constant social-choice function that can be

implemented while protecting privacy is the dictatorship function.

However, not all is lost. If we allow for extensive-form mechanisms, in which

communication proceeds in stages, then such privacy-protecting implementation of

majority becomes possible. The possibility result is quite strong: Theorem 5.2 shows

that with extensive-form mechanisms, privacy-protecting implementation is possible

whenever implementation with standard preferences is possible.

Related Literature While in standard economic and game theoretic models agents

have preferences only over material outcomes, there are two strands of the literature

that consider agents who care also about the private information that is revealed. The

literature on social image, including Bernheim (1994), Glazer and Konrad (1996), and

Ireland (1994), studies the behavioral effects of agents’ concerns for how they are per-

ceived by others. The more general literature on psychological games studies agents

who, in addition to being concerned with physical outcomes, also care about their

possible types can be any nonempty subset of U . For all other action profiles, the set of possible

types is unrestricted. See Section 2.4 for details.
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beliefs and the beliefs of others (Geanakoplos et al. (1989)). However, while the

modeling of agents in these literatures is related to this paper’s model of agents with

information-sensitive preferences, their aims are very different. In particular, these

areas of research are typically not concerned with the problem of designing mecha-

nisms for such agents, but rather with the study of various behavioral phenomena

resulting from such agents’ preferences.

Preferences that are not only over outcomes do appear in two implementation

frameworks. Glazer and Rubinstein (1998) study an implementation problem in which

agents may be motivated not only by the material outcomes of their actions, but also

by the desire to have their own recommendation accepted. Matsushima (2008a,b) and

Dutta and Sen (2012) study the problem of full implementation when agents have a

strict preference for honesty when the resulting material outcome is not worsened.

The desire to control information transmission is also present endogenously and

implicitly in many models of repeated interactions. In such interactions, agents play

a strategy that balances between myopic payoff maximization and information revela-

tion that may potentially lead to a lower payoff in the future. This theme is prevalent

in the literature on dynamic mechanism design (c.f. Vohra (2012); Pavan et al. (2012)).

The current paper is related in that it is also partly motivated by agents’ concerns

about revealing information that may impact later interactions. However, it is differ-

ent in that it models such concerns exogenously, taking the position that it is often

both impractical and unrealistic to model all future interactions. In fact, realistically

it often seems difficult to justify a model in which both the designer and the agents

have complete knowledge of all future interactions.

Also related is work by Calzolari and Pavan (2006b,a), who examine the problem

of the optimal information disclosure policy in two-stage interactions. In some settings

they show that privacy is, in fact, an optimal policy for the principal. However, while

these papers do study the interplay between information disclosure and economic

interaction, the preference for privacy is solely the principal’s—the agents are assumed

to have standard preferences over outcomes.

Finally, this paper is related to a vast literature on privacy in computer science,

particularly to privacy concerns in cryptography and to the newer study of differential

privacy (Dinur and Nissim (2003)). These have been applied to strategic settings: for

example, Naor et al. (1999) design a cryptographic system for guaranteeing privacy in

auctions, and McSherry and Talwar (2007) utilize the tools of differential privacy to

design economic mechanisms. However, in these applications, agents are not modeled
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as caring about privacy. That is, all these applications achieve some goal privately,

but only when agents do not care about privacy. Once agents have preferences that

depend on the information that is revealed, these applications can break down.

A number of more recent works do model agents’ predilection for privacy explicitly

by including a cost incurred by agents when some or all of their information is revealed.

Miltersen et al. (2009) focus on the cryptographic implementation of a first-price

auction when agents have marginal privacy concerns. Ghosh and Roth (2011) study

the design of markets for selling privacy. Xiao (2011) studies the question of whether

differential privacy is sufficient for truthful revelation of private information. Nissim

et al. (2012) and Chen et al. (2011) consider a more general mechanism design problem

in which agents are concerned about the information leaked by the outcome of a

mechanism, and where all communication is hidden by perfect cryptography or a

trusted third party.

While the motivation for these papers is similar to some of the motivation un-

derlying the current paper, they are quite distinct. These papers all assume that

communication is perfectly hidden by cryptography, and there are many situations

in which the use of such technology is not feasible. For example, the US Senate and

House of Representatives conduct many recorded votes each year, in which the votes

of all participants are publicized. When a buyer makes an online purchase, the vendor

is generally aware of this purchase. When an individual testifies in a court of law, his

testimony is heard by all present. In such cases many of the cryptographic tools are

not applicable.

Furthermore, Nissim et al. (2012) and Chen et al. (2011) utilize tools from differ-

ential privacy to obtain mechanisms that do not reveal much of the agents’ private

information. There are two inherent features of such tools that make them inapplica-

ble in many settings. First, they only apply when the number of agents is very large.

Second, these mechanisms are randomized and do not always correctly implement

the social choice function. In this sense they are close to the notion of virtual imple-

mentation of Abreu and Sen (1991). Unlike that notion, however, the approximation

obtained is not arbitrarily close, but rather becomes close only as the number of

agents becomes large. For a fixed number of agents, the mechanisms of Nissim et al.

(2012) and Chen et al. (2011) could yield a suboptimal outcome with non-negligible

probability.

Finally, in terms of the setting for implementation, the works of Nissim et al.

(2012) and Chen et al. (2011) are incomparable to the current paper. The former
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consider partial implementation in dominant strategies in a setting with incomplete

information and cardinal preferences, whereas the current paper examines full im-

plementation in Nash and subgame perfect equilibrium in a setting with complete

information and ordinal preferences.

Organization The rest of the paper is organized as follows. Section 2 presents

the model. Sections 3 and 4 contain impossibility results—in the former I show that

without restrictions on agents’ privacy concerns there can be no implementation, and

in the latter I show that, even with restrictions, almost nothing can be implemented

in a privacy-protecting manner with normal-form mechanisms. Section 5 contains

possibility results on information-sensitive and privacy-protecting implementation,

and Section 6 contains further extensions of the model and results. Finally, the

Appendix contains all proofs that do not appear in the main body of the text.

2 The Model

N denotes a finite set of agents and also, with a slight abuse of notation, its cardinality.

O denotes a possibly infinite set of outcomes.

2.1 Preferences and Social Choice Correspondences

We begin with the usual setup of agent preferences, but because these standard

preferences will be extended we refer to them as the intrinsic preferences. The intrinsic

preferences of an agent i are represented by a complete, transitive, binary relation Ri

over O, where aRib if agent i weakly prefers outcome a ∈ O over outcome b ∈ O.

Strict preference is denoted by Pi, and TRi(R) = {a ∈ O : aRib ∀b ∈ O} is the set

of top-ranked alternatives for i under R. Denote by R = (R1, . . . , RN) an intrinsic

preference profile, and by (R−i, Ri) the intrinsic preference profile R in which agent

i’s intrinsic preferences are replaced by Ri. Finally, denote by R the set of admissible

profiles of intrinsic preferences.

A social choice correspondence (SCC) F : R � O is a mapping from a profile R

of intrinsic preferences to a set of outcomes. An SCC is called a social choice function

(SCF) if the range is always a singleton, i.e., if F : R 7→ O. In this case denote the

function by a lower case f . Denote by F (R) the range of F when the domain is R,

namely F (R) = ∪R∈RF (R). Finally, an SCC F is constant if there exists some a ∈ O
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such that a ∈ F (R) for all R ∈ R, and otherwise F is non-constant.

For a given SCC F and an outcome a ∈ O, denote by R|a,F = {R ∈ R : a ∈
F (R)}. This is the set of profile preferences for which a is a possible outcome under

F . When F is clear from context I will simply denote this set as R|a.
In this paper I extend preferences by adding privacy concerns for the agents.

Agents’ information-sensitive preferences depend not only on R, but also on a privacy

state ψ. More formally, each agent i has preferences Rψ
i that extend his intrinsic

preferences Ri, where Rψ
i is a complete, transitive, binary relation over O× 2R. The

first coordinate is an element of O, the outcome, and the second coordinate is a

subset of R, which I call the set of possible types. The set of possible types is the set

of intrinsic preference profiles that an outside observer (such as the planner) believes

are possible. For example, if a run of a mechanism reveals no information about the

intrinsic preferences, then the set of possible types is all of R. If a run of a mechanism

only reveals that the true intrinsic preferences R are such that a social choice function

f satisfies f(R) = a, then the set of possible types is R|a. If a run of a mechanism

reveals the true intrinsic preferences to be some R ∈ R, then the set of possible types

is {R}.
Now, for any agent i, any S, T ⊆ R, and any a, b ∈ O, it holds that (a, S) Rψ

i (b, T )

if and only if agent i weakly prefers outcome a and set of possible types S over outcome

b and set of possible types T . Denote by Pψ
i the strict part of Rψ

i .

The relation between information-sensitive preferences of an agent and his intrinsic

preferences is that the latter are his preferences over outcomes when all intrinsic

information is revealed. Formally, I will write the intrinsic preferences as aRib or

aRψ
i b, and this will be equivalent to (a, {R}) Rψ

i (b, {R}). An implication of this is

the following. Denote the set of all admissible privacy states by Ψ. Now, for any

i ∈ N , any ψ, ψ′ ∈ Ψ and any R ∈ R, it should be the case that (a, {R}) Rψ
i (b, {R})

if and only if (a, {R}) Rψ′

i (b, {R}). That is, the intrinsic preferences Ri completely

determine the agent’s preferences when all information about intrinsic preferences is

revealed, and the privacy state ψ extends these preferences to the full domain O×2R.

Observe that this extended framework is a strict generalization of the standard

framework, since one can model agents as not caring about privacy. Any agent i can

express an unconditional preference of outcome a over b by preferring the pair (a, S)

over (b, T ) for all sets S and T . Denote by o the privacy state in which this is the

case. Formally, for every i ∈ N , every R ∈ R, every S, T ⊆ R, and any a, b ∈ O, it

holds that (a, S)Ro
i (b, T ) if and only if aRo

i b.
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In the remainder of the paper I will sometimes refer to Rψ as the state.

2.2 Mechanisms

A mechanism is an extensive-form game, together with a mapping from terminal

histories to elements of O. Formally:

Definition 2.1 (mechanism) An N-person mechanism is a tuple (H,A, g) where

• H is a set of (finite) history sequences such that the empty word ε ∈ H. A

history h ∈ H is terminal if {a : (h, a) ∈ H} = ∅. The set of terminal histories

is denoted Z.

• A = (A1, . . . , AN), where each Ai is a function that, for every non-terminal

history h ∈ H \ Z, assigns a set Ai(h) of actions available to agent i, where

(h, a) ∈ H for all a ∈ A1(h)× . . .× AN(h).

• g : Z 7→ O is a function that maps terminal histories to outcomes.

A mechanism is called a normal-form mechanism if all non-empty histories are ter-

minal.

2.3 Strategies

A strategy si of agent i in a mechanism (H,A, g) is a function that maps any pair

(Rψ, h) to an action from Ai(h). Denote by s = (s1, . . . , sn) a profile of strategies,

by s(Rψ) the profile of strategies in state Rψ, and by H(s(Rψ)) the terminal history

reached when the profile s is played in state Rψ.

An Rψ-deviation from a strategy si by an agent i is a strategy s′i that agrees with

si in every state except Rψ. Formally, s′i(R
ψ
, h) = si(R

ψ
, h) for all h and R

ψ 6= Rψ.

In state Rψ the strategy s′i may be different from si. Denote by s−i ◦ s′i the strategy

profile in which agent i plays s′i and agents j 6= i play sj. Also, denote by s(Rψ)|h
the profile of strategies s in the subgame rooted at h when the preference profile is

Rψ, and by H(s(Rψ)|h) the terminal history reached with this profile in the subgame

rooted at h.
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2.4 Equilibria

We begin with an informal description of equilibria in normal-form mechanisms. This

is followed by formal definitions for both normal-form and extensive-form notions.

In the usual setup, each pure strategy profile corresponds to an outcome dictated

by the mechanism. A (pure) Nash equilibrium is then a profile in which no agent

has a profitable unilateral deviation. In our setup, however, each strategy profile will

correspond to a pair—an outcome a and a set of possible types S. An equilibrium

will then be a strategy profile in which no agent can unilaterally deviate to obtain a

more favorable pair (b, T ).

The outcomes a and b are determined by the function g of the mechanism. But

where do the sets of possible types S and T come from? The following is motivated

by the notion of a perfect Bayesian equilibrium. Suppose that in some mechanism

agents play a strategy profile s, that the privacy state is some ψ, and that some action

profile is realized. Then the set of possible types at this action profile is{
R : s(Rψ) leads to the realized action profile

}
.

That is, on the path of a profile s, the set of possible types is precisely the set of

preferences that lead to the realized action profile.

Next, what is the set of possible types at action profiles that cannot be reached by

the strategy profile s? This question is similar to the question of off-equilibrium beliefs

in perfect Bayesian equilibrium. In this paper I will typically make a weak restriction

on these “off-equilibrium beliefs,” called one-deviation consistency. Roughly, one-

deviation consistency requires that if an action profile cannot be reached by s, but

can be reached by a unilateral deviation from s, then the set of possible types is

a nonempty subset of all the states from which a unilateral deviation from s leads

to that action profile. One-deviation consistency does not at all restrict the set of

possible types at histories that cannot be reached by s or by a unilateral deviation

from s.

To formalize the discussion above fix a normal-form mechanism (H,A, g) and

suppose that the privacy state is some ψ, that the agents play a strategy profile s,

and that the terminal node reached is some z ∈ Z. Then define the sets

Lψ(z, s) = {R ∈ R : H(s(Rψ)) = z}

and

LDψ(z, s) = {R ∈ R : H(s−i◦s′i(Rψ)) = z for some i ∈ N and strategy s′i of agent i}.

11



Note that both L and LD may be empty for terminal histories that cannot be

reached by s or a deviation from s. The sets L and LD characterize the preferences

that are feasible under the restrictions that agents play a known strategy profile or

when only one agent deviates.

Next, we define the set of possible types PT. For each z, s, and ψ define PTψ(z, s)

to be a subset of R that satisfies the following:

(i) If Lψ(z, s) 6= ∅ then PTψ(z, s) = Lψ(z, s).

The set of possible types PT is one-deviation consistent at ψ if the following is also

satisfied:

(ii) For all z and s, if LDψ(z, s) 6= ∅, then PTψ(z, s) 6= ∅ and PTψ(z, s) ⊆ LDψ(z, s).

Note that PT sets that are one-deviation consistent always exist—in particular,

one can take PTψ(z, s) = Lψ(z, s) for all s, ψ, and z on the equilibrium path, and

PTψ(z, s) = LDψ(z, s) for z off the equilibrium path.

We now define one notion of equilibrium that we will use—a variant of Nash equi-

librium, broadened to allow for preferences over both outcomes and sets of possible

types.

Definition 2.2 (information-sensitive Nash equilibrium) A profile of strategies

s in a mechanism (H,A, g) is an information-sensitive Nash equilibrium at ψ if for ev-

ery i ∈ N , R ∈ R, Rψ-deviations s′i of agent i, and all sets PT that are one-deviation

consistent at ψ (
g(z),PTψ(z, s)

)
Rψ
i

(
g(z′),PTψ(z′, s)

)
,

where z = H(s(Rψ)) and z′ = H(s−i ◦ s′i(Rψ)).

We now define the subgame perfect variant of Definition 2.2. For this, suppose the

mechanism (H,A, g) is not a normal-form mechanism. We first extend our restrictions

on PT to a dynamic setting by defining sets PTh for every nonterminal h ∈ H.

Suppose that the privacy state is some ψ, that the agents play a strategy profile

s, and that the terminal node reached is some z ∈ Z. Then define the sets

Lψh (z, s) = {R ∈ R : H
(
s(Rψ)|h

)
= z}

and

LDψ
h (z, s) = {R ∈ R : H

(
s−i ◦ s′i(Rψ)|h

)
= z for some i ∈ N and strategy s′i of agent i}.
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Next, we define the set of possible types PT. For each z, s, ψ, and h, the set

PTψ
h (z, s) is a subset of R that satisfies the following:

(i) If Lψh (z, s) 6= ∅ then PTψ
h (z, s) = Lh(z, s).

The set of possible types PT is one-deviation consistent at ψ if the following is also

satisfied:

(ii) For all z, s, and h, if LDψ
h (z, s) 6= ∅, then PTψ

h (z, s) 6= ∅ and PTψ
h (z, s) ⊆

LDh(z, s).

We now define the second notion of equilibrium that we will use. Observe that this

definition, when applied to a normal-form mechanism, is equivalent to Definition 2.2.

Definition 2.3 (information-sensitive subgame perfect equilibrium) A profile

of strategies s in a mechanism (H,A, g) is an information-sensitive subgame perfect

equilibrium at ψ if for every i ∈ N , R ∈ R, nonterminal h ∈ H, Rψ-deviations s′i of

agent i, and all sets PT that are one-deviation consistent at ψ(
g(z),PTψ

h (z, s)
)
Rψ
i

(
g(z′),PTψ

h (z′, s)
)
,

where z = H(s(Rψ)|h) and z′ = H(s−i ◦ s′i(Rψ)|h).

The relation between Definition 2.3 and the standard notion of a subgame perfect

equilibrium (SPE) is the following: a profile s is an information-sensitive subgame

perfect equilibrium at privacy state o if and only if for every profile of preferences

R ∈ R, the strategy profile s(Ro) is a (standard) SPE.

2.5 Implementation

The standard setting A mechanism (H,A, g) is a subgame perfect implementa-

tion of an SCC F if for every R ∈ R the set of outcomes obtained by subgame perfect

equilibria of (H,A, g) is equivalent to F (R).

Abreu and Sen (1990) show that the following condition is necessary for imple-

mentation in SPE:

Definition 2.4 (Condition α) An SCC F satisfies Condition α if for all R,R ∈ R
and outcomes a ∈ F (R)− F (R) there exist a sequence of agents j(0), . . . , j(`) and a

sequence of outcomes a = a0, a1, . . . , a`, a`+1 such that
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(i) akRj(k)ak+1; k = 0, . . . , `

(ii) a`+1P j(`)a`

(iii) ak 6∈ TRj(k)(R) for k = 0, . . . , `

(iv) if a`+1 ∈ TRi(R) for all i 6= j(`), then either ` = 0 or j(`− 1) 6= j(`).

Abreu and Sen (1990) also show that Condition α, together with no veto power,

is sufficient for subgame perfect implementation5.

Definition 2.5 (no veto power (NVP)) An SCC F satisfies no veto power (NVP)

if the following holds for every R ∈ R and a ∈ O: if a ∈ TRi(R) for at least N − 1

agents i, then a ∈ F (R).

Implementation with privacy With privacy concerns, our definition of information-

sensitive implementation of an SCF6 f (Definition 2.6 below) states that for every

Rψ, the outcome obtained by information-sensitive subgame perfect equilibria should

always be f(R). In order to facilitate the modification to privacy-protecting im-

plementation and a strengthening of the definition in Section 6.3, however, we split

the definition into parts. Observe that Definition 2.6 is identical to subgame perfect

implementation in the standard setting when the privacy state ψ = o.

Definition 2.6 (information-sensitive implementation) A mechanism (H,A, g)

is an information-sensitive subgame perfect implementation of an SCF f at ψ if:

1. There exists a strategy profile s∗ for which the following hold:

(a) s∗ is an information-sensitive subgame perfect equilibrium at ψ, and

(b) g(H(s∗(Rψ))) = f(R) for all R ∈ R.

2. For all R ∈ R and strategy profiles s that form an information-sensitive subgame

perfect equilibrium at ψ, it holds that g(H(s(Rψ))) = f(R).

5Vartiainen (2007) gives conditions for subgame perfect implementation that are both necessary

and sufficient.
6I focus on implementations of SCFs and not SCCs for simplicity. In Section 6.5 I extend this

discussion to SCCs.
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Observe that in bullet 2 of Definition 2.6 it is implicitly assumed that the planner

knows which strategy profile is being played. This is implicit in the fact that s forms

an information-sensitive subgame perfect equilibrium, which, by definition, involves

the sets PT that are derived from the profile being played and the observed history.

This may be a strong assumption in some settings, and so in Section 6.3 I provide a

stronger definition of implementation that dispenses with this assumption.

Next, since we wish to design mechanisms that also protect agents’ privacy, we

add the following element to our implementations.

Definition 2.7 (privacy-protecting implementation) A mechanism (H,A, g) is

a privacy-protecting implementation of an SCF f if it is an information-sensitive

implementation of f , and if the strategy profile s∗ guaranteed in Definition 2.6 also

satisfies the following:

1. (c) For all R,R ∈ R such that f(R) = f(R), it holds that H(s∗(Rψ)) =

H(s∗(R
ψ
)).

Condition 1(c) states that the terminal history H(s∗(Rψ)) could have been reached

by s∗ with any profile of preferences R
ψ

for which f(R) = f(R). Thus, the planner

or any outside observer who sees the outcome H(s∗(Rψ) cannot differentiate between

the true intrinsic preferences being R or R.

3 Restrictions on information-sensitive Preferences

This section discusses restrictions on information-sensitive preferences. I first show

that without any restrictions there may be no information-sensitive implementation.

Proposition 3.1 Fix any set R of intrinsic preferences. For each i ∈ N and R ∈ R,

let Rψ satisfy the following:

(i) For any a, b ∈ O, it holds that (a,R)Rψ
i (b,R) if and only if aRib.

(ii) For any a, b ∈ O and set S ( R, it holds that (a,R)Pψ
i (b, S).

Then at ψ there does not exist an information-sensitive subgame perfect implementa-

tion of any non-constant SCF.
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The preferences of agents in the proposition are the same as their intrinsic prefer-

ences when no information is revealed. The preferences may also be the same as the

intrinsic preferences when some information is revealed. However, the key difficulty

with these preferences is that regardless of the outcome, each agent strictly prefers

no information to be revealed than some information to be revealed.

Restrictions on information-sensitive preferences Because of the impossi-

bility of implementation with information-sensitive preferences implied by Propo-

sition 3.1, we will restrict the preferences of agents. We will consider two main

restrictions. The first is that of lexicographic preferences: roughly speaking, prefer-

ences are lexicographic if agents care about privacy only insofar as the outcomes are

unaffected. In other words, agents are willing to forego all privacy if they can obtain

a more favorable outcome. However, if the outcome is unaffected, they may prefer to

reveal as little information as possible.

Definition 3.2 (lexicographic preferences) ψ is lexicographic if for any i ∈ N ,

R ∈ R, and sets S, T ⊆ R, it holds that (a, S)Pψ
i (b, T ) whenever aPib.

The second restriction is that of minimal willingness to reveal (MWR). Roughly

speaking, preferences satisfy MWR if agents are willing to reveal all their information

for some outcome, and particularly for any top-ranked outcome.

Definition 3.3 (MWR preferences) ψ satisfies minimal willingness to reveal (MWR)

if for any i ∈ N , R ∈ R, and sets S, T ⊆ R, it holds that (a, S)Pψ
i (b, T ) whenever

both a ∈ TRi(R) and b 6∈ TRi(R).

For implementations that are privacy-protecting and not only information-sensitive,

we will need one more restriction on the preferences of agents. This restriction es-

sentially states that for any outcome that is implemented, agents weakly prefer full

privacy over full revelation of information.

Definition 3.4 (privacy favoring) ψ is privacy favoring with respect to an SCF f

if for each i ∈ N and R ∈ R it holds that

(a,R|a,f ) Rψ
i (a, {R}),

where a = f(R).
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4 Implementation with Normal-Form Mechanisms

Maskin (1999) shows that Maskin monotonicity (see Definition 4.4) is necessary for

implementation with normal-form mechanisms. As this condition is known to be

quite restrictive (c.f. Muller and Satterthwaite (1977); Saijo (1987)), there are various

relaxations of the problem that allow the theory to be more widely applicable. In

particular, the relaxations include restricting the domain of preferences, considering

a binary outcome space, and allowing for SCCs rather than SCFs (Postlewaite and

Wettstein (1989); Serrano (2004)). In this section I show that even if we allow the

first two relaxations, but do require some privacy, then implementation is once again

nearly impossible. In Section 6.5 I extend the impossibility results allowing even the

third relaxation.

I demonstrate the impossibility of privacy-protecting implementation with normal-

form mechanisms via two theorems. The first is the following:

Theorem 4.1 Fix any domain R with |R| ≥ 3 and any SCF f : R 7→ {0, 1}. Then

there exists a lexicographic ψ such that there is no normal-form mechanism that is a

privacy-protecting implementation of f at ψ.

The second impossibility result shows that even if agents do not care about pri-

vacy (i.e., ψ = o), privacy-protecting implementation is impossible. But first some

definitions: A domain R is pairwise rich if for every distinct i, j ∈ N and a 6= b ∈ O
there exists some R ∈ R such that aPib but bPja. Also, an SCF f is a dictatorship if

there exists an agent i such that f(R) ∈ TRi(R) for all R ∈ R.

Theorem 4.2 For any pairwise-rich R, if there exists a normal-form mechanism

that is a privacy-protecting Nash implementation of an SCF f : R 7→ {0, 1} at Ro,

then f is either constant or a dictatorship.

Theorem 4.2 is a corollary of Theorem 6.14 from Section 6.5, which essentially

states the same for SCCs. The theorem is proved by combining Lemmas 4.5 and 4.6

below, and uses the following definition:

Definition 4.3 (outcome monotonicity (OM)) An SCF f satisfies outcome mono-

tonicity (OM) if for any R ∈ R and outcome a 6= f(R), there exists an agent i ∈ N
and an outcome b ∈ O for which bP ia but aRib for all R ∈ R satisfying a = f(R).

This definition is similar to the well-known definition of Maskin monotonicity:
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Definition 4.4 (Maskin monotonicity (MM)) An SCF f satisfies Maskin mono-

tonicity (MM) if for any R,R ∈ R and outcome a satisfying a = f(R) and a 6= f(R),

there exists an agent i ∈ N and an outcome b ∈ O for which bP ia but aRib.

Observe that OM is strictly stronger than MM: OM requires a preference reversal

for all R satisfying a = f(R), which in particular implies this reversal for some R.

On the other hand, there are SCFs that satisfy MM but not OM: the Maj function

with strict preferences is such a function.

The two lemmas used in the proof of Theorem 4.2 are the following:

Lemma 4.5 If there exists a normal-form mechanism that is a privacy-protecting

implementation of an SCF f at Ro, then f satisfies OM.

Lemma 4.6 For any pairwise-rich R, a non-constant SCF f : R 7→ {0, 1} satisfies

outcome monotonicity if and only if it is a dictatorship.

5 Implementation with Extensive-Form Mechanisms

In this section I show that information-sensitive and privacy-protecting implementa-

tion are possible using extensive-form mechanisms. For information-sensitive imple-

mentation I have the following proposition:

Proposition 5.1 If there is a subgame perfect implementation of an SCF f : R 7→ O
that satisfies NVP and N ≥ 3, then there is an information-sensitive implementation

of f for any lexicographic ψ.

I then extend this proposition and prove the following theorem on the possibility

of privacy-protecting implementation:

Theorem 5.2 If there is a subgame perfect implementation of an SCF f : R 7→ O
that satisfies NVP and N ≥ 3, then there is a privacy-protecting implementation of

f for any lexicographic, privacy favoring ψ.

The proof of Theorem 5.2 is constructive—it describes a mechanism that is a

privacy-protecting implementation of f . While the mechanism is a bit intricate, the

main idea of the construction is the following. In the first stage of the mechanism,

agents attempt to coordinate on an outcome only, without revealing any additional
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private information. If there is no unanimous agreement, then the mechanism pro-

ceeds with a “contingency plan”—essentially, this is the information-sensitive imple-

mentation from Proposition 5.1, in which there is full information revelation. The

revelation of information here acts as a sort of “threat” against mis-coordination,

and in equilibrium this contingency plan is never invoked. If agents coordinate on an

incorrect outcome in the first stage, however, then there will be some agent who will

gain by deviating despite the full revelation of information that this will entail.

Proposition 5.1 and Theorem 5.2 provide possibility results for lexicographic ψ. A

necessary condition for these implementations is that there be an SPE implementation

of f . As Abreu and Sen (1990) show, a necessary condition for SPE implementation

is Condition α (see Definition 2.4). For implementation with MWR preferences, as

opposed to just lexicographic preferences, we need the following stronger condition:

Definition 5.3 (Condition αmax) An SCC F satisfies Condition αmax if it satisfies

Condition α but with (ii)′ replacing (ii):

(ii)’ a`+1 ∈ TRj(`)(R).

Condition α differs from Condition αmax in item (ii)—the former requires a preference

reversal, whereas the latter requires a preference reversal where one outcome becomes

top ranked.

The following proposition and theorem are the counterparts to Proposition 5.1

and Theorem 5.2 for MWR preferences:

Proposition 5.4 If N ≥ 3 and the SCF f : R 7→ O satisfies Condition αmax and

NVP, then there is an information-sensitive implementation of f for any MWR ψ.

Theorem 5.5 If N ≥ 3 and the SCF f : R 7→ O satisfies αmax and NVP, then there

is a privacy-protecting implementation of f for any MWR, privacy favoring ψ.

Remark 5.6 The mechanisms used for the theorems in this section utilize integer

games, which are quite unrealistic in real-life mechanisms. Note, however, that the

use of such games in our setting is inherited from the mechanisms of Maskin (1999)

and Moore and Repullo (1988) which this paper builds on, and without them the

results here would probably not be so general. The design of general mechanisms

that do not use such games is an open question even in the standard (no-privacy)

setting, and is a research agenda orthogonal to this paper. However, I believe that,

as in the works of Maskin (1999) and Moore and Repullo (1988), the ideas used in

our mechanisms will lead to more-realistic mechanisms in more-specific contexts.
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6 Extensions

6.1 Partial Implementation

For partial implementation, the desideratum is a mechanism in which some equi-

librium yields the socially optimal outcome. The corresponding privacy-protecting

variant is the following:

Definition 6.1 (partial information-sensitive implementation at ψ) A mech-

anism (H,A, g) is a partial information-sensitive implementation of an SCF f at ψ

if there exists a strategy profile s∗ for which the following hold:

(a) s∗ is an information-sensitive subgame perfect equilibrium at ψ, and

(b) g(H(s∗(Rψ))) = f(R) for all R ∈ R.

Definition 6.2 (partial privacy-protecting implementation at ψ) A mechanism

(H,A, g) is a partial privacy-protecting subgame perfect implementation of an SCF

f at ψ if it is a partial information-sensitive implementation, and if the guaranteed

strategy s∗ also satisfies the following:

(c) For all R,R ∈ R such that f(R) = f(R), it holds that H(s∗(Rψ)) = H(s∗(R
ψ
)).

In the standard setup, the following is a trivial mechanism for partial implemen-

tation with complete information:

• Each agent i submits an outcome ai ∈ O.

• If at least N − 1 agents agree on an outcome a, then the outcome is a.

• Otherwise, the outcome is some arbitrary element of O.

The strategy profile s∗ is for every agent i to submit the element ai = f(R) at R.

This is an equilibrium since no agent can alter the outcome. Note, however, that

this may not be a partial information-sensitive implementation for lexicographic ψ.

The problem is, what is the set of possible types following a unilateral deviation? For

example, consider some R and a such that f(R) = a. Then PTψ(a, . . . , a) = R|a. But

what about PTψ(b, a, . . . , a) for some b 6= a? Even if ψ is one-deviation consistent,

it is possible that PTψ(b, a, . . . , a) = S ( R|a. Furthermore, there is a lexicographic
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ψ for which (a, S)Pψ
i (a,R|a). In this case, agent 1 would have a profitable unilateral

deviation, and so the trivial mechanism may not be a partial implementation.

However, there is another mechanism that is a partial information-sensitive im-

plementation and which is not much more complicated:

Proposition 6.3 If N ≥ 3, then there is a partial information-sensitive implemen-

tation of f for any ψ.

The mechanism that achieves this implementation is the following:

• Each agent i submits a profile Ri ∈ R.

• If at least N − 1 agents agree on a profile R, then the outcome is f(R).

• Otherwise, the outcome is some arbitrary element of O.

The strategy profile s∗ is for every agent i to submit Ri = R at Rψ. This is an

equilibrium since no agent can alter the outcome nor the set of possible types by

a deviation. In particular, at any Rψ the set PTψ resulting from the equilibrium

strategy or from a unilateral deviation from it will always be {R}.
Observe that in the mechanism above, all private information is revealed. So what

about partial privacy-protecting implementation, in which only the outcome f(R) is

revealed, and not all of R? Here I have the following impossibility result:

Theorem 6.4 For any domain R with |R| ≥ 3 and any SCF f : R 7→ {0, 1} there

exists a lexicographic ψ that satisfies the following: there is no normal-form mecha-

nism that is a privacy-protecting implementation of f at ψ.

6.2 Information-Limiting Implementation

For privacy-protecting implementation the goal is to design a mechanism in which the

only information revealed is the outcome, and not any additional private information

beyond that. In this section we explore a more general notion in which agents may

wish to reveal some or all information.

First, observe that it is impossible to reveal any less information than what is

revealed in privacy-protecting implementation, while at the same time correctly im-

plementing an SCF. This is simply because the correct outcome, together with the

knowledge that it is the correct outcome, imply something about agents’ preferences—

namely, that the preferences are such that the SCF yields whatever outcome was
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implemented. Next, observe that the most information that can be revealed is the

entire set of preferences R. Thus, in this section we will consider implementation

with revelation of information that is anywhere from being as fine as full revelation

to as coarse as only revealing the outcome.

Now, it could be that in some profile of preferences R, an agent wants revelation

of information, whereas in another profile R he desires privacy—i.e., the observer is

unable to distinguish between R and R. However, these are clearly impossible goals to

achieve simultaneously (if in state R the observer learns the true state, then if he does

not learn it he can deduce that the state is not R, violating the privacy desideratum).

What can be achieved is the revelation and concealment of information according to

a partition of R. To that end, we will utilize the following notation: We will denote

by Π a partition of R and by Π(R) ⊆ R the element of Π that includes R.

Definition 6.5 (information-limiting implementation) A mechanism (H,A, g)

is an information-limiting implementation of an SCF f with respect to a partition

Π if it is an information-sensitive implementation of f , and if the strategy profile s∗

guaranteed in Definition 2.6 also satisfies the following:

1. (c) For all R ∈ R it holds that if R ∈ Π(R), then H(s∗(Rψ)) = H(s∗(R
ψ
)),

but if R 6∈ Π(R), then H(s∗(Rψ)) 6= H(s∗(R
ψ
)).

Condition 1(c) states that the terminal history H(s∗(Rψ)) could have been reached

by s∗ with any profile of preferences R
ψ

for which R ∈ Π(R). Thus, the planner or

any outside observer who sees the outcome H(s∗(Rψ) cannot differentiate between

the true intrinsic preferences being R or R. Unlike the case of privacy-protecting

implementation, however, the planner can differentiate between R and R satisfying

f(R) = f(R) if R 6∈ Π(R).

Before stating the theorem we need a couple of definitions. The first is an appro-

priate variant of privacy favoring ψ.

Definition 6.6 (Π-favoring) ψ is Π-favoring if for each i ∈ N and R ∈ R, it holds

that

(a,Π(R)) Rψ
i (a, {R}).

The next definition requires that the partition be a refinement of the partition

{R|a,f}a∈O. As discussed above, this is a necessary condition for implementation.
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Definition 6.7 (f-consistent) A partition Π is f -consistent if for each R ∈ R and

R ∈ Π(R), it holds that f(R) = f(R).

The information-limiting variant of Theorem 5.2 is the following:

Theorem 6.8 If there is a subgame perfect implementation of an SCF f : R 7→ O
that satisfies NVP and N ≥ 3, then there is an information-limiting implementation

of f with respect to an f -consistent partition Π for any lexicographic, Π-favoring ψ.

The information-limiting variant of Theorem 5.5 is the following:

Theorem 6.9 If N ≥ 3 and the SCF f : R 7→ O satisfies αmax and NVP, then

there is an information-limiting implementation of f with respect to an f -consistent

partition Π for any MWR, Π-favoring ψ.

6.3 When the Planner Does Not Know which Strategy Pro-

file Is Played

One of the implicit assumptions in the definitions of information-sensitive and privacy-

protecting implementation is that the planner knows the strategy profile being played.

That is, the second requirement of these definitions is that for all profiles s that form

an information-sensitive SPE, the outcome should be the same as dictated by f .

However, the notion of an information-sensitive SPE relies on the sets PT, which of

course depend on the profile s being played. Thus, a natural question is, what if the

planner does not know the profile s? Perhaps he has a probabilistic belief about the

profile s being played, or perhaps his uncertainty over which s is played is Knightian.

In such situations, we may want a stronger notion of implementation. In particular,

we may want the following requirement: for any profile s being played, if the outcome

is not the same as dictated by f , then some player should have a profitable deviation

from this profile regardless of the beliefs of the planner about the profile being played.

This is formally captured by bullet 2 of the following definition.

Definition 6.10 (strong information-sensitive implementation) A mechanism

(H,A, g) is a strong privacy-protecting subgame perfect implementation of an SCF

f at ψ if:

1. There exists a strategy profile s∗ for which the following hold:

(a) s∗ is an information-sensitive subgame perfect equilibrium at ψ, and
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(b) g(H(s∗(Rψ))) = f(R) for all R ∈ R.

(c) For all R,R ∈ R such that f(R) = f(R), it holds that H(s∗(Rψ)) =

H(s∗(R
ψ
)).

2. For all R ∈ R and strategy profiles s for which g(H(s(R))) 6= f(R), there exists

an agent i ∈ N , a history h ∈ H, and an Rψ-deviation s′i of agent i such that(
g
(
H(s−i ◦ s′i(Rψ)|h)

)
, T
)
Pψ
i

(
g
(
H(s(Rψ)|h)

)
, S
)

for all sets S, T ⊆ R.

Note that the proofs of Propositions 5.1 and 5.4, as well as Theorems 5.2 and 5.5

go through with this stronger definition of implementation.

6.4 Non-singleton Ψ

In this paper we mainly considered the situation in which R ∈ R was unknown to

the planner, but ψ was common knowledge. In this section I show how to extend our

positive results to the case in which ψ is also unknown to the planner, and only the

space of privacy types Ψ is known. The agents all know both R and ψ.

I first extend some of the definitions to handle a non-singleton Ψ. Let RΨ = {Rψ :

R ∈ R, ψ ∈ Ψ}. Recall that in a given mechanism (H,A, g), a pure strategy si of

agent i in a mechanism (H,A, g) is a function that maps any pair (Rψ, h) to an action

from Ai(h). Call a strategy si privacy independent if the strategy does not depend

on ψ, which means that si(R
ψ, h) = si(R

ψ′
, h) for all ψ, ψ′ ∈ Ψ and all h ∈ H.

A privacy-independent profile s is an information-sensitive subgame perfect equi-

librium at Ψ if it is an information-sensitive subgame perfect equilibrium at every

ψ ∈ Ψ. The definition of a privacy-protecting implementation is also modified ac-

cordingly:

Definition 6.11 (privacy-protecting implementation at Ψ) A mechanism (H,A, g)

is a privacy-protecting subgame perfect implementation of an SCF f at Ψ if:

1. There exists a privacy-independent strategy profile s∗ for which the following

hold:

(a) s∗ is an information-sensitive subgame perfect equilibrium at every ψ ∈ Ψ,

and
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(b) g(H(s∗(Rψ))) = f(R) for all R ∈ R and ψ ∈ Ψ.

(c) For all ψ ∈ Ψ and R,R ∈ R such that f(R) = f(R), it holds that

H(s∗(Rψ)) = H(s∗(R
ψ
)).

2. For all R ∈ R and strategy profiles s that form an information-sensitive subgame

perfect equilibrium at any ψ ∈ Ψ, it holds that g(H(s(Rψ))) = f(R).

The restrictions on information-sensitive preferences also directly translate to a

setting with non-singleton Ψ. In particular, Ψ is lexicographic/MWR/privacy favor-

ing if every ψ ∈ Ψ is lexicographic/MWR/privacy favoring.

Again, note that the proofs of Propositions 5.1 and 5.4, as well as Theorems 5.2

and 5.5, go through with a non-singleton Ψ.

6.5 Social Choice Correspondences

In this section I extend the definition of implementation and the negative result of

Theorem 4.2 to SCCs. We first need a definition.

Definition 6.12 (restrictions of an SCC) A restriction of an SCC F : R � O
is any function from the set {f : R 7→ O such that f(R) ∈ F (R) ∀R ∈ R}.

The following definition is very similar to Definition 2.7.

Definition 6.13 (privacy-protecting implementation of an SCC) A mechanism

(H,A, g) is a privacy-protecting subgame perfect implementation of an SCC F at ψ

if:

1. There exists a restriction f of F and a strategy profile s∗ for which the following

hold:

(a) s∗ is an information-sensitive subgame perfect equilibrium at ψ, and

(b) g(H(s∗(Rψ))) = f(R) for all R ∈ R.

(c) For all R,R ∈ R such that f(R) = f(R), it holds that H(s∗(Rψ)) =

H(s∗(R
ψ
)).

2. For all R ∈ R and strategy profiles s that form an information-sensitive subgame

perfect equilibrium at ψ, it holds that g(H(s(Rψ))) ∈ F (R).
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This definition is slightly different from the standard definition of implementa-

tion of SCCs. The standard definition, such as the one described in Section 2.5,

requires that for all R, any outcome in F (R) be obtainable in equilibrium. In order

to make this compatible with the information-sensitive or privacy-protecting versions

of implementation, we could have required that bullet 1 in Definition 6.13 hold for

all restrictions f of F , and not just for one particular restriction. Such a stronger

definition, however, would have a few subtleties that would make it difficult to work

with. Additionally, since I will only be generalizing our negative result to the case of

SCCs, a weaker definition makes the negative result stronger.

Before extending Theorem 4.2 to SCCs, we need the following definition. An SCC

F is a dictatorship if there exists an agent i such that F (R) is always equal to the set

of elements ranked highest by agent i, i.e., F (R) ≡ TRi(R).

Theorem 6.14 For any pairwise-rich R, if there exists a normal-form mechanism

that is a privacy-protecting Nash implementation of an SCC F : Θ � {0, 1} at R0

then F is either constant or a dictatorship.

Appendix

A Proof of Proposition 3.1

Proof of Proposition 3.1: Fix an SCF f : R 7→ O, and suppose towards

a contradiction that the mechanism (H,A, g) is an information-sensitive subgame

perfect implementation of some non-constant f at ψ. Since f is non-constant, there

exist distinct a, b ∈ O and intrinsic preferences Ra, Rb ∈ R such that f(Ra) = a and

f(Rb) = b. Let s∗ be the strategy profile guaranteed by Definition 2.6.

Consider now the strategy profile s, such that s(R) ≡ s∗(Ra) for all R ∈ R. Also,

for every nonterminal history h ∈ H, let PTh(H(s∗(Ra)|h), s) = R. In words, these

sets of possible types mean that starting at any history, if a terminal history is reached

that could have been reached by s, then all intrinsic preferences are possible. This is

reasonable, since s is the same regardless of the intrinsic preferences. We will define

PTh(z, s) for other z’s in the sequel.

We claim that the profile s constitutes an information-sensitive subgame perfect

equilibrium at ψ (when the sets PT are as will be defined). This, of course, implies

a contradiction, since s does not always yield the social optimum according to f
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in (H,A, g). In particular, s always yields the outcome a, but there are intrinsic

preferences in which the socially optimal outcome is b (namely, Rb).

We now show that s is an information-sensitive subgame perfect equilibrium at

ψ. Suppose towards a contradiction that this is not the case, and that there is some

nonterminal history h, some i ∈ N , some R ∈ R, and some Rψ-deviation s′i of agent

i for which

(g(z′),PTh(z
′, s)) Pψ

i (g(z),PTh(z, s)) ,

where z = H(s(Rψ)|h) and z′ = H(s−i ◦ s′i(Rψ)|h).
Recall our assumption above that PTh(z, s) = R, yielding

(g(z′),PTh(z
′, s)) Pψ

i (g(z),R) .

The crucial question now is, what should PTh(z
′, s) be?

Observe that regardless of PTh(z
′, s), it must be the case that g(z′)Pψ

i g(z). For

otherwise, if g(z′)Rψ
i g(z), then it follows that

(g(z′),PTh(z
′, s)) Rψ

i (g(z),R) ,

since the only way to get a strict improvement over an outcome and no informa-

tion revelation is to get a better outcome and no information revelation. However,

now a planner can “learn” that agent i will deviate only if this yields him a strictly

better outcome. In other words, the planner now learns that the true intrinsic pref-

erences must lie in the set R′ = {R ∈ R : g(z′)Pig(z)} ( R! Thus, defining the set

PTh(z
′, s)

def
= R′ yields the contradiction that

(g(z′),R′) Pψ
i (g(z),R) .

Hence, s is an information-sensitive subgame perfect equilibrium.

B Proofs from Section 4

Proof of Theorem 4.1: This theorem follows directly from Theorem 6.4.

Next, we restate the definition of outcome monotonicity for the case of SCCs. For

the relevant definitions related to SCCs see Section 6.5.

Definition B.1 (outcome monotonicity (OM)) an SCC F satisfies outcome mono-

tonicity (OM) if there is some restriction f of F such that for any R ∈ R and outcome

a 6∈ F (R), there exists an agent i ∈ N and an outcome b ∈ O for which bP ia but

aRib for all R ∈ R satisfying a = f(R).
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We now restate Lemma 4.5 for SCCs.

Lemma B.2 If there exists a normal-form mechanism that is a privacy-protecting

Nash implementation of an SCC F at Ro, then F satisfies OM.

Proof: Let f be as in Definition 6.13, or, if F is a function, let f ≡ F . Observe that

in a normal-form mechanism, condition 1(c) of Definitions 2.7 and 6.13 is equivalent

to the requirement that s∗ depend only on f(R), and not on all of R. That is, for

any R,R ∈ R with f(R) = f(R) it should be the case that s∗(Ro) = s∗(R
o
).

Fix some R ∈ R and a 6∈ F (R). Also fix some R ∈ R for which a = f(R). Let

s∗ be the information-sensitive Nash equilibrium guaranteed in a privacy-protecting

Nash implementation (H,A, g) of F . We must have g(s∗(Ro)) = a and g(s∗(R
o
)) 6= a.

Consider now the profile of strategies s that is identical to s∗ at every state except

at Ro, and set s(Ro) = s∗(R
o
)). Observe that s cannot be an information-sensitive

Nash equilibrium, since g(s(Ro)) = g(s∗(R
o
)) = a even though a 6∈ F (R) (and so this

contradicts condition 2 of Definition 6.13). Thus, there exist i ∈ N , R ∈ R, and a

strategy s′i that yields agent i a higher payoff than si. However, since s differs from s∗

only at Ro, and agent i does not care about privacy (since his information-sensitive

preferences are Ro
i ), it must be the case that i’s improved payoff is obtained at Ro.

That is, fixing g(s−i ◦ s′i(Ro)) = b we have

(b,PT(b, s)) P o
i (a,PT(a, s)) ,

which implies that

bPia (1)

again since i’s information-sensitive preferences are Ro
i .

Now consider some R ∈ R satisfying a = f(R). By our observation at the

beginning of the proof, it must be the case that s∗(R̃o) = s∗(R
o
), since f(R̃) =

f(R) = a. Consider a deviation s′′i of agent i, where s′′i is identical to i’s strategy

in s∗ at every state except (R̃o), and where s′′i (R̃
o) = s′i(R

o
). The strategy profile

s∗−i ◦ s′′i yields the same outcomes in every state as s∗ except in state (R̃o), where it

yields outcome b (since g(s−i ◦ s′i(R
o
)) = b).

However, since s∗ is a privacy-protecting Nash equilibrium, the deviation s′′i cannot

be beneficial to agent i. That is,

(a,PT(a, s∗)) R̃o
i (b,PT(b, s∗)) ,
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which implies that

aR̃o
i b (2)

since i’s information-sensitive preferences are Ro
i .

Finally, equation (1), together with the fact that (2) holds for every R̃ with a =

f(R̃), implies that the SCC F satisfies OM.

We now restate Lemma 4.6 for SCCs.

Lemma B.3 For any pairwise-rich R, a non-constant SCC F : R� {0, 1} satisfies

outcome monotonicity if and only if it is a dictatorship.

Proof: Let f be the restriction of F guaranteed by Definition B.1. Fix any R ∈ R
for which 0 6∈ F (R), and denote R0 = {R ∈ R : f(R) = 0}. Note that, since F is

non-constant, such a R must exist and R0 must be nonempty. Outcome monotonicity

implies that there exists an agent i ∈ N for which 1P i0 but 0Ri1 for all R ∈ R0. In

particular, for all R ∈ R satisfying 1Pi0 it must be the case that f(R) = 1: Otherwise

we would have R ∈ R0, which would imply the contradiction that 0Ri1.

Now fix any R̃ ∈ R for which 1 6∈ F (R̃) and denote R1 = {R ∈ R : f(R) = 1}.
Again, such a θ1 must exist and R1 must be nonempty since F is non-constant.

Outcome monotonicity implies that there exists an agent j ∈ N for which 0P̃j1 but

1Rj0 for all R ∈ R1. In particular, for all R ∈ R satisfying 0Pj1 it must be the

case that f(R) = 0: Otherwise we would have R ∈ R1, which would imply the

contradiction that 1Rj0.

Suppose that i 6= j, and consider the preference profile Rij for which 1P ij
i 0 and

0P ij
j 1. Such a Rij must exist in R since the latter is pairwise-rich. The above implies

that we must have both f(Rij) = 1 and f(Rij) = 0, a contradiction. Thus, i = j.

Now consider a profile Rind ∈ R for which 0I ind
i 1. If there does not exist such

a profile or F (Rind) = {0, 1} for all such profiles, then F is a dictatorship, and the

lemma is proved.

Otherwise, suppose that F (Rind) = {1} (the case of F (Rind) = {0} is symmetric,

but otherwise identical). Again, outcome monotonicity implies that there exists an

agent k ∈ N for which 1P ind
k 0 but 0Rk1 for all R ∈ R0. In particular, for all R ∈ R

satisfying 1Pk0 it must be the case that f(R) = 1: Otherwise we would have R ∈ R0,

which would imply the contradiction that 0Rk1.

Note that k cannot be equal to i, since 0I ind
i 1 but 1P ind

k 0. Consider then the profile

Rik ∈ R for which 1P ik
k 0 and 0P ik

i 1. Again such a profile must exist in R since the
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domain is pairwise-rich. The above implies that we must have both f(Rik) = 1 and

f(Rik) = 0, a contradiction. Thus, if 0I ind
i 1 then F (Rind) = {0, 1}, and so F must be

a dictatorship.

For the reverse implication, it is clear that the dictatorship function satisfies out-

come monotonicity. Any restriction of F works.

C Proofs from Section 5

Our possibility results about implementation with extensive-form mechanisms are

constructive, and the mechanism we use are variants of the mechanism of Moore and

Repullo (1988).

The Moore-Repullo mechanism that implements an SCC F in subgame perfect

equilibrium, and which is also used by Abreu and Sen (1990), uses sequences of agents

j(0), . . . , j(`) and a sequences of outcomes a0, . . . , a`+1, one such pair of sequences for

each R ∈ R, R ∈ R, and a ∈ F (R)−F (R), satisfying Condition α (see Definition 2.4).

The mechanism is the following (copied almost verbatim from Abreu and Sen (1990)):

The Moore-Repullo Mechanism (MR):

• Stage 0: Each agent i simultaneously submits a triplet (Ri, ai, ni) ∈ R ×
O×Z. If N − 1 agents submit the same R and a ∈ F (R) then the outcome

is a, unless the non-agreeing agent j announces Rj with a ∈ F (R)− F (Rj)

and j = j(0) in the sequence j(R,Rj, a). In this latter case, go to Stage 1.

In all other cases the agent who announced the highest integer selects any

outcome in O.

• Stage k, k = 1, . . . , `: Each agent i simultaneously either raises a “flag” or

announces a nonnegative integer.

If at least N − 1 agents raise flags, the agent j(k − 1) (in the sequence

j(R,Rj, a)) selects any outcome in O.

If at least N − 1 agents announce 0 the outcome is ak, unless j(k) does not

announce 0, in which case go to the next stage, or, if k = `, implement a`+1.

In all other cases the agent who announced the highest integer selects any

outcome in O.
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Abreu and Sen (1990) show that the following strategy profile sMR is a SPE of

MR: In Stage 0, sMR(R, ε) = (R, a, 0), where a ∈ F (R). In all subsequent stages all

agents always announce 0. They also prove the following as part of the proof of their

Theorem 2.

Lemma C.1 Suppose the true strategy profile is R, but all agents submit Ri = R 6= R

and outcome a 6∈ F (R) in Stage 0 of the Moore-Repullo mechanism. Then if agent

j(0) of the sequence j(R,R, a) deviates and submits Ri = R, then all SPE outcomes

following this deviation are in TRj(0)(R).

Consider now the following mechanism MR′, which is a slight variation of the

Moore-Repullo mechanism:

Mechanism MR′:

• Stage 0: Same as the Moore-Repullo mechanism.

• Stage k, k = 1, . . . , `: Same as the Moore-Repullo mechanism, except that

in each stage k, each agent i also submits a vector of preferences Ri ∈ R.

The MR′ mechanism is almost identical to the Moore-Repullo mechanism, except

for the expanded action space in stages 1 through `. Note that these additions do

not impact the outcome of the mechanism. Consider the strategy profile sMR′
that

is identical to sMR, except that in all stages following 0 the agents submit the true

profile of preferences R (in addition to announcing 0). Observe that sMR′
is an SPE

of the mechanism MR′. We use mechanism MR′, together with the strategy profile

sMR′
, in the proof of Proposition 5.1. But first, we need some definitions and lemmas.

C.1 Some Technical Definitions and Lemmas

Definition C.2 (maximally-dispersed) A strategy profile s in a mechanism (H,A, g)

is maximally-dispersed at ψ if for every i ∈ N , R ∈ R, h ∈ H \Z, and Rψ-deviation

s′i 6= si of agent i it holds that

(i) LDh

(
H
(
s−i ◦ s′i

(
Rψ
)
|h
)
, s
)

= {R} and

(ii) LDh

(
H
(
s
(
Rψ
)
|h
)
, s
)

= {R}.

31



Definition C.3 (outcome-condensed) A strategy profile s in a mechanism (H,A, g)

is outcome-condensed at ψ if for every i ∈ N , R ∈ R, h ∈ H \ Z, and Rψ-deviation

s′i 6= si of agent i it holds that

(i) LDh

(
H
(
s−i ◦ s′i

(
Rψ
)
|h
)
, s
)

= {R} and

(ii)’ g(s(Rψ)|h) = g(s−i ◦ s′i(Rψ)|h) = a for some a ∈ O and

PTh

(
H
(
s
(
Rψ
)
|h
)
, s
)

= R|a.

Lemma C.4 Let so be a subgame perfect equilibrium of a mechanism (H,A, g), and

let s be the strategy profile satisfying si(R
ψ, h) = soi (R, h) for some ψ and all i, R, and

h. Then if either s is outcome-condensed and ψ is privacy favoring or s is maximally-

dispersed then s is also an information-sensitive subgame perfect equilibrium at ψ.

Proof: Fix an agent i, a profile of intrinsic preferences R ∈ R, and some h ∈ H \Z.

We will show that agent i does not have a unilateral Rψ-deviation from s at h that

will yield him a strictly higher payoff.

Let s′i be some Rψ-deviation of agent i from s, and suppose towards a contradiction

that

(g(z′),PTh(z
′, s)) Pψ

i (g(z),PTh(z, s)), (3)

where z′ = H(s−i ◦ s′i(Rψ)|h) and z = H(s(Rψ)|h). Since PTh(z
′, s) ⊆ LDh(z

′, s) by

the second restriction, and since s is maximally-dispersed or outcome-condensed it

follows that PTh(z
′, s) = {R}.

Now, since so is a subgame perfect equilibrium (SPE), it cannot be the case that

z′Piz. If it were, then s′i would be a profitable local deviation from so at R, which

contradicts the assumption that so is a SPE.

Thus, it must be the case that zRiz
′. If s is maximally-dispersed, and so PTh(z, s) =

{R}, then zRiz
′ implies that

(g(z), {R}) Rψ
i (g(z′), {R}).

Thus,

(g(z),PTh(z, s)) R
ψ
i (g(z′),PTh(z

′, s)),

contradicting (3) above.
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Alternatively, if s is maximally-condensed, and so PTh(z, s) = R|a and z = z′ = a,

then since ψ is privacy favoring it must be the case that

(a,R|a) Rψ
i (a, {R}).

Thus, once again

(g(z),PTh(z, s)) R
ψ
i (g(z′),PTh(z

′, s)),

contradicting (3) above.

Thus, there can be no beneficial Rψ-deviation of agent i at h, and so s is an

information-sensitive subgame perfect equilibrium of (H,A, g) at ψ.

Lemma C.5 In a mechanism (H,A, g), if s is a information-sensitive subgame per-

fect equilibrium at some lexicographic ψ, then the profile so satisfying soi (R, h) =

si(R
ψ, h) for all i, R, and h is a subgame perfect equilibrium of (H,A, g).

Proof: Suppose towards a contradiction so is not a SPE. This implies that there

exists an agent i ∈ N , a history h ∈ H \Z, a profile R ∈ R, and an R-deviation s′i of

agent i such that g(z′)Pig(z), where z′ = H(so−i ◦ s′i(R))|h and z = H(so(R))|h.
Let s′′i be the Rψ-deviation of agent i from s that satisfies s′′i (R

ψ, h) = s′i(R, h) for

all R and h, and observe that

z′′ = H(s−i ◦ s′′i (Rψ)|h)

and

z = H(s(Rψ)|h).

Thus, g(z′′)Pψ
i g(z). Furthermore, since ψ is lexicographic it also holds that

(g(z′′), S) Pψ
i (g(z), T )

for any sets S and T with R ∈ T . The first requirement on the sets PT implies that

R ∈ PTh(z, s). Thus, since T = PTh(z, s), we get that

(g(z′′),PTh(z
′′, s)) Pψ

i (g(z),PTh(z, s)),

contradicting the assumption that s is an information-sensitive subgame perfect equi-

librium at ψ. Hence, so is a SPE of (H,A, g).

We also have a similar lemma for the case of MWR preferences, but first need a

definition.
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Definition C.6 (maximal deviability) A mechanism (H,A, g) satisfies maximal

deviability with respect to an SCC F if the following holds for any R ∈ R, profile s

satisfying g(H(s(R))) 6∈ F (R), and history h: Under R, either s is a Nash equilibrium

of the subgame rooted at h, or some agent i has a deviation s′i that will yield an

outcome in TRi(R).

Lemma C.7 Fix a mechanism (H,A, g) that satisfies maximal deviability with re-

spect to an SCC F , and suppose the profile s is a information-sensitive subgame per-

fect equilibrium at some MWR ψ. Then for every R ∈ R, either g(H(s(Rψ))) ∈ F (R)

or the profile so(R) satisfying soi (R, h) = si(R
ψ, h) for all i and h is a subgame perfect

equilibrium of (H,A, g) at R.

Proof: Suppose towards a contradiction that for some R ∈ R it holds that both

g(H(s(Rψ))) 6∈ F (R) and that so(R) is not a SPE at R. Observe that g(H(s(Rψ))) =

g(H(so(R))), and so g(H(so(R))) 6∈ F (R). This implies that there exists an agent

i ∈ N , a history h ∈ H \ Z, and an R-deviation s′i of agent i such that z′Piz, where

z′ = g(H(so−i ◦ s′i(R))|h) and z = g(H(so(R))|h). Since (H,A, g) satisfies maximal

deviability with respect to F and g(H(so(R))) 6∈ F (R), we can choose i, h, and s′i in

such a way that z′ ∈ TRi(R).

Let s′′i be the Rψ-deviation of agent i from s that satisfies s′′i (R
ψ, h) = s′i(R, h) for

all R and h, and observe that

z′′ = H(s−i ◦ s′′i (Rψ)|h)

and

z = H(s(Rψ)|h).

Thus, g(z′′)Pψ
i g(z) and g(z′′) ∈ TRi(R). Furthermore, since ψ satisfies MWR it also

holds that

(g(z′′), S) Pψ
i (g(z), T )

for any sets S and T with R ∈ T . The first requirement on the sets PT implies that

R ∈ PTh(z, s). Thus, since T = PTh(z, s), we get that

(g(z′′),PTh(z
′′, s)) Pψ

i (g(z),PTh(z, s)),

contradicting the assumption that s is an information-sensitive subgame perfect equi-

librium at ψ. Hence, so is a SPE of (H,A, g).
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Lemma C.8 Fix some ψ and suppose the number of agents N ≥ 3. Then the strategy

profile s for which s(Rψ, h) = sMR′
(R, h) for all R and h is maximally-dispersed at ψ

in the MR′ mechanism.

Proof: Fix some i ∈ N , R ∈ R, and h ∈ H \Z, and let z = H(s
(
Rψ
)
|h). Observe

that, since the number of agents is at least 3, and since all agents submit the same

actions at every history, it is the case that Lh(z, s) = LDh(z, s). Furthermore, since

there is exactly one R ∈ R such that H
(
s
(
R
ψ
)
|h
)

= z (namely, R = R), it holds

that LDh(z, s) = Lh(z, s) = {R}.
Next, observe that when a single agent deviates from s at (R, h) to yield a terminal

history z′, it is always possible to uniquely determine R from h, s, and z′. This follows

from the facts that Lh(z, s) = {R}, that the number of agents is at least three, and

that agents always submit the same actions. Thus, for any i and Rψ-deviation s′i 6= si

of agent i it holds that

LDh

(
H
(
s−i ◦ s′i

(
Rψ
)
|h
)
, s
)

= {R},

and so s is maximally-dispersed.

C.2 Proofs of Propositions 5.1 and 5.4

Proof of Proposition 5.1: By Theorem 1 of Abreu and Sen (1990), if an SCF

f is subgame perfect implementable then f satisfies Condition α. Furthermore, by

Theorem 2 of Abreu and Sen (1990), since f also satisfies NVP, it is implementable

via the Moore-Repullo mechanism MR. It is then also implementable by mechanism

MR′, since the enlarged set of actions there has no effect on the outcomes of the

mechanism.

Now, consider the strategy profile s∗ for which s∗(Rψ, h) = sMR′
(R, h) for all R and

h. By Lemma C.8, this strategy profile is maximally-dispersed at ψ. By Lemma C.4,

s∗ is an information-sensitive subgame perfect equilibrium of MR′. In addition, by

the properties of this strategy profile, s∗(Rψ) = f(R) for all R ∈ R. Thus, bullets

1(a) and 1(b) of Definition 2.6 are satisfied.

Furthermore, for any information-sensitive subgame perfect equilibrium s in MR′

at ψ, Lemma C.5 implies that there is a corresponding SPE with respect to o (since ψ

is lexicographic by assumption). However, since MR′ is a subgame perfect implemen-

tation of f , it must then be the case that g(H(s(R))) = f(R) for all R ∈ R. Since
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H(s∗(Rψ)) = H(s(R)) it holds that g(H(s(Rψ))) = f(R) for all R ∈ R, satisfying

bullet 2 of Definition 2.6.

Thus, MR′ is an information-sensitive implementation of the SCF f with respect

to any lexicographic ψ.

Proof of Proposition 5.4: The mechanism we will use is MR′. Consider the

strategy profile s∗ for which s∗(Rψ, h) = sMR′
(R, h) for all R and h. By Lemma C.8,

this strategy profile is maximally-dispersed at ψ. By Lemma C.4, s is an information-

sensitive subgame perfect equilibrium of MR′. In addition, by the properties of this

strategy profile, s∗(Rψ) = f(R) for all R ∈ R. Thus, bullets 1(a) and 1(b) of

Definition 2.6 are satisfied.

Furthermore, Lemma C.9 below states that for any SCC F satisfying Condition

αmax and NVP, the Moore-Repullo mechanism, and hence also the mechanism MR′,

satisfy maximal deviability with respect to F . So for any information-sensitive sub-

game perfect equilibrium s in MR′ with respect to ψ and any R ∈ R, Lemma C.7

implies that either g(H(s(Rψ))) = f(R), or there is a corresponding SPE so at R

with respect to o. However, since MR′ is a subgame perfect implementation of f , it

must be the case that g(H(so(R))) = f(R), and so also g(H(so(R))) = f(R). Since

H(s∗(Rψ)) = H(s(R)) it holds that g(H(s(Rψ))) = f(R) for all R ∈ R, satisfying

bullet 2 of Definition 2.6.

Thus, MR′ is an information-sensitive implementation of the SCF f with respect

to any MWR ψ.

Lemma C.9 Under NVP, the implementation of an SCC F satisfying Condition

αmax using the Moore-Repullo mechanism satisfies maximal deviability with respect to

F .

Proof: The proof follows Theorem 2 of Abreu and Sen (1990), with the observation

that whenever an agent has a deviation from some strategy profile s that does not

lead to an outcome in F , he actually has a deviation that will yield an outcome that

is top-ranked by him.

C.3 Proofs of Theorems 5.2 and 5.5

The proofs of Theorems 5.2 and 5.5 both use the following mechanism MRP:
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Mechanism MRP:

• Stage 0(a): Each agent i simultaneously submits a pair (ai, ni) ∈ O × Z.

If a1 = . . . = aN then the outcome is g(a1, . . . , aN) = a1. If there exists

jd ∈ N and a ∈ O such that ai = a for all agents i 6= jd but ajd 6= a, then

go to Stage 0(b). Otherwise, the agent who submitted the highest integer

ni chooses the outcome of the mechanism.

• Stage 0(b): Suppose the history is h = ((a1, n1), . . . , (aN , nN)). Each agent

i simultaneously submits a pair (Ri, ni) ∈ {R ∪ {⊥}} × Z.

(i) If there does not exist an agent j and a profile R ∈ R such that Ri = R

for all i ∈ N \ {j}, then the agent who submitted the highest integer

ni chooses the outcome of the mechanism.

(ii) If there does exist an agent j and a profile R ∈ R such that Ri = R for

all i ∈ N \{j} and if ai = f(R) for all i ∈ N \{j, jd} then the outcome

is f(R), unless agent j announces Rj with f(Rj) 6= f(R) and j = j(0)

in the sequence j(R,Rj, f(R)). In this latter case:

1. Fix ai
def
= ai for all i ∈ N \ {jd};

2. If j 6= jd then fix ajd
def
= a; If j = jd then fix ajd

def
= ajd .

3. Go to stage 1.

(iii) In all other cases, agent jd chooses the outcome of the mechanism.

• Stage k, k = 1, . . . , `: Continue with Stage k of the MR′ mechanism, where

the Stage 0 history is ((R1, a1, n1), . . . , (RN , aN , nN)).

Consider the following strategy sMRP:

• In Stage 0(a), sMRP
i (R, ε) = (f(R), 0) for every i ∈ N .

• In Stage 0(b), profile R, and history h, every agent i submits sMRP
i (R, h) =

(R, 0).

• For all subsequent rounds (of the MR′ part of the mechanism), agents always

announce (0, R), as in sMR′
.
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We now proceed with various lemmas that will be used in the proofs of Theo-

rems 5.2 and 5.5.

Lemma C.10 If f satisfies α, then for every R the profile sMRP is a subgame perfect

equilibrium of MRP at R.

Proof: First observe that sMRP is an SPE in stages 1 and onwards: At history

((a1, n1), . . . , (aN , nN), (R1, n1), . . . , (RN , nN)) and onwards, the strategy and mecha-

nism are identical to the SPE strategy sMR′
in MR′ at history ((R1, a1, n1), . . . , (RN , aN , nN))

and onwards.

Now consider stage 0(b) and a history h = ((a1, n1), . . . , (aN , nN)). If there exists

jd ∈ N such that ai = f(R) for all agents i 6= jd, then the agents are essentially

playing stage 0 of MR′ (this is case (i)). Thus, since so is identical to sMR′
here,

there is no profitable deviation. On the other hand, if there does not exist jd ∈ N
such that ai = f(R) for all agents i 6= jd, then, regardless of any unilateral deviation,

sMRP will lead to case (ii), and so the outcome will be chosen by agent jd. To see

this, observe that the history must be such that there exists some agent jd and an

outcome b 6= f(R) such that ai = b for all i 6= jd. If no agent deviates, then the

outcome will be chosen by agent jd, since it is not the case that ai = f(R) for any

i, and so this leads to case (ii). If some agent does deviate, then the mechanism can

still determine the true R from agents’ messages (since N − 1 agents agree on the

same R). However, even then it will not be the case that ai = f(R) for any agent i

except possibly jd. This, a unilateral deviation also leads to case (ii).

Finally, consider stage 0(a) of the mechanism. Observe that the strategy profile

sMRP here is identical to sMR′
. Thus, any profitable unilateral deviation here would

imply a profitable deviation from sMR′
in MR′. Since sMR′

is an SPE profile, there is

no profitable deviation from sMRP in stage 1 either.

Lemma C.11 If f satisfies α and NVP, then for any R ∈ R all subgame perfect

equilibria of MRP at R lead to the outcome f(R).

Proof: Suppose towards a contradiction that there is a SPE s of (H,A, g) that, at

R, leads to an outcome b 6= f(R). Observe first that in stage 0(a) of the mechanism

it must be the case that si(R, ε) = b for all i ∈ N . Otherwise, if not all agents agree

on the same outcome b, then at least N − 1 agents have a unilateral deviation that

would yield them a top-ranked outcome. Thus, b must be top-ranked by all these
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agents. But if b is a top-ranked outcome for N − 1 agents, then by NVP it must be

the case that b = f(R), a contradiction.

Now consider stage 0(b) with a history h = ((a1, n1), . . . , (aN , nN)). Suppose that

for every i ∈ N the strategy is s(R, h) = (Ri, ni). There are two cases to consider:

1. There exists an R ∈ R such that Ri = R for all i, and b = f(R). In this case, we

claim that agent j(0) in the sequence j(R,R, b) has a profitable deviation that

yields him a top-ranked outcome. In particular, he can deviate to sj(0)(h,R) =

(R, 0). This leads to case (ii) of Stage 0(b), and a continuation to Stage 1. This

situation is then the same as the subgame of MR′ that follows the history h′

in which all agents but j(0) announce (R, b) and agent j(0) announces (R, a).

By Lemma C.1, all subgame perfect equilibrium outcomes of this subgame are

top-ranked by agent j(0). Thus, since agent j(0) has a profitable deviation

leading to a top-ranked outcome, this case is not an equilibrium.

2. There exists an R ∈ R and j ∈ N such that Ri = R for all i ∈ N \ {j}, and

b = f(R). There are two sub-cases to consider:

(a) j 6= jd. In this case, agent jd has a deviation to trigger (and win) the

integer game of case (i), by submitting Rjd =⊥. Thus, either this case is

not an equilibrium, or jd already gets a top-ranked outcome.

(b) j = jd. If jd 6= j(0), then agent j(0) has a profitable deviation yielding him

a top-ranked outcome – namely, he triggers the integer game of case (i)

by submitting Rj(0) =⊥. This deviation is profitable by (iii) of Condition

α. Alternatively, if jd = j(0) then he can deviate to sj(0)(h,R) = (R, 0).

This leads to case (ii) of Stage 0(b), and a continuation to Stage 1. As in

case 1 above, this situation is the same as the subgame of MR′ that follows

the history h′ in which all agents but j(0) announce (R, b) and agent j(0)

announce (R, a). Again, by Lemma C.1, all subgame perfect equilibrium

outcomes of this subgame are top-ranked by agent j(0). Thus, since agent

j(0) has a profitable deviation leading to a top-ranked outcome, this case

is not an equilibrium.

Thus, in all cases above, the equilibrium outcomes are always top-ranked by agent

jd. All other cases not included above are captured by case (iii) in Stage 0(b) of the

protocol, in which jd chooses an outcome. Thus, whenever the equilibrium profile

s(R) leads to an outcome b 6= f(R), a deviation by an agent jd would lead to a
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subgame in which all SPE yield an outcome that is top-ranked by jd. In particular,

this means that there can be no such equilibrium s: Since s(R) leads to an outcome

b 6= f(R), there must exists an agent jd for whom b is not top-ranked (by NVP).

Thus, jd will deviate, leading to an outcome that is top-ranked by him.

Lemma C.12 sMRP is maximally-dispersed.

Proof: Fix some i ∈ N , R ∈ R, h ∈ H \ Z, and Rψ-deviation s′i 6= si of agent i.

Since the prescription of sMRP is for every agent to play the same strategy at h and

N ≥ 3, when an agent deviates this deviation is noticeable. Furthermore, there is no

R
ψ

that leads to the same outcome under this deviation: That is, for every R
ψ 6= Rψ

it holds that H
(
s−i ◦ s′i

(
R
ψ
)
|h
)
6= H

(
s−i ◦ s′i

(
Rψ
)
|h
)
. Thus,

LDh

(
H
(
s−i ◦ s′i

(
Rψ
)
|h
)
, s
)

= {R}.

Now, in stage 0(a), it holds that

L
(
H
(
s
(
Rψ
))
, s
)

= LD
(
H
(
s
(
Rψ
))
, s
)

= R|a,

and so

PT
(
H
(
s
(
Rψ
))
, s
)

= R|a.

Finally, in stages 0(b) and onwards agents always submit the action R as part of

their strategies. No deviation from any R′ 6= R will lead to the same coordination on

R. Thus,

LDh

(
H
(
s
(
Rψ
)
|h
)
, s
)

= {R}.

Lemma C.13 If f satisfies αmax and NVP, then MRP satisfies maximal deviability

with respect to f .

Proof: Fix some R ∈ R and a strategy profile s for which gMRP(H(s(R))) =

b 6= f(R). Suppose first that in stage 0(a) of the mechanism it is not the case that

si(R, ε) = b for all i ∈ N . Thus, at least N − 1 agents have a unilateral deviation

that would trigger the integer game and yield them a top-ranked outcome. By NVP

and the fact that b 6= f(R), it must be the case that for at least one of these N − 1

agents b is not top-ranked. Thus, this agent has a profitable deviation that yields

him a top-ranked outcome.

Suppose next that in stage 0(a) of the mechanism it holds that si(R, ε) = b for all

i ∈ N , and consider stage 0(b) with a history h = ((a1, n1), . . . , (aN , nN)). Suppose

that for every i ∈ N the strategy is s(R, h) = (Ri, ni). There are two cases to consider:
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1. There exists an R ∈ R such that Ri = R for all i, and b = f(R). In this case,

consider a deviation by agent j(0) in the sequence j(R,R, b) to sj(0)(h,R) =

(R, 0). This leads to case (ii) of Stage 0(b), and a continuation to Stage 1. This

situation is then the same as the subgame of MR′ that follows the history h′ in

which all agents but j(0) announce (R, b) and agent j(0) announces (R, a). By

Lemma C.9, either s(R) is a SPE of the subgame rooted at h′, or some agent

has a deviation that yields him a top-ranked outcome. In the latter case, we

are done. For the former case, Lemma C.1 implies that all SPE outcomes of

this subgame are top-ranked by agent j(0). Thus, agent j(0) has a profitable

deviation at stage 0(b) that leads to a top-ranked outcome.

2. There exists an R ∈ R and j ∈ N such that Ri = R for all i ∈ N \ {j}, and

b = f(R). There are two sub-cases to consider:

(a) j 6= jd. In this case, agent jd has a deviation to trigger (and win) the

integer game of case (i), by submitting Rjd =⊥. Thus, either agent jd has

a profitable deviation yielding him a top-ranked outcome, or jd already

gets a top-ranked outcome.

(b) j = jd. If jd 6= j(0), then agent j(0) has a profitable deviation yielding him

a top-ranked outcome – namely, he triggers the integer game of case (i)

by submitting Rj(0) =⊥. This deviation is profitable by (iii) of Condition

αmax. Alternatively, if jd = j(0) then he can deviate to sj(0)(h,R) = (R, 0).

This leads to case (ii) of Stage 0(b), and a continuation to Stage 1. As in

case 1 above, this situation is the same as the subgame of MR′ that follows

the history h′ in which all agents but j(0) announce (R, b) and agent j(0)

announce (R, a). Again, either s(R) is a SPE of the subgame rooted at h′,

in which case agent j(0) has a profitable deviation at stage 0(b) that leads

to a top-ranked outcome, or some agent has a deviation that yields him a

top-ranked outcome.

Thus, in all cases above, either some agent has a deviation from s(R) that leads to

a top-ranked outcome, or the outcome following a deviation by agent jd is top-ranked

by agent jd. All other cases not included above are captured by case (iii) in Stage

0(b) of the protocol, in which jd chooses an outcome. Thus, whenever the profile

s(R) leads to an outcome b 6= f(R), either some agent has a deviation yielding him a

top-ranked outcome, or a deviation by an agent jd would lead to a subgame in which
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all outcomes are top-ranked by jd. In particular, this means that, since s(R) leads to

an outcome b 6= f(R), there must exists an agent jd for whom b is not top-ranked (by

NVP). Thus, jd has a profitable deviation leading to an outcome that is top-ranked

by him.

We are now ready to prove Theorems 5.2 and 5.5.

Proof of Theorem 5.2: There are two parts to the proof, corresponding to

the two bullets of Definition 2.7. The first part of the proof follows. Since f can be

implemented in subgame perfect equilibrium, by Abreu and Sen (1990) f must satisfy

Condition α. By Lemma C.10, for every R ∈ R the strategy sMRP(R) is a SPE of

MRP at R. Furthermore, by Lemma C.12, sMRP is maximally-dispersed. Thus, by

Lemma C.4, the strategy profile s∗ satisfying s∗i (R
ψ, h) = sMRP

i (R, h) for all i, R, and h

is an information-sensitive subgame perfect equilibrium at ψ. Note that for all R,R ∈
R such that f(R) = f(R) it holds that s∗(Rψ, ε) = s∗(R

ψ
, ε), and that these both lead

to terminal histories. In particular, this implies that H(s∗(Rψ)) = H(s∗(R
ψ
)), and

so the strategy profile s∗ satisfies bullets 1(a) and 1(b) of Definition 2.6 and bullet

1(c) of Definition 2.7.

Next, the second part of the proof is as follows. Let s be an information-sensitive

subgame perfect equilibrium of MRP at ψ. Since ψ is lexicographic, Lemma C.5

implies that the profile so satisfying soi (R, h) = si(R
ψ, h) for all i, R, and h is a SPE

of MRP. Now, since f satisfies NVP by assumption, Lemma C.11 implies that for

every R ∈ R, all SPE of MRP at R lead to the outcome f(R). Since s and so lead to

the same outcome, this implies that for every R ∈ R, the profile s(Rψ) leads to the

outcome f(R). Thus, bullet 2 of Definition 2.6 is also satisfied.

Hence, the mechanism MRP is a privacy-protecting implementation of f at ψ.

Proof of Theorem 5.5: As in the proof of Theorem 5.2 there are two parts to the

proof. The first part is identical to the proof of Theorem 5.2, implying the existence

of a strategy profile s∗ satisfying bullets 1(a) and 1(b) of Definition 2.6 and bullet

1(c) of Definition 2.7.

The second part of the proof is as follows. First note that, by Lemma C.13,

the mechanism MRP satisfies maximal deviability with respect to f . Let s be an

information-sensitive subgame perfect equilibrium of MRP at ψ. Since ψ satisfies

MWR, Lemma C.7 implies that, for every R ∈ R, the profile so satisfying soi (R, h) =

si(R
ψ, h) for all i and h either leads to the outcome f(R), or it is a SPE of MRP at
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R. In the former case, since s(Rψ) and so(R) lead to the same outcome, s(Rψ) leads

to the outcome f(R). For the latter case recall that f satisfies NVP by assumption,

and so Lemma C.11 implies that for every R ∈ R, all SPE of MRP at R lead to the

outcome f(R). Again, since s and so lead to the same outcome, this implies that

for every R ∈ R, the profile s(Rψ) leads to the outcome f(R). Thus, bullet 2 of

Definition 2.6 is also satisfied.

Hence, the mechanism MRP is a privacy-protecting implementation of f at ψ.

D Proofs from Section 6

D.1 Proof of Theorem 6.4

Proof: Suppose that there exists a normal-form mechanism (H,A, g) and a strategy

profile s∗ that satisfy bullets (b) and (c) of Definition 6.2. We will show that s∗ is

not an information-sensitive Nash equilibrium, and hence does not satisfy bullet (a),

for a particular lexicographic ψ that we will construct.

Since |R| ≥ 3, there exists an outcome a ∈ {0, 1} such that |Ra| ≥ 2, where

Ra = {R ∈ R : f(R) = a}. This implies that there exists an agent i and a profile

R ∈ Ra for which (1 − a)Ria. Now define ψ as follows: First, (a, {R})Pψ
i (a,Ra).

Next, if aRi(1 − a), then (1 − a, {R})Pψ
i (a,Ra) and (1 − a, {R1−a})Pψ

i (a,Ra). All

other preferences are fixed in an arbitrary (lexicographic) way.

Suppose the true intrinsic preferences are R, and consider a deviation from s∗ by

agent i to s′i. If either g(H(s∗−i ◦ s′i(Rψ))) = a or aRi(1 − a) and H(s∗−i ◦ s′i(Rψ))

is off the equilibrium path, then define PTψ(H(s∗−i ◦ s′i(Rψ)), s∗)
def
= {R}, and note

that this is one-deviation consistent. If aRi(1 − a) and H(s∗−i ◦ s′i(Rψ)) is on the

equilibrium path, then note that g(H(s∗−i ◦ s′i(Rψ))) = 1 − a. In this case we must

have PTψ(H(s∗−i ◦ s′i(Rψ)), s∗) = {R1−a} by definition.

Now, we claim that with the constructed ψ and sets of possible types PT, the

profile s∗ is not an information-sensitive Nash equilibrium. Suppose the state is Rψ

and agent i deviates to s′i. There are various possibilities: The outcome may be

unchanged and remain a, in which case agent agent i benefits since the new and

strictly preferred set of possible types is {R}. Alternatively, the outcome may be

changed to (1−a): If (1−a)Pia then since ψ is lexicographic agent i strictly benefits,

and if aRi(1 − a) then agent i benefits since the new and strictly preferred set of

possible types is either {R} or R1−a. Thus, in all cases agent i strictly benefits from
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a deviation from s∗ at Rψ, and so s∗ is not an equilibrium.

D.2 Proofs of Theorems 6.8 and 6.9

The mechanism used for Theorems 6.8 and 6.9 is the following variant of MRP from

Section C.3. The mechanism is parametrized by a partition Π of R. Label each

element of Π by a unique number, and denote by π(R) the label given to the element

of Π that contains R.

Mechanism MRPΠ:

• Stage 0(a): Each agent i simultaneously submits a pair (ai, ni, πi) ∈ O ×
Z× N. If a1 = . . . = aN , π1 = . . . = πN , and f(R) = a1 for all R satisfying

π(R) = π1, then the outcome is a1. If there exists jd ∈ N , a ∈ O, and

π ∈ N such that ai = a and πi = π for all agents i 6= jd but ajd 6= a, then

go to Stage 0(b). Otherwise, the agent who submitted the highest integer

ni chooses the outcome of the mechanism.

• Stage 0(b): Suppose the history is h = ((a1, n1, π1), . . . , (aN , nN , πN)).

Continue as in MRP.

• Stage k, k = 1, . . . , `: Continue as in MRP.

Consider the following strategy sMRPΠ
:

• In Stage 0(a), sMRPΠ

i (R, ε) = (f(R), 0, π(R)) for every i ∈ N .

• In Stage 0(b), profile R, and history h, every agent i submits sMRPΠ

i (R, h) =

(R, 0).

• For all subsequent rounds (of the MR′ part of the mechanism), agents always

announce (0, R), as in sMR′
.

The proofs of Theorems 6.8 and 6.9 are nearly the same as those of Theorems 5.2

and 5.5. The only difference is in condition 1(c) of Definition 6.5. We need to show

that if R and R are such that R ∈ Π(R), then H(sMRPΠ
(Rψ)) = H(sMRPΠ

(R
ψ
)). We

also need to show that if R and R are such that R 6∈ Π(R), then H(sMRPΠ
(Rψ)) 6=

H(sMRPΠ
(R

ψ
)). These are immediate from the specification of the strategy profile
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sMRPΠ
: In the former case, the profile prescribes the same strategy, since in that

case π(R) = π(R). In the latter case the prescription is different, since in that case

π(R) 6= π(R) (and so the history differs in stage 0(a)).
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