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Abstract

We investigate the scope for cooperation within a community engaged in repeated

reciprocal interactions. Players seek the help of others and approach them sequentially

according to some fixed order, that is, a ranking profile. We study the ranking profiles

that are most effective in sustaining cooperation in equilibrium, that is, profiles that

support full cooperation in equilibrium under the largest set of parameters. These are

the profiles that spread the costs of helping others equally among the members of the

community. We show that, generically, these socially optimal ranking profiles correspond

to Latin squares – profiles in which each player appears in a given position exactly once

in other players’ list. In addition, we study equilibria with bilateral enforcement in which

only the victims punish non-cooperating deviators. We show that the Latin squares in

which every two players rank each other at the same position can sustain cooperation

for the widest range of parameters in this case.
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1 Introduction

Among the characteristics of any social structure is the nature of reciprocal interaction

among its members. This paper is concerned with a particular type of interactions, namely,

one in which the members of a community repeatedly face problems that require the assistance

of others. Consider a group of friends, say Alice, Bob, and Carol. Alice is moving to a new

apartment and needs a friend to help her carry boxes. Helping Alice is costly to Bob and

Carol, as they will have to take a day off from work. Assuming that Alice needs only one

friend to help, it will be inefficient to ask both friends simultaneously, because there is the

possibility that they both show up to help and miss a day from work. If Alice asks one friend,

say Carol, first, and she is unable to help Alice move—perhaps because her boss does not

approve, or because she has prior commitments—, then Alice can ask Bob.

Suppose that over time, the three friends encounter similar problems on a regular basis.

As long as the value of the assistance that each member of the community receives exceeds

the average costs of helping, the socially optimal outcome is one in which every player helps

all their friends. It may be more difficult to attain this maximum level of cooperation when

players approach others sequentially, i.e., when they rank their friends.

To see this, suppose both Alice and Bob always ask Carol for help first, as in Figure 1a,

and assume that each player receives the same benefits of being helped, and incurs the same

costs when assisting others; also assume that each player needs help with the same frequency.

In the structure in Figure 1a, Carol is asked for help each and every time Alice and Bob

have a problem. If the probability that her boss will let her take time off is high enough,

Carol will be spending much more time helping her friends than the average time they spend

helping their friends. To see this, consider Bob’s expected cost of helping. Bob is only called

upon to help Alice (resp., Carol) if Carol (resp., Alice) was unable to. Hence, he is asked

to help less frequently than Carol, that is, the costs are distributed unevenly. On the other

hand, in expectation, Alice, Bob and Carol each receive the same amount of help if all players

help whenever asked to do so: each has two friends they can go to for help. That is, while the

expected cost for a player depends on the exact structure, her expected benefit only depends

on the number of players who are willing to help her. This suggests that it may be hard to

incentivize Carol to help her friends when they ask her for assistance.

On the other hand, suppose Alice asks Bob for help first, Bob asks Carol first, and Carol

asks Alice first, as in Figure 1b. In this case, the expected costs of helping friends are identical

across players. Hence, the ranking profiles—the profiles of ordered lists that specify the order

in which players approach each other for help— in Figure 1 determine players’ expected costs.

The question we address is what ranking profiles are best at supporting the socially op-

timal outcome. Our first result states that ranking profiles in which players have identical
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Alice Carol Bob

Bob Carol Alice

Carol Alice Bob

(a) An example of a ranking

profile with different expected

costs

Alice Bob Carol

Bob Carol Alice

Carol Alice Bob

(b) An example of a rank-

ing profile with equal expected

costs

Figure 1: Two possible ranking profiles. The first column indicates the player seeking help.

Each corresponding row lists the other players by the order in which they are approached.

expected costs can sustain full cooperation for the largest range of parameters. In other words,

the incentive compatibility constraint is the least binding when expected costs for help are

equal among all players. We then turn to our main result which gives a characterization of

the ranking profiles that induce equal expected costs (for generic values of the parameters).

These ranking profiles are precisely the Latin squares, that is, ranking profiles in which every

player appears in a certain position in the list of exactly one other player, as in Figure 1b.

Graphically, these are rankings such that every column is a permutation of the list of players.

We then turn to the scope for bilateral enforcement in sustaining cooperation. That is, we

restrict attention to a class of equilibria in which only the victim punishes the deviator. This

is motivated by empirical research that shows that in many social situations, agents are more

concerned with maintaining balance in their own relations than with correcting imbalances

within a larger group (Blau, 1964; Fiske, 1992). In addition, it may simply be infeasible for

a society to monitor the interactions between its members and communicate defections for

the community to collectively punish deviators. In other words, individuals will often prefer

bilateral enforcement over community enforcement.

We find that bilateral enforcement is more successful in sustaining cooperation in some

ranking profiles than in others. Intuitively, because bilateral enforcement operates at the

level of pairs of individuals, what matters is the balance in expected costs between two

individuals, rather than the overall expected costs. We show that under bilateral enforcement,

no ranking profile can outperform a Latin square in which every pair of players has the same

expected costs of helping each other. This is in line with empirical evidence that shows

that relationships that are characterized by high but similar levels of mutual obligations are

especially productive (Shore and Barksdale, 1998).

There is of course an extensive literature on reciprocity in strategic settings, going back

to the first days of repeated games. Some notable contributions include papers such as Ali

and Miller (2009), Jackson et al. (2012), Lippert and Spagnolo (2011), Mihm et al. (2009),
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and Raub and Weesie (1990) which study favor exchange and prisoners’ dilemma games on

networks; see Jackson et al. (2012) for a more extensive survey of the literature. The focus of

this literature is on the effect of network structure on sustaining equilibria that are socially

optimal.1

While we share the objective of characterizing social structures that are most conducive

to sustaining cooperation, we focus on ranking profiles rather than on networks. There are

two important differences between our approach and the existing literature on cooperation on

networks. First, in our setting, the structural relationship between two players is independent

of the lists of all other players, i.e., how Alice ranks Bob on her list is not constrained by

any other player ranking (including Bob’s). That is, Alice may rank Carol first, and Carol

may rank Bob first, but there is no restriction on how Alice ranks Bob, or, for that matter,

how Carol ranks Alice. By contrast, in a network, the access, or distance to members of a

community, is constrained by the network structure. Second, the behavior of others crucially

impacts the relationship between players, e.g., if Alice ranks Carol after Bob, Bob’s tendency

to help Alice will impact how often Alice asks Carol for help.

2 Model

There is a community N of players, labeled 1, . . . , n, who occasionally encounter problems

that require others’ help. Time is discrete, and indexed by t = 1, 2, . . .. In every period, a

player is chosen uniformly at random to receive a problem.2 Let player i be the player facing

a problem in period t. Any player j 6= i is equally qualified to help player i. In the situations

we have in mind, a player can either solve another player’s problem or not. Player j may

refuse or fail to help player i, in which case player i may ask others for help. However, if

j succeeds in helping i, then i’s problem is solved and he does not need to approach other

players. We assume i will not approach a player more than once with the same problem.

Each player i ∈ N has a list of other players, which specifies the order in which i approaches

them for help. We denote by ri(k) ∈ {1, . . . , i − 1, i + 1, . . . , n} the player who is in the kth

position on i’s list. We call the collection of players’ lists a ranking profile and denote it by

R = (r1, ..., rn).

1Another strand of the literature deals with anonymous random matching, as in the seminal contributions

of Ellison (1994) and Kandori (1992). In those papers, there is no structural restriction on the relationship

between players since players are randomly paired.
2We assume that a player cannot solve the problem himself. Assuming that a player can solve his own

problem with some probability does not change the results qualitatively.
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2.1 Stage game

The stage game proceeds as follows. At the beginning of the period, one of the players,

say i, receives a problem. Player i then goes down his list ri, asking the other players for

help. Each player j can decide whether to try and help i or not. Write eij = 1 if j tries to

solve i’s problem, and eij = 0 otherwise. If j attempts to solve i’s problem, then the problem

is solved with probability p ∈ (0, 1). In that case, the payoff to i is v while j’s cost of helping

i is c. Once the problem is solved, the stage game ends. If j does not try to help i, or tries

and fails (which happens with probability 1− p), i approaches the next player on his list. If

the problem is not solved, then the payoff to all players is 0 in this period. Note that the cost

of helping is borne only if the problem is solved.3

Hence, conditional on the event that player i needs help, his per-period expected benefit

is

pv
n−1∑
`=1

eiri(`)

`−1∏
k=1

(1− peiri(k)),

and conditional on j 6= i needing help, the per-period expected cost for i is

pceji

ρj(i)−1∏
k=1

(1− pejrj(k)),

where ρj(i) is the position of i on j’s list. (Thus, ρj is just the inverse of rj.) Throughout,

we assume v > c, i.e., helping a player is efficient.

2.2 Repeated interactions

The stage game defined above is repeated in every period. Note that the ranking profiles

are fixed throughout. In each period t, players observe the identity of the player who needs

help, as well as the effort choices of the players who are asked for help. A (pure) strategy

si for player i maps the history into an action for that period: if j is the player who has a

problem in period t, then si(h) = eji ∈ {0, 1} specifies whether i will try to help j in case j

comes to him for help in that period, conditional on players’ actions up to that point.

Payoffs are discounted by δ ∈ (0, 1), so that the normalized expected payoff of a strategy

profile s = (sj)j∈N to player i is given by

Ui(s) = (1− δ)
∞∑
t=1

δt−1Eh|t
[
ui(s(h))

]
where ui(s(h)) is the stage-game payoff to i, and the expectation is taken over the histories h

given t.

3Assuming that helping is costly even if the attempt was unsuccessful does not change the results in a

substantive way.
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3 Community enforcement

We are interested in maximizing social welfare in the utilitarian sense. In the present

context, social welfare is maximized if all players help whenever another player asks them for

assistance (given that v > c). That is, we investigate the conditions for the existence of a

subgame-perfect equilibrium in which every player i chooses eji = 1 on the equilibrium path,

for every j 6= i, whenever j asks i for help. In that case, we say that full cooperation can be

sustained. In this section, we allow any player to participate in the punishment of a player

who deviated, that is, we allow for community enforcement. In the next section, we consider

equilibria in which only the player who was refused help punishes the deviator.

As a preliminary result, we observe that for any ranking profile, there is a minimum

threshold such that full cooperation can be sustained if and only if the discount factor meets

this threshold.

Lemma 3.1 If full cooperation can be sustained in a ranking profile with a given discount

factor δ < 1, then full cooperation can be sustained in that ranking profile for any discount

factor δ′ > δ.

Proof. Fix a ranking profile and consider the following grim-trigger profile s. At the begin-

ning of the first period, if j asks i 6= j for help, then i chooses eji = 1. At later points in the

game, if each player m has chosen ekm = 1 for all k 6= m in the past, then any player i who is

asked for help by some j 6= i chooses eji = 1. Otherwise, player i chooses eji = 0 for all j 6= i

whenever he is approached for help by player j.

We now check the conditions under which this is a subgame-perfect equilibrium. Assume

that no player has deviated so far, i.e., every player who was approached by another player

provided help in the past; and suppose player i is approached by player j for help in the

present period. Then, the maximum he can gain by deviating from s is c(1 − δ), while he

loses the expected future net gains from cooperation. Hence, player i cannot gain by deviating

if and only if

c(1− δ) ≤ δp

n

[
v
(
1 + (1− p) + . . .+ (1− p)n−2

)
− c

∑
j 6=i

(1− p)ρj(i)−1
]
, (1)

where we recall that 1/n is the probability that an arbitrary player receives a problem. The

incentive constraint (1) cannot be satisfied if the right-hand side is zero or negative (given

that δ lies between 0 and 1); in that case, cooperation cannot be sustained under s. If the

right-hand side is positive, on the other hand, then there is a minimum discount factor δ for

which (1) is satisfied, and full cooperation can be sustained with s if and only if the discount

factor lies in [δ, 1); the critical discount factor δ may depend on the ranking profile.
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The proof is complete by noting that if full cooperation cannot be sustained under the

grim-trigger profile s, then it cannot be sustained under any strategy profile, as grim-trigger

strategies offer the strongest possible form of punishment. �

We now turn to examining the factors that make it possible to sustain cooperation. Con-

sider the two ranking profiles with four players in Figures 2a and 2b. The first column specifies

the players, and the row following a player corresponds to its ranking. For example, in Figure

2a, player 3 first asks player 2 for help, then player 4, and ultimately player 1.

i ri(1) ri(2) ri(3)

1 2 3 4

2 3 4 1

3 2 4 1

4 1 2 3

(a) A profile with heterogeneity

in expected costs

i ri(1) ri(2) ri(3)

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

(b) A profile with identical ex-

pected costs

Figure 2: Two ranking profiles with four players.

We compare the two ranking profiles in terms of the distribution of the (per-period)

expected costs across players, assuming full cooperation. In the ranking profile in Figure 2a,

player 2 is ranked first on the lists of both players 1 and 3, so helping these two players gives

an expected cost of 2cp/n. Player 2 is also the second player on player 4’s list. This gives

an additional expected cost of (1 − p)cp/n, because player 4 approaches 2 only if player 1

was unable to solve player 4’s problem, which happens with probability 1− e41p = 1− p. On

the other hand, player 4 is ranked second on the list of two players, and third on the list

of another one, and has an expected cost of 2(1 − p)cp/n + (1 − p)2cp/n. Hence, the costs

for player 4 are strictly lower than those for player 2 in this ranking profile. By contrast, in

Figure 2b, all players face the same expected cost of c/n+ (1− p)c/n+ (1− p)2c/n.

While the expected costs depend on the ranking profile, the expected benefit for a player

is always pv(1 + (1− p) + (1− p)2)/n under full cooperation, regardless of the ranking profile.

Intuitively, the expected benefits depend only on the number of players who can help, and

this is the same across players. In particular, it is immaterial for a player which player on his

list solves his problem.

This suggests that full cooperation can be sustained whenever the incentive constraint

for the player with the highest expected cost is satisfied. It turns out that the incentive

constraints are weakest when players’ expected costs are equal.
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Proposition 3.2 For every p ∈ (0, 1), v, c > 0, and δ < 1, if there exists a ranking profile in

which full cooperation can be sustained in equilibrium, then full cooperation can be sustained in

a ranking profile in which players have equal expected costs. Furthermore, there exist discount

factors for which full cooperation can be sustained only if players’ expected costs are equal.

Proof. In any ranking profile, the total expected cost (per period) is

pc
∑
i∈N

∑
j 6=i

(1− p)ρj(i)−1 = pc
(
1 + (1− p) + . . .+ (1− p)n−2

)
.

Fix a ranking profile. If players have different expected costs, then there is a player i for

whom the expected cost under full cooperation exceeds 1/n of the total expected costs, i.e.,

pc

n

∑
j 6=i

(1− p)ρj(i)−1 > pc

n

(
1 + (1− p) + . . .+ (1− p)n−2

)
.

Recall from the proof of Lemma 3.1 that player i cannot gain by deviating if and only if

c(1− δ) ≤ δp

n

[
v
(
1 + (1− p) + . . .+ (1− p)n−2

)
− c

∑
j 6=i

(1− p)ρj(i)−1
]
, (2)

If the right-hand side of (2) is positive for each player i for some ranking profile, then it is

positive for each player in a ranking profile in which players have identical expected costs.

Moreover, the minimum discount factor δ identified in Lemma 3.1 is the same for any ranking

profile in which players have equal expected costs. This discount factor satisfies

c(1− δ) =
pδ

n

(
1 + (1− p) + . . .+ (1− p)n−2

)
(v − c).

Finally, for any ranking profile in which some players differ in their expected costs, either full

cooperation cannot be sustained, or the minimum discount factor for which full cooperation

can be sustained is strictly greater than δ. �

The next result shows that for generic values of the parameters, the ranking profiles in

which players have identical expected costs are the so-called Latin squares. A Latin square

is a ranking profile in which every player i appears in the kth place in the list of exactly one

other player, for every k, as in Figure 2b.4 In other words, in a Latin square, each player is

approached first by exactly one other player, approached second by exactly one other player,

and so on.

4Formally, for each player i = 1, 2, . . . , n and for each k = 1, 2, . . . , n−1, there is precisely one player jk 6= i

such that ρjk(i) = k.
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Proposition 3.3 For a generic set of parameter values for p, v, c, and δ, every player has

the same expected costs in a ranking profile if and only if the ranking profile is a Latin square.

It follows from Propositions 3.2 and 3.3 that Latin square rankings are the socially optimal

ranking profiles (generically), in the sense that they sustain full cooperation for the widest

range of parameters.

Proof. Under full cooperation, the expected per-period cost for player i in a given ranking

profile is
pc

n

∑
j 6=i

(1− p)ρj(i)−1.

If player i appears in every position only once in other players’ lists, as in a Latin square,

then this term is equal to

pc

n

(
1 + (1− p) + . . .+ (1− p)n−2

)
,

independent of i. Hence, every player has the same expected costs in a Latin square.

For the other direction, fix v, c, and δ. Suppose that each player has the same expected

cost. Since the sum of the expected costs (across players) is pc
(
1 + (1− p) + . . .+ (1− p)n−2

)
,

the average expected cost is

pc

n

(
1 + (1− p) + . . .+ (1− p)n−2

)
.

Assume by contradiction that the ranking profile is not a Latin square. Hence, we must have

at least one player (in fact, at least two) who does not appear exactly once in every position.

Assume without loss of generality that this is player n. Then, we have:

pc

n

n−1∑
k=1

(1− p)(ρk(n)−1) =
pc

n

(
1 + (1− p) + . . .+ (1− p)n−2

)
.

Since the ranking profile is not a Latin square, ρk(n) does not run from 0 to n − 1 in the

summation. We thus obtain a non-trivial polynomial equation in the variable p. In addition,

the finite collection of ranking profiles yields at most a finite set of values p (for any given set

of parameters v, c, and δ) for which there is a ranking profile that is not a Latin square and

that has equal expected costs. �

As the proof suggests, for some parameters there may be ranking profiles in which players

have equal expected costs that are not Latin squares. Indeed, consider the ranking profile in

Figure 3. This ranking profile does not form a Latin square (for example, player 1 appears in

the first position of both player 6 and 7), but there exists parameter values such that players’

expected costs are equal: one can check that players have identical expected costs if and only

9



i ri(1) ri(2) ri(3) ri(4) ri(5) ri(6)

1 7 6 4 2 3 5

2 3 4 5 6 7 1

3 4 5 7 2 6 1

4 5 3 2 7 1 6

5 6 7 2 3 1 4

6 1 2 3 5 4 7

7 1 2 6 4 5 3

Figure 3: A ranking profile in which players have equal expected costs if and only if 1 =

(1− p) + (1− p)2.

if 1 = (1 − p) + (1 − p)2, which has a solution for p ∈ (0, 1). Hence, the characterization of

ranking profiles with equal expected costs as Latin squares can hold only in the generic sense.

Community enforcement can be effective at sustaining cooperation, especially when the

costs are helping are spread equally among players. However, it comes at a high cost for

society: if a player deviates, cooperation breaks down entirely. In the next section, we consider

the case of bilateral enforcement, where only the victim punishes the deviator.

4 Bilateral enforcement

In this section, we restrict attention to a class of equilibria in which only the victim

punishes the deviator. As before, every player provides full assistance to the other players on

the equilibrium path. If a player deviates, then only the player who did not receive assistance

punishes the deviator, by ceasing to help the deviator in the future. Given that, the deviator

will not assist the victim in any future period. All other players continue to help each other.

However, we allow players to adjust the probability with which they help the victim and the

deviator, because the breakdown of cooperation between the victim and the deviator may

increase their expected costs in the absence of such an adjustment.

For example, suppose Alice approaches Bob first and Carol second. In equilibrium, each

player helps every other player with probability 1 whenever they are approached for help.

Now assume that Bob deviates in a given period and does not help Alice when she asks him

for help. Under the strongest form of bilateral punishment—a bilateral grim-trigger strategy–,

Alice and Bob do not help each other in any future period. If Carol were to continue to help

Alice with probability 1 (as she did before Bob’s deviation), then her (discounted) expected

cost of helping Alice increases from p(1 − p)c/n to pc/n. To correct for this, the strategy

profile dictates that Carol helps Alice with probability 1−p after Bob’s deviation, so that her
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expected cost of helping Alice equals p(1−p)c/n, as it did before Bob’s deviation. We assume

no player will be punished for making such an adjustment.5 In other words, punishment is

bilateral, and players adjust their behavior to maintain the same expected cost in the face of

deviations and punishments that do not concern them.

The scope for such a strategy profile to be a (subgame-perfect) equilibrium depends on

the pairwise expected costs that players incur and the pairwise expected benefits that they

provide each other. As such, of special interest are the ranking profiles in which every two

players have symmetric expected costs and benefits. For example, consider the ranking profile

in Figure 4. In this ranking profile, every player has the same expected costs, as in the ranking

profile in Figure 2b, but, moreover, the expected cost for player i of helping player j is equal

to the expected cost for player j of helping i. Whenever player 1 is faced with a problem,

he first approaches player 2 for help, so that player 2’s expected cost of helping 1 is equal to

pc. If player 2 receives a problem, she goes to player 1 first, so player 1’s expected cost of

helping player 2 equals pc as well. It can be checked that the same holds for every other pair

of players. The key is that every pair of players occupies exactly the same position in each

other’s list. We say that a ranking profile is a Bilateral Friendship Form (BFF) if for each

pair of distinct players i, j ∈ N , the position of j on i’s list is the same as i’s position on j’s

list, i.e., ρi(j) = ρj(i). Note that every BFF is a Latin square.

i ri(1) ri(2) ri(3)

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Figure 4: A ranking profile for four players that forms a BFF.

We want to allow players to follow a mixed (behavioral) strategy, to adjust the probability

with which they help other players after a deviation.6 A mixed strategy σi for player i maps

each history in which player i is asked for help by some player j into a probability αji ∈ [0, 1]

with which she helps j in that period.

5Note that players following Alice on Bob’s list will also adjust their probabilities of helping accordingly

to keep their expected cost at the same level as on the equilibrium path. Moreover, if there are more than

three players, a player who adjusts the probability with which she helps other players to keep her expected

costs constant has to take into account that the players preceding her on the victim’s or deviator’s list will

adjust their behavior as well. See the specification of the bilateral enforcement profile σ below for details.
6We thus assume that mixed strategies are (publicly) observable. We could restrict attention to pure

strategies if the action set Ai of each player i is taken to be some interval, say Ai = [0, 1], with the interpretation

that ai ∈ Ai is the effort that i exerts in helping the player that asked her for help.
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A strategy profile σ is a bilateral enforcement profile if at each history h such that player

j asks player i for help, σi(h) is given by:

• If in some past period t′, player i approached player j for help, and j helped i with a

probability different than the prescribed probability, i.e., with probability αij that does

not satisfy

αij =

∏ρi(j)−1
k=0 (1− p)∏ρi(j)−1

k=0 (1− αiri(k)p)
, (3)

then σi(h) := 0 (where αm` is the probability with which player ` helped player m in t′);

• If in some past period t′, player j approached player i for help, and i helped j with a

probability different than the prescribed probability, i.e., with probability αji that does

not satisfy

αji =

∏ρj(i)−1
k=0 (1− p)∏ρj(i)−1

k=0 (1− αjrj(k)p)
, (4)

then σi(h) := 0;

• otherwise, if in every past period t′ player i and player j helped each other with proba-

bilities αij and αji that satisfy (3) and (4), respectively, then i helps j with the prescribed

probability, that is, the probability with which i helps j is given by

σi(h) :=

∏ρj(i)−1
k=0 (1− p)∏ρj(i)−1

k=0 (1− αjrj(k)p)
,

where αjm is the effort level of a predecessor m = rj(k) of i on j’s list in the current

period.

If a bilateral enforcement profile σ is a subgame-perfect equilibrium, then we say that bilateral

enforcement can sustain full cooperation. We have the following preliminary result:

Lemma 4.1 Bilateral enforcement can sustain full cooperation in a BFF of n players if and

only if

c(1− δ) ≤
(
δp

n

)
(1− p)n−2(v − c). (5)

The proof follows directly from the observation that player i’s incentive constraint for helping

player j is hardest to satisfy if the interaction between i and j is not very frequent. Hence,

the strongest incentive constraint for player i is the one that describes his incentive of helping

the player who is the last player on his list. The (discounted) expected benefits and costs of

interacting with that player are (1 − p)n−2v/n and (1 − p)n−2c/n, respectively, which gives

Equation (5).
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Not surprisingly, it is more difficult to sustain full cooperation with bilateral enforcement

than with community enforcement, given that the deviator is punished only by the victim,

not by the whole community. A similar phenomenon of course arises in network settings

(e.g., Jackson et al., 2012). However, bilateral enforcement is more effective in sustaining

cooperation in some ranking profiles than in others. The next result shows that no ranking

profile is more effective at sustaining cooperation under bilateral enforcement than a BFF.

Proposition 4.2 If full cooperation can be sustained by bilateral enforcement in any ranking

profile, then bilateral enforcement can sustain full cooperation in a BFF.

Proof. Assume that bilateral enforcement sustains cooperation in an arbitrary ranking profile

R. Consider an arbitrary BFF RBFF and two distinct players k, ` ∈ N . Let i, j be players in

N such that i has the same position on j’s list in R as the position that k and ` occupy in

each other’s list in RBFF (i.e., ρRj (i) = ρRBFF
k (`) = ρRBFF

` (k)).

If player j appears at an earlier position on i’s list then j does on i’s list (i.e., ρRi (j) <

ρRj (i)), then j’s incentive constraint for helping i in R is tighter than the incentive constraint

that k and ` face in RBFF for helping each other. Alternatively, if j appears later on i’s list

than i does, then i’s incentive constraint for helping j in R is tighter than the corresponding

constraints for k and ` in RBFF . Finally, if i and j have the same position on each other’s

list (i.e., ρRi (j) = ρRj (i)), then the incentive constraint that i and j face in helping each other

is of course the same as the constraint for k and `. We conclude that for every pair of players

in the BFF, there is a corresponding constraint in R that is at least as tight. This implies

that cooperation can be sustained in the BFF under bilateral enforcement, as required. �

Thus, some ranking profiles are more conducive to sustaining cooperation through bilateral

enforcement than others. The intuition is that the ranking structure induces interdependencies

between bilateral relationships. This is not the case in networks and random matching models

of cooperation, where bilateral relations can be treated in isolation.

In general, ranking profiles capture settings where the members of a society interact di-

rectly with many other members but with varying degrees of intensity. This fits the setting

of sequentially approaching friends for help. Sequentially approaching friends for help can

be socially beneficial because there are no unnecessary attempts to help. There are many

potential variants of this model that may fit different real-life settings. In a world where

connecting with others becomes easier we find that the fine shades of relationships can be

crucial.
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