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I. INTRODUCTION

Vickrey [11] and Dummet and Farquharson [2] conjectured and Gibbard [5],
Satterthwaite [9] and Schmeidler and Sonnenschein [10] proved that when
the number of social alternatives is at least three, any non-imposed and
non-dictatorial voting scheme is manipulable (in the sense of it being
profitable for some voter at some profile to misrepresent his preferences
in order to secure a social outcome preferred by him to that resulting
in the event his vote reflects his true preferences). This manipulability
(or noncheatproofness) result was obtained by the above mentioned authors under
(the implicit) assumption that the number of individuals (voters) is
finite. 1In the case of an infinite set of individuals the impossibility
of a cheatproof social choice function no longer holds. This is shown
in [8].

The concept of individual cheatproofness can be extended quite
naturally to the notion of coalitional cheatproofness: 1ILet 7 be a
finite set of at least three distinct objects, called alternatives, and
let > be the set of total, transitive, asymmetric (preference)
orderings over (7. Let V be a non-empty set of individuals. The elements
in ZV are referred to as preference profiles. A social choice function
(scF ) is a function f£: ZV-*17. An  SCF f 1is coalitionally
manipulable if for some preference profile p = {Pi}i in ZV and some

e V

(non-empty) coalition A c V there exists a preference profile



P‘ = {p;}i eV in ZV such that pj = pj for j é A and f(p‘)pif(p) for
every i ¢ A, If £ 1is not coalitionally manipulable, £ is said
to be coalitionally cheatproof.

In the case where V, the set of voters, is infinite it is shown
in Pazner and Wesley [8] that there exists a coalitionally cheatproof
non-imposed and non-dictatorial SCF Yet, while the existence of a
coalitionally cheatproof social choice function is rigorously proven in
{8], the essentially non-constructive method of proof used there does
not make it possible to actually present any concrete example of such a
cheatproof method of social choice.

In this paper, we turn to the constructive aspects of the problem
of designing a coalitionally cheatproof social choice function for large
societies. One would like, if possible, to exhibit a coalitionally
cheatproof, non-imposed, non-dictatorial SCF in some explicit fashion.l/
It appears, however, that this cannot be done. If V ={1, 2, ...} and
7 has at least three alternatives, then the existence of an SCF
f: Zv-+(7 having these properties cannot be proven unless one uses some

2/

form of the axiom of choice.=' Since every explicitly describable function
is, in all likelihood, "constructible" within ZF (the Zermelo-Fraenkel

axiom of set theory excluding the axiom of choice), a plausible conclusion

is that no "definable'" SCF exists bearing these properties.,

l/This, problem does not arise if only individual cheatproofness
is required; for an explicit example, see [8].

g/If F: vzv-+<7 is a coalitionally cheatproof, non-dictatorial, non-
imposed SCF, then using F one can construct a non-principal ultrafilter
over V (see Appendix). It is shown in [3]] however, that the existence
of a non-principal ultra-filter over V cannot be proven in ZF alone.
(ZF = the Zermelo-Fraenkel axioms of set theory without the axiom of
choice.)



The object of this work is to consider constructibly definable
SCF's which, in some sense, very nearly satisfy the condition (coalitionally
cheatproof, non-imposed, non-dictatorial). The social choice functions
we consider are essentially wvariations of the plurality rule. The paper
is divided into two parts. Section I1 deals with individual cheatproofness.
We produce a limit theorem which asserts that when the number of voters
is large (but finite) the plurality rule is individually cheatproof most
of the time. 1In Section III, coalitional cheatproofness properties of
a variant of the plurality rule is studied in the case where V, the set
of voters, is countably infinite. An Appendix in which the nonconstructive

character of the results in [8] are elaborated upon concludes the paper.

II. A LIMIT THEOREM ON THE PLURALITY RULE

Let 7 = {al, cees ak} be a set of alternatives and let Vo=
{vlf"" vn} be a set of individuals. Let 3 denote the set of all
strong orderings (i.e., the set of total,asymmetric and transitive binary

\
relations) on . Each element p = (pl, ceey pn) in g™ (the set of

i

functions from Vn to ) where P, € 2 for all i, 1= i=n, is
Vv

called a preference profile. A function f from 32 " to 7 1is called

a social choice function (SCF). An SCF £ is said to be individually
Vv

manipulable at p = (pl, oo pn) € 2 % if there exist pi € Y and

an i, 1< i <n such that f(Pi: Pé: D) P;)Pi f(Pl: Py eees Pn)
(o]

[¢) - 0 —

where p'i.= P. for all i # i f is individually cheatproof at p

1 o°

if it is not individually manipulable at that profile.

Vv
. n . .
For every p = (pl, ey pn) in 2 and every i, 1< i <k,

let C i) = v, Y and a.p.a for all a i «7 such that
et C(p,1) {VJ\ 3€ Y iP3%, , m 7 suc

2, # ai}, i.e. C(p,i) is the set of individuals who most prefer a; under



the profile p. Let |C(p,i)| be the number of individuals in C(p,i).

In conformance with this notation, let |Vn\ be the number of individuals
\Y
in V, i.e. ]Vn] = n. We define the plurality rule F: 3 ', 7 as follows:
\Y
Let p = (pl’ ceey pn) be a preference profile in 2 %, If for some

i, 1<1i<k, 'C(P)i)' > 'C(P:E)’ for all g, 1< <k, ¢ #1i,
then let F(p) = a. If not, let F(p) = aj , where jl

1
index such that [C(p,j;)| > [C(p,£)| for all 4, 1< g < k.

v
Let 'Bn be the set of preference profiles in 7 n for which F is indivi-

is the smallest

\ v
dually cheatproof. Let \Bn‘, 12 n‘ be the number of elements in Bn and 7 T,

respectively.

THEOREM 1:
Lim l"Bﬂ] =1
e Vv

To prove the theorem, two auxiliary lemmas will be utilized. 1In order
to formulate them, we introduce some additional notation.

For any ¢ > 0 and any natural number n, and any i,j 1< i < k,
1<j<k, i#3j, let

|[C(p,1) - C(p, )|

n

k

v
T(n,e,1,3) = {Plp € 2 n: < e},

Let |T(n,e,i,j)l be the number of preference profiles in T(n,g,i,j). Then

LEMMA 1:

for any i,j, 1<i<k, 1<j<k, 1i#].



PROOF: 1In proving the Lemma we make use of the central limit theorem
in probability theory ([6], p. 290). We assume that a probability measure
P is defined over Z so that all preference orders in I are equally
likely to occur when random choices are madeg/ (i.e. we assume that all
possible profiles are equally probable for the society under consideration).
Suppose that each Vo€ Vn randomly chooses a preference ordering

P, in accordance with the probability measure P. A randomly selected

preference profile p = (pl, cens pn) is thereby obtained, The probabilities
are then such that given any a, , a, € 7, where a_, # a, , we have

1h 1R
P(ailpmaiz) =jP(aizpmail). Let 1i,j, i # j, be any fixed natural number
between 1 and k, inclusives. Define in the following manner the random
variables K §2, ... over the set of infinite sequences of preference
orders:

{1 if under p , a, is preferred over all other
2 i 1 .
def elements in ~
gz = gz(Pl’PZ"") =(-1 if under p , a, is preferred over all other
4 J elements in &7 (II.1)
0 otherwise

Each gz then depends only on the g-th element P, of the infinite
sequence, i.e. gz(p) = gé(pz) where Eé is defined in obvious fashion.
It is thus easily seen that

e, )
v 'z=1’z (pz |

{P = (Pl; ) Pn)IP € 2 n: vz-; < 6} = T(n,¢,1i,3)
= .

and that consequently

3T

='Note that throughout, the lower-case p and p, stand for preference
profiles and orderings respectively while capital P denotes the probability
measure,
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Therefore, it is sufficient to prove that

| 2 eyl ,
Lim P [ —42—— < o)< =2 (11.2)
e 2n N 2
'k
For each random variable §£, let gz = E(gﬂ), the expectation of
— =2 )
§£. Then aﬂ =0 for all . ILet bg = E(.§£ - E(§£))2 = %. Let
g2 - § pZ-2n

n 2% %k
Let FE be the distribution function of the random variable gﬂ'
Then for any 7> 0

N =]

- 2
Lim 1 J\ (g - a)zdF (x) = Lim %; E J‘ x dF (x) =0
e B 4=1 1x - a \> TB 4 THYe8 4=1 X > 7B
n 4 n n

Hence, the Lindeberg condition (Gnedenko [6], p. 289) is satisfied.
Then by the central limit theorem (Gnedenko [6], p. 290), as n 4 o
P {l z (€, - a)<xl - —l—‘fxe-gzdz

Bn k=1 k k ' W/E; s 2

uniformly in =x. Thus

n
1 2.
P(-e<Z I E <g) < =£

1 Jﬂe ‘Zz d
— e —— dz
Bn 2=1 4 *’E; ~e 2 \/E%

| 22, | 2
or Lim'P( , L <ie> < —— from which the truth of the lemma follows.
e @ \/ 2
k

IEMMA 2 Given any ¢ > 0 and any positive integer mn, let

2 2
I(m,e) = U T(n,e,1,3). Then Lim mfdloy?® 2e
1<i, j<k me |zH N2

L
17]



PROOF: Let P(T(n,¢)) be the probability that a randomly chosen

Vv
preference profile in 32 " oceur in T(n,¢). Then P(T(n,e)) = JEX£¢€2 .
Ray
However,
P(T(n,e)) = P( U T(n,e,i,)) < 5 P(T(n,e,i,3))
1<i, i<k 1<i, i<k
i#] i#]

which for sufficiently large n 1s equal or less than k2 €

W2

Then Lim 1Im.e| Lim P(T(n,¢)) < K2 —2€ ,
V —_—
hes 1an M V%r

which completes the proof of the lemma.
Vv
Now, consider X n\T(n,e). It follows from Lemma 2 that

2

\
I N (¢ WS k2
Lim - > 1 -
e I ZVn ‘ V-z—'[:

However, given any fixed ¢ > 0, for all sufficiently large n

WY
2 " \I(n,e) €5 _.

Thus, given any fixed ¢ > 0

J"2-9n] k22
Lim 1 - —=£ | from which the theorem follows.

oy T W

Theorem 1 proved here indicates that the plurality rule (cum a

reasonable tie-breaking device) is approximately cheatproof -in

large finite societies. More exactly, we have shown that as the number
of individuals tends to infinity the proportion of profiles at which the
plurality rule is individually cheatproof tends to one. This means that
the issue of preference misrepresentation by any single voter in a large
society can be ignored for all practical purposes when social choices are

made according to the plurality rule. This of course should have been



expected on purely intuitive grounds as any isolated individual does not
really count when society is sizeable. Somewhat less intuitive is Theorem
2 in the next section in which it is stated that a variant of the plurality
rule is almost coalitionally cheatproof in societies in which there is

a countable infinity of voters.

III. THE PLURALITY RULE IN THE INFINITE CASE

Let Vv = {1, 2, ...} be a countably infinite set of voters, 7 =
{al, cees am} a finite set of alternatives, Z the set of total, transitive,
asymmetric (preference) orders over . The elements p = (Pl’ Py o) € ZV

are reférred to as preference profiles. We would like to define a social
choice function £: ZV-+C? which chooses the alternative favored by a
"plurality' of the voters. Since there are likely to be an infinite
set of voters favoring each alternative we cannot determine plurality
simply be counting. One approach we could try is to consider limits of
some normalized quantity. For any integer 1 < n < e and any natural
i, 1<i<m and any p € Zv, let

Cn(p,i) = {j[l < j<n and a;Pyay for all a, # a;, a € dj
Let ]cn(p,i)“] be the number of j's in C_(p,1).

A possible method for defining a plurality rule might be to consider

the normalized limits

C_(p,1) C_(p,2) C_(p,m l
Lim——“n \,Lim ——————l“ \, ..., Lim ————‘“ :
e n e n ﬁ:m n

\Cn(P:k)\

and to choose the k, 1< k < m for which Lim
4o

n
is largest, whereupon the plurality is ascribed to a - However, this rule
is usually not practicablelIf one assumes that each voter is just as likely

to prefer a, to a. as a, to a. and that these probabilities are
11 32 12 I



independent of the choices of the remaining voters, then for each

1 < j < m, the probability that voter 1 preférs aj over all other

alternatives is equal to % . Thus the limits
e k) |
Lim ——— l1<k<m
e n
are with probability 1 all equal to i . There is thus virtual certainity

of a tie. One might therefore try this type of approach but with a
different normalization.

For each n,j, where 1 <n<w®, 1< j<m and any p € 5V let

: n

@ o _ %Py
j i I m =T
(e \/ﬂ<m>< —L

is thus a random-variable dependent on p. Under the foregoing probab-

x (P
]
ility assumption one can prove (using the de Moivre -Laplace integral

theorem ([6], p. 93)) that
-z

(n) b =z
P({ang“ ® <bB) " [ e 2 dz
a

X§n) is very mearly normally distributed. Similarly, one may
also prove that P({%;)(p) = %?)(p)}) ~ 0 for any jl’ j2’ where

1 2
0 < j1 < j2 < m. One might then define Xj(p) as

Lim Xgn)

nroo

Xj(p)

if this 1limit exists; the plurality would then be ascribed to that ay

for which Xk(p) is largest. However, it is not difficult to show that

. jc_(p,i)- B
for almost all p € %', the limit :Lim X\™= Lim | L8 o
j 1 m L
Ti-beo -bes n (5)( - )

does not exist. Thus the problem of defining a suitable plurality rule

when V 1is infinite is apparently insurmountable.
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We are therefore led to settle for a social choice function which

falls short of being a plurality rule in the strict sense. We consider
\% \Y \Cn(p’j)l
the following SCF, F: 2" +27: For any p ¢ z', if Lim ———
nbco
exists for all j, 1< j<m and if for some k, 1 <k<m

|C_(p,k) | lc_(p,0)

Lim o > Lim
jag -] nre

for all g #k, 1< g <m, then let F(p) = a - Otherwise, let
F(p) = aj - We note that for almost all p in ZV, F(p) = a; - Thus F
is very nearly an imposed regime. 1In those rare instances where a significant
proportion of the population is unified against the regime's policy, the
regime yields (the alternative a; may be thought to be the status-quo).

In presenting this SCF, our purpose is not to assert that it is
an ideal one. Our contention, rather, is that in spite of the fact that
the SCF, F, is less than ideal, it nevertheless illustrates the possibility
of a workable democracy since it is in some sense coalitionally cheatproof
and hence cdnducive to social stability (without being fully imposed or
dictatorial).

Tt is not difficult to show that F 1is not coalitionally cheatproof
in the strict sense. We shall claim, however, that for almost every
profile p € ZV, F(p) 1is coalitionally cheatproof for practically all of
the important coalitions. By important coalitions we mean the following:

In dealing with large populations, the coalitions of significance
are usually definable by some simple phrase in the English language,
eg. upper middle class, New Yorkers, coal miners, etc. Coalitions that

are not easily definable are likely to be too complicated to be formed.

If we carry this principle over to the case of an infinite population
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vV = {1, 2, ...}, we would conclude that the coalitions of significance
are those that may be defined by a phrase in the English language, eg.
the set of even numbers, the set of primes less than 1500, etec. Although
there are ZRO subsets of V, only RO are definable by sen“ences of finite
length. Thus a substantial restriction is imposed on the coalitions of
interest.
We would like to assert the following: If J% is the set of coalitions

definable in the English language, then for almost all p in X%, F 1is

coalitionally cheatproof for all A eu%. Although there seems to be no
reason why such a result cannot be obtained, it is somewhat difficult to
formulate this mathematically; we know of no adequate mathematical descrip~
tion of what constitutes a set which is definable in English. (What is and
and is not English?) We would prefer instead to consider a more mathemati-
cally precise 1anguage -- the language of set theory. This language posses-
ses a very small vocabulary -- the symbols €, =, ¥, 3, “(not),A (and),
V (or), and some rigidly defined syntactical rules for forming sentences.
In spite of its meagerness, the language is nevertheless sufficiently power-
ful to formulate all of the familiar concepts in classical analysis -- limits,
irrationals, g, e, Bessel functions, etc. If we assume that classical con-
cepts are adequate tools for forming models of social behavior, we would
conclude that the language of set theory is also satisfactory for this pur-
pose. Thus in many situations the assumption that the admissible coalitions
are those that can be described in the language of set theory seems to be quite

acceptable. Let A be the set of coalitions (subsets of V) that are de-

scribable in the language of set theory. We then have the following result:

THEOREM 2: For almost all p € ZV, the SCF F:ZV-+<7 described above is
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cheat-proof for all coalitions in vqé/_
Proof: We make use of the fact that A 1is countably infinite.
Let A = {Al,Az,...,} be a sequence (an enumeration) of infinite
coalitions in A, whereby every infinite subset of V is indexed in the

sequence. For every natural k let

Q = {plp = {pl,pz,...,} € ZV and for every natural j between
1 and m (where m is the number of alternatives in (7
there are an infinite number of 1i's in Ak who favor aj

(under p) above all other alternatives.}

By virtue of the Borel - Cantelli lemma ([6], p. 247) we find that the
probability that a randomly selected profile p € ZV- will belong to Qk
is 1, given any natural number k. Thus if we let Q = a Qk’ it
follows that Prob ({p|p € Q1), the probability that a rai&imly selected

P £ Zv will belong to Q, 1is also equal to 1. Let

def
R = {p‘p = (pl’pZ"") € 5V and for every natural j between 1
c .
and m, Lim \—ngigzj exists and is equal to i 1.
n

Mo
As a result of the strong law of large numbers, Prob ({p|p € R})= 1.
Letting S =R N Q, we receive that Prob ({p|p € S}) = 1. Clearly
F(p) = a, for every p € S. Moreover, given any p € S, F(p) is coali-
tionally cheatproof with respect to every coalition A ¢ A. This is
because for any A € A and all p € S, an infinite number of voters in

A will prefer a, to all other alternatives.

é/ By this we mean: For almost every p € Zv, no A € A exists such that
for some p' = (p'l, p'2,..-,) € Zv, where p'i =P, for i ¢ A,
F(p')ij(p) for all j € A.



It should be noted that there are coalitions of interest which are not

included in A. TFor example, consider an arbitrary preference profile

a
p = (pl,pz,...) € 7V and let Ap2 be the set of voters who most prefer

a
1 ‘e, 2 _ ¢
a, under the profile p, i.e Ap {J\azpjai for all a,  a,,
. v as
aie Al. TFor almost all p in I, Ap ¢ A. We can argue, however,

that in many practical cases, coalitions like A:Z cannot actually
arise.  Completely free communication among the voters with regard to
their true preferences would be required in order for this group to form.
When existing conditions do not permit free communication, these coa-
litions are not likely to arise. 1In such situations, the formable coali-

tions are only those belonging to A.
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APPENDIX

Let V =1{1,2,...,} be the set of natural numbers. A family ¥ of
subsets of V 1is called a filter if (1) V€ 7, @ € A, (2) for every
Al’ A2 € J A1 N A2 € A, and (3) for any A, Bc V, if A€ 7 and
B>A then B € J. A filter J 1is called on ultra-filter if for any
A cCV, either A or its complement bdong tod . J is a non-principal
filter if for every 1 € V, the set {i} does not belong to ¥ .

The existence of a non-principal ultra-filter over V may be proven
by means of Zorn's lemma ([1], p.61). It is also known that any exis-
tence proof for non-principal ultra-filter over V must use some form of
the axiom of choiceéj. A reasonable conclusion is that, although non-prin-
cipal ultra-filters over V exist, no non-principal ultra-filter over V
can be defined in any explicit manner.

Let .7 be a finite set of at least three distinct alternatives and
let X be the set of complete, transitive, assymetric orderings over A.
It has been proven by Pazner and Wesley in [8] that there exists a co-
alitionally cheat-proof, non-dictatorial and non-imposed SCF f:ZVA'(7
Like Fishburn's [4] result (in which the possibility of an Arrovian
social welfare function is shown in the case of an infinite set of indivi-
duals) the existence proof depicted by Pazner and Wesley utilitzes ultra-
filters and is non-constructive in character. A natural question is
whether the social choice function, whose existence is proven in [8], can

be exhibited in some specific fashion. In view of the equivalence (which

5

“/It is shown in [3] that ZF alone (the axioms of Zermelo-
Fraenkel set theory excluding the axiom of choice) is not sufficient
to prove the existence of a non~principal ultra-filter over V.
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we now demoqstrate) between the existence of ultra-filters and the existence
of a coalitionally cheat-proof'non-imposed,.non-dictatorial SCF, the answer
is apparently no.

It is shown in [8] that the existence of ultra-filters implies the
existence of a coalitionally cheat-proof, non-imposed, non-dictatorial
SCF f:ivacz To establish equivalence, the converse must also be proven.

We do so in the following theorem:

6/ v
Theorem 7 Let f:7 +& be a coalitionally cheat-proof, non-dictatorial,
non-imposed social choice function. Using £, one can construct a non-

principal ultra-filter U ovér V.

Proof: Let A be any subset of V and suppose that the members of
comp . .
A and A (the complement of A) wvote in block. The effect is the same
as 1f there were a population of two voters only. Thus the Gibbard-
Satterthwaite- result ( which asserts ‘that no
cheat-proof non-dictatorial, non-imposed SCF exists when the population
is finite) can:bé applied. Since £ 1is non-imposed and cheat-proof, one
of the two coalitions must dictate. Without loss in generality assume
. comp ,
that A dictates whenever A and A each vote in block. We then
. comp .

assert that even if the members of A do not vote in block, A
dictates. Otherwise coalitional cheat proofness would be violated. To
see this, suppose by contradiction that there is a profile P ={§i}i e v
and a preference order p € Z with maximal element a € A such that for
all 1€ A iﬁi = p while £(p) =b # a. Suppose further that the

P

com . .
"true" preferences of the members of A are identical and that they

all least prefer a. If the members of AP yote according to their

é/This theorem was adapted from a similar result appearing in [7].
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true preferences while the members of A vote according to the preference

p, then under the resulting profile p' = {pi} oy 7 f(p') = a. If on the
ie

omp

other hand, members of A° vote according to {Ei}  Acom then under
i

the resulting profile, p, f(p) =b. Thus £(p) pi f(p') for all
. comp . . . ‘o
i €A , 1in violation of coalitional -cheatproofness.
Let %/ be the set of coalitions which dictate. Then it is easily

seen that V € 9, and for any A AZ € u, Al N A2 is also in U .

17
. co A . .

Moreover, for any A;.either A or A P is in 72{ . The non-dictatorial

property of f insures that mo coalition A consisting of a singleton

belongs to % . Thus % 1is a non-principal ultra-filter constructible

from f.
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