
 

CMS-EMS 

Center for Mathematical Studies in Economics 

And Management Science 

Discussion Paper #1546 

 

Social Learning and Innovation Cycles 
 

Umberto Garfagnini* and Bruno Strulovici ** 

*ITAM School of Business 
**Northwestern University 

 

February 6, 2012 

 

 

JEL Classification: D83, 03 

 

Keywords:  Social Learning, Innovation, Technological Change, Experimentation 

 

 

 

 

 

 



Social Learning and Innovation Cycles

Umberto Garfagnini Bruno Strulovici

ITAM School of Business Northwestern University

February 6, 2012

Abstract

We study social learning and innovation in an overlapping generations model, em-

phasizing the trade-off between marginal innovation (combining existing technologies)

and radical innovation (breaking new ground). We characterize both short-term and

long-term dynamics of innovation, and the intergenerational accumulation of knowl-

edge. Innovation cycles emerge endogenously, but the number of cycles is finite almost

surely, and radical innovation terminates in finite time. We identify a negative rela-

tionship between past successes and the magnitude of radical innovation, combining

insights from the multi-armed bandit literature with a spatial representation of inno-

vation. Past successes reduce the incremental value of experimentation, and result

in less ambitious innovation. In our framework, patents promote radical innovation

through two channels: by increasing the expected benefit of radical innovation and

by increasing the cost of marginal innovation. Our analysis suggests that sustaining

radical innovation in the long-run requires external intervention.

This paper was previously circulated under the title “The Dynamics of Innovation”. We are grateful to

Alessandro Bonatti, Steve Callander, Xavier Durand, Michael Mandler, Kiminori Matsuyama, Joel Mokyr,

Francisco Ruiz-Aliseda, Simon Wilkie, Huanxing Yang, and seminar participants at the Spring 2011 Midwest

Theory Conference, Banco de México, and the 2012 North American Winter Meeting of the Econometric

Society. Email addresses: umberto.garfagnini@itam.mx and b-strulovici@northwestern.edu.
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1 Introduction

The invention of the transistor in the 1950s, the first large-scale cellular-phone system in the

1970s, and the internet in the 1990s are all radical historical breakthroughs that boosted the

development of new industries (e.g., semiconductors, computers, e-commerce, etc.), which

shaped the world as we know it. The importance of radical innovation from a social per-

spective has ample empirical evidence (Griliches (1992), Hall (1996)), but is such innovation

sustainable in the long-run?

In the last few decades, many research institutions, such as Bell Labs and the Defense Ad-

vanced Research Projects Agency, have shifted funding from basic to more applied research.

Those institutions contributed to the economic boom of the US economy with their inno-

vative research in the second half of the twentieth century.1 In a recent paper, Jones and

Williams (1998) conclude that “the optimal share of resources to invest in research is con-

servatively estimated to be two to four times larger than the actual amount invested by the

U.S. economy. The extent of underinvestment is substantial, and could well be much larger.”

While this behavior may be optimal in the short-term because it leads to higher profitability,

it undermines long-run growth.

This paper studies the short-run and long-run dynamics of innovation in a model of so-

cial learning where technologies have correlated payoffs. Adopting an “experimentation”

approach, we focus on the dynamics of innovation and knowledge, rather than on their

implications for capital accumulation, which distinguishes our work from models in which

innovation takes a more reduced form.2 At each period, a “young” agent (or generation) can

experiment with a technology chosen on the positive real half-line, whose payoff is initially

unknown and drawn from the path of an arithmetic Brownian motion. Brownian motion is

the only continuous process (up to scaling and drift parameters) that satisfies some station-

ary, independent increments condition,3 and is thus a natural way of modeling unknown but

1We refer to the article “How Science Can Create Millions of New Jobs: Reigniting basic research can

repair the broken U.S. business model and put Americans back to work”, published in BusinessWeek on

August 27th, 2009, for a discussion of this issue.
2In our model, aggregate shocks arise at each period, and their distribution depends on the type of

innovation that is chosen at that period, as well as on past innovation. The relation to growth is discussed

in Section 8.
3 This result directly follows from Lévy’s characterization theorem for the representation of continuous
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correlated technologies.4 Each agent lives for two periods and, therefore, has an incentive to

experiment in its first period. We distinguish two types of innovation. Marginal innovation

consists in choosing a technology in the explored hull, i.e., a technology that is a convex

combination of technologies that have been explored earlier. Marginal innovation bears a

cost that is normalized to zero.5 Radical innovation consists in experimenting beyond the

frontier of that interval, and entails a cost that is increasing and convex in the distance from

the frontier, and may decrease with the quality of the best explored technology.

The paper’s first contribution is a representation of the value of marginal innovation and the

value of radical innovation, defined, at each period, as the expected benefit of each type of

innovation in excess of the payoff of the best technology explored so far. Using those values

of innovation, we are able to precisely describe the dynamics of innovation.

We identify a negative relationship between the magnitude of radical innovation (i.e., how far

it is from known technologies) and past successes. This effect stems from the relation between

the “value of experimentation,” a well-known concept in the experimentation literature, with

our spatial representation of technologies. More precisely, past successes reduce not only the

value of experimentation, but also its derivative with respect to the size of innovation: it

reduces the marginal value of experimentation where the term “marginal” refers to incre-

mental departures from known technologies (the spatial dimension of the model). Because

the marginal cost of radical innovation is nondecreasing in the distance from known tech-

nologies, the optimal size of radical innovation must therefore decrease with past successes.

By a similar argument, more patient agents undertake more ambitious radical innovation,

because the marginal value of experimentation lies in the future exploitation of information

acquired today, whereas the cost of innovation is incurred in the present period.

We also characterize innovation cycles : successive agents alternate between radical and

marginal innovation, in a pattern reminiscent of Schumpeterian cycles. If radical innovation

at some period yields a high enough payoff, it is followed by further radical innovation.

martingales (see, e.g., Karatzas and Shreve 1991).
4A consequence of this feature is that the payoff space is unbounded, a characteristic that requires a

significantly more sophisticated analysis for the long-run behavior of innovation, but which gives a strong

meaning to our result on stagnation (Theorem 2).
5Our results are qualitatively unchanged if the cost of marginal innovation is low, compared to the cost

radical innovation.
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Otherwise, the refinement of known technologies takes places through marginal innovation.

However, marginal innovation reduces the value of experimentation inside the explored hull,

other things equal. Thus, after a sequence of marginal innovations, the value of marginal

innovation can drop below the value of radical innovation, and radical innovation becomes

again optimal, triggering a new innovation cycle.

Again, this phenomenon stems from the interplay between a well-known mechanism in the

experimentation literature and the spatial nature of our model. In a multi-armed bandit

problem, the more an “arm” is played, and the lower the “pure” value of experimentation

for that arm: by playing this arm, one reduces the uncertainty surrounding the payoff dis-

tribution of that arm, and this reduces the learning value of playing that arm. Marginal

innovation has a similar effect: by trying repeatedly convex combinations of known tech-

nologies, one reduces uncertainty about all technologies in the explored hull, due to the

correlation between these technologies. By contrast, marginal innovation does not affect be-

liefs about radical innovation, and thus does not reduce the experimentation value of radical

innovation.

Formalizing this intuition requires a new relation between “arms” and “technologies,” which

is another contribution of our paper. Because Brownian motion is a Markov process, the

payoff distribution of all technologies within any interval spanned by two technologies with

known payoffs is conditionally independent of all technologies located outside of that inter-

val. Therefore, the standard intuition for the value of experimentation can be applied at

the level of these intervals, or “units,” as we call them, rather than at the lower level of

individual technologies. The more technologies are tried within a given unit, and the lower

the experimentation value of that unit.

We exploit this representation of the technological space to derive an “index” policy for ex-

perimentation. Each unit is assigned an index which has an exact formula up to a function

that depends only on the ratio between the width of the unit and the difference of payoffs at

its endpoints. The wider the unit, and the higher its value of experimentation. Because an

“old” agent always picks the best technology explored so far, the index of a unit also depends

on the payoff of that technology:6 a better known technology lowers, all else equal, the prob-

6This distinguishes this index from the well-known Gittins index, whose value for an arm is completely

independent of other arms.
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ability of surpassing it through experimentation, and lowers the index of all units. However,

conditional independence implies that, other than through the best available technology, the

index of a unit is completely independent of the shape and level of other units.

We show that radical innovation stops in finite time and, therefore, that the number of

innovation cycles is (almost surely) finite. Surprisingly, this stagnation arises even when the

underlying Brownian motion has any positive drift, as long as the decision problem of each

generation is well defined (see Section 7), and may be explained as follows. Each radical

innovation has a positive probability of being a large failure, independently of the particular

experimentation path. After such failure, the next generation finds it optimal to perform

marginal innovation, rather than undertake a radical innovation building on such a failure.

Even with a positive drift, the large leap one would have to make to offset this failure entails

such a high innovation cost that radical innovation is suboptimal. This leads to a vicious

cycle: because the first generation following the failure does not try radical innovation, the

future generations’ perspective of radical innovation does not improve, and because it does

not improve, those later generations do not try radical innovation either. If some generation

internalized the benefit of radical innovation for future generations, it could break this cycle.

Short of this long-sighted perspective, radical innovation stops inefficiently early.

Once the “stagnation” stage has been reached, new generations fine-tune their search to make

marginal improvements over available technologies. Since opportunities for valuable inno-

vation become increasingly rare in a stagnating economy, the “value” of pursuing marginal

innovation converges to zero in the limit. Innovations then converge to a single technology,

which can be interpreted as the emergence of a technological standard. Another interpre-

tation of this result is that the economy converges to a balanced-growth path, when we

reinterpret the outcome of each technology as a productivity rate. In our model, therefore,

social learning becomes arbitrarily small. In contrast to the usual mechanism of informa-

tional cascades of Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), the

reason here is that information acquisition is endogenous, and becomes asymptotically neg-

ligible. The mechanism through which radical innovation stops shares some features with

information cascades however: because past generations do not learn anything, after some

time, about radical innovation, the value of radical innovation stalls, and future generations

have no incentive to experiment with radical innovation, creating a vicious cycle.
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Characterizing the limit of beliefs, and innovation in our setting presents a technical chal-

lenge. For example, could agents stop experimentation altogether, and start exploiting the

best known technology after some time? Or could they switch infinitely often between dif-

ferent “technological areas”? Limiting beliefs result from the interaction between knowledge

and decisions at each time. The challenge, in our setting, stems from the combination of

three elements: i) a continuum of actions, ii) correlation across the payoffs of all actions,

and iii) non compactness of the action space. The non compactness is an integral part

of our stagnation result, and gives it its strength. However, it requires specific arguments

to adapt the standard measure theoretical tools and results developed for compact spaces.

Specifically, one contribution of this paper is to establish the almost sure convergence of

these beliefs (and, therefore, of social learning) to a well-defined distribution over the set of

technological payoffs, in a setting with Brownian uncertainty.

Our model gives rise to multiple types of intergenerational linkages: A direct learning effect,

which arises from the observability of the outcomes of innovation by previous generations.

Innovation increases the stock of knowledge of society through more refined beliefs about

the underlying outcome process. A feasibility effect, which arises when radical innovation is

undertaken, because it endows society with new opportunities for costless marginal innova-

tion. A third intergenerational linkage is the cost effect, which arises when the cost of radical

innovation is reduced following new discoveries, and is explored in Section 7. Feasibility and

cost effects strengthen the incentives for radical innovation. While the economy still expe-

riences stagnation in the long-run, the short-run dynamics may be significantly affected by

such effects.

Our paper is closely related to Jovanovic and Rob (1990), who study a search-theoretic

model of growth through technological innovation. One major departure from that paper is

the endogenous relation between incentives for future innovation and current technologies.

In our model, the incentives to perform radical innovation are highly sensitive to the history

of previous discoveries in two ways. First, there is a payoff externality that derives from the

possibility of exploitation of previous technologies, as in Jovanovic and Rob. Second, the

history of technologies directly affects the beliefs that each agent holds about the outcome

of radical innovation, which is absent in their paper. Our model generates innovation cycles,

as in Jovanovic and Rob (1990). In our model, the size of radical innovation is determined
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endogenously, affecting the length of each cycle.7

The paper is also related to the model introduced by Callander (2011), who analyzes the

experimentation path produced by a sequence of myopic agents trying to find the “right”

policy. Because, in our model, agents live for two periods, learning is active rather than

passive. Active learning drives incentives to innovate with new technologies through the

option value of experimentation. Our model also distinguishes between radical and marginal

innovation, giving rise to innovation cycles based on the fluctuating option value for inno-

vation. Our stagnation and convergence results are also of a very different nature from the

long-run dynamics arising in Callander’s model.8

We also contribute to the literature on optimal experimentation following Rothschild (1974),

McLennan (1984), Easley and Kiefer (1988), Aghion, Bolton, Harris, and Jullien (1991), and

Bala and Goyal (1998), among others. The literature has focused on the possibility of

incomplete learning in the long-run and has tried to identify the conditions under which

learning can be guaranteed to be complete. In contrast, learning can hardly be expected to

be complete in our set-up, as the underlying parameter is the realized path of a Brownian

motion. Some of our arguments build on Easley and Kiefer (1988), who derive the properties

of the experimentation policy in the long-run. In our setting, not only does there exist a

well-defined long-run belief about the value of each policy: we show that experimentation

converges to a single policy. Exploiting the properties of Brownian motion, we prove our

results without assuming compactness of the parameter space, in contrast to Easley and

7Our model is also related to the literature on organizational behavior, which stresses the tendency of

firms to perform local searches around the technologies currently in use. This is a natural response to

uncertainty about the outcomes of innovation. For example, Kauffman, Lobo, and Macready (2000) look

at environments in which a firm’s current location in the space of technologies influences the incentives for

innovation. In a different framework, Matsuyama (1999) investigates the connection between neoclassical

and neo-Schumpeterian growth models. Acemoglu, Gancia, and Zilibotti (2010) study the interplay between

innovation and standardization in a dynamic general equilibrium model. In contrast, we analyze innovation

and standardization (i.e., radical versus marginal innovation) in a framework affected by uncertainty about

the payoff associated with a new technology.
8A parallel line of research has constructed models of scientific research. Bramoullé and Saint-Paul (2010)

studies the evolution of fundamental research when scientists are motivated by the reputation they obtain

from the development of new fields. Reputational concerns increase incentives to pursue more innovative

research. Using a different model, Mandler (2011) shows that reduced communication among scientists may

be beneficial for society by inducing different scientists to pursue different lines of research.
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Kiefer. Also in contrast to some of this literature, our paper characterizes both the short-

term patterns of innovation, as well as its behavior in the long run.

Finally, the paper can also be interpreted as a theory of economic stagnation. Jovanovic and

Nyarko (1996) have shown that the development of human capital specific to a particular

technology may induce a myopic agent to stick to that technology in the long run, despite the

availability of (possibly) better technologies. Garicano and Rossi-Hansberg (2009) provides

(among other things) an alternative theory of stagnation, which is based on the necessity

to develop organizations to exploit newly discovered technologies. In this paper, stagnation

follows endogenously from the outcomes of the innovation process.

2 The Model

We consider an overlapping generations model with the following characteristics. An agent

is born at each period t, who lives for two periods, “young” and “old.” The agent is risk

neutral and chooses at each period a technology x ∈ X = [0,∞). Each technology x has a

payoff f(x) ∈ R that is initially unknown except at the origin: f(0) = 0.9 The agent must

incur the payoff of any technology he has chosen.10

A young generation inherits from the contemporary old generation the knowledge of all

technologies and payoffs that have previously been tried.11 A time-t history ht is a list of

technology-payoff pairs that have been experienced in the past. Letting Xt denote the set of

previously tried technologies, ht = {(0, 0), (x, f(x)) : x ∈ Xt}. The following variables will

play an important role in the analysis. Given any history ht, we let

• zt = max{0, f(x) : x ∈ Xt} denote the highest payoff among explored technologies;

• x̄t = max{x : x ∈ Xt} denote the (right) frontier of the set of explored technologies;

9Instead of a payoff, f(x) could represent a utility level, without affecting the analysis as long as agents

have homogeneous utility and are expected-utility maximizers. One could also consider the larger domain

X = R. Radical innovation would then have “left” and “right” components.
10An alternative modeling choice would be to follow Jovanovic and Rob (1990), in which an agent can

learn at some cost the payoff of a new technology, and then decide whether or not to use it.
11Old and young generations coexisting in a period interact only through the transmission of knowledge

of previously tried technologies. This transmission is assumed to be perfect. The two generations choose

their technology simultaneously and thus cannot observe the outcome of each other’s innovation.
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• ρt = zt− f(x̄t) denote the gap in values between the best explored technology and the

frontier technology.

Because agents perfectly know past innovations and their outcomes, zt is nondecreasing over

time, and is a lower bound on the payoff that agents can guarantee themselves, at any period.

The set [0, x̄t] of technologies that are convex combinations of previously explored ones is

called the explored hull. The gap measures the profitability differential between the best

technology explored so far and the current frontier.

Each generation shares the common belief that the underlying outcome function is the real-

ized path of a Brownian motion with drift κ and volatility parameter σ > 0. More precisely,

we start with a filtered probability space (Ω,F ,P) satisfying the usual regularity condi-

tions,12 and whose outcomes are identified with the paths of some Brownian motion.13 We

first focus on the case in which κ = 0 and differ to Section 7.2 the extension of our result

to the case of a nonzero drift. In particular, the payoff of a technology x > x̄t has a normal

distribution, with the following parameters:

f(x) ∼ N
(
f(x̄t), σ

2(x− x̄t)
)
. (1)

Technologies beyond x̄t thus have the same expected payoff, and a variance that increases

with their distance to x̄t.

To exploit the Markov property of Brownian motion, we represent past innovations in terms

of technological “units,” defined as follows.

Definition 1 A bounded unit u = [I,m,M ] consists of a finite interval I = [xl, xr] with

ordered endpoint values m = min{f(xl), f(xr)} and M = max{f(xl), f(xr)}. An unbounded

unit u = [I,m] consists of an interval I = [xl,+∞) with initial value m = f(xl).

For any bounded unit u, we let l = xr − xl and d = M −m denote the width and height of

the unit. After any history, there is a single unbounded unit, which we simply denote u∞.

We denote by P(ht) the collection of bounded units induced by an arbitrary history ht.

12See Karatzas and Shreve (1991).
13In addition to Lévy’s characterization theorem, mentioned in Footnote 3, Jovanovic and Rob (1990)

provide an axiomatic foundation for the Brownian structure of innovations.
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z3
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1

Figure 1: Example of collection of units after three periods.

A technology x in a bounded unit u has a normally distributed payoff with mean

f(xl) +
f(xr)− f(xl)

xr − xl
(x− xl) (2)

and variance
(x− xl)(xr − x)

xr − xl
σ2. (3)

The stochastic payoff function of technologies within a given unit is a Brownian bridge.14

The expected outcome of technologies within a unit increases linearly from the endpoint

technology with the worst outcome to the one with the highest outcome. The variance,

instead, increases as we move away from either endpoint and it is maximized at the midpoint

technology. Observing the payoff of a technology in a given unit affects only the distribution

of technologies lying in that unit: payoffs of technologies outside of that unit are conditionally

independent from the payoffs in the unit, given the payoffs at the endpoints of the unit.

Figure 1 provides an example of a collection of units where each technology is represented

with the associated expected outcome.

We consider two types of innovation. A marginal innovation is a technological choice x ∈
[0, x̄t], and is assumed to be costless (leaving aside the opportunity cost of forgoing the

highest known payoff zt). Thus, whenever the frontier expands, all technologies between the

old and new frontiers become available at no cost.15 Radical innovation, instead, incurs a

14We refer the reader to Billingsley (1968) for an introduction to Brownian bridges.
15The qualitative results of the paper are robust to the introduction of a positive cost, provided that either

i) exploitation incurs the same cost, or ii) the cost of marginal innovation vanishes as the innovation becomes

arbitrarily close to known technologies.
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cost that depends on how far an agent pushes innovation away from the current frontier. We

motivate this assumption by the fact that large initial investments are arguably one of the

main features of fundamental research, together with its high uncertainty. Specifically, we

assume for now that the cost for innovation x > x̄ is c(x− x̄) for some function c.

Assumption 1 c(·) is twice continuously differentiable, strictly increasing, weakly convex,

and such that i) c(0) = 0, and ii) either c′(0) > 0 or c′′(0) > 0.

Section 7.1 analyzes environments in which the cost of radical innovation is also a (decreasing)

function of the quality of the best explored technology.

Each agent maximizes his total expected payoff, discounting his second period payoff by a

factor δ ∈ (0, 1). An old agent has no value for information and thus always chooses the best

known technologies. A young agent solves the optimization problem

U(ht) = sup
x∈X

Eht [f(x)− c(x− x̄t) + δmax{f(x), zt}] (4)

with the convention that c(y) = 0 whenever y ≤ 0.

3 How to Choose Innovation

This section characterizes the equilibrium path of innovation, resulting from the optimal ex-

perimentation of each generation. The problem faced by a young agent resembles that of a

multi-armed bandit problem, with important differences. Innovating with a new technology

creates an informational spillover due to the correlation across technologies. A more struc-

tured way to think about the decision problem faced by the agent is to bundle technologies

together according to the units they belong to. Since the experimentation of a technology

only changes the payoff distribution of technologies that reside in the same unit, the agent’s

problem may be decomposed as, first, choosing one of finitely many units and, second, which

technology to pick within that unit. For the unit-level choice, Theorem 1 shows that we can

characterize each unit based on a single index. This index determines the value of innova-

tion of the unit, defined as the largest (normalized) discounted expected payoff attainable

by the current generation, net of the highest payoff among explored technologies, z, when

the innovations are restricted to that unit in the first period, and given the possibility of

exploitation with any known technology in the second period.
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To state Theorem 1, we fix a history h and let z denote the highest outcome among explored

technologies, ρ = z − f(x̄) denote the gap, and x̄ denote the frontier. For any unit u, we

recall that l denotes the width of the unit, m ≤M denote the payoffs at its endpoints, and

d = M −m.

Theorem 1 To each unit u corresponds an index, γ(u, z), with the following properties:

i) It is optimal for the agent to pick the unit with the highest index γ.

ii) The index is characterized by functions η : R2
+ → R, and ψ : R+ → R such that

γ(u, z) =


m+ d η

(√
l
d
, z−m

d

)
if u 6= u∞

f(x̄) + ψ(ρ) if u = u∞

(5)

iii) For a bounded unit, the index is increasing in l and d.

Moreover, it is strictly optimal, for a bounded unit, to choose a technology closer to the

endpoint with the higher payoff.16

The highest known payoff z enters the index of a unit because it affects the agent’s contin-

uation payoff. Indeed, the only reason for the agent to explore a new technology in his first

period is the positive probability that the payoff of this technology will surpass z.

Given a history ht and a unit u implied by that history, let U(u;ht) denote the highest

lifetime expected payoff that the young generation can get, given history ht, when his choice

in the first period is restricted to a technology within the unit u (only). We define the value

of innovation of u as

V (u, z) =
U(u;ht)

1 + δ
− z. (6)

The value of innovation of a unit is the per-period expected payoff that an agent get from

innovating in that unit only (when young) and then exploit the best explored technology

(when old), above and beyond the payoff of the best explored technology. By definition, it

is suboptimal to choose any technology in a unit with a negative value of innovation, while

16As a consequence, it is optimal to choose the midpoint of a unit whose endpoints have the same payoff.
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a unit with a strictly positive value of innovation dominates exploitation of the best (and,

therefore, any) explored technology.

The value of innovation of a unit is closely related to the index introduced by Theorem 1:

Equation (12) in the Appendix implies that

V (u, z) = γ(u, z)− z.

Proposition 1 (Value Monotonicity) For any bounded unit u, V (u, z) is strictly de-

creasing in z. If, at any time, V (u, zt) < 0, no technology in u is ever chosen after time t.

To understand Proposition 1, consider, first, the simpler case of a unit u that does not contain

the best explored technology, and suppose that the payoff of that technology is increased

from z to z′ > z, keeping all else constant. That increase has no effect on the payoff

distribution of technologies inside u, and reduces the probability that any technology in u

beats the best known technology. Thus, V (u, z′) < V (u, z). Now, consider a unit u whose

endpoints include the best explored technology. For such unit, a higher value of z increases,

linearly, the expected payoff of all technologies inside the unit. Since the variance over that

unit is unaffected, however, exploitation with the best explored technology is relatively more

appealing than before the increase.17

Following the experimentation literature, we call exploitation the fact of choosing an explored

technology (and whose payoff is, therefore, perfectly known). In contrast to standard bandit

models with a “safe” arm, exploitation here is strictly suboptimal at all times.

Proposition 2 (Exploitation) For any unit u containing the best explored technology,

V (u, z) > 0. In particular, exploitation is strictly suboptimal after all histories.

The first part of the proposition is proved in the appendix. Intuitively, slightly departing

from the best explored technology slightly reduces the expected payoff of the agent, but also

17A starker intuition for this result can be obtained by appealing to the theory of large deviations

(see Dembo and Zeitouni (1998)): as z gets arbitrarily large, the payoff distribution inside the unit u

looks closer to a straight line, joining the low-payoff extremity xl to the best technology xh with payoff z:

(f(x)− f(xl))/(z − f(xl))→z→∞ m+ (z −m)(x− xl)/(xh − xl) a.s., where m is the payoff at xl. As z gets

arbitrarily large, therefore, the probability that any given technology x in u surpasses z, converges to zero.

Exploitation of xh remains suboptimal for all values of z, however, as guaranteed by Proposition 2.
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creates an option value, an effect which always dominates the first one near already explored

technologies. This implies that exploitation is always dominated by slightly departing from

the best explored technology.

The value of radical innovation is defined as the value of innovation of the unbounded unit,

after any given history:

V R(ht) = V (u∞(ht), zt).

From Theorem 1 and Equation (6), the value of radical innovation depends on ht only

through the gap (ρt = zt − f(x̄t)): V
R(ht) = ψ(ρt) − ρt. Comparative statics for the value

of radical innovation are key to understand and prove the stagnation result of Theorem 2.

Proposition 3 (Value of Radical Innovation) The following properties hold after any

history:

1. Keeping f(x̄t) fixed, V R is decreasing in ρt (and zt).

2. If the value of radical innovation is negative at any time, radical innovation is aban-

doned forever after.

To gain some intuition for Proposition 3, we observe that the frontier outcome f(x̄t) entirely

determines the expected outcome of any technology to the right of the frontier, and that the

relative appeal of radical innovation, compared to exploitation only depends on the payoff

distribution of radical innovations, relative to z. Radical innovation is appealing when it

increases the agent’s expected continuation payoff, which occurs only if the payoff of radical

innovation exceeds zt. A higher gap reduces the probability of this event. Keeping f(x̄t)

fixed, an increase in z leads to a wider gap which, in turn, depresses incentives to perform

radical innovation.

Once the value of radical innovation has become negative, it will never be positive again and

radical innovation will not be undertake anymore. This insight has far-reaching consequences

for the sustainability of radical innovation in the long run, and may be explained as follows:

as previously argued, the value of radical innovation decreases with the size of the gap. Since

the sequence {zt} of best explored payoffs is nondecreasing over time, and the payoff f(x̄t)

at the frontier is frozen whenever marginal innovation takes place, the gap zt − f(x̄t) can
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only increase over time during marginal innovation, which makes radical innovation even less

attractive, and creates a vicious cycle.

The second part of Proposition 3 provides a key sufficient condition for radical innovation

to terminate in finite time. Theorem 2 shows that, for all sample paths, there exists a time

at which this condition is satisfied.

Finally, the value of marginal innovation will be used to characterize innovation cycles.

Definition 2 Fix an arbitrary history ht. The value of marginal innovation is defined by

V M(ht) = maxu∈P(ht) V (u, zt).

It follows from these definitions that an agent prefers radical over marginal innovation if and

only if the value of radical innovation dominates the value of marginal innovation.

4 Innovation Cycles

Our model gives rise to innovation cycles : generations alternate between radical and marginal

innovations. These innovation cycles capture the Schumpeterian idea of successful innova-

tion followed by imitation. Radical innovation generates a positive externality for all future

generations by expanding the explored hull. The creation of an additional unit endows the

society with new opportunities for costless marginal innovation. While marginal innova-

tion refines knowledge about technologies in the explored hull, it is characterized by more

predictable outcomes and thus lacks upside potential. As the learning value of marginal

innovation goes down, radical innovation becomes attractive again, provided that the value

of radical innovation remains positive. If, following a successful radical innovation, the best

technology is exactly at the frontier, the gap at the next period is equal to zero. Any radical

innovation is equally likely to outperform or underperform the payoff at the current frontier,

and waves of radical innovations with a zero gap can occur for several periods, as long as

those radical innovations are successful enough. This and other results are formalized in

Proposition 4.

Proposition 4 (Innovation Cycles) If, following some arbitrary history ht, the values

of marginal and radical innovations satisfy V M(ht) > V R(ht) > 0, then radical innovation
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takes place at some future date with positive probability. If, instead, radical innovation takes

place at time t (V R(ht) > V M(ht) > 0) and yields outcome f , then:

1. There exists a (history-dependent) cutoff f̄t such that marginal innovation at time t+1

takes place in the newly created bounded unit if and only if f > f̄t.

2. There exists a (history-dependent) cutoff f̂t such that radical innovation at time t + 1

is optimal if f > f̂t and suboptimal if ρt = 0 and f < f̂t.

Thus, any wave of marginal innovation is followed by radical innovation, with positive prob-

ability, provided that the value of radical innovation is initially positive. The second part

of Proposition 4 describes what follows radical innovation, depending on the outcome. If,

and only if, radical innovation yields a high enough outcome, marginal innovation at the

next period, if it is chosen by the next generation, takes place in the new unit. Thus, high

realizations shift attention towards the newly created unit.

However, radical innovation also increases the value of further radical innovation, provided

that its payoff is sufficiently high. When radical innovation is successful enough, it is always

followed by radical innovation. This result is nontrivial. Indeed, a high outcome increases

both the value of marginal innovation in the new unit and the value of radical innovation.

Why does the latter dominate the former? Intuitively, the conditional outcome distribution

on the newly created unit is roughly a straight line, with low variance.18 This means that

technologies in the new unit have a lower expectation than the last technology, and a low

variance. In contrast, radical innovation has the same expectation as the value of the last

technology, and a variance that is independent of that level, which makes it more attractive.

Summary: Proposition 2 shows that exploitation is never optimal. Thus, any wave of

marginal innovations reduces the width of the available units, as the frontier stays the same

during marginal innovation. The reduction in width of these units, all else equal, also reduces

the value of innovation of these units, by Theorem 1. The value of marginal innovation may

then decrease to the point of triggering a new round of radical innovation, which continue

until it leads to a disappointing payoff, triggering a new wave of marginal innovation to

18This result is well-known in the literature on large deviations, see e.g., Dembo and Zeitouni (1998). See

also Footnote 17.
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explore further the units created within the new frontier, etc. Thus, successive generations

alternate between radical and marginal innovation in cycles.

5 Radical Innovation: Optimal Size and Long-Run Stag-

nation

Radical innovation is necessary for long-run technological growth: Without radical inno-

vation, technology and knowledge converge to finite levels. It is therefore fundamental to

determine whether radical innovation can be sustained in the long run. This section provides

a negative answer, which persists even when radical innovation entails an arbitrarily positive

drift, as long as the optimal policy is well-defined, as shown in Section 7.2. This section

also establishes comparative statics for the optimal size of experimentation. In particular,

Proposition 5 shows that the marginal value and the size of radical innovation decrease with

the payoff of the best explored technology. by combining ideas from the experimentation

literature with the spatial nature of our model.

Theorem 2 Radical innovation ends in finite time with probability one. After radical in-

novation has ended, the value of marginal innovation converges to zero almost surely, and

innovations converge to a single technology.

The end of radical innovation means that all future generations will only engage in marginal

innovation, because exploitation of known technologies is always suboptimal. Thus, inno-

vation still occurs along the equilibrium path, but the value of additional innovation keeps

decreasing. The intuition is that, since the frontier stops expanding, future generations com-

pete away the opportunities for valuable innovation. Thus, we observe the emergence of a

technological standard in the limit.19

To understand why radical innovation is not sustainable in the long run, we need to analyze

how the incentives for radical innovation evolve as the technological path unfolds. Those

19This result bears some resemblance to informational cascades analyzed in the social learning literature,

especially according to the definition provided by Lee (1993) for the case of a continuum of actions. As we

already mentioned in the introduction, the mechanism is different here, because the amount of information

is endogenously acquired by each generation.
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incentives depend on the gap: when the gap is zero, the distribution of payoffs to the right

of the frontier is directly affected by the payoff zt of the best explored technology. If the gap

is strictly positive, that distribution is independent of zt, by (1).

Let xR denote the technology chosen when radical innovation takes place, and let yRt (ht) =

xR(ht)− x̄t denote the optimal “size” of radical innovation at time t.20 Let φ(·) denote the

density function of the standard normal distribution.21

Proposition 5 (Radical Innovation) Fix an arbitrary history ht. The optimal size of

radical innovation solves
δσ

2
√
y
φ

(
ρt
σ
√
y

)
= c′(y) (7)

whenever yRt is positive, and is equal to zero otherwise. When ρt = 0, yRt is the unique

positive solution of (7). Finally:

1. If yRt > 0, then yRt is strictly increasing in σ and δ.

2. If ρt > 0 and yRt > 0, then yRt is strictly decreasing in ρt.

3. There exists a cutoff ρ̃ > 0 such that the value of radical innovation is negative whenever

ρt > ρ̃.

Consider, first, a period t at which the gap is equal to zero. Equation (7) captures the

trade-off between marginal benefit and marginal cost of radical innovation. If a young agent

chooses the best explored technology, his expected payoff is equal to (1 + δ)zt, because the

agent will choose the same technology when old. If the agent chooses radical innovation,

the zero drift condition implies that any positive size y > 0 of radical innovation has an

expected payoff of exactly zt. However, it improves the probability of a higher payoff at the

next period. The marginal benefit of radical innovation (left-hand side of (7)) is large close

to the frontier, making radical innovation very attractive. As the size of radical innovation

increases, the volatility (σ
√
x− x̄) increases at a decreasing rate, and the marginal benefit of

20 There may exist several optima. In such case, the comparative statics in the proposition apply in the

sense of the strong set order of lattice theory. See, e.g., Milgrom and Shannon (1994). As shown in the proof

of Proposition 5, the agent’s objective function is submodular in (y, ρ) and supermodular in (y, δ) and (y, σ).
21To simplify notation, the statement of Proposition 5 does not explicitly show the dependence of the

optimal size of radical innovation on the history ht.
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Figure 2: Marginal benefit of radical innovation.

radical innovation converges to zero. Since the marginal cost is increasing, the optimal size

of radical innovation is positive and well-defined. Furthermore, an agent pursuing radical

innovation will choose the same size of radical innovation when the gap is zero, regardless of

the history.22

The situation is very different when the gap is strictly positive. The marginal benefit of

radical innovation now converges to zero for radical innovations close to the frontier. Close

to the frontier, a radical innovation is accompanied by an inadequately low increase in

volatility, and almost no impact on the expected payoff of the agent when he becomes old.

The “outside” option, zt, is thus strictly preferred to small radical innovations. In fact,

the marginal benefit of radical innovation is single-peaked. It is initially pushed up by the

increase in the probability of discovering an outcome above the current outside option zt,

which is given by 1 − Φ
(

ρt
σ
√
x−x̄

)
, where Φ denotes the cumulative function of a standard

normal distribution. When the size of radical innovation reaches ρ2

σ2 , the marginal benefit

starts to decrease, as the probability of obtaining an outcome greater than zt converges 1
2
.

Figure 2 illustrates the marginal benefit of radical innovation for different sizes of the gap.

The optimal size of radical innovation is sensitive to the volatility parameter of the underlying

outcome process, because the volatility is the agent’s only way to improve his expected

payoff tomorrow. A higher volatility thus has a positive effect on the incentives to innovate.

22This follows from the Markov property of Brownian motion.
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Similarly, a higher discount factor increases the incentives to innovate, given the larger weight

assigned to the second-period payoff. However, an increase in the gap reduces the marginal

benefit of radical innovation, because it reduces the probability of surpassing the current

outside option. To maintain that probability, an agent must increase the size of radical

innovation, so as to increase payoff volatility.

Proposition 5 also helps understand why radical innovation cannot be sustained in the long

run: for high gaps, the optimal size of radical innovation drops, which reduces volatility and,

hence, the value of radical innovation, just when volatility is most needed to make radical

innovation attractive.

Proposition 5 does not alone imply that radical innovation is condemned to end in the

long run, because technologies are endogenous and could a priori result in positive value of

radical innovation along the equilibrium path. To prove stagnation, the proof proceeds by

contradiction. If the value of radical innovation were positive at all times, the frontier would

keep expanding.23 As the frontier is moved further to the right, it will eventually hit a region

where the gap exceeds ρ̃. Thus, radical innovation eventually ends.

Figure 3 simulates a wave of marginal innovations that follows the beginning of the stagnation

phase. Figure 3(a) shows the realized path of f , while Figure 3(b) contains the results of the

simulation, in which we assume that the first generation knows the value of f only at the

endpoints 0 and 1. In this simulation, the first agent experiments with a technology close to 1,

the endpoint with the highest outcome. The next generation moves left, surpassing earlier

payoffs. The third generation also moves significantly left, receiving a lower payoff. Starting

with the forth generation, the search for a better technology begins to cluster around the

technology found by the second generation, yielding the endogenous-information equivalent

of an informational cascade. Society converges a suboptimal technology, which is largely

path dependent: a single experiment at, say, x = 0.3 would completely change the dynamics

of the search process, shifting innovation towards a different part of the technological space.

23This claim is proved in the Appendix (Lemma 2), and may be coarsely understood as follows: the size

of radical innovation is decreasing in the gap. We know from Proposition 5 that a high enough gap ends

radical innovation forever. For radical innovation to continue, therefore, the size of the radical innovation

must be bounded below.
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Figure 3: Dynamics of marginal innovation: δ = 0.95.

6 Patents and Radical Innovation

We argued in earlier sections that radical innovation stops inefficiently early, compared to

the social optimum, because each generation fails to internalize the positive information and

cost spillover that radical innovation provides to future generations. We discuss here one

natural way to address this inefficiency, through the use of patents. In our setting, patents

consist of intergenerational transfers between consecutive generations, and are naturally

introduced by exploiting the spatial nature of our model. A natural starting point is to

assume that, whenever an agent undertakes radical innovation, the set of technologies that

become available at no cost, due to this radical innovation, are patented to this agent.

Formally, if the time-t young generation chooses radical innovation, that generation has the

right to a royalty fee if the time-t+ 1 young generation decides to innovate marginally with

any technology in the new unit with interval ū = (x̄t, x̄t + yRt ]. We assume that the patent

lasts for one period, which corresponds to the remaining life of the time-t generation.

A patent protection system may affect incentives for radical innovation through two channels:

Getting Royalty Fees The most obvious channel is the additional gain that an agent makes

by performing radical innovation: as shown by Proposition 4, there is a positive probability

that the outcome of radical innovation will be in some intermediate range at which further
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radical innovation is suboptimal for the next generation, but marginal innovation takes place

in the new unit. When this happens, a small royalty fee just paid by the new generation

increases the ex ante incentives for radical innovation.

Perhaps counter-intuitively, even in the case of a flat royalty (let alone a more complex royalty

structure), the level of that royalty affects the marginal value of radical innovation24 and,

therefore, the optimal size of radical innovation. Moreover, this value may be non-monotonic

in the patent level. This may be explained as follows: a bolder radical innovation has a higher

variance and, for given mean, a higher probability of reaching very high outcomes. When

this happens, the next generation has a strong incentive to use the technological domain

created by this radical innovation, which generates royalty fees for the old generation. A

higher royalty fee may therefore increase the expected marginal value of radical innovation,

spurring radical innovation and increasing the size of radical innovation. However, as the

royalty fee gets arbitrarily large, the new generation prefers to forgo this opportunity and to

innovate in older units, causing the non-monotonicity.

Avoiding Royalty Fees Precisely because an incoming generation has to pay a cost to the

previous generation in order to innovate in a newly created unit, this reduces the value of

marginal innovation for that generation, relative to radical innovation: the new generation

is “pushed” towards further radical innovation.

These two incentives are substitutes: the more the new generation avoids royalty fees (say,

because they are high), and the lower the patent incentives for the old generation, and

vice versa. However, both of these incentives have the effect of fostering radical innovation:

whether it is the perspective of getting royalty fees that increases incentives for radical inno-

vation, or the penalty for performing marginal innovation with technologies made available

by the previous generations, generations always have a higher incentive for radical innovation.

These two channels arise naturally in the spatial representation of our model, and would

clearly persist under other span and duration specifications, or if the royalty depends in a

more sophisticated way on past innovation (i.e., through the payoff of innovation, or the

distance to explored technologies).

24The term “marginal” refers here to the impact of small changes in the size of innovation on the agent’s

expected benefit from innovation(its usual meaning in the common expression “marginal value”), and not

to its use in the expression “marginal innovation.”

22



7 Extensions

7.1 Cost Externalities

The path of innovations was shown so far to affect incentives for radical innovation through:

i) the expected value of new technologies, and ii) the opportunity cost of forgoing marginal

innovation. In reality, radical innovation may be directly affected by past technologies, if

those technologies are helpful in producing radical innovation. We model this by assuming

that the cost of radical innovation is decreasing in the best available technology: the cost is

given by a function c(x− x̄, αz) for x > x̄ with α ≥ 0 (α = 0 corresponds to the benchmark

model). We assume that, for each z, the function c(·, z) satisfies the earlier Assumption 1.

Let yR(ρt, αzt) denote the optimal size of radical innovation at a history ht with associ-

ated gap ρt, and current best outcome zt. The following result is established similarly to

Proposition 5 and is stated without proof.25

Proposition 6 (Comparative statics) Suppose that α > 0 and that c is submodular.

Then, yR(ρt, αz) is increasing in z and in α.

Monotonicity with respect to z of the optimal size of innovation does not necessarily imply

that radical innovation itself is fostered by a higher z, even if we also assume that the

cost c(y, αz) is decreasing in its second component. Indeed, when the gap is positive, a

higher value of z reduces the cost of radical innovation, but also reduces the value of radical

innovation, as shown by Proposition 3. When the gap is zero, however (following successful

radical innovation), an increase in the best available technology always stimulates radical

innovation. Therefore, this link between cost and the best technology should result in longer

waves of radical innovation.

Monotonicity of innovation size with respect to the gap, which was established by Proposi-

tion 5, may fail in the presence of the cost externality studied here. Indeed, the reduction in

the marginal benefit of radical innovation following a larger gap might be more than com-

pensated by a decrease in the cost and marginal cost of radical innovation. Without the cost

25The agent’s objective function is submodular in (y, α). When there are multiple maximizers, Proposi-

tion 6 holds in the sense of the strong set order (see footnote 20).
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externality, an increase in the gap reduces the marginal benefit while leaving the marginal

cost unaffected. In that case, we already know that there is a threshold for the gap above

which an agent would always set the size of radical innovation to zero.

The next result shows that stagnation still occurs as long as the marginal cost of radi-

cal innovation is bounded below away from zero as the best available technology becomes

arbitrarily large. We now assume that c is decreasing in its second component. Let

c̄(y) = limz→+∞ c(y, αz) denote the lower envelope of the cost functions {c(·, w)}.26

Proposition 7 (Stagnation) Fix α > 0, and suppose that c̄(·) is increasing in a right

neighborhood of y = 0. Then, radical innovation ends in finite time with probability one.

Even if the long-run dynamics is the same with and without intergenerational cost externali-

ties, the short-run pattern of innovation might be significantly different in the two scenarios.

7.2 Positive Drift

It was assumed, in Theorem 2, that agents are completely ignorant concerning the expected

outcome of technologies to the right of the frontier, assigning them the same expected payoff

as the payoff at the frontier. We now consider what happens if agents are optimistic about the

underlying generating process: could a positive drift be enough to sustain radical innovation?

A positive drift complicates the analysis because it creates incentives for an old agent to

innovate as well. An old agent still prefers to exploit rather than innovate marginally, but

may now wish to undertake radical innovation, so as to maximize the objective

UO,R(ht) = max
x∈[x̄t,+∞)

Eht [f(x)− c(x− x̄t)] = f(x̄t) + κ(x− x̄t)− c(x− x̄t) (8)

For the problem to have an interior solution, we make the following assumption:

Assumption 2 limy→+∞ c′(y) > κ(1 + δ).

If Assumption 2 were violated, a young agent would prefer radical innovation of an arbitrarily

large size, as the resulting expected lifetime benefit would exceed the immediate cost.

26The function c̄(·) is well-defined because, for each y ≥ 0, the sequence {c(y, w)} is decreasing in w and

nonnegative.
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When old agents undertake radical innovation, this changes the optimization problem of the

young generation, which can learn, when old, the outcome of this innovation. The presence

of another active agent clearly changes the short-run dynamics of the model. Nevertheless,

radical innovation still ends with probability one.

The size of radical innovation by the old generation, whenever it takes place, is characterized

by the first-order condition

κ = c′(x− x̄t) (9)

Let yO,R denote the solution to (9). The optimal size of radical innovation, for an old agent,

is history-independent, and strictly positive if and only if c′(0) < κ. When c′(0) ≥ κ, an old

agent prefers to exploit the best known technology, and the earlier analysis applies for that

period. When c′(0) < κ, an old agent follows a simple cutoff rule to choose between radical

and marginal innovation. Letting ξ = κyO,R − c(yO,R) > 0, an old agent prefers radical

innovation over exploitation if and only if

f(x̄t) + κyO,R − c(yO,R) ≥ zt, or, equivalently, if ρt ≤ ξ. (10)

A high gap depresses incentives to perform radical innovation even for an old generation.

Theorem 3 Suppose that Assumption 2 holds and that c′′(0) > 0. Then, radical innovation

stops in finite time, almost surely.

When choosing the size of his innovation, a young agent has in mind the effect of his action

today on his incentives tomorrow. This effect can be quantified in a perceived reduction of

the gap from ρt to ρt−ξ due to the possibility of performing radical innovation in the second

period, which results in higher incentives to perform radical innovation today. However as the

gap increases, ξ becomes negligible and eventually the relative benefit of radical innovation

over exploitation falls short of the explicit cost of innovation. Thus the young agent will

eventually opt for marginal innovation, which is still strictly better than exploitation.

8 Conclusion

This paper provides a framework for studying social learning and innovation, in which the

trade-off between radical and marginal innovation determines the short-run and long-run
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dynamics of technological discoveries. Unlike standard models of experimentation, tech-

nologies are correlated, but can be compartmented into conditionally independent intervals.

Innovation cycles arise either through the diminishing learning value of marginal innovation,

as a result of disappointing outcomes from radical innovation, or as new room for marginal

innovation is created, as a result of previous radical innovation. When, as in our model, the

value of radical innovation is independent from marginal innovation, radical innovation must

stop in finite time because short-term profitability considerations of each generation can stall

any new learning about the value of radical innovation. External intervention in the form

of patents or subsidies can foster radical innovation, and the spatial setting presented here

suggests natural ways of modeling such interventions.

While we focused on Brownian uncertainty with constant drift and volatility, the index char-

acterization that we provide in Theorem 1 can be extended to other Markovian stochastic

processes. Indeed, conditional independence is the key for isolating the value of a techno-

logical unit from the characteristics of other units. Such technique will not apply, however,

if the payoff (or, depending on the interpretation, the productivity) of a technology is not

perfectly observed after trying this technology. In that case, the payoff distribution of a

given technology depends on all technologies that have been tried before, not just the two

explored technologies surrounding that technology. Similarly, conditional independence is

unlikely to be preserved in a spatial representation of technologies that is multidimensional,

which promises interesting if challenging analysis.

We have assumed that each young generation inherited from the old generation the knowledge

of all past technologies: except in our discussion on patents, we have abstracted from any

loss, or cost, in the transfer of knowledge. Such transmission frictions are realistic and would

be interesting to consider.27

Finally, the only state variables in the economy we consider is the information transferred

from one generation to another. A major extension of the analysis would allow accumulation

and transfer of capital across periods, and cast the analysis into a non-stationary growth

27In Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) each arriving agent observes a random subset of the

actions chosen by previous agents. In our setting, this would amount to each generation observing only

a subset of past technologies. Niehaus (2011) explicitly considers strategic information transmission, when

agents tradeoff the benefit for future generations of inheriting past knowledge and cost of conveying this

knowledge.
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model, bringing it closer to the standard models on technological change and growth.28 A

trivial extension of our model consists in each generation investing all of its capital in some

technology, and f representing the total return on the technology, assuming that it is linear.

This would not affect the dynamics of the analysis. A more realistic bridge between our model

of innovation and growth would allow the capital stock to affect the size of innovation. The

insights of the present paper about the short-term and long-term dynamics of innovation and

the long-run accumulation of knowledge should prove helpful to carry out such extension.

28See Acemoglu (2008) for an in-depth review of those models.
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Appendix

Proof of Theorem 1

We first consider the case of a bounded unit. We have

max
x∈[0,x̄]

Eht [f(x) + δmax{f(x), z}] = max
I∈I(ht)

{
max
x∈I

Eu [f(x) + δmax{f(x), z}]
}

where I(ht) = {I ′ : I ′ ∈ u, for some u ∈ P(ht)}, where P(ht) is the collection of bounded

units induced by ht on [0, x̄], with x̄ denoting the current frontier. We fix a bounded unit u

and suppose, without loss of generality, that f(xr) > f(xl). Then, for any x ∈ [xl, xr],

f(x) ∼ N
(
f(xl) +

f(xr)− f(xl)

xr − xl
(x− xl),

(x− xl)(xr − x)

xr − xl
σ2

)
Letting g(x) = x−xl

xr−xl ,

f(x)−m ∼ N
(
d g(x), g(x)(1− g(x))lσ2

)
We also define k(x) = f(x)−m and z′ = z−m to obtain an explicit formula for the expected

payoff:

Eu max{k(x), z′} = z′Φ

(
z′ − dg(x)

σ
√
g(x)(1− g(x))l

)
+ dg(x)

[
1− Φ

(
z′ − dg(x)

σ
√
g(x)(1− g(x))l

)]

+ σ
√
g(x)(1− g(x))lφ

(
z′ − dg(x)

σ
√
g(x)(1− g(x))l

)

where Φ and φ are the CDF and pdf of the standard normal distribution. This leads to

Eu [f(x) + δmax{f(x), z}] = (1 + δ)m+ dg(x) + δEu max{k(x), z′}

= (1 + δ)m+ d
{
g(x)(1 + δ − δΦ) + δ z

′

d
Φ

+δσ
√
g(x)(1− g(x))

√
l
d
φ
}

(11)

= (1 + δ)
{
m+ d η̄

(
g(x),

√
l
d
, z
′

d

)}
,

where

η̄

(
g(x),

√
l

d
,
z′

d

)
=

1

1 + δ

{
g(x)(1 + δ − δΦ) + δ

z′

d
Φ + δσ

√
g(x)(1− g(x))

√
l

d
φ

}
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The common argument of Φ and φ depends only on g(x),
√
l/d and z′/d, as can be seen by

dividing numerator and denominator by d and, hence, so does η̄.

Maximizing the expected payoff over x ∈ I yields

U(u;ht) ≡ max
x∈I

Eu [f(x) + δmax{f(x), z}] = (1 + δ)

[
m+ d η

(√
l

d
,
z′

d

)]
(12)

where

η

(√
l

d
,
z′

d

)
= max

g(x)∈[0,1]
η̄

(
g(x),

√
l

d
,
z′

d

)
. (13)

Letting γ(u, z) = m+ d η
(√

l
d
, z−m

d

)
yields the first part of Theorem 1.

Because

∂η̄(x, k1, k2)

∂x
=

1

1 + δ

{
1 + δ − δΦ

(
k2 − x

σk1

√
x(1− x)

)
+
δσk1

2

1− 2x√
x(1− x)

φ

(
k2 − x

σk1

√
x(1− x)

)}
≥ 1

1 + δ
> 0

for any x ≤ 1
2
, the optimum x∗(u, zt) must lie in

(
xr+xl

2
, xr
]

whenever f(xl) < f(xr).

For this and other comparative statics results, we will apply differential techniques to the

relevant value functions. These techniques can be applied because the relevant functions are

always left and right differentiable, a result which follows from Corollary 4 of Milgrom and

Segal (2002).29 All the comparative statics arguments to follow can be applied to the right

derivative (or, in case of a decrease of the parameter, to the left derivative). For expositional

simplicity, we drop reference to the side of the derivative. The Envelope Theorem implies,

for any bounded unit u, that30

∂γ(u, z)

∂l
=

δ

1 + δ

σ

2

√
x∗(1− x∗)

l
> 0 (14)

and
∂γ(u, z)

∂d
=

x∗

1 + δ
+

δ

1 + δ
x∗
[

1− Φ

(
z′ − dx

σ
√
x∗(1− x∗)l

)]
> 0. (15)

29The value function may fail to be differentiable at parameter values for which there exist multiple

maximizers. At such values, however, the value function is still left and right differentiable, with the left

(right) derivative being evaluated at the maximizer that minimizes (maximizes) the derivative of the objective

with respect to the parameter. See Milgrom and Segal (2002).
30An argument similar to the proof of Proposition 2, which holds independently of the present comparative

statics, shows that any optimum x∗ is always in the interior of a unit.
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For the unbounded unit u∞, the expected utility from a technology x > x̄ is

Eht [f(x)− c(x− x̄) + δmax{f(x), z}] = (1 + δ)f(x̄)− c(x− x̄)

+ δEht max{f(x)− f(x̄), z − f(x̄)}

= (1 + δ)f(x̄)− c(x− x̄) + δEht max{k(x), ρ},

where k(x) = f(x)− f(x̄). Recall that k(x) ∼ N (0, σ2(x− x̄)). Therefore,

Eht max{k(x), ρ} = σ
√
x− x̄φ

(
ρ

σ
√
x− x̄

)
+ ρΦ

(
ρ

σ
√
x− x̄

)
. (16)

Taking the supremum over x ≥ x̄, we obtain

sup
x≥x̄

{
(1 + δ)f(x̄)− c(x− x̄) + δσ

√
x− x̄φ

(
ρ

σ
√
x− x̄

)
+δρΦ

(
ρ

σ
√
x− x̄

)}
= (1 + δ)

[
f(x̄) + sup

y≥0

1

1 + δ

{
−c(y) + δσ

√
yφ

(
ρ

σ
√
y

)
+ δρΦ

(
ρ

σ
√
y

)}]
.

Defining

ψ(ρ) =
1

1 + δ
sup
y≥0

{
−c(y) + δσ

√
yφ

(
ρ

σ
√
y

)
+ δρΦ

(
ρ

σ
√
y

)}
(17)

and γ(u, z) = f(x̄) + ψ(ρ) yields the formula claimed by Theorem 1. The index of each

unit corresponds to a normalization of the agent’s value function when the domain of choice

is restricted to that particular unit. Therefore, the agent optimally chooses a technology

within the unit with the highest index. �

Proof of Proposition 1

For any bounded unit u with M 6= z we have31

dη(k1, k2(z))

dz
=

1

d

∂η(k1, k2)

∂k2

=
δ

(1 + δ)d
Φ

(
k2 − x∗

σk1

√
x∗(1− x∗)

)

where k1 ≡
√
l
d

, k2 ≡ z−m
d

, and x∗ ≡ x∗(u, z) is an optimal technology within u. Thus,

∂V (u,z)
∂z

= δ
1+δ

Φ

(
z−m−dx∗

σ
√
x∗(1−x∗)l

)
− 1 < 0.

31Again, we omit dependence on side-derivatives. See Footnote 29 and the discussion surrounding it.
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If, instead, u is such that M = z, then the index of the unit is given by γ(u, z) = m +

(z − m)η
( √

l
z−m , 1

)
which gives ∂V (u,z)

∂z
= η

( √
l

z−m , 1
)
−

√
l

z−m
∂η
∂k1

( √
l

z−m , 1
)
− 1, which can be

shown to be strictly negative from (22) in the proof of Proposition 4. Then, ∂VM (ht)
∂z

≤
maxu∈P(ht)

∂V (u,z)
∂z

< 0.

Exploitation of the best explored technology is always feasible for a young agent, and yields

a payoff of (1 + δ)zt. Consider a unit u such that V (u, zt) < 0. Then,

γ(u, zt) < zt ⇐⇒
U(u;ht)

1 + δ
< zt ⇐⇒ U(u;ht) < (1 + δ)zt

where the second equivalence follows from (12). Therefore, choosing the best current tech-

nology dominates choosing any technology in u. Since zt is nondecreasing in t, once the

value of innovation of a unit is negative, it remains negative. �

To simplify the analysis, we define the indexes for marginal and radical innovation by

γM(ht) = max
u∈P(ht)

γ(u, z) and γR(ht) = γ(u∞, z) (18)

for any history ht, where P(ht) is the collection of bounded units induced by a history ht.

Proof of Proposition 2

We prove only the first part, the second part being shown in the main text. Suppose that

M = z. Differentiating η̄(x, k1, 1) with respect to x yields

(1 + δ)
∂η̄(x, k1, 1)

∂x
=

[
1 + δ − δΦ

(
1

σk1

√
1− x
x

)]
+
δσk1

2

1− 2x√
x(1− x)

φ

(
1

σk1

√
1− x
x

)

which tends to −∞ as x goes to 1. Also, η̄(0, k1, 1) ≡ limx→0 η̄(x, k1, 1) = δ
1+δ

< 1 =

limx→1 η̄(x, k1, 1) ≡ η̄(1, k1, 1). We have thus shown that any solution to (13) lie in (0,1)

whenever k1 > 0 and k2 = 1. Consider any history ht and unit u with zt as one its endpoint

payoffs. Then,

γ(u, zt) = m+ dη

(√
l

d
,
zt −m
d

)
= m+ dη

(√
l

d
, 1

)
> m+ dη̄

(
1,

√
l

d
, 1

)
= m+ d = z

which proves that there is always at least one bounded unit with strictly positive value of

innovation. Since V M(ht) ≥ V (u, zt), the result follows. �

Proof of Proposition 3
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Fix f = f(x̄) and consider the effect of an increase in z > f on the value of radical innovation

V R(ht). We suppose once again that the value function (17) is differentiable. If there exists

an interior solution y∗ > 0 to (17), then ∂V R(ht)
∂z

= dψ(z−f)
dρ

− 1 = δ
1+δ

Φ
(
z−f
σ
√
y∗

)
− 1 < 0. If

there is no interior solution, then ψ(ρ) = δ
1+δ

(z − f) which gives ∂V R(ht)
∂z

= δ
1+δ
− 1 < 0.

When ρ = 0, V R(ht) = ψ(0) and ∂V R(ht)
∂z

= 0. If V R(ht) < 0, the previous comparative

statics, monotonicity of the sequence {zt}, and the fact that f(x̄t) is unaffected by marginal

innovation, imply that radical innovation will never be undertaken for any t′ > t, as it is

always dominated by exploitation of the highest known payoff. �

Proof of Proposition 4

Let ht denote any history such that V M(ht) > V R(ht) > 0. By continuity, there exists ε > 0

such that the value of radical innovation remains positive if the current gap is increased to

ρt + ε. Let B(ε) denote the set of paths of f on [0, x̄t] which are compatible with ht and

are bounded above by zt + ε. B(ε) occurs with positive probability. By construction, the

sequence {zt′}t′>t stays below zt + ε for any path in B(ε), which implies that the value of

marginal innovation converges to zero over time, by Theorem 2. Thus, the value of marginal

innovation must fall below the value of radical innovation, which is uniformly bounded away

from zero for any path in B.

1.) Let f denote the outcome of radical innovation following history ht, and let unew(f) be

the new bounded unit generated following radical innovation. The new index for marginal

innovation is

γM(ht+1) = max

 max
u∈P(ht)

γ(u,max{zt, f}︸ ︷︷ ︸
γ̄(max{zt,f})

), γ(unew(f),max{zt, f})


We first consider how γ̄(max{zt, f}) varies with f . If f ≤ zt, γ̄(·) is unaffected by f . If

f > zt, consider any unit u ∈ P(ht). Then,32

∂γ(u, f)

∂f
=

∂

∂f

[
m+ dη

(√
l

d
,
f −m
d

)]
=

∂η

∂k2

(√
l

d
,
f −m
d

)
∈
(

0,
δ

1 + δ

)
(19)

where x∗ ∈ arg maxx∈[0,1] η̄
(
x,
√
l
d
, f−m

d

)
is an optimal technology for the unit u.

32Again dropping dependence on side-derivatives, see Footnote 29.
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Next, we consider the index of the new unit unew. To this end, define fa as the outcome

associated with the left endpoint of unit unew. If fa < f ≤ zt, then

∂γ(unew(f), zt)

∂f
=

∂

∂f

[
fa + (f − fa)η

( √
l

f − fa
,
zt − fa
f − fa

)]

=
x̂∗

1 + δ

[
1 + δ − δΦ

(
k2 − x̂∗

σk1

√
x̂∗(1− x̂∗)

)]
> 0 (20)

where x̂∗ is an optimal technology inside the new unit. If, instead, f < min{zt, fa}, then

∂γ(unew(f), zt)

∂f
=

∂

∂f

[
f + (fa − f)η

( √
l

fa − f
,
zt − f
fa − f

)]

= (1− x̂∗)

[
1− δ

1 + δ
Φ

(
k2 − x̂∗

σk1

√
x̂∗(1− x̂∗)

)]
∈
(

0,
1

1 + δ

)
(21)

The upper bound follows from the fact that x̂∗ ∈
(

1
2
, 1
)
, then

(1− x̂∗)

[
1− δ

1 + δ
Φ

(
k2 − x̂∗

σk1

√
x̂∗(1− x̂∗)

)]
≤ 1

2

[
1− δ

1 + δ

1

2

]
=

2 + δ

4(1 + δ)
<

1

1 + δ

for any δ ∈ [0, 1]. Finally, suppose that f > zt (≥ fa), then we have

∂γ(unew(f), f)

∂f
=

1

1 + δ

[
x̂∗(1 + δ) + δ(1− x̂∗)Φ

(
1

σk1

√
1− x̂∗
x̂∗

)]
∈
(

δ

1 + δ
, 1

)
(22)

The upper bound follows from x̂∗ < 1, since k2 = 1 in this case, while the lower bound

follows from x̂∗ ≥ 1
2
, by Theorem 1.

Below zt, γ̄ is flat, while the index of the new unit strictly increases in f , by (20) and (21).

Above zt, γ̄ grows at most by δ
1+δ

following an increase in f , while the derivative of the

index of the new unit is given by (22). If γ̄(zt) > γ(unew(zt), zt), the index of the new unit

is strictly below γ̄(zt) for any f < zt. Since above zt, the lowest slope of the index of the

new unit is strictly higher than the largest slope of γ̄(·), the two indexes intersect exactly

once. If instead γ̄(zt) < γ(unew(zt), zt), the two indexes necessarily cross only once at some

f < zt, but never above zt. We ignore the case γ̄(zt) = γ(unew(zt), zt), which occurs with

zero probability.

2.) Let f denote the new frontier outcome. With a slight abuse of notation, the index of

radical innovation at time t+ 1 is given by γRt+1(f) = f +ψ(ρt+1) = f +ψ (max{(zt − f), 0})
as a function of the realized outcome f . For any f ≥ zt, γ

R
t+1(f) = f + ψ(0) and

∂γRt+1

∂f
= 1.
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Suppose instead that f < zt. From Proposition 5, there exists a threshold ρ̃ above which

the optimal size of radical innovation is 0. Define f̃ by zt − f̃ = ρ̃. Then, for any f ≤ f̃ ,

γRt+1(f) = f+δzt
1+δ

, because the time-t + 1 generation would prefer the frontier technology to

any technology to its right. Thus, in this case
∂γRt+1

∂f
= 1

1+δ
.

For f ∈ (f̃ , zt), the maximizer of (17) may be interior. In that case,
∂γRt+1

∂f
= 1− δ

1+δ
Φ
(
zt−f
σ
√
y∗

)
∈(

1
1+δ

, 1
)
, where y∗ is the optimal size of radical innovation following history ht+1. Thus, the

derivative is always at least 1
1+δ

.

We need to consider two cases.

Case 1 : ρt = 0. Let f̄ be the cutoff derived in Proposition 4.1), which we just proved. If

f̄ ≥ zt, the index of marginal innovation is flat for any f < zt, and

∂γMt+1

∂f
∈

{ (
0, δ

1+δ

)
from (19) if zt ≤ f < f̄(

δ
1+δ

, 1
)

from (22) if f ≥ f̄

which follows from our previous analysis. Since the slope of the index of radical innovation

is always at least 1
1+δ

> δ
1+δ

below f̄ and 1 above f̄ , it follows that γRt+1 and γMt+1 as functions

of f cross exactly once. Let f̂ = f̂(ht) denote such intersection.

Similarly, if f̄ < zt, the index for radical innovation is unchanged, but

∂γMt+1

∂f


= 0 if f < f̄

∈
(
0, 1

1+δ

)
from (21) if f̄ ≤ f < zt

∈
(

δ
1+δ

, 1
)

from (22) if f ≥ zt

A direct comparison of the slopes of the indexes shows that there exists exactly one inter-

section.

Case 2 : ρt > 0. If f̄ ≥ zt, the analysis is the same as for Case 1. Thus, there exists a unique

intersection f̂ .

If f̄ < zt, the slope of the index of marginal innovation over the range [f̄ , zt) is given by (20),

which cannot be compared with the slope of γRt+1 in an unambiguous way. Thus, we cannot

exclude the possibility of multiple intersections between the two indexes.

Proof of Proposition 5
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If ρ = 0, the expected utility from radical innovation of size y > 0 is equal to

Eht [f(x̄t + y)− c(y) + δmax{f(x̄t + y), zt}] = (1 + δ)f(x̄t)− c(y) + δσ
√
yφ(0),

from (16). The first-order condition yields Equation (7) with ρ = 0. The right-hand side of

(7) is increasing in y, while the left-hand side is strictly decreasing. The left-hand side is

also unbounded around 0, and converges to 0 as y → +∞. Therefore, there always exists a

solution to Equation (7) when ρ = 0, and it is unique. The second-order condition

−δσφ(0)

4y3/2
− c′′(y) < 0

is satisfied, guaranteeing that the first-order condition characterizes maxima.

If ρ > 0, the expected utility from radical innovation of size y > 0 is

(1 + δ)f(x̄)− c(y) + δσ
√
yφ

(
ρ

σ
√
y

)
+ δρΦ

(
ρ

σ
√
y

)
The first-order condition is again given by (7).

1.) and 2.) Differentiating (7)) with respect to ρ, we obtain − δρ
2σy3/2

φ
(

ρ
σ
√
y

)
, which is strictly

negative. Thus, the objective function in (17) is submodular in (y, ρ), and the result fol-

lows from the Strict Monotonicity Theorem 1 of Edlin and Shannon (1998). Similarly, the

objective function is also supermodular in (y, δ) and (y, σ), which completes the proof.

3.) We start the analysis with some preliminary results. First, let A(y, ρ) ≡ δσ
2
√
y
φ
(

ρ
σ
√
y

)
,

which denotes the marginal benefit of radical innovation given a gap ρ and a size y of radical

innovation.33

Lemma 1 For any ρ > 0,

1. limy→+∞A(y, ρ) = limρ→+∞A(y, ρ) = limy→0A(y, ρ) = limy→0
∂A(y,ρ)
∂y

= 0;

2. ∂A(y,ρ)
∂ρ

< 0.

3. A(y, ρ) is strictly quasi-concave in y, and maximized at ρ2

σ2 .

Proof. The first two limits in 1) and the sign of the derivative in 2) directly follow from the

properties of φ(·). The limit limy→0A(y, ρ) is computed using the fact that limy→0
1√
y
e−

1
y =

33A(y, ρ) corresponds to the left-hand side of equation (7).
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limz→∞
z1/2

ez
= 0. One shows similarly that limy→0

∂A(y,ρ)
∂y

= 0. Strict quasiconcavity of A

in y comes from the fact that

∂A(y, ρ)

∂y
=

δσ

4y3/2

[
ρ2

σ2y
− 1

]
φ

(
ρ

σ
√
y

)
,

which is nonnegative below ρ2

σ2 and negative above. This also shows that ρ2

σ2 maximizes

A(·, ρ). �

We now show the existence of a threshold ρ̃ > 0 above which radical innovation is strictly

suboptimal. We start by showing that y∗ = 0 is the unique maximizer of (17), whenever

ρ is high enough. If c′(0) > 0, Lemma 1 implies that limy→0A(y, ρ) = 0 < c′(0) for any

ρ > 0. Also by Lemma 1, ∂A(y,ρ)
∂ρ

< 0, limρ→+∞A(y, ρ) = 0, and A(y, ρ) ≤ ρ2

σ2 . This,

combined with the properties of c, implies the existence of a large enough threshold ρ̃ such

that c′(y) > A(y, ρ) for all ρ > ρ̃ and y > 0. A similar argument applies if c′(0) = 0 and

c′′(0) > 0, because limy→0
∂A(y,ρ)
∂y

= 0, from Lemma 1. Substituting y∗ = 0 into (17) yields

ψ(ρ) = δρ
1+δ

. Therefore, the index of radical innovation is equal to γR = f(x̄)+ δρ
1+δ

= f(x̄)+δz
1+δ

,

which is strictly less than z, for ρ > 0.

Proof of Proposition 7

c̄(·) is increasing in a right neighborhood of y = 0. Assumption 1, which applies to all

functions c(·, z), then guarantees that c̄(·) is increasing everywhere. Replicating the proof

of Proposition 5, one can show the existence of a threshold ρ̃ > 0 above which the marginal

benefit of radical innovation is strictly less than the marginal cost, at any y > 0, for any

z > 0. Thus, yR(ρ, αz) = 0 for any ρ > ρ̃, regardless of the absolute level of z.

For fixed z, yR(0, αz) is still an upper bound on the size of radical innovation for any ρ > 0,

because the incentives to perform radical innovation are maximal with a zero gap. Moreover,

yR(0, αz) increases in z, because the cost function is submodular in (y, αz). However, the

marginal cost is bounded away from zero by the properties of the lower envelope c̄(·), which

implies that there exists 0 < Λ < +∞ such that limz→+∞ yR(0, αz) < Λ. Finally, we can

now repeat the same proof as in Step 1 of Theorem 2.
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9 Proof of Theorem 2

Step 1: We first show that radical innovation ends in finite time almost surely. From

Proposition 5, there exists a threshold ρ̃ > 0 such that radical innovation ends after any

history such that ρt ≥ ρ̃. Therefore, it suffices to show that this threshold is reached almost

surely.

Consider an innovation path along which radical innovation happens infinitely often, and

let {ϕ(t)} denote the sequence of times at which radical innovation occurs. In particular,

yRϕ(t) = xRϕ(t) − x̄ϕ(t) > 0 for all t.

Lemma 2 {x̄ϕ(t)} is unbounded a.s.

Proof. Suppose that x̄ϕ(t), which is increasing in t, converges to some finite limit x̃.

This implies that yRϕ(t) converges to 0. From Proposition 5, yRϕ(t) is decreasing in the gap.

Therefore, there must exist a subsequence {ψ(t)} of {ϕ(t)} such that {ρψ(t) = zψ(t)−f(x̄ψ(t))}
is increasing. Since that sequence is bounded above by ρ̃, it must converge to some strictly

positive limit g̃, and zψ(t) converges to the limit g̃+f(x̃). For sufficiently high t, the expected

outcome from radical innovation is approximately equal to f(x̃) + δz̃, while the outcome

from exploitation is approximately (1 + δ)z̃. Since z̃ > f(x̃) by construction, an agent will

eventually strictly prefer to exploit the technology yielding z̃ over the radical innovation

corresponding to times in {ϕ(t)}, a contradiction. �

From Proposition 5, ȳ = yR(0) is an upper bound on the optimal size of radical innovation

for any size of the gap. Therefore, |x̄ϕ(t+1) − x̄ϕ(t)| ≤ ȳ. For any ζ > 0 and path f , let

Aζ(−ρ̃) = sup

{
x′ − x : max

x′′∈[x,x′]
{f(x′′)} < −ρ̃, and x < x′ < ζ

}
Lemma 3 Aζ(−ρ̃) > ȳ almost surely as ζ → +∞.

Proof. By the recurrence property of Brownian motion, there exists a.s. an x̃ > 0 such that

f(x̃) < −ρ̃ and, hence, some ζ > 0 such that Aζ(−ρ̃) > 0. The result then follows from the

scaling property of Brownian motion. �

Lemma 3 means that if radical innovation goes far enough, with each leap size bounded

above by ȳ, the frontier is bound to “fall” into a region where its payoff is less than −ρ̃.

Because z is always nonnegative, the gap z−f(x̄) after such history will exceed ρ̃, prompting
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radical innovation to stop. Combined with Lemma 2, this guarantees that radical innovation

must stop in finite time, almost surely.

Step 2: Belief convergence.

After radical innovation stops, all innovation takes place in a compact domain. The payoff

distribution over that domain is characterized by finitely many Brownian bridges, whose

endpoints correspond to previously explored technologies. We now establish that the beliefs

resulting from the subsequent innovation converge to a well-defined limit. In later steps, we

will show that innovations also converge to a single technology. Let K = [0, x̄] denote the

domain of innovation after radical innovation has stopped, and µ0 denote the distribution

of f on K, given the history leading up to the end of radical innovation. For notational

simplicity, we will reset to 0 the time at which radical innovation has stopped.

Let Θ denote the space of continuous functions on K starting at 0. At any time t the belief

µt is a probability distribution over Θ: µt ∈ ∆(Θ). Some arguments that we need to use

hold only for compact spaces. Because of this, we will sometimes need to replace the paths

f by some bounded counterpart. For Λ > 1, we will consider any transformation G(·,Λ) of

R such that i) G(·,Λ) is continuous and strictly increasing, ii) G(x,Λ) = x for all x such

that |x| < Λ−1, and iii) limx→−∞G(x,Λ) = −Λ and limx→+∞G(x,Λ) = +Λ. Such function

is easily built, and is bounded by Λ.

For any Brownian path f , the transformed path gΛ : x 7→ G(f(x),Λ) is continuous and

bounded by Λ, and is homeomorphic to f . In particular, gΛ and f are observationally

equivalent. Any belief µ about f has a corresponding belief µΛ about gΛ and vice versa. Let

Θ(Λ) denote the subset of Θ whose elements are bounded in absolute value by Λ, and ∆(Λ)

denote the set of distributions over Θ(Λ)

Given a sequence {xt}t≥0 of technology choices, let {µΛ
t } denote the sequence of beliefs in

∆(Λ) about the underlying transformed path gΛ, obtained through Bayesian updating. It is

well-known that this sequence is a martingale and converges to some limit µΛ. This result

follows from the Martingale Convergence Theorem, and is proved similarly to Theorem 4

in Easley and Kiefer (1988). Translating this result in terms of f , this shows that the

sequence {µt} of beliefs about the path f also converge to some limit µ.

For any history h leading to the belief µ, let ZΛ(µ) = sup{gΛ(xt) : xt contained in h}. As
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is easily checked, ZΛ(µ) is independent of the particular history leading up to the limiting

belief µ, and continuous in µ. We can similarly let Z(µ) = max{f(xt)} = G−1(ZΛ(µ),Λ)34

where, for each Λ, G−1(·,Λ) denotes the inverse of G(·,Λ)

Step 3: Technology Convergence and Vanishing Value of Marginal Innovation.

The next step is to characterize the limit to which technologies converge. For any (z1, z2) ∈
R×R+, let r(z1, z2) = z1 + δmax{z1, z2} denote the payoff of an agent if the outcome of his

chosen technology when young is z1 and the best explored payoff until then was z2. Given a

technology x, payoff z, and belief µ, let

u(x, µ, z) =

∫
Θ

r(f(x), z) dµ(f).

and

uΛ(x, µ, z) =

∫
Θ

r(G(f(x),Λ), z) dµ(f).

Using the distribution µΛ implied on Θ(Λ) by µ, we have

uΛ(x, µ, z) = v(x, µΛ, z),

where we define v, for any µ̃ ∈ ∆(Λ), by

v(x, µ̃, z) =

∫
Θ(Λ)

r(g(x), z) dµ̃(g).

We will use the following lemma, which is proved at the end of this Appendix (Section 9.1):

Lemma 4 v(x, µ, z) is continuous over K ×∆(Λ)× [−Λ,Λ].

Given a belief µ with corresponding maximum explored payoff z, a young agent solves the

maximization problem.

U(µ, z) = max
x∈K

u(x, µ, z)

The equilibrium technological path, denoted {x∗t} is such that, for each t, x∗t maximizes

u(x, µt, zt). We now derive properties for the long-run technologies arising in equilibrium.

Given a sequence of technologies {xt}∞t=0, let M({xt}) be the set of its limit points.

Proposition 8 For any history h, limiting belief µ, and x ∈M({x∗t}), x ∈ argmaxx′∈K u(x′, µ, Z(µ))

and f(x) = Z(µ).

34This maximum is also well defined, because f is continuous on the compact domain K.
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Proof. Let {x∗tk} denote a subsequence converging to x. By construction,

u(x∗tk , µtk , Z(µtk)) ≥ u(x′, µtk , Z(µtk)) (23)

for any x′ ∈ K. Because Lemma 4 applies only to bounded payoffs, we cannot directly take

the limit in the previous inequality. Instead we will approximate it by its equivalent when

the payoffs are bounded by Λ for Λ arbitrarily large. Let Ω(Λ) = {f ∈ Θ : maxx∈K |f(x)| >
Λ− 1}. We have for any x, µ̂, z

|u(x, µ̂, z)− uΛ(x, µ̂, z)| ≤
∫

Θ

|r(f(x), z)− r(G(f(x),Λ), z)|dµ̂(f) ≤ 2

∫
Ω(Λ)

|r(f(x), z)|dµ̂(f).

(24)

We now show that the right-hand side converges to zero as Λ goes to infinity, uniformly

on the domain K × ∪t{µt} × [0, Z(µ)]. For all x ∈ K and z ∈ [0, Z(µ)], |r(f(x), z)| ≤
(1 + δ)(Z(µ) + maxx∈K |f(x)|). Therefore, the right-hand side of (24) is bounded above by35

2(1 + δ)

∫
Ω(Λ)

(
Z(µ) + max

x∈K
f(x)−min

x∈K
f(x)

)
dµ̂(f).

We will show that

sup
µt:t≥0

∫
Ω(Λ)

(
Z(µ) + max

x∈K
f(x)−min

x∈K
f(x)

)
dµt(f)

converges to zero as Λ goes to infinity. For this, it suffices to show the convergence for

sup
µt:t≥0

∫
Ω(Λ)

(
max
x∈K

f(x)

)
dµt(f),

since the other two terms can be treated similarly.36 We will establish a stronger result,

whose proof is in Appendix 9.2. Let P(K) denote the set of all finite partitions of K and, for

each Π ∈ P(K) and Z̄ ≥ 0, let µZ̄Π denote the probability measure over Θ corresponding to

Brownian bridges with endpoints at consecutive elements of Π and endpoint values identically

equal to Z̄.

Lemma 5 For any constant Z̄ ≥ 0,

lim
Λ→+∞

{
sup

Π∈P(K)

{∫
Ω(Λ)

(
max
x∈K

f(x)

)
dµZ̄Π(f)

}}
= 0.

35The inequality relies on the fact that, since f(0) = 0, maxx∈K f(x) ≥ 0 and minx∈K f(x) ≤ 0.
36The last term obtains by symmetry, the first term with the constant Z(µ) can in fact be incorporated

in Z̄ in the argument following Lemma 5.
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For each µt, maxx∈K f(x) is clearly dominated, in the sense of first-order stochastic domi-

nance, by the same maximum under the distribution µΠ, whose partition corresponds to the

units of µt, and whose endpoints are equal to Z(µ), which is greater than Z(µt).
37 Applying

Lemma 5 to Z̄ = Z(µ) thus proves the desired uniform convergence.

This implies that there exists, for any ε > 0, a positive threshold Λ(ε) such that |uΛ(x, µt, z)−
u(x, µt, z)| < ε for all (x, t, z) ∈ K × N × [0, Z(µ)] and Λ > Λ(ε). Therefore, (23) implies

that, for a sequence converging to x, we have

uΛ(x∗tk , µtk , Z(µtk)) ≥ u(x∗tk , µtk , Z(µtk))− ε

≥ u(x′, µtk , Z(µtk))− ε

≥ uΛ(x′, µtk , Z(µtk))− 2ε.

Taking the limit as Λ goes to infinity, and using Lemma 4, we obtain that

u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ))− 2ε.

Since ε was arbitrary, this proves that u(x, µ, Z(µ)) ≥ u(x′, µ, Z(µ)). Proposition 2 also im-

plies that u(xtk , µtk , Z(µtk)) > (1+δ)Z(µtk), which shows that U(µ, Z(µ)) = u(x, µ, Z(µ)) ≥
(1 + δ)Z(µ). Moreover, f(x) ≤ Z(µ), since Z(µ) = supt{f(xt)}, f is continuous, and x is

a limit point of {xt}, and u(x, µ, Z(µ)) = f(x) + δZ(µ) ≤ (1 + δ)Z(µ), where the equality

holds because f(x) is known given µ. Therefore, U(µ, Z(µ)) = (1 + δ)Z(µ). In particular,

f(x) = Z(µ). �

Proposition 8 and its proof also show that the value of marginal innovation converges to zero

over time: for any x, u(x, µt, Z(µt))− (1 + δ)Z(µt) becomes nonpositive.

Step 4: Convergence to a Single Technology.

We prove three lemmas, from which uniqueness of the limit easily follows. For notational

simplicity, we assume without loss of generality, for the remaining of the proof, that K =

[0, 1].

Lemma 6 Consider a unit u with extremities xl < xr such that 0 < xl and xr < 1. Almost

surely, either [0, xl] or [xr, 1] is visited finitely many times.

37Indeed, µΠ is obtained from µt by raising to the level Z(µ) the payoff of each technology explored by

time t.

41



Proof. Consider the innovation problem with initial domain [0, xl] (i.e., if only that tech-

nological domain were available), and let Zl denote the limit value of the best explored

technology, which we have shown to exist in Step 2. Similarly, we can define Zr over [xr, 1].

Zl and Zr are two random variables and Zl 6= Zr a.s. Suppose, contradiction, that both [0, xl]

and [xr, 1] were visited infinitely often. The sequence of technology choices on each of these

intervals coincides with the sequence of equilibrium technological choices that would occur

if the technological domain were limited to only that interval. Thus, the maxima reached on

each subinterval in the more general problem must equal Zl and Zr. Since Zl 6= Zr a.s., an

agent will eventually prefer one subinterval over the other, which leads to a contradiction.�

Lemma 7 For any history h and unit u with endpoints xl < xr arising along that history,

there exists a subinterval I ′ = [x′l, x
′
r] ⊆ I = [xl, xr] with x′l < x′r such that I ′ is visited finitely

many times.

Proof. Suppose, on the contrary, that for any partition of I = [xl, xr], every element of the

partition is visited infinitely often. Thus, every element of the partition must also contain

an accumulation point from M({xt}). Proposition 8 then implies that the best limiting

payoff in every element of the partition is given by Z(µ). Since the choice of the partition

was arbitrary, that can only happen for a set of paths of the Brownian bridge that has zero

probability. �

Lemma 8 For any x ∈ M({xt}) and ε > 0, both the left and right neighborhood of x of

length ε are visited infinitely often.

Proof. Let

w = lim inf {xt : xt > x, t ≥ 0}

and suppose, by contradiction, that w > x. For ε arbitrarily small, there exists T such that

xT ∈ [w,w + ε). Let u denote the unit with interval [x, xT ]. Proposition 2, combined with

the fact that f(x) = Z(µ), implies that γ(u, Z(µ)) > Z(µ). Therefore, that there exists

some x̃ ∈ (x, xT ) such that u(x̃, µ, Z(µ) > (1 + δ)Z(µ) = U(µ, Z(µ)), a contradiction. �

To conclude the proof, suppose by way of contradiction that there exist x, y ∈M({xt}), with

x < y, and consider the interval [x, y]. By Lemma 8, we can always find two known actions

x′ and y′ such that x < x′ < y′ < y. By Lemma 7, there exists a subinterval [x′′, y′′] ⊆ [x′, y′]

of positive measure that is visited only finitely many times. Lemma 6 then implies that
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either [0, x′′] or [y′′, 1] is visited only finitely many times, which contradicts the hypothesis

that both x and y are accumulation points.

9.1 Proof of Lemma 4

Let Θ̃ = Θ(Λ) (Λ is fixed throughout, so there is no ambiguity about the underlying space).

Let {(xn, µn, zn)} be a sequence from K × ∆(Θ̃) × [−Λ,Λ] which converges to (x, µ, z) ∈
K ×∆(Θ̃)× [−Λ,Λ]. Then,

|v(xn, µn, zn)− v(x, µ, z)| =
∣∣∣∣∫

Θ̃

r(g(xn), zn) dµn −
∫

Θ̃

r(g(x), z) dµ

∣∣∣∣
≤
∣∣∣∣∫

Θ̃

[r(g(xn), zn)− r(g(xn), z)] dµn

∣∣∣∣+

∣∣∣∣∫
Θ̃

[r(g(xn), z)− r(g(x), z)] dµ

∣∣∣∣
+

∣∣∣∣∫
Θ̃

[r(g(xn), z)− r(g(x), z)] dµn

∣∣∣∣+

∣∣∣∣∫
Θ̃

r(g(x), z) dµn −
∫

Θ̃

r(g(xn), z) dµ

∣∣∣∣
≤ δ|zn − z|+ 2

∫
Θ̃

|r(g(xn), z)− r(g(x), z)| dµ

+

∫
Θ̃

|r(g(xn), z)− r(g(x), z)| dµn +

∣∣∣∣∫
Θ̃

r(g(x), z) dµn −
∫

Θ̃

r(g(x), z) dµ

∣∣∣∣
The last term converges to zero by weak convergence of the beliefs. We focus on the second

term ∫
Θ̃

|r(g(xn), z)− r(g(x), z)| dµ ≤ (1 + δ)

∫
Θ̃

|g(xn)− g(x)| dµ

which converges to zero by the Bounded Convergence theorem. Next,∫
Θ̃

|r(g(xn), z)− r(g(x), z)| dµn ≤ (1 + δ)

∫
Θ̃

|g(xn)− g(x)| dµn

K is compact and every g ∈ Θ̃ is continuous, hence also uniformly continuous. Fix ε > 0

and let

A

(
1

m
, ε

)
=

{
g ∈ Θ̃ : ∃ λ > 1

m
s.t. |x− y| < λ =⇒ |g(x)− g(y)| < ε

}
By the previous observations, it also follows that for any g ∈ Θ̃, there exists m = m(g) such

that g ∈ A
(

1
m′
, ε
)
, ∀ m′ > m. Thus, Θ̃ =

⋃∞
m=1A

(
1
m
, ε
)
.

Next, since
{
A
(

1
m
, ε
)}

converges to Θ̃, it follows that for any η > 0, there exists M > 0

such that µ
(
A
(

1
m
, ε
))

> 1 − η
2
, ∀ m > M . Fix m̃ > M , by weak convergence of beliefs,

there exists N > 0 such that
∣∣µn (A ( 1

m̃
, ε
)c)− µ (A ( 1

m̃
, ε
)c)∣∣ < η

2
, for any n > N .
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Since xn → x, there exists N ′ > N such that |xn − x| < 1
m̃

, for any n > N ′. Finally, we

obtain, for n > N ′,∫
Θ̃

|g(xn)− g(x)| dµn =

∫
A( 1

m̃
,ε)
|g(xn)− g(x)| dµn +

∫
A( 1

m̃
,ε)

c
|g(xn)− g(x)| dµn

≤ sup
g∈A( 1

m̃
,ε)
|g(xn)− g(x)|+ 2Λµn

(
A

(
1

m̃
, ε

)c)

≤ ε+ 2Λ

[∣∣∣∣µn(A( 1

m̃
, ε

)c)
− µ

(
A

(
1

m̃
, ε

)c)∣∣∣∣+

∣∣∣∣µ(A( 1

m̃
, ε

)c)∣∣∣∣]
≤ ε+ 2Λη

Since ε and η were arbitrary, this completes the proof. �

9.2 Proof of Lemma 5

Letting Ω+(Λ) = {f : maxx∈K f(x) > Λ − 1} and Ω−(Λ) = {f : minx∈K f(x) < −(Λ − 1)},
we have Ω(Λ) = Ω+(Λ) ∪ Ω−(Λ). Since Z̄ ≥ 0, maxx∈K f(x) is nonnegative for all f in the

support of any µΠ ∈ P(K). Therefore,∫
Ω(Λ)

max
x∈K

f(x)dµΠ(f) ≤
∫

Ω+(Λ)

max
x∈K

f(x)dµΠ(f) +

∫
Ω−(Λ)

max
x∈K

f(x)dµΠ(f).

We will prove that the first term (the harder one) converges to zero as Λ → ∞, uniformly

in Π. The second term can be treated similarly.

Put in the language of probability theory, we need to show that, for each Z̄ ≥ 0, the family

of random variables {XΠ = maxx∈K f(x) : f ∼ µΠ}Π∈P(K) is uniformly integrable.38 To show

uniform integrability, it suffices to prove that there exists p > 1 such that.39

sup
Π∈P(K)

E [Xp
Π] <∞

Without loss of generality, we set Z̄ = 0 (other cases follow by translation) and K = [0, 1]

(other cases follow by the scaling property of Brownian motion). For each Π, we have

Pr(XΠ ≤ Λ) =
∏
πi∈Π

Pr(Xi ≤ Λ),

38A family {Xi}i∈I is uniformly integrable if limΛ→+∞ {supi {E[|Xi| : |Xi| > Λ]}} = 0.
39See, e.g., Durrett (1996), Exercise 4.5.1., p. 260.
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where {πi}i describes the units of the partition Π, Xi is the maximum of f over πi, and we

are using the fact that the variables {Xi}i are independently distributed. Moreover, each Xi

is the maximum of a Brownian bridge with width δi (the width of π) and endpoints equal

to 0. This implies that40

Pr(Xi ≤ Λ) = 1− e−2Λ2/δ2i .

Therefore, we can compute the density of XΠ, and obtain, for p = 2,

E[X2
Π] =

∫
R+

Λ2
∑
i

(∏
j 6=i

(
1− e−2Λ2/δ2j

))
e−2Λ2/δ2i

4Λ

δ2
i

dΛ.

For each i, the product with respect to j is bounded by 1, implying that

E[X2
Π] ≤ 4

∑
i

∫
R+

Λ3e−2Λ2/δ2i

δ2
i

dΛ.

Making, for each i, the change of variable ui = Λ/δi, we obtain

E[X2
Π] ≤ 4

∑
i

∫
R+

δ2
i u

3
i e
−2u2i dui.

Since, for any partition Π,
∑

i δ
2
i ≤

∑
i δi = 1, we conclude that

sup
Π∈P(K)

E[X2
Π] ≤ C

where C = 4
∫
R+
u3e−2u2du <∞.

10 Proof of Theorem 3

We start by showing the existence of a threshold ρ̃ above which yR(ρ) = 0. Suppose, first,

that κ ≤ c′(0), so that an old agent chooses the best explored technology (as observed in the

40See, e.g., Durrett (1996), Exercise 7.8.1., p. 433. The formula given there is for a Brownian bridge with

width equal to 1. The general formula obtains by the scaling property of Brownian motion, which is easily

shown to be inherited by the Brownian bridge: letting {Ba
t }t∈[0,a] denote a Brownian bridge with endpoints 0

and a and endpoint values equal to 0, Ba
t has the law of Bt− t

aBa, where B is the standard Brownian motion.
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main text). The expected utility of a young agent from choosing technology x > x̄ is

f(x̄) + κy − c(y) + δ

{
(f(x̄) + κy)

(
1− Φ

(
ρ− κy
σ
√
y

))
+ σ
√
yφ

(
ρ− κy
σ
√
y

)
(25)

+(ρ+ f(x̄)) Φ

(
ρ− κy
σ
√
y

)}
(26)

= (1 + δ)[f(x̄) + κy]− c(y) + δ

{
(ρ− κy)Φ

(
ρ− κy
σ
√
y

)
+ σ
√
yφ

(
ρ− κy
σ
√
y

)}
, (27)

where ρ = z − f(x̄). The first-order condition is

κ

(
1 + δ − δΦ

(
ρ− κy
σ
√
y

))
+

δσ

2
√
y
φ

(
ρ− κy
σ
√
y

)
= c′(y). (28)

The left-hand side of (28) approaches κ as ρ increases and, for fixed ρ, the left-hand side

converges to κ(1 + δ) as y → +∞, and to κ as y → 0. Also, the left-hand side is bounded

above by

κ(1 + δ) +
δσ2φ(1)

2ρ

which converges to κ(1 + δ), as ρ increases. Thus, limy→+∞ c′(y) > κ(1 + δ) (and c′′(0) > 0,

if κ = c′(0)) implies that there exists ρ̃ > 0 such that ρ > ρ̃ implies yR(ρ) = 0.

Differentiating (28) with respect to ρ yields

− δφ

2σ
√
y

[
κ+

ρ

y

]
< 0

for all ρ, y > 0. This implies that yR(0) ≥ yR(ρ) for all ρ > 0. Repeating the argument used

to prove Theorem 2, we conclude that radical innovation ends in finite time a.s.

Suppose now that κ > c′(0). An old agent experiments radically with a size equal to yO,R > 0

if and only if ρ ≤ ξ, as shown in the main text. We assume without loss of generality that

ρt > ξ, so that an old agent does not innovate today and then the expected utility today of

any x > x̄t for a young agent is simply

E[f(x)− c(x− x̄t)] + δ{E[f(x) + ξ|f(x) ≥ zt − ξ] Prob(f(x) ≥ zt − ξ) + zt Prob(f(x) < zt − ξ)}

= (1 + δ)(f(x̄t) + κy)− c(y) + δ

{
σ
√
yφ

(
ρt − ξ − κy

σ
√
y

)
+ ξ + (ρt − ξ − κy)Φ

(
ρt − ξ − κy

σ
√
y

)}
The first-order condition is

κ

[
1 + δ − δΦ

(
ρt − ξ − κy

σ
√
y

)]
+

δσ

2
√
y
φ

(
ρt − ξ − κy

σ
√
y

)
= c′(y) (29)

46



The right-hand side is always greater than or equal to κ. Since ρt − ξ > 0, the right-hand

side converges to κ as y → 0, and to κ(1 + δ) as y → +∞. Since also c′(0) < κ, there must

exist an interior solution to the first-order equation (29). When limy→+∞ c′(y) > κ(1 + δ),

the solution is unique for high values of ρ because the left-hand side of (29) approaches

κ pointwise as ρ becomes arbitrarily large. As ρ increases, yR(ρ) approaches yOR: the

optimal size of innovation for a young agent converges to the optimal size for an old agent.

This follows from the fact that the first-order condition becomes, dropping negligible terms,

κ ≈ c′(y). The maximized expected utility is approximately equal to

(1 + δ)(f(x̄t) + ξ) + δ

[
κyO,R

(
1− Φ

(
ρt − ξ − κyO,R

σ
√
yO,R

))

+σ
√
yO,Rφ

(
ρt − ξ − κyO,R

σ
√
yO,R

)
+ (ρt − ξ)Φ

(
ρt − ξ − κyO,R

σ
√
yO,R

)]
≈ f(x̄t) + ξ + δzt

Since we assumed that ρt > ξ, it follows that f(x̄t) + ξ+ δzt < (1 + δ)zt. The only candidate

for radical innovation gives an expected outcome which is lower than what the young agent

could get by simply exploiting. Thus, there exists ρ̃ > 0 such that the young agent prefers

exploitation for any gap greater than ρ̃.

In order to replicate the steps used to prove Theorem 2, we still need to show that there is an

upper bound on the equilibrium size of innovation. When ρ > ξ, the right-hand side of (29)

is strictly decreasing in ρ. Thus, the unique positive solution of the first-order condition

when ρ = ξ provides the desired upper bound. When ρ ≤ ξ, the old agent is experimenting

with a fixed size yO,R (independent of the gap). Replicating the argument for κ = 0, one

may show that, on the range ρ ∈ [0, ξ], the value and size of radical innovation are decreasing

in ρ, providing an upper bound on the size of radical innovation for a young agent, uniform

over all histories.
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