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Abstract

In dynamic models driven by diffusion processes, the smoothness of the value function plays

a crucial role for characterizing properties of the solution. However, available methods to ensure

such smoothness have limited applicability in economics, and economists have often relied on

either model-specific arguments or explicit solutions. In this paper, we prove that the value

function for the optimal control of any time-homogeneous, one-dimensional diffusion is twice

continuously differentiable, under Lipschitz, growth, and non-vanishing volatility conditions.

Under similar conditions, the value function of any optimal stopping problem is continuously

differentiable. For the first problem, we provide sufficient conditions for the existence of an

optimal control. The optimal control is Markovian and constructed from the Bellman equation.

We also establish an envelope theorem for parameterized optimal stopping problems. Several

applications are discussed, including growth, dynamic contracting, and experimentation models.

Keywords: Optimal Control, Optimal Stopping, Smooth Pasting, Super Contact, Comparative

Statics, Envelope Theorem, Strong Solution, Markov Control, HJB Equation.

1 Introduction

Ever since Louis Bachelier formalized the concept of Brownian motion to study financial markets,

diffusion processes have played an increasingly important role in economic analysis. Diffusions are

used to model macroeconomic and financial shocks, incoming news in learning and experimentation

∗We are grateful for comments from John Quah and Yuliy Sannikov. Part of this research was accomplished while

the first author was visiting the Economic Theory Center at Princeton University, whose hospitality is gratefully

acknowledged. This author is also thankful for financial support from the NSF under Grant No. 1151410.
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environments, and stochastic output and demand. Harnessing the relevant techniques has proved a

challenge to economists, however, so much so that it has motivated a book by Dixit (1993) on the

“art of smooth pasting,” which included a heuristic justification for the differentiability of value

functions at optimal stopping thresholds.

In dynamic models, the smoothness of value functions plays a crucial role to investigate the prop-

erties of optimal decisions and payoffs, as illustrated by the celebrated Benveniste-Scheinkman

theorem. In growth models, for example, it is used with the Bellman (or, for diffusions, Hamilton-

Jacobi-Bellman “HJB”) equation to prove monotonicity of the optimal consumption and investment

in the state and in parameters of the model. In dynamic contracting models, the agent’s optimal

effort, consumption, and continuation utility, and the principal’s risk attitude can all be studied

with the HJB equation, while an analytical solution is typically not attainable. In bandit problems,

many properties of the optimal experimentation strategy can be characterized without an explicit

solution, as we also illustrate.

In all these applications, the key is to show that the value function is smooth enough to satisfy the

HJB equation. For the optimal control of diffusions, “smoothness” thus requires (and means in this

paper) twice differentiability of the value function, and is sometimes known as the super contact

condition.1 In pure stopping problems, “smoothness” requires (and means) that the value function

is once differentiable, and is known as the smooth pasting condition.

Surprisingly, economists do not have available at hand a simple theorem guaranteeing such smooth-

ness in diffusion models. The so-called “verification theorems” are used to check that a smooth

candidate solution is equal to the value function, but do not provide this candidate solution, or

guarantee its existence. In stopping problems, the usual arguments for smooth pasting are heuristic

and typically assume that the optimal stopping region takes on a specific form. In optimal control

problems, economists have used ad hoc proofs to establish that the value functions of particular

models solved the HJB equation.

This paper provides two theorems for the smoothness of value functions, which hold under sim-

ple and easily checked conditions. Both theorems pertain to infinite horizon models with a one-

dimensional, time-homogeneous diffusion state, which are ubiquitous in economics. The first the-

orem states, under a non-vanishing volatility condition and standard continuity and linear growth

conditions, that the value function of any optimal control problem is twice continuously differ-

entiable and satisfies the HJB equation everywhere. The result holds for bounded as well as

unbounded domains, and for any compact control space. In particular, we do not assume that

1The super contact condition has been extensively used to characterize optimal solutions. See, e.g., DeMarzo and

Sannikov (2006) and DeMarzo et al. (2012).
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the control space is convex or one dimensional. This result relaxes a number of assumptions from

earlier work, sometimes aimed at dealing with state spaces of arbitrary dimensions.2 Our result

also differs from the viscosity solution approach3 introduced by Crandall and Lions (1983) and

Lions (1983), which is significantly less well known by economists and harder to work with.4

The second theorem states, under similar conditions, that the value function of any stopping prob-

lem is continuously differentiable, as a long as the terminal value function has this property.5 For

both theorems, the conditions we find were previously known to be necessary for the results,6 but

we are not aware of previous theorems showing that these conditions, taken together, are sufficient.7

A more subtle yet equally crucial issue concerns the existence of an optimal strategy. Indeed,

just because one has proved that the value function of a given problem was smooth enough to

solve the Bellman equation, this does not imply the existence of an optimal control, even if the

set of maximizers of the equation is nonempty at all states. The key issue here is whether the

corresponding controls generate a well defined trajectory for the state process. There are two

concepts of solutions to stochastic differential equations: the strong one requires that the state

trajectory is entirely determined by the control process and the modeled exogenous uncertainty,

2Twice differentiability of the value function has been studied by Krylov (1980), who assumes that the state space

is finite and that the control space is convex. The existence of solutions to multidimensional boundary value problems,

which include HJB equations with multidimensional states, has been studied by Noussair (1979), Evans (1983), and

Safonov (1989). See also Gilbarg and Trudinger (2001). Methods for multidimensional problems are typically based

on fixed-point arguments which require strong smoothness assumptions on the coefficients and payoffs, among other

assumptions. Twice differentiability has also been studied for specific models in Operations Research (see, e.g.,

Harrison and Taksar (1983)).
3A related approach consists in finding weak (non classical) solutions in the relevant Sobolev space. Differentiability

is then replaced by the concept of a weak derivative.
4Indeed, as economic theorists are aware, kinks in policies and value functions can play a crucial role in economic

analysis, and it is important to determine when such kinks may occur and when they can be safely ruled out.
5The arguments can be extended to combining control and stopping problems. See Section 5.
6Touzi (2010) provides an example with an unbounded control space in which the value function is not differen-

tiable. Øksendal and Sulem (2007, p.139) consider a pure stopping problem in which the terminal function is not

differentiable, and show that the value function is not differentiable either at one of the stopping thresholds. With

a vanishing volatility, the smoothing effect of the Brownian motion is absent at some states, and it is easy to build

deterministic examples in which the value function is not twice differentiable.
7Recent results on the necessity of smooth pasting are provided by Dayanik and Karatzas (2003), Peškir and

Shiryaev (2006), and Villeneuve (2007), using methods based on the scale function of the SDE, or by “excessivity” of

the value function. Among other assumptions, one difference with our theorem is that these results focus on the case

in which there is no flow payoff. The integral of the flow payoff can be converted into an additional state, reducing

the problem to one without any flow payoff. Unfortunately, this conversion creates a multidimensional state space,

in which some states have zero volatility. Peškir and Shiryaev (2006) propose a method for proving the necessity of

smooth pasting which, they mention, can be extended to multidimensional states. However, that method requires a

minimal volatility condition that is not satisfied by the converted state.
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a property that always holds in discrete stochastic optimization. The weak one admits that the

trajectory also depends on some other source of uncertainty beyond the one explicitly modeled.

Roughly put, it means that the model can be extended by adding enough exogenous uncertainty,

on which the state can depend (beyond the initial Brownian motion), so that the equation has

a well-defined solution. This second concept is counter-intuitive at best. As preeminent control

theorists Yong and Zhou (1999, p. 64) have put it “the strong formulation is the one that stems from

the practical world, whereas the weak formulation sometimes serves as an auxiliary but effective

mathematical model aiming at ultimately solving problems with the strong formulation.”

In economic models with a controlled diffusion, there are currently few options, other than finding

an explicit solution, for guaranteeing the existence of an optimal control.8 To see the difficulty,

consider the simple case of a binary control (such as a two-armed bandit problem). In such case,

any nontrivial Markovian control has to “jump” as the diffusion hits some regions of the state

space, creating discontinuities in the coefficients generating the stochastic equation for the state.

In particular, the usual Lipschitz continuity condition for the existence of a solution is violated,

since the coefficient is not even continuous.

Fortunately, there exist specific results for the case of one-dimensional diffusions, establishing the

existence of a unique strong solution as long as the volatility coefficient has bounded variation.9

Building on these results, we identify conditions under which an optimal control exists, which are

all based on the HJB equation, and hence all make use of the first theorem that we have established.

Proving the existence of optimal strategies is therefore a first application of the smoothness result.

Some of our existence results are based on establishing, via an envelope theorem, differentiability

of the control, and are illustrated in several applications. Our other existence results are based

on the theory of monotone comparative statics: if one can show that the control constructed

from the HJB equation is monotonic, or at least piecewise monotonic, this will guarantee that it

has bounded variation and, under a simple regularity condition, that the volatility has bounded

variation. Proving such monotonicity is nontrivial, because the value function and its derivatives

can typically not be computed explicitly. However, it is precisely for this kind of situations that

the theory of comparative statics has been developed. We provide several applications illustrating

this connection.

8Stroock and Varadhan (1979) and Krylov (1980) developed results showing the existence of weak solutions. For

more general existence results with weak solutions, see the survey by Borkar (2005). It is also well known, and shown

in this paper (Section 3), that there always exist ε-optimal controls that generate strong solutions. Fleming and

Soner (1993) assume that the control is Lipschitz in the state (and jointly continuous in the time-state space, when

it also depends explicitly on time).
9The first such result is due to Nakao (1972). See Section 4.
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Economists have long been interested in another kind of smoothness and comparative statics:

describing how the value function of an optimization problem varies with some parameters of the

problem. We provide several such results for optimal stopping problems, building on arguments

used in earlier sections, in which the parameter can enter the flow and terminal payoff functions as

well as the drift and volatility of the diffusion. First, we impose a strict single crossing condition

guaranteeing that the continuation and stopping regions are separated by a unique threshold. This

uniqueness is combined with the insights of Milgrom and Segal (2002) to provide an envelope

theorem for the value function: the value function is smooth in the parameter, and its derivative is

equal to the derivative of the expected payoff with respect to the parameter, holding the stopping

threshold fixed. Finally, this envelope theorem is combined with a standard argument to derive

a representation for the derivative of the value function with respect to the parameter, based

on similar derivatives for all the primitives of the problem. This yields a “dynamic sensitivity

equation,” which may be used to prove other properties of the value function, as we illustrate.10

Beyond these results, it is important to understand why the value function is smooth. What is it

in the optimal control or stopping strategy that makes the expected payoff smooth in the state,

whereas it is not so for arbitrary suboptimal strategies? Whereas heuristic arguments are well

known for smooth pasting, the answer is less obvious for optimal control problems.11 In Section 3,

we explain exactly where optimality of the control plays a role: it guarantees, by an application

of Berge’s Maximum Theorem, that the maximized objective of the HJB equation is continuous

in the state and, hence, that usual techniques for proving the existence of a solution to nonlinear

elliptic second-order equations apply.12

For the optimal stopping problem, the argument applies to problems with arbitrary stopping and

continuation regions. The key observation is that the continuation region always consists of disjoint

open intervals over which the value function solves a standard boundary value problem, and that a

local argument can be applied to the endpoints of such interval to guarantee smoothness at those

points. The local argument works by contradiction and is based on a standard “fishing” technique:

if the value function is not differentiable at some stopping point, one may raise the slope of some

10This equation is well known when there is no stopping problem. For an application in finance, see DeMarzo and

Sannikov (2006).
11Dumas (1991), who introduced the concept of a “super contact condition” to study twice differentiability, provides

useful intuition for the result.
12There is another particularity of our approach: in much of the analysis, we need to work with solutions to

boundary value problems (BVP), in which the terminal conditions of the equation are matching values at both

endpoints of the problem, rather than initial value problems (IVP), which match value and derivative at a single

endpoint. To move from IVP to BVP, we exploit the fact that the Hamiltonian is nondecreasing in the value function

(Condition 2), which yields a tailored argument and gets rid of a more demanding regularity assumption on the

primitives.
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initial value problem to get a higher payoff.13

The results are illustrated with several applications. The first one concerns an optimal growth

problem. Relaxing usual concavity and convexity assumptions, we show that the value function

is always smooth and solves the Bellman equation under standard regularity conditions. We also

discuss conditions for the existence of an optimal control. Our second application concerns multi-

armed bandit problems with a common state. Each arm is a choice that is informative about

the true state of the world, and has a state-dependent payoff. The value function is, without any

further assumptions, always twice differentiable. When the number of arms is finite, the number

of switching points between arms is shown to be finite (and uniformly bounded), although it may

be strictly optimal to use a given arm over disjoint intervals of beliefs. We also provide general

conditions for the existence of an optimal control when the agent can also allocate resources across

two arms, rather than merely choose one of them. The third application revisits the principal-

agent model analyzed by Sannikov (2008), proving the existence of an optimal contract under a

simple condition on the effort cost function.14 We also provide, as a simple illustration of our

results, a general proof that the option value of waiting in optimal stopping problems is positive

and increasing in the volatility of the underlying process.

The paper is organized as follows. Section 2 introduces the general optimal control problem.

Section 3 proves that the value function is twice continuously differentiable. Section 4 provides

sufficient conditions for the existence of an optimal control. Section 5 turns to the optimal stopping

problem, proving the continuous differentiability of the value function. Section 6 considers a large

class of parametric optimal stopping problems, in which the optimal threshold is shown to be

unique, and provides an envelope theorem and a dynamic equation for the derivative of the value

function with respect to the parameter. Sections 3–6 include examples illustrating their respective

results. Section 7 concludes. Technical proofs are in the Appendix.

2 Control Problem

We are given a filtered probability space
(
Ω,F , {Ft}t∈R+ ,P

)
which satisfies the usual conditions

and whose outcomes are identified with the paths of a standard Brownian motion, denoted by B.15

13To conclude the argument, one must also show that the modified solution is equal to the expected payoff achieved

under some stopping policy. Another subtlety is that a stopping point could be an accumulation point of an infinitely

alternating pattern of stopping and continuation regions, which become smaller as they close to the point. One has

to show that the derivative is well defined and continuous at such point.
14Without this condition, the continuation utility process derived for the contract characterized in that paper is

only guaranteed to exist in the sense of a weak solution.
15We refer the reader to Karatzas and Shreve (1998) for the standard concepts used in this paper.
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We consider a process {Xt}t∈R+ controlled by another process {At}t∈R+ , taking values in a nonempty

closed interval X of R with (possibly infinite) endpoints x
¯
< x̄, and following the dynamic equation

dXt = µ (Xt, At) dt+ σ (Xt, At) dBt (1)

x0 = x.

Assumption 1 There exists a nonempty compact metric space K such that At ∈ K for all t.16

A control process is said to be admissible if it is adapted to the filtration {Ft}t∈R+ , satisfies As-

sumption 1, and the Equation (1) has a unique strong solution.17 The set of admissible control

processes is denoted by A.

Given an admissible control A, the agent’s expected payoff is given by

v (x,A) = E

[∫ κ

0
e−rtf

(
XA
t , At

)
dt+ e−rκg(XA

κ )

]
,

where XA
t is the process starting at x and controlled by A, f

(
XA
t , At

)
is the flow payoff at time t,

κ = inf{t : Xt /∈ (x
¯
, x̄)} is the first time at which the boundary of X is hit, and g(x

¯
) and g(x̄) are

given constants (relevant only when their argument is finite). Assumptions 2 and 3, stated shortly,

guarantee that the expected payoff is well defined for any admissible control (see Lemma 1 below).

The (optimal) value function18 of the problem starting at x, denoted v(x), is defined by

v(x) = sup
A∈A

v(x,A). (2)

An admissible control is said to be optimal if v(x,A) = v(x).

Assumption 2 There exists K > 0 such that, for all (x, x′, a) ∈ X 2 ×K,∣∣µ (x, a)− µ
(
x′, a

)∣∣+
∣∣σ (x, a)− σ

(
x′, a

)∣∣+
∣∣f (x, a)− f

(
x′, a

)∣∣ ≤ K|x− x′|,
and the functions µ(x, ·), σ(x, ·), f(x, ·) are continuous in a, for each x.19

The last assumption contains several bounds on the primitives: standard linear growth conditions,

a uniform lower bound on σ, and a condition guaranteeing that, for any control, the state grows at

a rate slower than the discount rate.
16The assumption that K is independent of x is only for expositional simplicity. The analysis can be extended to

the case in which the control set depends on x, provided that i) for each x, K(x) is a nonempty, closed subset of the

compact metric space K, and ii) the correspondence x 7→ K(x) is continuous. See Footnote 26.
17This definition of admissibility is the one used, among others, by the classic control theory textbook of Fleming

and Soner (1993). See also Pham’s (2009) recent textbook.
18To avoid confusion, we reserve the expression “value function” to the optimal expected payoff, and use the

expression “expected payoff” when the control is arbitrary.
19When K is a finite set, this latter assumption is vacuous.
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Assumption 3 There exist constants Kµ
1 , Kµ

2 , Kσ, Kf , and σ
¯

such that20 Kµ
2 < r and 0 < σ

¯
≤

|σ(x, a)|, |µ(x, a)| ≤ Kµ
1 + Kµ

2 |x|, |σ(x, a)| ≤ Kσ(1 + |x|), and |f(x, a)| ≤ Kf (1 + |x|) for all

(x, a) ∈ X ×K.

3 Twice Differentiability of the Value Function

Our objective is to prove that the value function is twice differentiable in the interior of X and

solves the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
a∈K
−rv(x) + f (x, a) + µ (x, a) v′(x) +

1

2
σ2(x, a)v′′(x) (3)

with given boundary conditions

v(x
¯
) = g(x

¯
) if x

¯
is finite, and v(x̄) = g(x̄) if x̄ is finite. (4)

Theorem 1 Under Assumptions 1–3, the following holds:

i) The value function is finite and has linear growth: |v(x)| ≤ Kv(1 + |x|) for some positive

constant Kv.

ii) The HJB equation has a twice continuously differentiable solution.

iii) Any solution to the HJB equation that has linear growth is equal to the value function.

Finiteness is only an issue when X is unbounded, and follows from the following lemma, proved in

the Appendix.

Lemma 1 For any admissible control A, initial condition x, and r̃ > Kµ
2 , limt→+∞E|XA

t |e−r̃t = 0

and E[
∫∞

0 e−r̃tf(XA
t , At)ds] < +∞.

This lemma, combined with the linear growth condition on f and the fact that Kµ
2 < r immediately

implies that v is finite and satisfies a linear growth condition.21

The rest of the proof consists of the following steps: 1) Prove the existence of a solution, w, to the

HJB equation, which has linear growth; 2) Construct a control process based on this solution; 3)

20The condition Kµ
2 < r can be dropped if f is bounded. In that case, the control problem is equivalent to one in

which X is replaced by a smooth increasing transformation Y of X, that satisfies this condition, without affecting

other conditions.
21Precisely, Lemma 1 and the growth condition on f guarantee that f(Xt, At) grows at most at rate Kµ

2 <

r. This implies that the integral payoff is bounded linearly in x. The terminal payoff is bounded above by

max{g(x
¯
)1x

¯
>−∞, g(x̄)1x̄<+∞}, which is also finite.
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Prove that the solution is the value function of the problem, and that either the control constructed

in 2) is optimal, or that it can be approximated by a sequence of admissible controls.

These steps will imply that any solution of the HJB equation with linear growth must coincide

with the value function of the problem and, therefore, will show the uniqueness claimed in Part iii)

of Theorem 1.

We first show the existence of a solution to the HJB equation. This result follows from Proposition 1

below, which is proved in the Appendix. The proposition relies on the following conditions for an

arbitrary function H̄(x, p, q) defined on X × R2.

Condition 1 On any compact interval X0 of X , there exist constants M and K such that22

i) |H̄(x, p, q)| ≤M(1 + |p|+ |q|),

ii) |H̄(x, p, q)− H̄(x, p̃, q̃)| ≤ K(|p− p̃|+ |q − q̃|),

iii) H̄ is continuous in x for each (p, q).

Condition 2 For all (x, q), H̄(x, ·, q) is nonincreasing in p.

Condition 3 For each K̄ > 0, there exist K1,K2 > K̄ such that for all x ∈ X , and ε ∈ {−1, 1},

H̄(x,K1 +K2|x|, εK2) < 0 and H̄(x,−K1 −K2|x|), εK2) > 0.

Proposition 1 Suppose that H̄ satisfies Conditions 1–3. Then, for any finite υ
¯

and ῡ, there exists

a twice continuously differentiable solution to the equation

w′′ + H̄
(
x,w,w′

)
= 0

which satisfies w(x
¯

) = υ
¯

if x
¯

is finite, and w(x̄) = ῡ if x̄ is finite. Moreover, there exists a positive

constant Kv such that

|w(x)| ≤ Kv(1 + |x|) for all x ∈ X .

We apply Proposition 1 to Equation (3) by checking Conditions 1 - 3.

Proposition 2 Under Assumptions 1–3, the HJB equation (3) has a twice continuously differen-

tiable solution w on X , which has linear growth.

22Parts ii) and iii) imply that H is jointly continuous in (x, p, q). Although we do not use this fact explicitly in the

proof, it explains why the second derivative of the solution is also continuous.
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Proof. Equation (3) can be rewritten as

w′′ +H(x,w,w′) = 0, (5)

where23

H(x, p, q) = max
a∈K

2

σ2(x, a)
(−rp+ f(x, a) + µ(x, a)q). (6)

We show that H satisfies Conditions 1, 2, and 3.

Let

h(a, x, p, q) =
2

σ2(x, a)
(−rp+ f(x, a) + µ(x, a)q),

so that H(x, p, q) = maxa∈K h(a, x, p, q). Assumptions 1– 3 guarantee that h is continuous in a and

Lipschitz in x, uniformly in a. Because r and σ2 are positive, h is decreasing in p and Condition 2

is satisfied.

To verify Condition 1, we use the following inequality24

|H(x, p, q)−H(x, p̃, q̃)| ≤ max
a∈K

2

σ2(x, a)
|(−rp+ f(x, a) + µ(x, a)q)− (−rp̃+ f(x, a) + µ(x, a)q̃)| .

This implies that

|H(x, p, q)−H(x, p̃, q̃)| ≤ 2

σ
¯

2
(r|p− p̃|+ (Kµ

1 +Kµ
2 |x|)|q − q̃|) ,

and proves the Lipschitz condition for any compact interval X0 of X . Similarly, the growth condition

follows because µ and f are bounded on any compact support and σ2 is bounded below by σ
¯

2 > 0.

Continuity of H in x, the last part of Condition 1 is the key to guarantee that the value function is

twice differentiable, even when the optimal control jumps. It is due to Berge’s Maximum Theorem.

Because the objective h is continuous in a and Lipschitz in x, uniformly in a, it is easy to show that

h is jointly continuous in (x, a).25 Since also the action set K is compact, the Maximum Theorem

applies, which proves that H is continuous in x.26

23Because all functions are continuous in a, K is compact, and σ is bounded below away from zero, the supremum

is achieved as a maximum.
24More generally, if H(θ) = maxa∈K h(a, θ), one can prove that |H(θ) − H(θ̃)| ≤ maxa∈K |h(a, θ) − h(a, θ̃)|. For

example, suppose that a, ã maximize h at θ and θ̃, respectively. Then, H(θ) −H(θ̃) = h(a, θ) − h(ã, θ̃) ≤ h(a, θ) −
h(a, θ̃) ≤ maxa∈K |h(a, θ)− h(a, θ̃)|. The other inequality is proved similarly.

25This is shown as follows. We fix and omit from the notation some values for p and q, and suppose that (an, xn)

converges to (a, x). We have |h(x, a) − h(xn, an)| ≤ |h(x, a) − h(x, an)| + |h(x, an) − h(xn, an)|. The first term

converges to zero by continuity of h with respect to a, while the second term converges to zero because h is Lipschitz

in x, uniformly in a.
26Berge’s Theorem also applies if the control domain K(x) depends on x and satisfies the conditions provided in

Footnote 16.

10



There remains to verify that Condition 3 holds. H(x,K1 +K2|x|, εK2) is negative whenever

−r(K1 +K2|x|) +Kf (1 + |x|) + (Kµ
1 +Kµ

2 |x|)K2 < 0.

Since Kµ
2 < r, this inequality holds for all x ∈ R (and hence, on X ) if and only if

K2 ≥
Kf

r −Kµ
2

and K1 >
Kf +Kµ

1K2

r
(7)

Thus the assumptions in Proposition 1 are satisfied, which shows existence of a solution to the HJB

equation for arbitrary boundary conditions at x
¯

and x̄, whenever these points are finite. �

What role does optimization play for smoothness? As mentioned above, continuity of H in

x is required to guarantee that the value function is twice differentiable, and is due to an application

of Berge’s Maximum Theorem to the maximization of the objective h. If, instead of a maximum

selection x 7→ â(x) of h, we had chosen an arbitrary selection x 7→ ã(x), the resulting function

H̃(x, p, q) = h(ã(x), x, p, q) would generally not be continuous in x. This explains why the expected

payoff is twice differentiable for the optimal control, whereas it may fail to be so for a strictly

suboptimal control: recall that the second derivative is given by v′′(x) = −H(x, v(x), v′(x)). If H

is discontinuous in x, the value function cannot be twice continuously differentiable, or even twice

differentiable there, since the left and right second derivatives at x will be different.

Proof that the candidate solution w is equal to the value function v We split up the proof

into two inequalities.

Lemma 2 Let w be a solution to the HJB equation (3) that has linear growth, and let v(x,A) be

the expected value function given any admissible control A. Then, w(x) ≥ v(x,A) for all x ∈ X .

Proof. The proof follows a standard verification argument, which is included here for completeness.

For any fixed, admissible control A and finite time T , Itô’s formula implies, for the diffusion XA

controlled by A and starting at x, that

e−r(T∧κ)w(XA
T∧κ) = w(x)+

∫ T∧κ

0
e−rt

(
−rw(XA

t ) + µ(XA
t , At)w

′(XA
t ) +

1

2
σ2(XA

t , At)w
′′(XA

t )

)
dt

+

∫ T∧κ

0
e−rtσ(XA

t , At)dBt, (8)

where the stopping time T ∧ κ = min{T, κ} guarantees that XA
t has not yet hit the boundary of

X on time interval over which Itô’s lemma is applied. The term e−rtσ(XA
t , At) is square integrable

over [0, T ] and the stochastic integral has zero mean (see Section A). Taking expectations and

using (3), we get the inequality

E

[∫ T∧κ

0
e−rtf(XA

t , At)dt

]
≤ w(x)− E

[
e−r(T∧κ)w(XA

T∧κ)
]
. (9)
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The linear growth condition satisfied by w, along with Lemma 1, guarantees that, on the event

κ = +∞, we have limT→∞E[e−rTw(XA
T )] = 0. Taking the limit of (9) as T goes to infinity27 and

using the equality w(XA
κ ) = g(XA

κ ) yields v(x,A) ≤ w(x). �

For the reverse inequality, we first obtain a candidate optimal control A∗t from the solution to

the HJB equation w. This candidate need not be admissible, because the stochastic differential

equation (1) may fail to have a unique strong solution. We will use a result by Nakao (1972), who

has shown28 that a one-dimensional SDE has a unique strong solution if its drift is measurable and

its volatility has bounded variation and is bounded away from zero.29 We exploit this property to

construct an approximation to the candidate control which is admissible and gets arbitrarily close

to the desired inequality.

Lemma 3 Let w be a solution to the HJB equation (3) that has linear growth. Then w(x) ≤ v(x)

for all x ∈ X .

Proof. We construct a candidate optimal control as follows. Take a solution to the HJB equation

w, and define M(x) ⊂ K as the set of maximizers of the equation

rw(x) = max
a∈K

f(x, a) + µ(x, a)w′(x) +
1

2
σ(x, a)2w′′(x). (10)

The objective is continuous in a and in x, and K is nonempty and compact. The measurable

maximum theorem,30 thus guarantees the existence of a measurable selection â (x) ∈ M(x) of

maximizers.

If the control A∗t = â(Xt) is admissible, applying the previous verification argument, this time with

an equality, shows that w(x) = v(x,A∗) and, hence, w(x) ≤ v(x). In general, the volatility function

σ̂(x) = σ(x, â(x)) can jump, violating the standard Lipschitz (or Hölder) continuity conditions

usually assumed for the existence of a strong solution and, hence, for admissibility of the control.31

We circumvent this issue by the following approximation argument.

Fix any ε > 0 and consider a grid of X with equally spaced intervals of length η, to be chosen

shortly. We define the Markovian control ã by ã(x) = â(χ(x)) where χ(x) is the element of the

27The expectation of the integral converges, since the integrand goes to zero at a geometric rate, by Lemma 1.
28More precisely, Nakao established pathwise uniqueness of weak solutions. This, combined with a major result

due to Yamada and Watanabe (1971), shows the existence of a (unique) strong solution. See also Veretennikov (1981)

and Revuz and Yor (2001, p. 392) for related results.
29Drift and volatility must also be bounded, which holds here for any compact interval of X .
30See Aliprantis and Border (1999), p. 570.
31See, e.g., Karatzas and Shreve (1998), Chapter 5.2, Theorem 2.5.
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grid closest to x.32 By construction, ã is piecewise constant. By Nakao (1972), the SDE

dXt = µ(Xt, ã(Xt))dt+ σ(Xt, ã(Xt))dBt (11)

has a unique strong solution, because the function x 7→ σ(x, ã(x)) has bounded variation. Letting

{X̃t}t∈R+ denote this solution, the control {Ãt}t∈R+ defined by Ãt = ã(X̃t) is admissible. If X is

compact, the function f(x, a) + µ(x, a)w′(x) + 1
2σ(x, a)2w′′(x) − rw(x) is uniformly continuous in

(x, a) on X ×K. Therefore, we can choose a grid mesh η small enough to guarantee that

f(x, ã(x)) + µ(x, ã(x))w′(x) +
1

2
σ(x, ã(x))2w′′(x)− rw(x)

≥ f(χ(x), ã(x)) + µ(χ(x), ã(x))w′(χ(x)) +
1

2
σ(χ(x), ã(x))2w′′(χ(x))− rw(χ(x))− ε ≥ −ε. (12)

Plugging this this inequality in the verification argument based on (8), yields v(x, Ã) ≥ w(x)−ε/r.
Since v(x) ≥ v(x, Ã), taking the limit as ε goes to zero yields the desired inequality v(x) ≥ w(x).

We now show the result if X is unbounded, focusing on the case in which X = R (the case in which

X is a half-line is treated similarly). To each Xn = [−n, n] corresponds a modulus of continuity ηn

such that (12) holds on Xn if the grid has mesh ηn and ã is constructed as before. We construct

ã on X1 by using the grid with mesh η1 on that domain, then extend it on X2 \ X1 by using the

grid with mesh η2 on that domain, and so on. This construction defines ã over R. Moreover, ã is

piecewise constant with finitely many jumps over any Xn, and hence has bounded variation over

any compact interval of R. Finally, (12) holds, by construction, on the entire domain R. The rest

of the argument is unchanged. �

3.1 Example: Optimal Growth

The analysis of growth models typically relies on some smoothness of the value function, as the suc-

cess of the Benveniste-Scheinkman Theorem (1979) illustrates. When time is continuous, smooth-

ness takes on a particularly important role: it guarantees that the Bellman equation is satisfied

everywhere, and, hence, that it can be directly used to derive properties of optimal policies.33 In

models without uncertainty, concavity assumptions are often required to establish differentiability

(see Benveniste-Scheinkman (1979) and, more recently, Rincon-Zapatero and Santos (2009, 2010)).

Theorem 1 shows that such assumptions can be dispensed with when uncertainty is modeled by

Brownian noise.

32We can adopt any arbitrary convention when there are two points of the grid that are closest to x.
33One illustration is provided by Quah and Strulovici (2012b), who show monotonicity of the capital growth in the

discount factor. Their analysis connects supermodularity properties of the objective function in the HJB equation.
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Consider an agent with initial capital x who seeks to maximize his lifetime utility by managing his

capital through consumption, savings, and effort. Formally, the agent solves

sup
A∈A

E

[∫ ∞
0

e−rsu(XA
s , As)ds

]
subject to

dXA
t = µ(XA

t , At)dt+ σ(XA
t , At)dBt,

where the control domain K is a compact subset of Rk for some k ≥ 1, and the drift and volatility

functions µ and σ are such that X is always nonnegative and that 0 is an absorption point, with

u(0, a) = µ(0, a) = σ(0, a) = 0 for all a. The dimensions of A can represent consumption, leisure

and effort, technological choices, etc. XA
t is the capital available to the agent at time t.

We do not place any other restriction on the agent’s technology and utility functions apart from

the Lipschitz and linear growth conditions required by Theorem 1. By assuming that, for each

ε > 0, σ(x, a) is uniformly bounded away from zero on [ε,+∞)×K, we can apply34 Theorem 1 to

show that the value function is C2 on (ε,+∞) for each ε > 0 and, hence, on the interior (0,+∞)

of the entire domain. Moreover, it solves for all x > 0 the HJB equation

rv(x) = max
a∈K

u(x, a) + µ(x, a)v′(x) +
1

2
σ2(x, a)v′′(x). (13)

A major issue in such environment is to establish the existence of an optimal strategy for the

agent. Section 4 provides general results which may be used in this setting. If the control A

consists only of a consumption choice, then the volatility σ is typically independent of X: the

agent’s consumption affects the dynamics of the capital X only by reducing its drift. In that case,

Corollary 1 of Section 4 implies that any measurable maximizing selection a(x) of (13) defines an

admissible, optimal control. Section 4.1 analyzes existence for a more general control process.

3.2 Example: Multi-Armed Bandit

Consider a multi-armed bandit problem with a common unknown parameter θ̃ ∈ {θL, θH}, rep-

resenting a binary, payoff relevant state of the economy. The agent must choose at each time an

arm i in some compact set K, given his belief Xt ∈ [0, 1] = Pr(θ̃ = θH |Ft) about θ̃. Given the

choice At of an arm at time t , the agent learns about θ̃ according to some equation35

dXA
t = µ(XA

t , At)dt+ σ(XA
t , At)dBt.

34The termination value g(ε) in (2) is set to the actual value function v(ε), so that the value function on [ε,+∞)

coincides, on that domain, with the value function of the initial control problem over the entire domain [0,+∞).
35Unlike a setting in which arms are independent, such as the one analyzed by Gittins (1979), here all arms relate

to the same state. Analyzing control problems with multidimensional states is beyond the scope of this paper.
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Because the belief is a martingale, µ is identically equal to zero. Moreover, from standard computa-

tions (see, e.g., Bolton and Harris (1999)), the volatility has the form σ(Xt, At) = Xt(1−Xt)ξ(At)

and is thus entirely characterized by the vector {ξ(i)}i∈K. ξ(i) is the signal-to-noise ratio of the

aggregate signal generated by arm i. The expected flow payoff from playing arm i at time t if the

current belief is x is

f(XA
t , At) = E[π(θ̃, i)|XA

t = x,At = i],

where π is the expected flow payoff (or utility) if the state of the economy is θ̃ and the agent has

pulled arm i. This flow is necessarily linear in x : f(x, i) = xπ(θH , i) + (1− x)π(θL, i).

The assumptions of Theorem 1 are satisfied over any domain Xε = (ε, 1 − ε) with ε ∈ (0, 1/2).

Therefore, Theorem 1 implies that v is twice differentiable and solves the HJB equation over any

such domain and, therefore, over (0, 1).

This shows that the value function of any Brownian multi-armed bandit problem in which the

payoff distributions of all arms depend on the same unknown parameter is twice continuously

differentiable and solves the HJB equation. This result implies that, as shown in the Appendix

(Section D), that with finitely many arms, the number of switching points between arms is finite

(and bounded above by a function that depends only on the number of arms), and that the optimal

control is well defined. It is also used to construct an example with four arms in which a given arm

is used on disjoint subsets of the belief domain.

With infinitely many arms, or if the agent can allocate divisible resources across arms, it is a priori

unclear whether there exists a well defined optimal control to this problem. Section 4.2 provides a

positive answer for a resource allocation problem with two arms.

4 Existence of an Optimal Control

The control constructed in Lemma 3 need not be admissible, because it may fail to generate a

strong solution to the SDE (1). This section provides conditions for the existence of a maximizing

selection that yields an admissible optimal control. All results are based on the following theorem.

Theorem 2 Suppose that the selection â of maximizers is such that the function σ̂ : x 7→ σ(x, â(x))

has locally bounded variation. Then, the control A∗t that it generates (as defined by Lemma 3), is

admissible and optimal.

Proof. Admissibility follows from Nakao (1972), who has shown that a one-dimensional SDE has

a unique strong solution if its drift is measurable and its volatility has bounded variation and is
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bounded away from zero (see Footnote 28 for more details on this result). Optimality follows from

a standard verification argument. �

The bounded variation condition is necessary for the result: Barlow (1982) provides a class of

stochastic differential equations for which the volatility does not have bounded variation and there

does not exist a strong solution, even if the volatility is bounded below, away from zero.36

An easy case in which σ̂ has bounded variation is if σ(x, a) is independent of a, a case that arises

in many economic applications, such as the consumption choice problem of Section 3.1.

Corollary 1 Suppose that (x, a) 7→ σ(x, a) is independent of a. Then, the control A∗t generated

by the selection â of maximizers (as given by Lemma 3) is admissible and optimal.

Proof. The function x 7→ σ(x) is Lipschitz in x, by Assumption 3, and has therefore bounded

variation. The result then follows from Theorem 2. �

Beyond Corollary 1, the volatility σ may depend on a subset, α, of the control. In that case,

one way of guaranteeing that σ̂ has bounded variation is to check that the correspondence M of

maximizers has a selection â = (α̂, β̂) ∈ K1×K2 ⊂ Rk1×Rk2 , such that α̂ has bounded variation,37

and to assume that σ(x, α) is uniformly Lipschitz continuous over X0×K1 for any compact interval

X0 of X . This implies that σ̂ has bounded variation, as guaranteed by the following result (see

Ambrosio and Dal Maso (1990)).

Proposition 3 Suppose that σ is uniformly Lipschitz38 continuous on X0 × K1 for any compact

interval X0 of X , and that there exists a selection â(·) = (α̂(·), β̂(·)) ofM(·) such that α̂ has bounded

variation. Then, σ̂ has bounded variation.

Guaranteeing that the correspondence M has a selection with bounded variation would a priori

seem a benign and easily satisfied requirement. However, we are not aware of any general result of

this kind.39 Similarly, it seems difficult in general to show the existence of an absolutely continuous

selection.

36We are grateful to Nicolai Krylov for pointing this reference out to us.
37See Ambrosio and Dal Maso (1990) for the definition of bounded variation for functions defined and taking

values in Euclidean spaces. Continuity of the control is neither necessary nor sufficient, as it does not imply bounded

variation.
38The assumption that σ is Lipschitz cannot be easily relaxed: Josephy (1981, Theorem 4) has shown that for the

composition f ◦ g to have bounded variations for all functions g with bounded variation, f must be Lipschitz.
39Chistyakov (2004) defines a concept of bounded variation for correspondences, for which he proves selection the-

orems guaranteeing a selection of bounded variation. However, we are not aware of any work connecting Chistyakov’s

concept with the correspondence of maximizers in optimization problems. We are grateful to Vyacheslav Chistyakov

for his insights into this problem.
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Fortunately, there are more specific strategies to guarantee that the control has bounded variation.

If the state space X can be broken down into finitely many intervals over each of which there is a

selection of maximizers such that each component of α is either monotonic or differentiable, this

will guarantee the existence of a selection with bounded variation over the entire domain.

Theorem 3 Suppose that σ is uniformly Lipschitz continuous on X0×K1, for any compact interval

X0 of X , and that X can be decomposed into disjoint intervals {Xj}nj=1 over each of which there is

a selection âj = (α̂j , β̂j) of M such that each component of α̂j is either monotonic or differentiable

with locally bounded derivative.40 Then, there exists an optimal control, which is Markov and

characterized by the selector â defined by â(x) = âj(x) for x ∈ Xj.

Proof. Fixing j, let {χi}mi=0 denote a partition of some compact interval I of Xj and {α̂jk}
k1
k=1

denote the first k1 components of âj . We have

m−1∑
i=0

|σ̂(χi+1)− σ̂(χi)| ≤ K
m−1∑
i=0

(
|χi+1 − χi|+

k1∑
k=1

|α̂jk(χi+1)− α̂jk(χi)|

)
, (14)

where K is the Lipschitz constant of σ over I × K1. Each α̂jk is monotonic or differentiable with

locally bounded derivative and, hence, has bounded variation. This and (14) show that σ̂ has

bounded variation over each Xj and, hence, over X . The result then follows from Theorem 2. �

Sections 4.1 and 4.3 provide applications of Theorem 3 in which α is differentiable. Unfortunately,

differentiability is violated in many settings, most obviously when the control set K is discrete.

Monotonicity offers an alternative way of exploiting Theorem 3. In many economic problems, the

optimal control is monotonic in the state: consumption is increasing in wealth, investment decreases

with risk, etc. Establishing such monotonicity without knowing the objective function explicitly is

precisely the focus of the theory of monotone comparative statics, as described below.

In what follows, we focus on the case of on the case in which K1 is an interval of R (i.e., k1 = 1).

A function ρ(x, a) is supermodular on some domain X0 ×K1 if for all ã ≥ a in K1 and x̃ ≥ x in X0,

ρ(a, x)+ρ(ã, x̃) ≥ ρ(x̃, a)+ρ(x, ã), and submodular if the reverse inequality holds on that domain (or,

equivalently, if −ρ is supermodular). When ρ is differentiable in a, supermodularity is equivalent

to ρa being nondecreasing in x. When ρ is twice differentiable, supermodularity is equivalent to

the cross partial being everywhere nonnegative. Supermodularity is a sufficient condition for the

maximizer correspondence x 7→ M(x) to be nondecreasing in the strong set order, which means

that for all x ≤ x̃, a ∈ M(x), and ã ∈ M(x̃), we have min{a, ã} ∈ M(x) and max{a, ã} ∈ M(x̃).

40The derivative is bounded on any compact interval. This condition holds, in particular, if the relevant components

of α̂j are continuously differentiable.

17



In particular, the selections constructed from the smallest and largest maximizers, respectively, are

nondecreasing for any supermodular function, and nonincreasing for any submodular one.41

The following result focuses for simplicity on the the case in which α = a, so that K1 = K ⊂ R.

Corollary 2 Suppose that σ is uniformly Lipschitz continuous on X0×K, for any compact interval

X0 of X , and let

ρ(x, a) =
1

σ2(x, a)

(
−rv(x) + f(x, a) + µ(x, a)v′(x)

)
, (15)

where v is the value function of the problem, and suppose that X can be decomposed into n consecu-

tive intervals {Xj}j=1,··· ,n such that on each product Xj×K, ρ is either supermodular or submodular.

Then, there exists an optimal control, which is Markov and characterized by a selector â of M such

that â has bounded variation.

Proof. From (6), maximizing ρ with respect to a is equivalent to maximizing the HJB equation.

Let â(x) = maxM(x). Whether ρ is supermodular or submodular on Xj × K, â is monotonic on

this interval. The result follows from Theorem 3. �

Remark 1 For any strictly positive function ζ(x, a), note that the HJB equation

0 = max
a∈K
−rv(x) + f(x, a) + µ(x, a)v′(x) +

1

2
σ2(x, a)v′′(x)

has exactly the same maximizers as the equation

0 = max
a∈K

ζ(x, a)

(
−rv(x) + f(x, a) + µ(x, a)v′(x) +

1

2
σ2(x, a)v′′(x)

)
.

Such transformations are useful for proving monotonicity or differentiability of a selection of max-

imizers.42

In many economic problems (such as experimentation problems, or when the agent has an increas-

ing concave utility flow), it is possible to show that the value function v has a constant sign, is

monotonic, and is either convex or concave.43 This yields the following application of Corollary 2.

Let l(x, a) = 1/σ2(x, a), f̄ = lf , and µ̄ = lµ. Those functions are all primitives of the control

problem.

41This result is easy to check. See Topkis (1978) or Milgrom and Shannon (1994) for a proof. The strong set order

is also called the Veinott set order (see Veinott, 1989).
42The transformation ζ(x, a) = 2/σ2(x, a) removes v′′(x) from the maximization problem, and was used for (6) and

Corollary 2. Another example, when µ is known to be strictly positive, is to use ζ(x, a) = 1/µ(x, a). This permits to

take v′ out of the maximization problem.
43There are many techniques to establish this, either by analyzing the HJB equation, or by constructing various

controls to directly show that the value function must be increasing and convex. Applications in this paper provide

several such examples.
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Corollary 3 Suppose that i) σ is uniformly Lipschitz continuous on X0 × K, for any compact

interval X0 of X , ii) v is nonnegative, increasing, and convex, and iii) µ̄ is nondecreasing in a

and supermodular, f̄ is supermodular, l nonincreasing in a and submodular. Then, there exists an

optimal control, and this control is Markov and nondecreasing in x.

The corollary is straightforward to prove: its conditions guarantee that each term in (15) is super-

modular.

The supermodularity assumed in Corollary 2 can be weakened in several ways. Indeed, it suffices

that ρ satisfies the single-crossing property or Interval Dominance Order (IDO) property in (a, x)

for asserting the existence of a monotonic selection on any given interval.44 Here is a useful way of

checking these properties: when ρ is differentiable with respect to a, the IDO property is guaranteed

to hold45 over K×I, where I is any interval of X , if there exists a positive, nondecreasing function

γI(·) of a such that, for each x′′ > x′, ρa(x
′′, a) ≥ γI(a)ρa(x

′, a). If γI is constant over K, the

inequality implies that ρ satisfies the single crossing property in (a, x). If γI is identically equal

to 1, we recover the supermodularity condition.

4.1 Example: Optimal Growth with Consumption and Portfolio Optimization

We reconsider the example of Section 3.1. The agent chooses, in addition to consumption, the

fraction ϕt ∈ [0, 1] of his wealth going to a risky asset, so that At = (Ct, ϕt).
46 The volatility

σ(Xt, At) is now increasing in ϕt, and we cannot apply Corollary 1 anymore to prove the existence of

an optimal control. However, if one can show that the agent’s risk-taking behavior is nondecreasing

in his capital holdings, this will imply monotonicity of ϕ, and guarantee the existence of an optimal

control, by Theorem 3. To guarantee nonnegativity of the capital process X, we assume that that

the agent cannot consume when x = 0. This does not affect Theorem 1, as long as the feasible

consumption set [0, c̄(x)] is continuous in x.47

44The single-crossing property (Milgrom and Shannon, 1994), generalizes supermodularity (Topkis, 1978), and is

itself generalized by the IDO property (Quah and Strulovici, 2009). Comparative statics also obtain for objective

functions that are quasi-concave and ordered by the location of their peaks, as studied by Karlin and Rubin (1956)

and Lehmann (1988). This latter ordering is also generalized by the IDO property.
45See Quah and Strulovici (2009, Proposition 2).
46We are ruling out short sales and borrowing, which guarantees that ϕt lies in the compact space [0, 1].
47See Footnotes 16 and 26. We can, for example, take c̄(x) to be any continuous function that rapidly increases

from c̄(0) = 0 to some positive constant c̄. For the concavity argument below (Footnote 52), we also require that c̄(·)
be concave.
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Slightly simplifying the setting, the HJB equation for this problem is

rv(x) = max
(c,ϕ)∈[0,c̄(x)]×[0,1]

{
u(c) + [µ(x, ϕ)− c]v′(x) +

1

2
σ2(x, ϕ)v′′(x)

}
.

Thus, the optimal ϕ maximizes the objective

µ(x, ϕ)v′(x) +
1

2
σ2(x, ϕ)v′′(x).

If this objective function satisfies the single crossing property in (ϕ, x), there must exist a nonde-

creasing maximizing selection ϕ. If σ is Lipschitz continuous in ϕ, Theorem 3 then implies that

there exists an optimal control.

The single crossing property holds if i) v is increasing and concave,48 ii) µ and σ are increasing in

ϕ, and iii) for any ϕ1 < ϕ2

−v′′(x)∆σ2(x)

v′(x)∆µ(x)
(16)

is decreasing in x, where ∆σ2(x) = σ2(x, ϕ2)− σ2(x, ϕ1) and ∆µ(x) = µ(x, ϕ2)− µ(x, ϕ1). Single

crossing is then a direct consequence of Proposition 1 in Quah and Strulovici (2012a).49 In turn, (16)

holds if −v′′(x)/v′(x) and ∆σ2(x)/∆µ(x) are both decreasing. The first condition means that the

agent has decreasing absolute risk aversion in x, while the second condition is immediate to check

for any given drift and volatility functions µ and σ.50 Thus, we recover the intuition, stated above,

that if the agent’s risk-aversion is decreasing in his capital, the control ϕ is monotonic and there

exists an optimal control.

The previous result relied on the value function exhibiting decreasing absolute risk aversion, which

is an endogenous property. The next approach avoids this problem. It proves differentiability of ϕ,

exploiting another possibility offered by Theorem 3.

We specialize the model to a version of Merton’s consumption and investment problem.51 The

safe asset has a constant return µ0, while the a risky asset has a payoff that follows a geometric

Brownian motion with a higher return µ > µ0. We impose the condition µ < r, which is standard

in the portfolio optimization literature and is equivalent to the inequality Kµ
2 < r of Assumption 3.

The agent’s capital follows the equation

dXt = [Xt ((µ− µ0)ϕt + µ0)− Ct] dt+XtϕtσdBt (17)

48Such properties may be shown from direct arguments, as in Footnote 52.
49Conditions i) and ii) guarantee that the functions v′′(x)∆σ2(x) and v′(x)∆µ(x) each have a constant sign and,

thus, are single crossing functions. Condition iii) is the signed-ratio monotonicity condition in Quah and Strulovici

(2012a), which guarantees that the sum is also a single crossing function.
50That condition can be interpreted as a sort of increasing marginal Sharpe ratio: the additional exposure to risk

from moving from ϕ1 to ϕ2, has a better Sharpe ratio for higher capital levels than lower ones.
51See Merton (1969, 1971) and Duffie (2001) for a general presentation.
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The agent has a twice differentiable flow utility u(·) such that u′(c) > 0 and u′′(c) < 0 for all c ≥ 0.

The HJB equation is

rv(x) = max
(c,ϕ)∈[0,c̄(x)]×[0,1]

u(c) + (x (µ− µ0)ϕ+ xµ0 − c)v′(x) +
1

2
x2σ2ϕ2v′′(x).

It is easily shown that v′(x) > 0. The optimal consumption c(x) therefore satisfies the first-order

condition

u′(c) = v′(x),

or equals the corner value c̄(x). It is also easily shown that the value function is concave.52 There

is a unique maximizer ϕ(x) to the HJB equation, given by53

ϕ(x) = min

{
− v′(x)

xv′′(x)

µ− µ0

σ2
, 1

}
. (18)

Proposition 4 The maximizing selection (c(x), ϕ(x)) of the HJB equation generates an admissi-

ble, optimal control.

Proof. It suffices to show that ϕ has bounded variation on Iε = {x ∈ (ε, 1/ε) : ϕ(x) ∈ (0, 1)},
which consists of disjoint open intervals, for each ε < 1. Following Theorem 3, it suffices to show

that ϕ is continuously differentiable on that domain. Rewriting the HJB equation, we have54

v′′(x) = − max
(c,ϕ)∈[0,c̄(x)]×[0,1]

{
2

x2σ2ϕ2

(
u(c) + (x(µ− µ0)ϕ+ xµ0 − c)v′(x)− rv(x)

)}
.

Since the maximizers c(x) and ϕ(x) are unique, Corollary 4, Part iii) of Milgrom and Segal (2002)

implies that v′′ is differentiable at all x > 0. Moreover, the derivative is continuous, as is easily

checked. Therefore, (18) implies that ϕ is continuously differentiable on Iε. �

4.2 Example: Multi-Armed Bandit and Resource Allocation

We now reconsider the bandit problem of Section 3.2 with two arms, but in which the agent has

a fixed resource, normalized to 1, to allocate between the arms at each time.55 As before, each

52Concavity is established as follows: for 0 < x1 < x2 and λ ∈ (0, 1), let x = λx1 + (1 − λ)x2. Consider any

admissible controls ϕ1, C1 and ϕ2, C2 chosen starting from x1 and x2, respectively. Let ϕt = (λX1
t ϕ

1
t + (1 −

λ)X2
t ϕ

2
t )/(λX

1
t + (1−λ)X2

t ) ∈ [0, 1] and Ct = λC1
t + (1−λ)C2

t . It is easy to check that the admissible control (ϕ,C)

starting from x yields Xt = λX1
t + (1− λ)X2

t ≥ 0 for all t. Moreover, u(Ct) ≥ λu(C1
t ) + (1− λ)u(C2

t ), by concavity

of u. Discounting and integrating proves the claim.
53If v′′(x) = 0, the first term of the minimization is assumed to be equal to +∞.
54The optimal allocation ϕ(x) is strictly positive for all x, since v′(x) > 0.
55Examples of experimentation with resource allocations include Bolton and Harris (1999) and Keller et al. (2005).

In their setting, one arm is safe, whereas both arms are “risky” in the present model.
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arm has a payoff distribution that depends on the common parameter θ̃, whose belief at time t is

the state Xt = Pr(θ̃ = θH |Ft). The control of the agent is now a fraction At ∈ [0, 1] allocated

by the agent to the first arm. Notice that each allocation a ∈ [0, 1] yields a combination of two

signals which may be aggregated into a single signal with volatility σ(x, a) = ξ(a)x(1 − x) about

the parameter θ̃, and yields an expected payoff f(x, a). Thus, we are exactly in the setting of

Section 3.2, with K = [0, 1]. In particular, the value function of the problem is twice continuously

differentiable and solves everywhere on (0, 1) the HJB equation

0 = max
a∈[0,1]

xfH(a) + (1− x)fL(a) +
1

2
(x(1− x))2ξ2(a)v′′(x)− rv(x). (19)

This equation may be rewritten as

v′′(x) =
2

(x(1− x))2
max
a∈[0,1]

{
1

ξ2(a)
(xfH(a) + (1− x)fL(a)− rv(x))

}
. (20)

Therefore, the existence of a monotone optimal selection will be guaranteed if the function

−rv(x)

ξ2(a)
+
xfH(a) + (1− x)fL(a)

ξ2(a)
(21)

is either supermodular or submodular in (a, x).

Assuming that ∆f(a) = fH(a)− fL(a) ≥ 0 for all a (i.e., θH is the “good” state of the economy),

v is nondecreasing in x. Therefore, the first term in (21) is supermodular (submodular) if and only

if ξ(a) is increasing (decreasing) in a. Similarly, the second term is supermodular (submodular) in

(x, a) if ∆f(a)/ξ2(a) is increasing (decreasing) in a. Combining these observations with Theorem 3

proves the following result.

Proposition 5 Suppose that ξ(a) and ∆f(a)/ξ2(a) are either both increasing or both decreasing

in a. Then there exists a monotone optimal selection a(x) and, therefore, an optimal control.

4.3 Existence of an Optimal Contract in Principal Agent Problems

This application revisits the seminal analysis contained in Sannikov (2008). The objective here

is to provide conditions under which the optimal contract characterized in that paper generates a

strong solution for the continuation value process of the agent. The existence problem discussed

here is actually relevant for many recent continuous-time principal-agent models. In the recursive

approach to principal-agent models, the principal is viewed as “controlling” the continuation value

of the agent by providing him with consumption, and rewarding or punishing him depending on

his output. To save space, we only sketch the presentation and arguments already contained in

Sannikov (2008), and refer the reader to that paper for a detailed exposition.
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The principal chooses a consumption process {Ct}t≥0 and can implement, by choosing the right

incentives, some effort process {At}t≥0. Precisely, assuming that the agent’s continuation utility Wt

is adapted to the filtration generated by the exogenous uncertainty, the Martingale Representation

Theorem implies that

dWt = (rWt − u(Ct) + h(At))dt+ ψ(At)dBt (22)

where At is the level of effort that the principal chooses to implement, u and h are the utility and

effort cost functions of the agent, and ψ(a) = h′(a) is the contract sensitivity to observed output.

The principal seeks to maximize the payoff

F0 = E

[∫ τ

0
e−rt(At − Ct)dt

]
subject to (22) and some initial participation constraint W0 = w.

Therefore, the principal faces an optimal control problem in which the state is Wt and the controls

are Ct and At, following the standard notation in principal-agent models.56 Sannikov has shown

that the agent is “retired” when Wt hits some upper bound w̄. The optimal consumption c(w) level

is easily shown to be bounded by some level c̄ on [0, w̄], while the effort domain is assumed to be

bounded above by some level ā.

The principal’s HJB equation on (0, w̄) is

rF (w) = max
(a,c)∈[0,ā]×[0,c̄]

{
a− c+ F ′(w)(rw − u(c) + h(a)) +

1

2
ψ(a)2F ′′(w)

}
. (23)

Under standard assumptions on u and h, Sannikov shows that the HJB equation has a solution F

that is twice continuously differentiable. Moreover, F is strictly concave.

At the optimal contract, standard results imply that there exists a weak solution to the SDE (22),

whenever ψ(a(w)) is bounded away from zero.57 With a weak solution, the continuation value

process is not necessarily adapted to the filtration generated by the Brownian Motion Bt, which

implies that there is more randomness in Wt, and therefore the contract, than generated by the

output process.

One possible interpretation for having (only) a weak solution is that the principal is randomizing

over continuation utility levels. However, the principal’s objective F (w) is strictly concave, which

implies that he is risk-averse along the optimal contract. This makes this interpretation problematic

as a justification for a weak solution. The uncertainty arising from the broader filtration implied by

56Thus, what has been called “x” in earlier section is now “w”, whereas “A” now refers to only one component of

the bidimensional control. F , instead of v denotes the value function of the problem.
57See, e.g., Revuz and Yor (2001, Corollary 1.12, p. 372).
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weak solutions seems conceptually different from the one obtained if the principal explicitly allows

all contractual variables to depend on other sources of uncertainty, such as a second Brownian

motion.

Another issue is that, as observed by Sannikov (2008, Footnote 29), the application of the Martingale

Representation Theorem, which is a key step in the analysis, must also be modified to include the

larger filtration. In that case, the resulting representation of W cannot a priori be reduced to a

stochastic integral with respect to the initial Brownian motion. As a result, the analysis of the

contract, which was largely based on choosing the integrand of that stochastic integral, must be

modified. Intuitively, it raises the issue of what “sensitivity” the principal should apply to the new

sources of uncertainty. Guaranteeing a strong solution gets rid of all these issues.

Proposition 6, below, provides simple conditions on the effort cost function h(a) under which the

continuation value process has a unique strong solution. Thus, Wt is adapted to FBt , and the

contract does not involve randomization.

Proposition 6 Suppose that the effort cost function h is increasing, three times differentiable, and

satisfies h(0) = 0, h′(0) > 0, h′′(a) > 0 and h′′′(a) ≥ 0 for all a ∈ (0, ā]. Then, the SDE

dWt = (rWt − u(Ct) + h(At))dt+ ψ(At)dBt

has a unique strong solution.

The assumptions on h are satisfied, for example, if h(a) = γ1a
p+γ0a for p ≥ 2 and γ0, γ1 > 0, as in

Sannikov’s (2008) numerical example, if it is exponential, or is equal to any positive combination

of such functions.

Proof. Because consumption appears only in the drift of (22), it suffices to show that a(w) has

bounded variation. The optimality equation for a can be reduced to the optimization problem

max
a∈[0,ā]

a+ F ′(w)h(a) + F ′′(w)
1

2
ψ(a)2. (24)

We will first show that the objective function in (24) is strictly quasiconcave in a, for each w. That

is, its derivative with respect to a, Ψ(a,w) = 1 +F ′(w)h′(a) +F ′′(w)ψ′(a)ψ(a), can cross 0 at most

once as a increases, from above. We have, recalling that ψ(a) = h′(a),

Ψa(a,w) = F ′(w)h′′(a) + F ′′(w)(h′′′(a)h′(a) + h′′(a)2).

Our assumptions imply that h′(a) > 0 for all a. We can rewrite the previous equation as

Ψa(a,w) =
Ψ(a,w)− 1

h′(a)
h′′(a) + F ′′(w)h′′′(a)h′(a).
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Whenever Ψ(a,w) ≤ 0, the previous equation implies that

Ψa(a,w) ≤ −h
′′(a)

h′(a)
+ F ′′(w)h′′′(a)h′(a).

Since h′′(a) > 0 and h′′′(a) ≥ 0 for a > 0, and F is concave, we conclude that Ψa(a,w) < 0

whenever Ψ(a,w) ≤ 0 and a > 0, proving strict quasiconcavity of the objective function in (24).

This also shows uniqueness of the optimizer a(w). Moreover, a(w) is continuous in w, from (24)

and Berge’s maximum theorem, whose conditions are easily checked here. Therefore, it suffices

to show that a(w) has bounded variation on any interval (w1, w2) over which a(w) ∈ (0, ā). By

Theorem 3, we will have proved the result if we show that a(w) is continuously differentiable on

any such interval.

The optimal effort is determined on (w1, w2) by the first-order condition Ψ(a(w), w) = 0. To show

continuous differentiability of a(w), we first observe that the optimal consumption c(w) is also

unique, as an immediate consequence of (23) and the fact that u′(c) is strictly decreasing in c. An

envelope theorem of Milgrom and Segal (2002, Corollary 4, Part iii)) then implies that F is three

times continuously differentiable and, hence, that Ψ is differentiable with respect to w.58 Because

Ψa(a,w) is strictly negative, evaluated at a(w), the implicit function theorem can be applied to the

first-order condition, showing that a is continuously differentiable in w on the desired domain. �

5 Optimal Stopping and Smooth Pasting

This section establishes, under conditions similar to those of Section 2, that the value function of

any optimal stopping problem is continuously differentiable. In particular, it is differentiable at any

threshold at which stopping becomes optimal, which is the smooth pasting property. For clarity,

we separate optimal control and optimal stopping problems. The problems can be combined with

an appropriate extension of Theorems 1 and 4.59

Consider the optimal stopping problem

v(x) = sup
τ∈T

E

[∫ τ

0
e−rtf(Xt)dt+ e−rτg(Xτ )

]
,

58The envelope theorem is applied to the modified HJB equation F ′′(w) = −maxa,c{2/ψ(a)2[a− c+ F ′(w)(rw −
u(c) + h(a)) − rF (w)]}. Our assumptions on h guarantee that ψ(a) = h′(a) is bounded below by h′(0) > 0 and,

hence, that the previous equation holds on (w1, w2).
59In the combined problem, the optimal continuation region consists of disjoint open intervals, as in this section,

and on any such interval, the analysis of Section 2 can be applied, showing that value function of the controlled

process is twice differentiable. The analysis of the present section can then be replicated to show that the value

function is everywhere C1, replacing the dynamic equation (25) by the HJB equation, which is satisfied on the

optimal continuation region.
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where T is the set of all stopping times adapted to the initial filtration F , and {Xt}t∈R+ solves the

equation

dXt = µ(Xt)dt+ σ(Xt)dBt

subject to the initial condition X0 = x. We maintain the same assumptions as before on µ, σ and

f , which guarantee that the SDE has a unique strong solution, and, along with Assumption 4, that

the expected payoff is well defined for all stopping times.

Assumption 4 g is C1 and |g(x)| ≤ Kg(1 + |x|) for some constant Kg ≥ 0.

Theorem 4 Under Assumptions 2– 4,60 v is continuously differentiable on the interior of X .

Proof. Let Y denote the subset of X for which v(x) = g(x). Y consists of all the states at

which it is optimal to stop immediately. By continuity of v and g, X \ Y consists of disjoint open

intervals {Zi}i∈I . Pick any two points x1 < x2 in such an interval. The result stated in Appendix B

guarantees the existence of a C2 solution w to the ordinary differential equation

w′′(x) +
1

1
2σ(x)2

(−rw(x) + f(x) + µ(x)w′(x)) = 0 (25)

with boundary conditions w(x1) = v(x1) and w(x2) = v(x2). A standard verification argument

then shows that v coincides with w on any such interval and, therefore, that v is C2 on such interval

and, hence, on X \ Y = ∪i∈IZi.

Consider now the boundary of some interval Zi, for example the upper boundary, and call it x∗.

By construction, v(x) > g(x) for x in a left-neighborhood of x∗, and v(x∗) = g(x∗). In particular,

v′l(x
∗), the left derivative of v at x∗, must be less than or equal to g′(x∗).

To show that the inequality is tight, suppose, by contradiction, that v′l(x
∗) < g′(x∗), and consider

the domain [x1, x
∗
2 = x∗ + ε] for some x1 in Zi and some small ε > 0. From Appendix B, there

exists a solution w to Equation (25) on [x1, x
∗
2], with initial value w(x1) = v(x1) and initial slope

w′(x1) = v′(x1). Moreover, this solution satisfies w(x∗) = v(x∗), and w′(x∗) = v′l(x
∗), because

v solves the same initial value problem (IVP) on the domain [x1, x
∗], and the solution is unique

(see Lemma 4). Therefore, w(x) < g(x) for x in a right neighborhood of x∗, and without loss, on

(x∗, x∗2). Taking a slightly higher slope ŝ > s∗, consider the solution ŵ to the IVP on the domain

[x1, x
∗
2] with initial slope ŝ and initial value v(x1). For ŝ close to s, this solution hits g at some

x̂ ∈ (x1, x
∗
2), because solutions to the IVP are continuous in s (see Lemma 5 in the Appendix).

Moreover Lemma 9, also proved in the Appendix, implies that ŵ(x) > w(x) for all x ∈ (x1, x
∗]

and, therefore, that x̂ > x∗. We redefine ŵ by setting ŵ(x) = g(x) for all x > x̂. By construction,

60The pure stopping problem that we consider is equivalent to reducing the control set K of Section 2 to a singleton.
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ŵ(x∗) > g(x∗) = v(x∗). Moreover, ŵ corresponds to the expected payoff obtained if the following

stopping strategy is used: starting from x∗, continue until either x1 or x̂ is reached. If x̂ is reached

first, stop. If x1 is reached first, follow the initial strategy leading to value v(x1). This strategy

thus gives, starting from x∗, a strictly higher expected payoff than v(x∗), yielding a contradiction.

This shows that v is differentiable at x in the following cases: i) x lies in the interior of some interval

Zi, ii) x connects two intervals Zi and Zj (i.e., it is the upper bound of one interval, and the lower

bound of the other), and iii) x is a bound of some interval Zi, and v(y) = g(y) in some neighborhood

on the other side of x. Moreover, in cases ii) and iii) the derivative is given by v′(x) = g′(x). In

all these cases, the derivative is continuous at x because the solution to (25) on any Zi is twice

differentiable and because g is C1.

There remains to show the result when x is an accumulation point of stopping and continuation

regions. This is proved in Section C.1 of the Appendix. �

5.1 Example: Option Value

A simple application of the smooth pasting property is to prove, under great generality, the well-

known principle that when the value function of any stopping problem is convex, the agent waits

beyond the myopic optimum to stop, due to an “option value of waiting.” This principle arises in

investment decisions (Dixit, 1989)), experimentation problems,61 the exercise of American and real

options, and bankruptcy decisions (Leland, 1994).

Formally, suppose that the terminal value function is a constant: g(x) = ḡ for all x, and suppose that

it can be established by some means, that the value function v of the agent is convex.62 Consider

any maximal interval Z over which continuing is strictly optimal, as in the proof of Theorem 4,

with endpoints x
¯

and x̄.63 Theorem 4 implies that for any finite endpoint of Z, say x̄, the smooth

pasting condition holds, i.e., v′(x̄) = g′(x̄) = 0. Moreover, the Bellman equation on Z implies that

0 = −rv(x̄) + f(x̄) + µ(x)v′(x̄) +
1

2
σ2(x)v′′l (x̄),

where v′′l (x̄) is the left second derivative of v at x̄, which was shown earlier to always exist under

61In experimentation problems with a risky and a safe arm, moving to the safe arm amounts to a stopping problem.

See e.g., Bolton and Harris (1999).
62Typical arguments include direct reasoning on the strategy of the agents, or reasoning based on the dynamic

equation for v. One version of the former approach is similar to the argument given in Footnote 52, but reversing

it: pick any stopping policy that is optimal for x, and show that the convex combination of the value starting from

x1 < x2, following x, dominates v(x). This will work if the process Xt is linear in the initial condition x (as is the

case for geometric Brownian motion), and if the flow and terminal payoffs are convex in their argument.
63As shown in that proof, the strict continuation domain always consists of disjoint open intervals.
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the assumptions of Theorem 4. Convexity of v and smooth pasting then imply that

f(x̄) ≤ rḡ, (26)

with a strict inequality if v′′l (x̄) > 0. This shows that the option value of waiting is positive. To see

this, suppose first that ḡ = 0 (stopping yields a zero lump sum). From (26), the agent stops when

his current flow payoff is negative. If ḡ is nonzero, the same idea applies, where rḡ is the flow-payoff

equivalent of stopping. The result holds for any shape of the stopping region.

6 Smoothness, Envelope Theorem, and Dynamic Sensitivity Equa-

tion for Parameterized Stopping Problems

In analyzing economic models, a frequent objective is to describe how the value function of some

optimization problem changes with parameters of the problem, which is often based on an appli-

cation of the Envelope Theorem. This section provides such an envelope theorem and a dynamic

“sensitivity” equation for the value function of optimal stopping problems.

We consider the following parameterized optimal stopping problem in which the parameter θ lies

an open subset Θ of R:

v(x, θ) = sup
τ∈T

E

(∫ τ

0
e−rtf (Xt, θ) dt+ e−rτφ (Xt, θ)

)
subject to dXt = µ (Xt, θ) dt+ σ (Xt, θ) dBt and Xt ∈ [0,+∞).

We also assume that 0 is an absorbing state, and that the payoff and termination values at x = 0

are equal to 0 for all θ.

Extending the setting of Section 5, we assume that f(·, θ), g(·, θ), µ(·, θ), and σ(·, θ) satisfy the

assumptions of Theorem 4, uniformly in θ, and that g(·, θ) is twice continuously differentiable, for

each θ. We also assume that, for each x, f(x, ·), g(x, ·), µ(x, ·), and σ(x, ·) are differentiable in θ,

and that the derivatives in θ are continuous in (x, θ).

Our main assumption is a strict single crossing condition, which guarantees that continuing is

strictly optimal for low states and strictly suboptimal for high states.64 Let

h(x, θ) = rg(x, θ)− f(x, θ)− µ(x, θ)g′(x, θ)− 1

2
σ2(x, θ)g′′(x, θ).

64Pham (2009) and Villeneuve (2007) use similar conditions (with and without flow payoffs, respectively) to show

that the stopping region is a half line. Here, the strict single crossing condition is used to prove a slightly stronger

result: it is strictly suboptimal to continue beyond the lower bound of the stopping region. This uniqueness is needed

to prove differentiability of the value function with respect to the parameter.
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Assumption 5 For each θ, there exists x
¯

(θ) such that h(x, θ) < (>)0 for x < (>)x
¯

(θ).

Assumption 5 is a condition on the primitives of the stopping problem, and can be easily checked.

For example, it holds if g is linear and strictly increasing in x, and f and µ are weakly decreasing

in x. More generally, techniques guaranteeing that h has the single crossing condition can be found

in the comparative statics literature.65

The key result implied by Assumption 5 is the uniqueness of an optimal stopping threshold.

Since some arguments below rely on compactness of the domain, we also assume that there exists

a uniform upper bound x̄ such that continuing above x̄ is strictly suboptimal for all θ. This

assumption holds if there exists x̂ and A > 0 such that inf [x̂,+∞) rg(x) ≥ sup[x̂,+∞) f(x) +A.66

Proposition 7 Under Assumption 5, there exists, for each θ, a threshold x(θ) such that continuing

is strictly optimal for x < x(θ) and continuing for a strictly positive amount of time is strictly

suboptimal for x > x(θ). Moreover, x(θ) ≥ x
¯

(θ) for all θ and x(θ) is continuous in θ.

Proof. Pham (2009, Lemma 5.2.6) proves, under a slightly weaker condition than Assumption 5,

that the set of x’s for which stopping is weakly optimal has the form [x(θ),+∞) for some x(θ) ≥
x
¯
(θ).67 Suppose, by contradiction, that there is some x > x(θ) starting from which continuing for a

strictly positive amount of time is also optimal. This implies that there exists an open interval, J ,

containing x, over which both continuing and stopping are optimal. Since continuing is optimal,

the value function v(·, θ) solves the equation

rv(x, θ) = f(x, θ) + µ(x, θ)v′(x, θ) +
1

2
σ2(x, θ)v′′(x, θ)

over J . Since stopping is also optimal, v(x, θ) = g(x, θ) for x ∈ J . Combining these observations

shows that g violates Assumption 5. Therefore, x(θ) is the unique optimal stopping threshold.

Berge’s Maximum Theorem applied to the domain [0, x̄], guarantees that the correspondence as-

sociating to each θ the set of optimal stopping thresholds, starting from a given x, is upper hemi-

continuous. This, combined with the established uniqueness of an optimal threshold implies conti-

nuity of x(θ). �

65Quah and Strulovici (2012a) provide a signed-ratio condition for the sum of single crossing functions to be a

single crossing function. Strict single crossing of h(x, θ) = h̄(x, θ) + ĥ(x, θ) holds if h̄ satisfies weak single crossing in

x and ĥ is strictly increasing in x.
66In that case, continuing from x > x̂ yields a flow payoff that is dominated by rg(x) until x̂ is reached. Choosing

x̄ high enough above x̂ ensures that x̂ is reached in a long enough time that the potential benefit from continuation,

gained only after x̂ is reached, is outweighed by the running cost incurred until that time.
67θ is fixed and plays no role in this proof.
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For each y, let w(x, θ, y) denote the expected payoff, starting from x, if the agent uses the stopping

region [y,+∞). Our assumptions imply that w is differentiable with respect to θ for all x, with

wθ(x, θ, x) = gθ(x, θ), and that wθ is continuous in (θ, y). References are provided in the Appendix,

along with the proof of Proposition 8.

Proposition 8 (Envelope Theorem) Under Assumption 5, the value function v(x, θ) is differ-

entiable in θ, for all x.68 Moreover, vθ(x, θ) = wθ(x, θ, x(θ)).

Proposition 8 is used in the Appendix to derive a differential equation for vθ. Here, f ′ and f ′′

denote derivatives with respect to x; derivatives with respect to θ are denoted fθ, gθ, etc.

Proposition 9 For each θ, let τ(θ) = inf{t : Xt ≥ x(θ)}. Then,

vθ(x, θ) = E

(∫ τ(θ)

0
e−rt(fθ(Xt, θ) + µθ(Xt, θ)v

′(Xt, θ) + σ(Xt, θ)σθ(Xt, θ)v
′′(Xt, θ))dt

+ e−rτ(θ)gθ(x(θ), θ)
)
. (27)

6.1 Example: Option Value and Volatility

Consider the case in which θ > 0 only affects the variance, linearly: σ(Xt) = σ̃(Xt) + θ.

Corollary 4 Suppose that, for each θ, v(x, θ) is convex on [0, x(θ)]. Then, v(x, θ) is increasing

in θ for x < x(θ) and x(θ) is nondecreasing in θ.69

Proof. Equation (27) applied to this example yields, for x < x(θ),

vθ(x, θ) = E

(∫ τ

0
e−rtσ(Xt)v

′′(Xt, θ)dt

)
,

which is positive by convexity of v. For θ̃ > θ and any x < x(θ), we have v(x, θ̃) ≥ v(x, θ) > g(x).

This shows that x(θ̃) ≥ x(θ) and, hence, monotonicity of the threshold. �

68The role of uniqueness underlying Proposition 8 may be understood as follows: if, for some parameter θ̂, it were

optimal to stop at x̂1 or continue until x̂2 > x̂1, and if x̂1 (resp. x̂2) were the only optimal threshold for θ < θ̂ (resp.

θ > θ̂), then v(x, θ) would typically not be differentiable at θ̂, for x < x̂1: its left derivative would be computed using

the threshold x̂1, while its right derivative would be x̂2. Uniqueness of an optimal threshold guarantees that this

situation cannot occur.
69It does not seem straightforward to derive this result using Jensen’s inequality, even if f and g are both convex,

because the stopping time is correlated with the state process.
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7 Conclusion

This paper provides unifying and self-contained arguments showing, under simple conditions, the

smoothness of value functions and the existence of optimal strategies. These arguments can be ex-

tended to analyze situations in which the volatility vanishes over some subset of the state space, the

control domain depends on the state, or control and stopping problems are combined. They can also

be used to derive specific results in applications, such as bounding the number of switching points

in finite multi-armed bandit problems, proving the uniqueness of an optimal threshold in optimal

stopping problems, establishing effort monotonicity in a principal-agent model, or differentiability

of the optimal strategy in growth or investment models.

The analysis has emphasized the role played by comparative statics for dynamic optimization

problems. Single crossing conditions were used to prove the existence of an optimal control and

to guarantee uniqueness of an optimal stopping threshold. This uniqueness, combined with an

envelope theorem, was used to prove the smoothness of value functions in parameterized stopping

problems. Envelope theorems were also helpful in applications to prove the differentiability of

policy functions and the existence of an optimal control. This suggests that these tools, whose

use is currently largely circumscribed to economic analysis, have a role to play in control theory,

granting them a new, indirect role, for economics.

The assumption of a one-dimensional state space, while accounting for many economic models, is

clearly restrictive. For example, we do not consider the case of a state that includes a time dimension

or, in multi-armed bandit problems, the case in which each arm has a separate, independent state.

Such extensions are special, as only one state evolves stochastically at any given time, which may

be helpful in obtaining useful generalizations of the methods. More generally, however, there is a

real need in economics for a better understanding of the properties of optimal policies and value

functions with a multidimensional state space, both for qualitative analysis and for constructing

explicit solutions.

A Proof of Lemma 1

Consider the function ϕ defined on R by ϕ(x) = |x| for |x| ≥ 1 and ϕ(x) = 1
2(1 + x2) for |x| < 1.

As is easily checked, ϕ is C1 everywhere, C2 except at −1 and 1, and satisfies |ϕ′(x)| ≤ 1 and

|x| ≤ ϕ(x) ≤ |x| + 1 for all x ∈ R and |ϕ′′(x)| ≤ 1 for x < 1 and ϕ′′(x) = 0 for |x| > 1. By Itô’s
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lemma,70 we have for any admissible control A, and t ≥ 0

ϕ(XA
t ) = ϕ(x) +

∫ t

0

(
µ(XA

s , As)ϕ
′(XA

s ) +
1

2
σ2(XA

s , As)ϕ
′′(XA

s )

)
ds+

∫ t

0
σ(XA

s , As)ϕ
′(XA

s )dBs.

Because |σ(x, a)| ≤ Kσ(1 + |x|), the integrand of the stochastic integral is square integrable over

[0, t].71 Therefore, the stochastic integral has zero mean. Taking expectations, and using the bounds

on µ, σ and ϕ we get, letting Φt = Eϕ(XA
t ),

Φt ≤ Φ(x) +

∫ t

0

(
(Kµ

1 +Kµ
2 Φs) +

1

2
K̃

)
ds,

where K̃ = max(x,a)∈[−1,1]]×K σ
2(x, a). By Gröwnwall’s lemma, this implies that

Φt ≤ (Φ(x) +KXt) exp(Kµ
2 t),

where KX = Kµ
1 + K̃/2. Since |Xt| ≤ ϕ(Xt) for all t, we conclude that E|Xt| ≤ (|x| + 1 +

KXt) exp(Kµ
2 t) for all t. In particular, E|Xt|e−rt goes to zero as t goes to infinity. The last claim

of the lemma is straightforward to prove, using the linear growth condition on f .

B Proof of Proposition 1

B.1 General Results on Initial Value Problems

We start with two results pertaining to the existence of solutions to initial value problems (IVP)

and their continuity with respect to the initial conditions. We start with some function H̄ : (x, y) 7→
H̄(x, y) defined on X × Rn and taking values in Rn, which satisfies the following condition:

Condition 4 On any compact interval I of X ,

i) |H(x, y)| ≤M(1 + |y|),

ii) |H(x, y)−H(x, y′)| ≤ K|y − y′|,

iii) H is continuous in x for each y.

Lemma 4 If Condition 4 holds, the ordinary differential equation

y′(x) = H(x, y(x)) (28)

with initial condition y(x0) = y0 has a unique continuously differentiable solution on X , for any

x0 ∈ X and y0 ∈ Rn.

70Itô’s lemma applies to any function that is C1 and a.e. C2.
71Precisely, square integrability follows from the inequality σ2(XA

s , As) ≤ 2(Kσ)2(1 + x2), as well as a standard

estimate on E|XA
t |2. See Krylov (1980), Corollary 6, p. 81.
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Let y (x, y0) denote the solution to (28) on X with initial condition y (x0) = y0.

Lemma 5 Given Condition 4 y(·, y0) is uniformly continuous in y0.

The proofs are standard and omitted. For Lemma 4 see Hartman (2002, Theorem 1.1, p. 8).72 For

Lemma 5, see Hartman (2002, Theorem 2.1, p. 94).

B.2 Proof of Proposition 1: Bounded Case

We specialize the results of Section B.1 to our setting: suppose that y = (p, q) and H(x, p, q)

satisfies Condition 1. In this case, the function H̄(x, (p, q)) = (q,H(x, p, q)) satisfies Condition 4.

The proof of Proposition 1 is based on the “shooting method” (see, e.g., Bailey, 1962). The general

intuition for the argument is as follows. We start from some initial conditions (x
¯
, υ
¯
) and consider

the solution w to the IVP

w′′ +H
(
x,w,w′

)
= 0 (29)

subject to the initial conditions w (x) = υ
¯

and w′ (x) = s. Given our assumptions on H, Lemma 4

guarantees that this IVP will have a unique, twice continuously differentiable solution. Lemma 5

guarantees that the solution continuously depends on the starting slope s. We can establish the

existence of a solution to the boundary value problem (BVP) if we can show that it is always

possible to pick the slope s in such a way that at x̄, the solution to the IVP will hit ῡ.

The proof relies on constructing a particular compact, convex subset of (x, υ)-plane, ending with

a vertical segment at x = x̄ that contains ῡ. We then define a mapping between the initial slope

s of the solution to the IVP with initial value w(x
¯
) = υ

¯
and initial slope s, and the “last” point

at which it hits the boundary, and show that the mapping is onto. That property then proves the

existence of an initial slope such that the solution hits the value ῡ at x̄.

Lemma 6 There exist positive constants K1,K2 such that the functions b1(x) = −K1 −K2|x| and

b2(x) = K1 +K2|x| satisfy the inequalities

b′′1 +H
(
x, b1, b

′
1

)
> 0

b′′2 +H
(
x, b2, b

′
2

)
< 0

for all x 6= 0, and the boundary constraints υ ∈ (b1 (x) , b2 (x)) and ῡ ∈ (b1 (x̄) , b2 (x̄)).

72That theorem establishes local existence. The growth condition, i), guarantees that the solution can be extended

to the entire domain I.
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Proof. We have for x 6= 0 and K1,K2 satisfying Condition 3,

b′′2(x) +H(x, b2(x), b′2(x)) = H(x,K1 +K2|x|),K2sgn(x)),

which is strictly negative. The argument for b1 is analogous. The boundary constraints are clearly

satisfied provided that K1 and K2 are large enough. �

Lemma 7 There exist s1 and s2 such that the solution to IVP (29) hits b2 for all initial slopes

s ≥ s2 and b1 for all initial slopes s ≤ s1.

Proof. By suitably translating the problem, we can without loss assume that x
¯

= υ
¯

= 0.73 We wish

to show that for high enough initial slopes s, the solution ws hits b2. Consider the auxiliary IVP

u′′ +Ku′ +H(x, u(x), 0) + ε = 0

subject to u(0) = 0 and u′(0) = s, where K is the Lipschitz constant of H and ε is a positive

constant. We will show that, for s high enough, u is strictly increasing on [0, x̄], with a derivative

that is bounded below by a linear function of s. For fixed s, let x̃ > 0 denote the first time that

u′(x) = 0. On [0, x̃], we have u(x) ≥ 0. By Condition 2, we have H(x, u(x), 0) ≤ H(x, 0, 0) on that

domain, and

u′′(x) +Ku′(x) +M ≥ 0,

where M = maxx∈[0,x̄] |H(x, 0, 0)| + ε > 0. Applying Grönwall’s inequality to the function g(x) =

−u′(x)−M/K, which satisfies the inequality g′(x) ≤ −Kg(x) on [0, x̃], we conclude that

u′(x) ≥ [s+M/K] exp(−Kx)−M/K (30)

on that domain. This implies that x̃ is bounded below by

1

K
log

(
s+M/K

M/K

)
,

which exceeds x̄, for s high enough. Moreover, the lower bound on u′ also implies that u hits b2 for

s large enough and does not cross it again before x̄ is reached.

To conclude the proof, we will show that the IVP solution w is above u for any fixed s. The

Lipschitz property of H in its last argument implies that, for all x, u, u′,

−Ku′ ≤ H (x, u, 0)−H
(
x, u, u′

)
.

73The translation is obtained by letting w̄(x) = w(x − x
¯
) − υ

¯
and H̄(x,w,w′) = H(x − x

¯
, w + υ

¯
, w′). H̄ inherits

the Lipschitz and monotonicity properties of H, as is easily checked.
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From the definition of u, this implies that

u′′(x) +H
(
x, u(x), u′(x)

)
≤ −ε < 0

for all x. This implies that w, the solution to the IVP, lies above u, by the following argument.

At x = 0, u and w have the same starting values and slopes, but u has a lower second derivative,

by at least ε, which implies that u′ < w′ in a right neighborhood of 0. We will show that u′ < w′

for all x in (0, x̄] and, therefore, that u < w on that domain. Suppose by contradiction that there

exists an x > 0 such that u′(x) = w′(x), and let x̃ be the first such point. Necessarily, u(x̃) < w(x̃).

Moreover, we have

u′′(x̃) < −H(x̃, u(x̃), u′(x̃)) ≤ −H(x̃, w(x̃), w′(x̃)) = w′′(x̃),

where the second inequality is guaranteed by Condition 2. This contradicts the fact that u′ crosses

w′ from below at x̃. �

We can finally prove Proposition 1. Let

B = {(x, υ)|b1(x) = υ or b2(x) = υ} ∪ [(x̄, b1(x̄)), (x̄, b2(x̄))] ⊂ R2.

B consists of the graph of the functions b1 and b2 on X , along with the vertical segment joining

the endpoints of these graphs at x̄. We also define the function H : [s1, s2]→ R2 as the last hitting

point of B for the solution of the IVP with slope s. This function is clearly well defined: if a solution

does not cross b1 or b2 before x̄, it has to hit the vertical segment joining b1(x̄) and b2(x̄). From

Lemma 7, H(s) is on the graph of b2 for s large and on the graph of b1 for s small (for example, (30)

shows that, for s large enough, u cannot cross b2 again after hitting it once). Moreover, H cannot

jump from the graph of b2 to the graph of b1 as s changes, because Lemma 6 implies, for example,

that if w crosses b2, it stays above b2 for all x beyond the crossing point,74 and hence cannot hit

b1. Therefore, H must connect the upper and lower bounds of B as s goes down. Finally, Lemma 5

implies that H is continuous at any point s for which H(s) lies on the vertical segment. This shows

that H(s) must take all values on that segment as it connects the graphs of b2 and b1. Since (x̄, ῡ)

belongs to that segment, this proves existence of a solution that solves the BVP.

B.3 Proof of Proposition 1: Unbounded Domain

We now prove Proposition 1 when X is unbounded, so that x
¯

= −∞ and/or x̄ = +∞. Precisely,

we establish the existence of a function v which satisfies

w′′ = H
(
x,w,w′

)
(31)

74The proof of this result is similar to the proof that w stays above u in Lemma 7, showing that w′ ≥ b′2 after the

crossing point, and exploits the inequality b′′2 +H(x, b2, b
′
2) < 0.
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and |w(x)| ≤ Kv(1 + |x|) on X , where Kv is a positive constant. The arguments of this section are

based on Schrader (1969). For expositional simplicity we focus on the case in which X = R. The

case in which either x
¯

or x̄ is finite follows easily from that argument.

Throughout the argument we fix a pair K1,K2 of constants that satisfy Condition 3, and let b1, b2

denote the bounds constructed from these constants in Lemma 6. From Section B.2, we know

that the BVP will have a unique C2 solution for any finite interval
[
χ, χ̄

]
and boundary conditions

w
(
χ
)

= υ
¯

and w (χ̄) = ῡ that are contained between b1 and b2. Further, we know that the solution

satisfies −Kv(1 + |x|) ≤ w (x) ≤ Kv(1 + |x|) on
[
χ, χ̄

]
, where Kv = max{K1,K2} does not depend

on the particular interval chosen.

We define a sequence of boundary value problems such that Equation (31) holds on [xn, x̄n] and

with boundary conditions w (xn) = υn and w (x̄n) = ῡn for some values υn, ῡn in (b1(x
¯n

), b2(x
¯n

))

and (b1(x̄n), b2(x̄n)), respectively, and let xn and x̄n tend to −∞ or +∞, respectively.

Let wn denote the solution to the nth BVP. In the following, we use the Arzelà-Ascoli theorem and

show that this procedure indeed yields a solution. For this, we need to prove that the derivatives

of wn are equicontinuous. This is based on the following comparison lemma.75

Lemma 8 Let φ denote a nonnegative, continuous function on R+, such that∫ ∞
0

s

φ (s)
ds =∞, (32)

and let R, x̃ denote two strictly positive constants. Then, there exists a number M such that if w(x)

is C2 on [0, x̄] with x̄ > x̃ and satisfies |w(x)| ≤ R and |w′′(x)| ≤ φ(|w′(x)|), then |w′(x)| ≤ M on

[0, x̄]. The constant M depends only on R, φ and x̃.

For any bounded domain X0 =
[
χ, χ̄

]
and any solution w to the BVP on that domain with end

values between b1 and b2, we have

|w′′(x)| = |H(x,w(x), w′(x)| ≤ |H(x,w(x), 0)|+K|w′(x)| ≤ K̄ +K|w′(x)| (33)

where K is the Lipschitz constant of H over X0 and where the constant K̄ comes from the bound-

edness of w (which is contained between b1 and b2) and continuity of H(·, ·, 0) on the compact

domain X0.

Since φ (x) = K̄ +Kx satisfies (32) and w is bounded by the functions b1 and b2, Lemma 8 implies

that each w′n is bounded on the compact domain X0, and that the bound is uniform over n.76

Moreover, (33) implies that the second derivatives of wn are also uniformly bounded on X0.

75See Hartman (2002), p. 428.
76More precisely, we can apply the Lemma to the function w̄(x) = w(x − χ

¯
), so as to have the 0 origin that is

assumed in the Lemma.
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We now use the following diagonalization procedure. Consider a finite domain [x1, x̄1]. We have

seen that the functions wn, w′n and w′′n are bounded on [x1, x̄1], uniformly in n. By Arzelà-Ascoli’s

theorem, there exists a subsequence such that wn converges uniformly to a C1 function w̃1 on

[x1, x̄1].77 Moreover, the second derivatives {w′′n}n∈N are also equicontinuous, because they satisfy

w′′n(x) = H(x,wn(x), w′n(x)) with H continuous and wn and w′n equicontinuous. This implies that

there is a subsequence of wn that converges uniformly to a C2 function w̃1 on [x
¯
, x̄]. This also implies

that the limit satisfies w̃′′1 (x) = −H (x, w̃1 (x) , w̃′1 (x)). By construction, b1(x) ≤ wn(x) ≤ b2(x) on

[x1, x̄1] and, therefore, w̃1 is also contained between b1 and b2.

To conclude, take the finite domain [x2, x̄2] ⊃ [x1, x̄1]. Iterating the last argument,78 there exists

a subsequence of the first subsequence for which wn converges uniformly to a limit function w̃2 on

[x2, x̄2]. The functions w̃1 and w̃2 are equal on [x1, x̄1]. Proceeding iteratively, we can cover the

entire domain X . The function w defined by w(x) = w̃k (x) for x ∈ [xk, x̄k] \
[
xk−1, x̄k−1

]
, solves

the BVP and is bounded by b1 and b2 and hence also satisfies |w(x)| ≤ Kv(1 + |x|).

C Proofs of Section 5

Lemma 9 Consider vs̃ and vs, two solutions to the IVP with starting slopes s̃ > s on an interval

[x1, x2] which both satisfy vs̃ (x1) = vs (x1) = v1. Then, vs̃ (x) > vs (x) for all x ∈ (x1, x2].

Proof. Let x̂ = inf {x : v′s̃ (x) ≤ v′s (x)}. Note that x̂ > x because v′s̃ (x) > v′s (x) and both vs̃ and

vs are C2. By construction, vs̃ (x̂) > vs (x̂). Since both solutions satisfy the equation

v′′ (x) +
1

1
2σ (x)2

(
−rv (x) + f (x) + µ (x) v′ (x)

)
= 0

we have

v′′s̃ (x̂) =
1

1
2σ (x̂)2

(
rvs̃ (x̂) + f (x̂) + µ (x̂) v′s̃ (x̂)

)
>

1
1
2σ(x̂)2

(
rvs(x̂) + f(x̂) + µ(x̂)v′s(x̂)

)
= v′′s (x̂)

Since v′s̃(x) must hit v′s(x) from above as x reaches x̂, we obtain a contradiction. �

77More precisely, we use the following version: any sequence of C1 functions that have equicontinuous and uniformly

bounded derivatives, and are uniformly bounded at one point, has a subsequence that converges uniformly to a C1

function. Here, equicontinuity of the derivatives is guaranteed by the uniform bound on the second derivative.
78Note that the bounds for the domains [x2, x̄2] and [x1, x̄1] are different. However, since we are fixing the domain,

we are still able to obtain a convergent subsequence.
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C.1 End of the proof of Theorem 4

To conclude the proof, we need to show the result when x is such that v(x) = g(x), but x is an

accumulation point of stopping and continuation regions, on either its right side or its left side, or

both.

Without loss of generality, we set x = 0 and prove that vr(0) = g′(0), where vr is the right derivative

of v at 0. We wish to show that limη↓0(v(η)− v(0))/η converges to g′(0). Consider any η > 0. The

difference v(η) − v(0) is either equal to g(η) − g(0), if η belongs to Y, or else η belongs to some

interval Zi close to 0. Let y denote the lower bound of Zi. By twice differentiability of v on (y, η),

and because the right derivative of v at y is equal to g′(y), we have v(η) = v(y) + g′(y)(η − y) +
1
2v
′′
r (z1)(η − y)2 for some z1 ∈ (y, η). Since v(y) = g(y), we have g(η) = v(y) + g′(z2)(η − y) for

some z2 ∈ (y, η). Therefore, v(η) = g(η) + (g′(y)− g′(z2))(η − y) + 1
2v
′′
r (z1)(η − y)2, and

v(η)− v(0)

η
=
g(η)− g(0)

η
+ 1η/∈Y

η − y
η

(
g′(y)− g′(z2) +

1

2
v′′r (z1)(η − y)

)
.

Taking the limit as η goes to zero yields the result, if we can show that g′(y)−g′(z2)+ 1
2v
′′
r (z1)(η−y)

converges to zero as η → 0. The first two terms cancel each other in the limit, as they both converge

to g′(0) (since g is C1). The last term converges to 0 if we can show that v′′(·) is uniformly bounded

on all the intervals Zi in a neighborhood of 0. This uniform bound is guaranteed by Lemma 8

(Section B.3), which guarantees a uniform upper bound on |v′| and on |v′′|.79

Continuity of v′ is shown by a similar argument. For any ε > 0, there exists η̄(ε) such that

|g′(η) − g′(0)| ≤ ε/2 for all η ≤ η̄(ε). As was mentioned earlier, v′′ is uniformly bounded on the

interval [x, x + η̄(ε)] ∩ ∪i∈IZi, by some constant M . Let η(ε) = min{η̄(ε), ε/M}. Consider any

η < η(ε). If η ∈ Y, then v′(η) = g′(η) and |v′(η) − v′(0)| < ε/2. Otherwise we have, using the

variable y introduced earlier in the proof,

v′(η) = v′(y) + v′′(z3)(η − y) = g′(y) + v′′(z3)(η − y),

for some z3 ∈ (y, η). This implies that

|v′(η)− v′(0)| < |g′(y)− g′(0)|+Mη < ε.

Proceeding similarly to the left of x, we conclude that v′ is continuous at x. �

79More precisely, the solution wi to the BVP on Zi with endpoints [x
¯i
, x̄i] can be extended to a solution on the

domain Z ′i = [x
¯i
,max{x

¯i
+ x̃, x̄i}], for some x̃ > 0 that is independent of i, by considering the IVP with domain Z ′i

and keeping the same initial value and slope at x
¯i

. That solution has uniformly bounded first derivative, by Lemma 8,

and hence also a uniformly bounded second derivative (see (33)). The uniform bounds do not depend on i: they only

depend on x̃, an upper bound on v, and the fact that |w′′(x)| = | 1
1
2
σ(x)2

(−rw(x)+f(x)+µ(x)w′(x))| ≤ K1 +K2|w′(x)|
for some constants K1,K2.
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D Proofs for the Multi-Armed Bandit Application

Lemma 10 The value function v is convex in the belief x.

Proof. The argument is standard and replicated for completeness. For any admissible control

process A, we have

v(x,A) = E

[∫ ∞
0

e−rtπ(At, θ̃)dt|x
]

By definition, any admissible process A is adapted to the observation filtration, which, conditional

on the true state θ̃ does not depend on the probability x. Therefore, we have

v(x,A) = xE

[∫ ∞
0

e−rtπ(At, θH)dt|θH
]

+ (1− x)E

[∫ ∞
0

e−rtπ(At, θL)dt|θL
]
,

which shows that v(x,A) is linear in x. For x1 < x2 and λ ∈ (0, 1), let x = λx1 + (1 − λx2). We

have, letting A∗ denote an optimal process given the initial belief x,80

v(x) = v(x,A∗) = λv(x1, A
∗) + (1− λ)v(x2, A

∗) ≤ λv(x1) + (1− λ)v(x2),

where the second equality comes from the linearity of v(·, A) in x, and the inequality comes from

the definition of the v(xi)’s.

Proposition 10 With finitely many arms, the are finitely many cutoffs, and the number of cutoffs

is bounded by twice the number of arms.

Proof. From Theorem 1, the value function solves everywhere the HJB equation, which may be

rewritten as

rv(x) = max
i∈K

{
x∆f(i) + fL(i) + v′′(x)

1

2
(x (1− x))2 ξ2(i)

}
(34)

where ∆f(i) = fH(i)− fL(i). If v′′(x) = 0 for some x ∈ (0, 1), then v(x) = x∆f(i)+fL(i)
r for some i,

which means that playing i forever is optimal and there is no cutoff. Thus, we focus on the case

v′′(x) > 0 for all x ∈ (0, 1).

Rewriting the HJB equation, we have

v′′(x) = min
i∈K

rv(x)− x∆f(i)− fL(i)
1
2 (x (1− x))2 ξ2(i)

.

Moreover, letting

wi (x) =
rv (x)− x∆f(i)− fL(i)

ξ2(i)
,

80We do not need to assume the existence of an optimum: the argument is easily adapted by taking a sequence of

controls An such that v(x,An) converges to v(x) as n→∞.
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Arm i maximizes (34) if and only if wi(x) ≤ wj(x) for all j in K.

We have

(wi − wj)′′ (x) = rv′′ (x)

(
ξ2(j)− ξ2(i)

ξ2(i)ξ2(j)

)
.

Lemma 10 therefore implies that either wi − wj or wj − wi is convex. If wi − wj is linear, either

the arms are identical, in which case they can be treated as a single arm, or wi − wj crosses

zero at most once. Otherwise, wi − wj is strictly convex or strictly concave, since v′′ is strictly

positive, and crosses zero at most twice. Since the number of arms is finite, this implies that

the set Zi = {x : wi(x) > wj(x) ∀j 6= i} consists of finitely many open intervals, and that the

set Z of x ∈ [0, 1] such that arg maxi{wi(x)} is not a singleton is finite. This shows that any

selection of maximizers of the HJB equation has finitely many switches, yielding a volatility that

has bounded variation. Theorem 2 then implies that such selection is optimal. It also implies that

the (essentially unique) optimal strategy has finitely many cutoffs. Because any two arms can only

change dominance twice, this also shows that the number of switching points is bounded by twice

the number of arms: if an arm is strictly optimal in two disjoint regions, then any arm that is

strictly optimal in a region contained between these two regions can only be optimal within these

two regions. The result then follows by an easy induction argument. �

Proposition 11 A given arm may be used over disjoint intervals of beliefs.

Proof. Consider a four-armed setting with the following characteristics. Arms 1 and 2 have

symmetric payoffs around the belief 1/2: f1(x) = f2(1− x), with f1(0) > f1(1), and have the same

low signal-to-noise ratio ξ(1) = ξ(2) = ε > 0. The payoffs f3 and f4 are independent81 of x, with

f1(0) > f3 > f4 and min{ξ(3), ξ(4)} > ε.

Notice that, for extreme beliefs, either Arm 1 or 2 is used. Moreover, because Arm 1 is optimal for

very low beliefs whereas Arm 2 is optimal for very high ones, the value of information is strictly

positive in this problem.

It suffices to show that Arms 3 and 4 are both chosen on a positive domain. By symmetry, this will

imply that one arm is chosen on both sides (the one that is not used at x = 1/2).82 Consider, first,

the case in which only Arms 1,2, and 3 are available. Because Arms 1 and 2 have low signal to noise

ratio, using Arm 3 is optimal for intermediate beliefs, provided that f3 is high enough (but still

below f1(0)). We now add in Arm 4, which has a low payoff. We will gradually increase its signal

81Thus, for simplicity, Arms 3 and 4 are informative despite having state-independent payoffs. It is easy to slightly

perturb those payoffs to introduce payoff dependence and preserve the qualitative shape of the choice intervals.
82If x = 1/2 was a cutoff, then both Arms 3 and 4 are used on each side of x = 1/2, which also proves the

proposition.
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to noise ratio, ξ(4). For ξ(4) < ξ(3), Arm 4 is dominated by Arm 3 both in terms of payoff and

informativeness, and thus not used at all. For ξ(4) arbitrarily high, using Arm 4 reveals the state

of the world almost instantaneously, which is clearly optimal for intermediate beliefs. Therefore,

there must exist a threshold ξ∗4 > ξ(3) above which it becomes strictly optimal to use Arm 4 around

some belief x∗. At ξ∗4 , v4 − v3 has a local maximum at x∗, which has to be in the interior of [0, 1].

From the proof of Proposition 10, this implies that v4 − v3 is strictly concave and that x∗ is the

unique global maximum. This implies that v3(x) > v4(x) for all x 6= x∗ and, since it is always

optimal to use either Arm 3 or Arm 4 on an interval of strictly positive measure, this implies that

v3(x′) > max{v1(x′), v2(x′), v4(x′)} on some interval Z ′ of positive measure. By increasing ξ(4)

slightly above ξ∗4 , Arm 4 becomes strictly optimal around x∗ (by definition of x∗), while Arm 3

remains strictly optimal on Z ′, which proves the claim. �

E Proofs for Section 6 (Parameterized Stopping Problems)

E.1 Proof of Proposition 8

Suppose that x < x(θ). Fixing any parameter θ and stopping threshold x̂, w(x, θ, x̂) solves the

dynamic equation

rw(x, θ, x̂) = f(x, θ) + µ(x, θ)w′(x, θ, x̂) +
1

2
σ2(x, θ)w′′(x, θ, x̂) (35)

for all x < x̂, and satisfies the boundary conditions w(0, θ) = 0 and w(x̂, θ) = g(x̂, θ). Theorem

3.1, p. 95 in Hartman (2002) implies that w(x, θ, x̂), w′(x, θ, x̂) and w′′(x, θ, x̂) are all differentiable

with respect to θ for x < x̂ and that the derivative wθ(x, θ, x̂) satisfies

rwθ(x, θ, x̂) = fθ(x, θ) + µθ(x, θ)w
′(x, θ, x̂) + σ(x, θ)σθ(x, θ)w

′′(x, θ, x̂)

+µ(x, θ)w′θ(x, θ, x̂) +
1

2
σ2(x, θ)w′′θ (x, θ, x̂)

= h(x, θ, x̂) + µ(x, θ)w′θ(x, θ, x̂) +
1

2
σ2(x, θ)w′′θ (x, θ, x̂) (36)

for all x < x̂, where h(x, θ) = fθ(x, θ)+µθ(x, θ)w
′(x, θ, x̂)+σ(x, θ)σθ(x, θ)w

′′(x, θ, x̂), with boundary

conditions wθ(0, θ, x̂) = 0 and wθ(x̂, θ, x̂) = gθ(x̂, θ).

Theorem 2.1 p. 94 and Corollary 3.3 p. 99, in Hartman (2002) applied to Equation (36) show that for

any x, wθ(x, θ, x̂) is continuous in (θ, x̂). By Proposition 7, the maximizing threshold x(θ) is unique,

and thus Corollary 4, part iii) of Milgrom and Segal (2002) implies that v(x, θ) = w(x, θ, x(θ)) is

differentiable in θ, and that its derivative is equal to wθ(x, θ, x(θ)). �
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E.2 Proof of Proposition 9

Differentiating the equation v(x, θ) = w(x, θ, x(θ)) for x < x(θ) yields v′(x, θ) = w′(x, θ, x(θ)) and

v′′(x, θ) = w′′(x, θ, x(θ)). Similarly, Proposition 8 has established that vθ(x, θ) = wθ(x, θ, x(θ)).

Differentiating this equation with respect to x for x < x(θ) yields v′θ(x, θ) = w′θ(x, θ, x(θ)) and

v′′θ (x, θ) = w′′θ (x, θ, x(θ)). Combining these equations with (36) yields

rvθ(x, θ) = h(x, θ) + µ(x, θ)v′θ(x, θ) +
1

2
σ2(x, θ)v′′θ (x, θ), (37)

where h(x, θ) = fθ(x, θ)+µθ(x, θ)w
′(x, θ, x̂)+σ(x, θ)σθ(x, θ)w

′′(x, θ, x̂). We also have the boundary

conditions vθ(x, θ) = 0 and vθ(x(θ), θ) = gθ(x(θ), θ). The Feynman Kac formula applied to this

differential equation then yields the equation stated in the proposition. �
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