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ABSTRACT

This paper focuses on the characterization of the
first degree stbchastic dominance ordering in terms of
expectations of monotonic nondecreasing utility functions.

Several difficulties arising in relation to the
existence of expectations in the work of Hanoch and Levy
[4] are pointed out and resolved through an extended and

modified framework.
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Several authors [1,3,4,6] have addressed the question of
partial ordering of probability distributions in terms of utility
functions. In this work we focus on two of the most common
orderings.

Given two (cumulative) one-dimensional distribution
functions F and G the binary relations first-degree stochastic
dominance (FSD) and second-degree stochastic dominance (SSD)

are denoted by (F) and (S), respectively, and defined as

follows:
Cx)(F)F(x) 1iff G(x) <F(x) for all xeR
and - ix
C)()F(x) 1ff [ G(r)dt s [ F(t)de for all xeR.

The integrals throughout are Stieltjes-Lebesgues integrals.

Unifying and integrating previous results on characteriza-
tions of the above orderings Hanoch and Levi [4] presented one
of the most general frameworks available to date. However, it
seems that they have overlooked several existence aspects re-
lated to their treatment. In particular, in this paper we show
that their results do not apply to several situations that are
valid within their given framework. We then suggest an extended
set-up and prove its validity for both finite and infinite sit-
uations.

Prior to Hanoch and Levi [4], Quirk and Saposnik [6]

and Hadar and Russel [3] characterized the first degree



stochastic dominance. Their results are summarized by the follow-

ing theorem.

Theorem 1

Given two distributions F and G, F(x)(E)G(x) if and only
if ” "
[ uear) > [ ude) (1)
for any bounded nondecreasing and continuously differentiable
function u(x).

A desirable extension of the above theorem would be any
characterization of the class of functions u(x) for which (1)
holds, provided F(x)(E)G(x). An attempt in this direction was
made by Hanoch and Lé#i t4j who suggested a framework where
neither differentiability nor boundedness of the utility
function u were required. Specifically, they claimed the fol-

lowing:

Theorem 2
Let F and G be two distributions and u(x) a nondecreasing
function, with finite values for any finite x; then F(x) (F)G(x)

if and only if
f
AEu = | u(x)drF(x) - J u(x)dG(x) > 0.

We note in passing that the statement of Theorem 2 generalized
only the necessary part ot Theorem 1.

However, Hanoch and Levi did not explicitly address the
existence of the.integrals defining AEu; even though this is a

critical issue when unbounded functions are considered.
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In fact, the existence of AEu imposes necessary restrictions on
the class of functions to be considered.
The proof of Theorem 2 given in (4], is based on the fol-

lowing fundamental lemma. [4, Lemma 1].

Lemma 3

Let F and G be two distributions and u(x) a nondecreasing

function with finite values for any finite scaler x; then

AEu = I u(x)dF(x) - f u(x)dG(x) = f EG(X)'F(X)] du(x)

It can be easily verified that this result does not
always hold when both f udF andif udG are defined on [~ o, «],
since in these cases AEu is not well defined.* The key argu-
ment of the proof given in [4] is that f dlu(F-G)] = 0. Setting

u(x) = x and letting

- % x < -1 - % x < -2
F(x) = » G(x) =
1 x > -1 1 X > =2
to obtain I d[u(F-G) ] = -1, we note that this argument fails

when infinite expectations are allowed. Consequently it follows
that by introducing the operator AEu and using the relation

f d[u(F-G) ] = 0, Hanoch and Levi have implicitly restricted their
treatment to situations where both j udF and j udG are finite.
Furthermore, a caretul examination yields that their proof of
Lemma 3 is incompleté and not rigorous even for the finite case,
since they have deliberately interchanged 1lim lim un(x) with

X440 N .

lim 1lim un(x).
N9 X -

L

"We will omit the arguments in the functions appearing in the

integrals in those cases where no misunderstanding should arise.
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In this work we modify and ratify the statement of Theorem
2 and then prove its validity for both finite and infinite
situations.

We first recall that given a function u(x),u+(x) and

u (x) are defined as follows:

+( y (ju(x) if u(x) >0
u  (x) = o L

v 0 otherwise

_ ~u(x) u(x) <0
and u (x) = . o
T 0 otherwise
If F is a distribution we say that u is F- integrable if both
f u+dF and f u dF are finite. u is F- quasi-integrable if at
least one of the two integrals f u+dF and f u dF is finite.
(See [2,5].) Hence, f udF is well defined on [-«,»] for F-

quasi integrable functions. (r udF = j utar - J u dF.)

The following lemma is the basis for our modification.

Lemma >

Let F and G be two distributions and let u(x) be a non-
decreasing function of the real line to [-e, o] which is
bounded from below (or above) by zero. Suppose that G(x) > F(x)

for all x, then

J"u(x)dc(x) < j u(x)dF (x) .

Proof. The conditions on u(x) ensure its quasi-integrability
with respect to any distribution.

The integrals are defined by respresenting u(x) as the
pointwise limit of a sequence of step functions. Fufthermore,

the monotonicity of u(x) implies that one can choose the step
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functions to be nondecreasing and their corresponding partitions
of the line to be intervals. (See the representation given in
[(5,p.34]). Hence, we can assume without loss of generality that
u(x) itself is a step function.
Suppose that the partition of the line corresponding to
u(x) is determined by the points X < Xyseees< X, where
X, = mw, X = o If X;_1 <X < x; denote u(x) = Ci’ i=1,...,n.
Let R(x) be a distribution(hence, continuous on the right)

then ‘ n
[u@drE) = ﬁfl C, (Rk(xi) - ngxi_l))
£‘R<Xi) if u(xi) = Ci
where R*(xi) = { S
i\R(xi-) if u(xi) =G

Using the monotonicity we observe Ci < C, to obtain

i+l
n-1 n-1
j u(x)dG(x) = 151 (ci-ci+1) Gﬂ(xi) + G < 151 (Ci-Ci+l}FT$xi>

+ Cn = j u(x)dF(x?

and the proof is complete.

Note that if u(x) was assumed to be non-increasing (instead

of non-decreasing), we would have j UdG'Z‘I udF.

Finally we state our modification of Theorem 2. Note that

AEu is not introduced to avoid the ambiguity of « - .



Theorem 6

Let F and G be two distributions on the real line.
Then F(x) (E) G(x) if and only if any non-decreasing function
u(x) from the real line to [-=,w] satisfying f udG > -, is

also F-quasi-integrable and f udF > f udG,

Proof: Sufficiency. Let y be a given real and consider the

following step function

0 x 2y
Uy (x)=

Uy(x) is clearly quasi=integrable. If R(x) is a distribution
then | Uy(x)dR(x) = 1-R(y). Hence J Uy daFE) 2 [ Uy(x)d6(x)
yields F(y) < G(y).

Necessity. Suppose that G(x) > F(x) for all x. From Lemma 5

we have

>

u'de < [ uTdF and [ uTde > [ uiar.

j udG > -= implies that f u dF < j u dG < » and thus
u(x) is F~ quasi-integrable and

. . _ - A IR -

" udr = [uaF - [udF > [ uPae - [ uTde = [ ude.

To conclude our discussion (and motivate the assumption
I udG > -« in Theorem 6) we show that if F(x) (F) G(x) the
quasi-integrability with respect to one distribution does not

imply this property with respect to the second. First observe

that if F(x)(F)G(x) F - quasi-integrability does‘not imply G -



quasi-integrability. This is illustrated by the following example:

%% x < -1
Let G(x) = % - <x < 1
1- E%— x> 1

S

¢
0 x < 1

F(x) = A
S 1- 1 x> 1

2x -

' udF = » but ! udG is not defined.

The next example shows that F - quasi-integrability is not

implied by G - quasi-integrability when F(x) (F)G(x).

°J .

~
Let G(x) ={ Z{% -1l <x < 2
g b:4
7~
- 5 x5 -l
- 1
F(X)—w —2— -lEXSZ
1- 1 X > 2
X —
and u(x) = x [ wdG = -» but [ udF is not defined.
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