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Abstract

I study the optimal choice of investment projects in a continuous time moral hazard
model with multitasking. While in the first best, projects are invariably chosen by the
net present value (NPV) criterion, moral hazard introduces a cutoff for project selection
which depends on both a project’s NPV as well as its signal to noise ratio (SN). The
cutoff shifts dynamically depending on the past history of shocks, the current firm size
and the agent’s continuation value. When the ratio of continuation value to firm size is
large, investment projects are chosen more efficiently, and project choice depends more
on the NPV and less on the signal to noise ratio.

The optimal contract can be implemented with an equity stake, bonus payments,
as well as a personal account. Interestingly, when the contract features equity only,
the project selection rule resembles a hurdle rate criterion.

1 Introduction

The standard paradigm for firm investment posits a continuous investment decision. Firms
choose investment as a means to regulate their capital stock, which, except for adjustment
costs, is perfectly scalable. While for certain firms, this framework may be reasonable, for
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others it is not. When a firm is the host of many disparate activities, we can instead think
of the firm consisting of a portfolio of potential projects. When these projects are executed,
they generate risky cash flows, which depend on each project’s individual characteristics.
Inherently, this choice of projects is discrete, i.e. the firm can either engage in a project
at any given point in time or not. Hence, instead of having the possibility of continuously
adjusting future capital according to its expectations, the firm faces a much more difficult
problem - to determine the optimal portfolio of projects at any given time.

The goal of my paper is to characterize the optimal project selection policy when the firm
relies on a manager to execute its projects. The manager has the opportunity to shirk, and
the cost of executing projects is entirely driven by the agency friction. Even though both the
firm and the manager are risk neutral in my setup, project choice along the optimal path of
the dynamic contract is not determined by the NPV criterion alone, as would be the case in
the first best, but instead by a project-specific markup over NPV. This markup is a function
of the manager’s promised continuation utility, as well as the project’s signal to noise ratio
(SN), which measures how difficult it is to discern whether the manager has been putting in
effort.

There is both over- and underinvestment relative to the NPV criterion. While underin-
vestment is driven by the cost of incentives, which induce the firm to forgo positive NPV
projects due to their risk, overinvestment is caused by its inability to punish the manager in
the presence of a limited liability constraint.

Similar to DeMarzo et al. (2010), I identify the manager’s continuation value with the
firm’s cash balances and the value of the manager’s personal account.1 Thus, holding the
account value constant, when the firm’s cash holdings are small, project choice becomes more
distorted relative to the first best and the firm forgoes positive NPV projects if they have a
low signal to noise ratio, or equivalently, high risk. When the cash holdings are sufficiently
high, first-best efficiency in project execution is achieved.

The cutoffs for project selection are a function of the entire history of past projects, output,
and managerial effort, as well as the noise embedded in the project cash flows. In particu-
lar, when the firm’s cash holdings are sufficiently high, low NPV but high SN projects are
gradually phased out in favor of high NPV projects, and firms with higher cash balances can
afford a more risky and more lucrative project portfolio. This dynamic is entirely driven by
the cost of incentives, which are in turn embodied in the projects’ SN ratios. Since managers
have limited liability, the firm is liquidated when the agent’s continuation value reaches its
lower boundary. Incentivizing projects necessitates an increased managerial risk exposure,

1The full derivation is given in Section 5.
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which in turn increases the liquidation probability.

This finding is opposite to the standard risk shifting result found in Jensen and Meckling
(1976), where the possibility of liquidation leads firms to take on excessive risk. Recently,
in a study of pension funds, Rauh (2009) finds that firms with weak credit ratings, which
may be interpreted as a proxy for default, allocate more resources towards safer investments,
while financially sound firms do the opposite, which is in line with my predictions.

I study several extensions of this framework. First, when the shareholders can allocate
internal funds between projects, the fund allocation is distorted away from the projects with
the highest NPVs and towards projects with low signal to noise ratios. Intuitively, a low
SN implies a relatively high cost of exposing the agent to risk. When internal funding can
increase the effectiveness of managerial effort, the associated cost of incentives is lowered.
Thus, firms with low cash holdings will distort their allocation of funds, while firms with
high cash holdings will engage in winner picking, and allocate all their funds to the most
profitable project.

Further, my model nests DeMarzo et al. (2010) as a special case. Therefore, I can study
the relationship between project choice, aggregate firm investment, and growth. The agency
friction has a similar effect on project choice and aggregate investment, and both are either
comparatively efficient or inefficient, depending on whether the agent’s continuation value is
large relative to firm size.

As in any study involving multitasking, the question whether the optimal incentive scheme
can be made contingent on total firm performance alone, as opposed to individual project
payoffs, is important. In my setting, unless all projects have the same characteristics, in-
centives based on total output will fail to implement the second best allocation. Instead,
they make the underinvestment problem more severe, and induce a fundamental change to
the project selection policy. When restricted to output based incentives, optimal project
choice resembles a hurdle rate. In particular, at any point in time, the NPV of each chosen
project will be above the same threshold, which in turn is a function of the project with the
lowest NPV in the portfolio. This hurdle rate allocation is not efficient, since by conditioning
the manager’s incentive contract on total output alone, the firm is unable to fine-tune the
risk exposure of the manager towards individual projects, and hence the contract carries
excessive risk.

Consequently, my model suggests that hurdle rates, which are widely observed in practice,
are not the outcomes of an optimal contract. Instead, they arise when the firm is unable
to condition the contract on individual projects, or unable to find incentive schemes which

3



condition on this information.

Indeed, I show in Section 5 that if the managerial incentive contract is limited to equity, the
hurdle rate allocation arises as the optimal contract. To implement the second best contract,
it is necessary to introduce payments to the manager contingent on the individual project’s
performance. I show that these payments can be interpreted as bonus payments, and hence
the optimal contract can be implemented via an equity stake and boni.

Since the number of projects will change over time, the risk exposure for the manager, and
therefore the optimal equity share will not be static, as in DeMarzo and Sannikov (2006) or
DeMarzo et al. (2010), and it may be necessary to adjust the manager’s equity share when
the project selection changes. However, these equity transfers may also distort incentives,
since if the manager expects to be stripped of shares in the future, he may be less likely to put
in effort. To counter this effect, I show that the implementation features the manager buying
and selling equity at ex-ante agreed on transfer prices, which exactly offset the adversarial
incentive effect from equity purchases and sales. Proceeds from these transactions as well
as the manager’s bonus payments will be escrowed in a personal account, from which the
manager will be paid once his performance history is sufficiently good.

The contract I derive shares many features with contracts found in reality. As Murphy
(1999) documents, the vast majority of CEO incentive contracts consist of a wage, which is
normalized to zero in my setup, equity holdings and bonus payments. The latter are set by
shareholders ex ante, and provide payments to the manager depending on his performance
in different categories. The total bonus payment is then a linear function of the boni of the
individual categories. The results in Murphy (1999) suggest that while the equity stake is
needed to provide the manager with a baseline level of incentives, bonus payments are used
to fine-tune the incentive plan, and make sure that the manager puts in the desired amount
of effort into the different projects. I show in Section 5 how this intuition translates into my
setup.

When projects choice is a binary decision, and associated with fixed costs, we are in a real
options framework. My results share many features with the real options literature, although
they are the consequence of very different mechanisms. I explain the connection in Section 6
in detail, and I also provide a discussion on how my model can be viewed as an approximation
to a model which is more in line with the real options literature.

The paper proceeds as follows. Section 2 provides an overview of related literature. Section 3
introduces the model, and illustrates basic results on the incentive scheme and the principal’s
value function. Section 4 is the core of the paper and discusses the optimal project selection
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scheme both under output- and project-based incentives. The implementation outlined in
the paragraph above is derived in Section 5. Finally, Section 6 provides a discussion how
my setup relates to the real options framework, which also deals with binary investment
decisions, while Section 7 concludes.

2 Related Literature

The present model is related to three strands of literature. The techniques employed to
characterize the dynamic contract stem from the literature on continuous time contracting,
most notably Schattler and Sung (1993) and Sannikov (2008). Recent contributions in
this literature which share certain features with my setup include Biais et al. (2010), who
study investment and downsizing of firm size as a way to incentivize accident prevention, He
(2009), in whose model the manager’s effort directly affects the evolution of firm size, and
Fong (2007) who studies a binary effort decision with two agents.

The closest paper to mine is DeMarzo et al. (2010), who study a firm’s investment decisions
based on a continuous time moral hazard framework, and find that the agency friction opens
a wedge between average and marginal Q, and induces underinvestment. My framework
features multiple projects with varying risk-return profiles, as well as a continuous investment
variable, and nests the model in DeMarzo et al. (2010). This allows me to study both the
choice of the optimal project portfolio and its interaction with investment. Instead of a
constant equity share, the optimal contract in my setup requires the manager to purchase
and sell equity at transfer prices set by the firm, and the implementation with a constant
equity share held by the manager ceases to be optimal.

The problem of multitasking has received significant attention since the seminal article of
Holmstrom and Milgrom (1991).2 Due to the complex nature of the problem, dynamic
studies of multitasking are rare. The most recent ones include Manso (2006), who studies
the trade off between two tasks interpreted as exploration and exploitation, and Miquel-
Florensa (2007), who answers under whether two tasks should be executed sequentially or
in parallel, depending on the strength of the externalities between them.

In a continuous time setup, Hartman-Glaser et al. (2010) consider a multitasking model
where an underwriter issues a mortgage backed security, and may shirk in selecting the
mortgages, which will default with different rates. They find that bundling the mortgages is
optimal, which is reminiscent of a similar static result by Laux (2001), and the underwriter

2For a recent contribution and further references, see Bond and Gomes (2009).
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will either exert effort in all mortgages or none.

Finally, my model is related to the literature on optimal investment. The real options
literature3 offers a complementary view on the issue of project choice, in which both fixed
costs and an option value of waiting drive deviations from the NPV criterion. Although the
real options framework has been extended to incorporate agency frictions, see p.e. Grenadier
and Wang (2005), Grenadier and Malenko (2010) and Morellec and Schürhoff (2010), studies
are mostly limited to the choice of a single project. This is because taking one project will
affect the value of other projects, via irreversibilities or fixed costs, which makes it difficult
to characterize the the optimal choice of multiple projects. In my model, the externality
between projects is well behaved, which allows for the characterization of an entire project
portfolio.

The capital budgeting literature, see Harris and Raviv (1996) and Harris and Raviv (1998),
studies the choice of projects when a division manager has private information about project
quality and has an incentive to misreport. In Harris and Raviv (1996) both over-and under-
investment relative to the NPV criterion can occur, depending on whether the project is of
low or high quality, and the optimal contract can be implemented by allocating a fixed budget
to the manager. In a similar setup, Berkovitch and Israel (2004) derive an implementation
which takes the form of an internal rate of return, which is similar to my result on the hurdle
rate. Finally, Malenko (2011) considers a dynamic version of the problem, and derives the
capital budgeting mechanism in continuous time.

Since in the capital budgeting literature, projects only have an unidimensional quality as-
sociated with them instead of risk and return, it is difficult to compare my results. If the
average project payoff in my framework is interpreted as quality, and the relation between
payoff and the SN ratio is positive and sufficiently large, then my model will imply that there
are too many low quality projects and too few high quality projects in the firm’s portfolio,
in line with the above.

Another related area is delegated portfolio management as found in Cadenillas et al. (2007),
He and Xiong (2008), Ou-Yang (2003) and Makarov and Plantin (2010). The key difference
between my model and the portfolio choice framework, is that, very similar to the real options
literature, project choice is a binary decision. This allows me to characterize selection criteria
as well as the delay in project implementation stemming from the agency friction.

3See e.g. Dixit et al. (1994) for a comprehensive overview.
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3 Model Setup

3.1 Projects and Investment Technology

Consider a long term contract between the manager of a firm, the agent, and shareholders
who act as the principal. The firm is equipped with a portfolio of N potential projects,
indexed by i ∈ {1, ..., N}. Time t is continuous and infinite, and each project i is character-
ized by its risk-return profile (µi, σi). Projects contribute to the firm’s cash flow, and their
output depends on the agent’s effort decision as well as a Brownian noise component Bit.
The Brownian motions are mutually independent, i.e. Bit ⊥ Bjs for all i ̸= j and times
t, s ≥ 0. The agent’s effort decision in project i at time t is denoted as ait. To capture
the discrete nature of project implementation, ait is binary, i.e. ait ∈ {0, 1}. I denote with
at the vector of choices for each project (ait)

N
i=1, and with A = {0, 1}N the set of possible

project allocations. When ai = 1, the cumulative project cash flow xit evolves according to a
diffusion process with drift µi and volatility σi, and the instantaneous cash flow dxit is given
by

dxit = µiaitdt+ σidBit. (1)

σi can be understood either as a measure of the riskiness of project i, while µi measures
the payoff of the agent’s effort in the task. As shall be seen, the inverse signal to noise
ratio, 1

SNi
= µi

σi
, is proportional to the cost of exposing the manager to the necessary risk to

motivate effort, and measures how difficult it is to infer the agent’s effort from observing the
outcome path xit. The event ait = 1 shall be interpreted as project i being assigned to the
manager, or alternatively project i being implemented at time t.

Total cash flow depends on both firm size πt and the total output from all implemented
projects. Shareholders receive a total cash flow of πt

∑
i dxit, and decide how much to either

pay out as dividend, leave to the agent as consumption, or use for investment. Given the
investment decision It, firm size is deterministic and follows the law of motion

dπt = (It − δπt) dt. (2)

The principal bears the adjustment cost in investment, πκ
(
I
π

)
, which is deducted from the

firm’s cash flows. Letting i = I
π
be the ratio of investment to current firm size, I assume that

the investment cost κ (i) is increasing and convex with κ (0) = 0.
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3.2 Utility Functions and the Contract Space

The vector of project-specific Brownian noise Bt := (B1t, ..., BNt) is defined on a complete
probability space (Ω,F ,P) with filtration Ft, which satisfies the usual conditions.4 Each
project’s output can be fully observed by the principal and contracted upon, while effort is
unobservable. The agent has limited liability so that for all t, Wt ≥ 0. When Wt = 0, the
agent is fired, the firm is shut down and the principal receives a salvage value of γπ.5 Let
τ = inf{t ≥ 0 : wt = 0} denote the random time at which shutdown occurs. The agent
is remunerated with a cumulative consumption process c = {ct ∈ R+ : 0 ≤ t ≤ τ} with
non-negative increments,6 and the principal prescribes a vector-valued effort process7 a ={
(ait)

N
i=1 ∈ {0, 1} : 0 ≤ t ≤ τ

}
. Effort and consumption are both progressively measurable

with respect to Ft.

The agent seeks to maximize his discounted lifetime utility W0, which is given by

W0 = E

[ˆ τ

0

e−γtdct − e−γtπth
∑
i

aitdt |F0

]
. (3)

Here, dct is the increment in the consumption process the manager receives, and the man-
ager’s utility consists of the expected discounted value of consumption payments minus his
expected effort cost, h

∑
i ait, which is linear and symmetric in each task effort ait, and

increases with firm size.

Under any incentive compatible contract, the agent’s and the principal’s information sets
are identical. The principal is risk neutral, and seeks to maximize the following expression

J0 = E

[ˆ τ

0

e−rt

((
πt

N∑
i=1

µiait − πtκ (it)

)
dt− dct

)
|W0, π0

]
. (4)

4See Karatzas and Shreve (1991), p. 10.
5Note that this regime is not renegotiation proof as the value function of the principal is upward sloping in

the agent’s continuation value when the latter is close to zero. Then, renegotiation would be beneficial since
instead of shutting the firm down, the principal would benefit from giving the agent a higher continuation
value. While allowing renegotiation diminishes the principal’s ability to incentivize the agent, it does not
alter the qualitative properties of the contract.

6Precisely, we have ct − limt′↑t ct′ ≥ 0 almost surely for all t.
7The discreteness of the effort process poses a potential problem. If the agent’s effort ait is not of bounded

variation on an interval of time, the agent’s continuation value process may not be sufficiently well behaved
to guarantee a unique strong solution for the contract. The problem can be solved either by assuming a
small positive switching cost which is incurred by the principal whenever the effort changes, so that it will
never be optimal to change the project allocation more than once on a sufficiently small interval of time,
or by considering an ε-optimal strategy which leaves the project allocation constant on such interval. The
model with switching costs is studied in Section 6, and the existence of ε-optimal strategies is proven in
Proposition (17) in the Appendix.
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Here, the first term are consists of the expected discounted cash flows from the projects,
conditional on the manager’s effort. The principal bears the expenses for investment in the
firm πtκ (it), as well as for consumption payments to the manager.

I assume that principal and agent have different discount factors, and that the principal
is more patient, i.e. r < γ. As noted in DeMarzo and Sannikov (2006), this assumption
prevents the principal from postponing the agent’s consumption forever. Finally, I impose
an upper bound on relative investment, i ≤ ī < r + δ to ensure that the principal’s value
function is bounded.8

3.3 Incentive Compatibility

Given effort and consumption schedules (a, c) and firing time τ , the manager’s continuation
utility at time t is given by

Wt = E

[ˆ τ

t

e−γ(s−t)

(
dcs − πth

∑
i

aitds

)
|{as, cs}s≥t,Ft

]
,

which is the analog of expression (3) at time t > 0.

Then, the martingale representation theorem9 implies that the agent’s continuation valueWt

follows a diffusion process in the multidimensional Brownian motion Bt. Intuitively, given
any project selection rule a and consumption schedule c, the only source of uncertainty in
the model is the vector of Brownian noise terms Bt, and therefore at each point in time the
agent’s continuation value must be a function of the realizations of this uncertainty.

Lemma 1. For any progressively measurable effort process a and consumption process c,
there exists a collection of progressively measurable and square integrable stochastic processes{
(ψit)

N
i=1 : 0 ≤ t ≤ τ

}
, such that

dWt =

(
γWt + πth

∑
i

ait

)
dt− dct + πt

N∑
i=1

ψitdBit. (5)

The contract is incentive compatible (IC) if and only if

ψit ≥
σi
µi
h (6)

8If i = r + δ the shareholders’ value of the firm might be infinite, since the firm would grow at a fast
enough rate to negate any discounting.

9See Karatzas and Shreve (1991), Theorem 4.15, p. 182 for the statement and Sannikov (2008) for its
application to dynamic contracts.
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whenever ait = 1.

I interpret ψit as the sensitivity of the agent’s continuation value with respect to the risk
of project i. Since the principal can control both consumption and effort, she is able to
implicitly determine how much the agent’s continuation utility responds to uncertainty, and
we can think of ψit being chosen directly by the principal. When the output of project i
features an unexpected jump by dBit, the agent’s continuation value changes by ψitdBit. To
see how this impacts the agent’s decision, consider a deviation for a short period of time dt,
during which the manager is shirking in project i.

Without exerting effort, his utility rises by πthdt. Because the principal would not know
that the agent is shirking, she expects that dBit =

πt
σi
(dxit − µidt), while the true process is

dxit = σidBit. Hence, the principal’s expectation of the noise process falls short by −πt µiσi dt,
and by the representation, the manager loses ψiπt µiσidt in continuation utility. To induce
effort, this loss must be larger than πth, which leads to equation (6).

Lemma 1 also illustrates why the signal to noise ratio is important for providing incentives.
When the manager shirks, he affects the principal’s beliefs about the realization of dBit.
When the project is relatively safe, and the ratio SNi =

µi
σi

is large, observing a shortfall in
output by µidt while the manager is working is a very unlikely event, and corresponds to a
large negative realization of the Brownian noise. Thus it is easy to detect shirking and the
agent’s continuation value does not have to react much to output to provide incentives .10

Analogously to the discrete time contracting literature, equation (5) should be interpreted
as a promise keeping constraint. Given a continuation value Wt, higher consumption dct

implies that ceteris paribus, the manager’s promised value at the end of a small interval of
time Wt+dt will be smaller, while demanding more effort implies that the principal has to
promise more utility to the agent in the future.

3.4 The Optimal Contract

The with the result of Lemma 1, the optimal contract can be expressed as a choice of
processes

{
(ψit)

N
i=1 , ct, it : 0 ≤ t ≤ τ

}
, and a firing time τ by the principal. The principal

seeks to maximize the firm value (4), subject to the promise keeping constraint (5), the law
10Formally, in equation (5), the shortfall in output is equivalent to a very large negative realization of

dBit, which for given ψit implies that Wt falls by a relatively large amount, while the opposite is true for
when σi is large.
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of motion for firm size, and the incentive compatibility condition (6).

J(W0, π0) = max
{ψit,ct,τ,it}

E

[ˆ τ

0

e−rt

(
πt

N∑
i=1

µiaitdt− dct − πtκ (it) dt

)
+ e−rτγπt |F0

]
(7)

s.t. dWt =

(
γWt + πth

∑
i

ait

)
dt− dct + πt

N∑
i=1

ψitdBit

dπt = πt (i− δ) dt

ψit ≥ σi
µi
h if ai = 1

Notice that except for the payout to the agent, dct, the principal’s value function J (W,π)

is scalable by πt. The same holds true for the agent’s continuation value dWt, and

dWt

πt
=

(
γ
Wt

πt
+ h

∑
i

ait

)
dt+

N∑
i=1

ψitdBit.

This suggests that if we take wt = Wt

πt
as the relevant state variable, the principal’s value

function can be scaled by πt and expressed in terms of wt alone. Then, as I verify in
Proposition 2, the principal’s value function satisfies a scaled version of the HJB equation,
and is given by

rj (w) = sup
c,a,i

∑
i

µi−κ (i)+ j′ (w) ((γ − i+ δ)w + hn)+ j′′ (w)
1

2

∑
i

ψ2
i +(i− δ) j (w) , (8)

where n =
∑N

i=1 ai is the number of projects.11

4 Properties of the Optimal Contract

4.1 Shape of the Value Function

The HJB equation (8) is key to characterizing the optimal contract. The proposition below
verifies that the solution to this equation equals the principal’s optimal value function. This
solution is then used in the following sections to characterize the choice of projects, and
investment.

11The argument is detailed in Section A.1 of the Appendix.
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Proposition 2. The HJB equation (8) with the boundary conditions

j (0) = l

j′ (w̄) = −1

j′′ (w̄) = 0

has a unique twice continuously differentiable solution on the interval [0, w̄], and equals the
principal’s optimal value function. The region (0, w̄) is partitioned into continuation regions
Ca on which a particular project selection a is optimal, and cutoffs w (a, a′) on which the
project selection changes. The value function is strictly concave on (0, w̄), and three times
continuously differentiable on any subset of (0, w̄) with nonempty interior on which project
choice is constant. The third derivative j′′′ (w) exhibits a jump whenever project selection
changes.

Figure 1 illustrates the shape of the value function. If the principal pays the agent, her
value changes by − (1− j′ (wt)) dct.12 Therefore, dct > 0 if j′ (wt) ≤ −1, and dct = 0

otherwise. If the principal’s value function is strictly concave, the point w̄ at which the
agent is paid is unique, since j′ (w) is decreasing and by the promise keeping constraint (5),
wt is reflected downwards at w̄. This is captured by the boundary condition j′ (w̄) = −1.
The second condition j′′ (w̄) = 0 is the super contact condition, and guarantees that the
payment threshold w̄ is chosen optimally.13 When the continuation value reaches zero the
agent is fired, because the limited liability condition prevents the principal from punishing
low outputs, which makes it impossible to incentivize effort.

4.2 Project Choice

In the first best benchmark, a project is chosen at all points in time if the average payoff is
higher than the effort cost, i.e. µi ≥ h, and never chosen otherwise. Hence, project choice
follows the NPV criterion, and is independent of the agent’s continuation valueW or current
firm size π.

Under moral hazard, the choice of projects is determined from the scaled HJB equation (8).
12The first term is the direct loss in cash paid to the agent, while the second term measures how the change

in the agent’s continuation value affects the principal.
13Since j′ (w̄) = −1, the principal is indifferent between paying and not paying the agent at w̄. If for

example j′′ (w̄) < 0, it would be optimal for the principal wait until wt reaches some w′ > w̄, and then pay
the agent, since at this point − (1− j′ (w′)) dct > 0. The optimal payment threshold w̄ is the one at which
this is not profitable.
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Figure 1: Shape of j(w) and continuation regions

A convenient feature of this representation of the principal’s problem is that the function to
be maximized is separable in the individual projects. Therefore, conditional on the agent’s
scaled continuation value, we can calculate the marginal benefit of each project separately,
which is given by

bi (w) = µi + j′ (w)h+ j′′ (w)
1

2
ψ2
i . (9)

Projects are executed whenever bi (w) > 0, and the shape of the value function obtained in
Proposition 2 can be used to characterize the marginal benefit function. To see how project
choice and NPV relate, we can rewrite equation (9) as

bi (w) = µi − h+ (j′ (w) + 1)h+
1

2
j′′ (w)ψ2

i .

Since j′ (w) ≥ −1, the term (j′ (w) + 1)h is positive for all w, while 1
2
j′′ (w)ψ2

i is negative.
Intuitively, 1

2
j′′ (w)ψ2

i measures the cost of providing additional incentives for the agent, and
(j′ (w) + 1)h ≥ 0 measures the benefit of of moving closer to the boundary w̄.

Since ψ2
i = h2

(
σi
µi

)2
= h2

SN2
i
, we have

bi (w) = NPVi + (j′ (w) + 1)h+
1

2
j′′ (w)

h2

SN2
i

. (10)

The marginal benefit of implementing a project depends positively on both the net present
value and the project’s signal to noise ratio. While a higher NPV implies higher expected
payoffs from the project, the signal to noise ratio works though the manager’s incentives.
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SN
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PV

Figure 2: NPV vs. SN boundary

The lower the ratio, the harder it is to detect shirking, and the stronger the incentives have
to be to motivate the agent. By the representation in equation (5), this is equivalent to a
higher volatility of wt, which induces a higher likelihood of hitting the boundary at which the
agent is fired in the future. Since termination does not occur in the first best, it is inefficient,
and the cost of increasing the termination probability is represented by j′′ (w).

Setting bi (w) = 0, we can derive the minimal NPV which the firm requires to implement a
project,

NPV (SN, w) = − (j′ (w) + 1)h− 1

2
j′′ (w)

h2

SN2 .

Consequently, all projects with higher than the minimal NPV are implemented, while all
others are not. The threshold is a function of both the current scaled continuation value,
as well as the project’s signal to noise ratio. Figure 2 illustrates the non-linear relationship
between NPV and SN and outlines the set of projects which are chosen when wt = w.

In the optimal contract, both over- and underinvestment can occur. Underinvestment is
due to the cost of incentives, and occurs whenever a project’s positive NPV is not sufficient
to compensate for the increase in termination probability, while overinvestment is due to
the manager’s limited liability constraint.14 The principal cannot demand monetary com-
pensation from the manager after bad performance, and must terminate all projects once
wt hits zero. To avert this, the principal can allocate more projects to the manager, which

14Standard explanations for overinvestment include ’empire building’ as in Jensen (1986), and private
benefits to the manager. In my model the effects are entirely driven by the agency friction.
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increases his disutility of effort, and serves as a less inefficient punishment device.15 This
effect may compensate for the negative NPV of a project, and firm benefits from lowering
the future expected termination probability, in exchange for current losses. The projects
given as a punishment cannot be too difficult to incentivize, since otherwise the principal
would have to increase the volatility of the manager’s continuation value, which in turn
makes firing more likely. In accordance with Figure 2, we therefore observe underinvestment
in projects which are relatively difficult to incentivize, and have a low signal to noise ratio,
and overinvestment in projects where shirking is easy to detect.16

4.3 Project Portfolio Dynamics

The choice of projects evolves over time as wt changes, and the marginal benefit of each
project is non-monotonic in w. A higher continuation value implies a higher cost of compen-
sating the agent for effort, which is captured by j′ (w) being decreasing. When j′ (w) > 0,
the cost of incentives may be increasing, because the principal’s value increases with w, so
she stands to lose more if a shock to the project outputs drives the contract into termination.
When w is sufficiently large, and j (w) is decreasing, the cost of incentives is decreasing in w
as well, since termination becomes less likely, and the potential loss decreases with w. When
the continuation value approaches the payout boundary w̄, the cost of incentives becomes
negligible and the relative importance of a project’s SN ratio vanishes, while the instanta-
neous cost of compensating for effort is exactly h. Thus, the marginal benefit function at w̄
is

bi (w̄) = µi − h,

and the project allocation converges to the first best when wt approaches w̄. Any negative
NPV projects with low ψi which have been taken at a lower continuation value are phased
out, while any projects with positive NPV and high ψi are taken.

This result is illustrated in figure 3. The red function shows the project boundary for small
w, while the black and blue functions represent the boundaries for successively larger w. As
w → w̄, the break-even NPV line in the figure approaches the x-axis.

As the continuation value grows, and the costs of incentives decline, it is intuitive to think
15By equation (5), this increases the average growth rate of the continuation value, and therefore lowers

the probability of hitting the firing boundary in the future.
16A secondary effect in favor of overinvestment is that the agent is paid only when wt reaches w̄. When the

continuation value is low, the probability that wt hits zero before reaching w̄ is high, and thus in expectation,
the principal only has to compensate the agent for a fraction of the incurred effort cost. This explains why
j′ (w) > −1 for w < w̄.
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Figure 3: Project Cutoffs as a function of w

that the firm’s optimal portfolio shifts towards high-NPV, low-SN projects, while projects
with negative NPV are sorted out. Proposition 3 details the sense in which this intuition
holds. When the cost of incentives is decreasing, the marginal benefit of any project which
is sufficiently difficult to incentivize increases with w. Thus, if at a certain cutoff a new
project is taken, its risk-return ratio must be relatively high compared to other projects.
The opposite holds for projects which are relatively easy to incentivize, which see their
marginal benefit decrease with w. If a project is removed, it must be among these.

Proposition 3. If j′′′ (w) ≤ 0, b′i (w) < 0 for all projects i. If j′′′ (w) > 0, there exists a
cutoff ψ̄ (w) such that b′i (w) > 0 if and only if ψi > ψ̄ (w). If

ψ2
i >

1

n

∑
j

ψ2
jaj,

then b′i (w) > 0.

If the relationship between risk and return of every project is linear, the result in Proposition
3 can be sharpened, and for w sufficiently large, an increase implies that the firm adds project
which have both higher risk and higher return.

Corollary 4. Suppose the σi = Kµi for all i and K > 0. Then for all w, the projects with
the highest return µi are chosen, and b′i (w) > 0 for all i whenever j′ (w) ≤ 0.

Finally, we can characterize the externalities between projects induced by the agency prob-
lem. In the first best, project choice is static and projects are chosen independently of each
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other. Under moral hazard, taking w as given, bi (w) is still independent of bj (w) for j ̸= i.
In this sense, at each point in the state space, the choice of projects is independent. This
is surprising in the light of the literature on static multitasking under moral hazard. For
instance, Laux (2001) shows that in a setting with a risk neutral principal and agent, and
limited liability, bundling projects increases the principal’s payoff, since it allows to extract
more of the agent’s rents by loosening the limited liability constraint. In my setting, there
is no such first order effect of project choice on payoff, since the value function is twice
continuously differentiable.17 Intuitively, there is no hysteresis effect as in the real options
literature and the firm can freely switch between projects.

There is, however a second order effect. Choosing a project generates an externality not on
the current payoff of other projects, but on the rate at which their value changes with w.

Proposition 5. At any threshold ŵ where a project is added or removed, j′′′+ (ŵ) < j′′′− (ŵ).

4.4 Project Choice and Investment

In the contract under moral hazard, optimal investment i (w) is strictly below the first best
level of investment. The first order condition for investment in equation (8) implies that

κ′ (i (w)) = j (w)− j′ (w)w.

Since κ is convex and the right hand side is increasing by the concavity of j, i (w) is increasing
in w. At w̄, investment is still below the first best level, which can be seen from plugging the
boundary conditions into equation (8), and comparing the resulting expression to the first
best payoff

jfb (w) = max
i

∑
i (µi − h)+

r − i+ δ
− w,

where (µi − h)+ = max {µi − h, 0} . This implies that for all w, i (w) < ifb.

In my setting, a low scaled continuation value implies both less efficient investment and
portfolio choice. However, it does not imply underinvestment in both projects and i (w), and
it is possible that low i is coupled with overinvestment in projects.

17If I were to introduce a fixed cost with project implementation, the value function would not be C2

at the cutoffs and hence there would be a first order externality between projects. Implementing another
projects causes a discrete jump in j′′, and hence in bi for all projects. See Section 6.
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4.5 Output- vs. Project-Based Incentives

In this subsection, I illustrate how the criterion for project choice changes when the agent
cannot be offered incentives based on individual project outputs. Suppose that the contract
can only be conditioned on total output dxt =

∑
i dxit. With these output-based incentives,

repeating the argument from Lemma 1 shows that the agent’s continuation value satisfies

dWt = (γWt + h(at)) dt+ ψ̄tπt

N∑
i=1

σidBit, (11)

and the IC constraint becomes

ait = 1 ⇒ ψ̄t ≥ h

µi
. (12)

Hence, the firm chooses a certain portfolio of projects, and the project with the lowest NPV
determines ψ̄, the risk exposure required to incentivize all projects in the portfolio. To see
why this needs to be the case, consider a variant of the intuition outlined in Section 3.3. If
the manager shirks on project i for a small period of time dt, he saves hdt in effort cost, but
at the same time forgoes µidt in payoff, and by the representation (11), suffers a reduction
in continuation value by −µiψ̄. The deviation is not profitable when ψ̄ ≥ h

µi
, and since the

principal can choose only one ψ̄, it must be high enough to incentivize effort on all projects
in the portfolio. Since j′′ (w) < 0, we have

ψ̄t = max
i:ait=1

h

µi
.

Equivalently, given a portfolio and a value for ψ̄, all projects in the portfolio necessarily
satisfy

NPVi ≥ h
ψ̄ − 1

ψ̄
,

and therefore the portfolio appears to have been chosen using a hurdle rate or minimum
NPV criterion.

Since the hurdle NPV depends on both the current scaled continuation value w as well as the
current project selection, it shifts non-monotonically as w changes. It will however converge
to the NPV > 0 criterion when w approaches w̄.

We can deduce further properties of the contract by examining the principal’s value function,
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which is given by

rj (w) = sup
c,a,i

∑
i

µi − κ (i) + j′ (w) ((γ − i+ δ)w + hn) + j′′ (w)
1

2
ψ̄2
∑
i

σ2
i + (i− δ) j (w) .

The main difference to equation (8) is the coefficient of j′′ (w). Under project based incentives
the total risk inherent in the contract is

∑
i ψ

2
i =

∑
i σ

2
i

(
h
µi

)2
, while output based incentives

raise the coefficient to
∑

i σ
2
i ·maxi:ai=1

(
h
µi

)
. Hence, for any effort profile a with at least two

projects implemented, the agent’s risk exposure is strictly higher under output than under
project based incentives, as long as h

µi
̸= h

µi
for some projects i and j with ai = aj = 1,

and in particular the risk exposure on any project is at least as high as under project based
incentives. Therefore, conditioning the incentive contract on total output alone cannot be
efficient, since it exposes the agent to excessive risk.

4.6 Allocation of Funds in Projects

Suppose that each period, the principal can distribute kπ resources, with k ∈ (0, 1) among
the projects to increase the effectiveness of managerial effort. The resource allocation satisfies∑

i

πi ≤ kπ, (13)

and is complementary to the agent’s effort, so that

dxit = πitµiaitdt+ σiπtdBit.

Total instantaneous cash flow hence follows

dxit = πt

(∑
i

π̃itµiaitdt+ σidBit

)
,

where π̃it = πit
πt

is the fraction of resources allocated to project i.

In the first best, the firm engages in an extreme form of winner picking, since only the
project with the highest NPV receives all the funds. With agency however, project funding
not only acts to increase the cash flow, but also serves to change incentives. Given a funding
allocation π̃i, the risk exposure required to motivate effort is given by

ψi ≥ h
σi
µi

1

π̃i
,
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and project funding serves to lower the required risk exposure on the agent’s effort, because
it improves the signal to noise ratio of the project output dxit, which makes shirking easier
to detect. In this sense, funding has an added benefit next to improving the efficiency of the
agent’s effort. The principal’s scaled HJB equation (8) now changes to

rj (w) = sup
c,a,i,π̃i

∑
i

π̃iµi − κ (i) + j′ (w) ((γ − i+ δ)w + hn)

+j′′ (w)
1

2

∑
i

(
h
σi
µi

1

π̃i

)2

+ (i− δ) j (w)− λ

(∑
i

π̃i − k

)
,

where λ is the Lagrange multiplier associated with resource constraint (13). Given project i
is implemented, its capital allocation solves the FOC18

µi − λ− j′′ (w)
h2

SN2
i

1

π̃3
i

= 0,

which implies that

π̃i =

(
−j′′ (w)h2

SN2
i (λ− µi)

) 1
3

.

Hence, project funding is decreasing in the project’s SN ratio, and low risk projects receive
lower funding compared to high risk projects, since for high risk projects, the marginal value
of lowering the cost of incentives is higher. The link between return and funding remains
positive, and higher payoff projects receive relatively more funds.

As the following Lemma shows, project funding increases in w only for projects with suffi-
ciently high NPV. This is intuitive, since as w rises, the costs of exposing the agent to risk
decline, and therefore the motive to distort funds away from high payoff and towards high
risk projects diminishes as well.

Lemma 6. π̃′
i (w) is positive whenever µi − λ > −λ′(w)

j′′′(w)
j′′ (w)h and negative otherwise.

Moreover, λ′ (w) ∝ −j′′′ (w).

Proof. We have

∂π̃i
∂w

=
1

3

(
−j′′ (w)h2

SN2
i (λ (w)− µi)

)− 2
3

h2SN−2
i

j′′′ (w) (µi − λ (w)) + λ′ (w) · j′′ (w)
(λ (w)− µi)

2

which is positive whenever the condition holds. The result on λ′ (w) can be obtained by
plugging the above expression into (13), and solving for λ′ (w).

18Note that λ > µi for all implemented projects, since otherwise π̃i → ∞, which violates (13).
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4.7 Project Dynamics with Stealing

In DeMarzo and Sannikov (2006) and DeMarzo et al. (2010), instead of putting in effort, the
agent decides whether or not to steal from the principal. If he does, he receives an additional
payoff of ϕdt, while the principal’s expected increment in profit from a project is µi (1− ϕ) dt,
where ϕ ∈ (0, 1) measures the loss of social value from stealing. The main difference between
this setting and mine is that in the optimal contract, the principal does not have to com-
pensate the agent for effort when she implements the no-stealing outcome. Therefore, the
overinvestment result of Section 4.2 cannot arise, since giving the agent additional projects
has no impact on his utility in equilibrium.19

A benefit of the stealing setup is that the marginal benefit of each project is exclusively
driven by the tradeoff of additional payoff versus the cost of providing incentives. With
stealing and no investment, the HJB equation (8) becomes

rj (w) = max
a

∑
i

µi + j′ (w) γw + j′′ (w)
1

2

∑
i

ψ2
i , (14)

and each project’s marginal benefit function is simply bi (w) = µi + j′′ (w) 1
2
ψ2
i . This allows

for simpler dynamics of the optimal project portfolio.

Proposition 7. When the agent can steal the project output and the principal cannot invest
in capital, then there exists a unique threshold w3 ≥ 0 such that j′′′ (w) < 0 for all w < w3

and j′′′ (w) > 0 for all w > w3. Left of w3, no projects are added as w increases, and right
of w3, no projects are removed as w increases.

The Proposition implies |j′′ (w)|, and with it the cost of providing incentives, is highest for
intermediate values of w. The principal’s willingness to tolerate additional risk in the contract
depends on the likelihood of termination, and the potential gains and losses from high or low
output. When w is low, the principal’s expected payoff is close to the termination payoff.
The principal loses little if a bad outcome occurs, and gains much if a good outcome propels
the contract into a region where termination is unlikely. Therefore, while she is still risk
averse, her tolerance for additional volatility is relatively high. As w increases, termination
becomes less likely, but at the same time the principal’s value, and with it the loss from
a bad outcome, increases. For w < w3, this effect dominates, and j′′ (w) is decreasing. If
w is sufficiently high, the first effect dominates, and j′′ (w) increases towards zero. In line

19The projects which are not taken in the first best are those whose payoff µi is negative. Because of the
cost of incentives, these projects continue to have a negative payoff under moral hazard. Therefore, there
can only be underinvestment relative to the first best.
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with this intuition, when w is low, the principal takes on more projects than when w is at
intermediate values, and thus gamble by increasing the volatility in the contract.

The case with stealing and no investment also simplifies the dynamics of the hurdle rate, and
the associated project selection when the contract conditions on total output, as in Section
4.5.

Proposition 8. In the case of output based incentives, let µ (w) be the hurdle rate when the
agent’s continuation value is w, and ψ̄ (w) = maxi:ai=1

h
µi

be the pay performance sensitivity
associated with the optimal project portfolio at w. When the agent can steal and the principal
cannot invest, the result in Proposition 7 holds. For w < w3, µ (w) is increasing on any
interval where project choice stays constant, and jumps up when project choice changes, while
ψ̄ (w) jumps down when project choice changes. The opposite holds for w > w3.

For w < w3, the cost of incentivizing the project portfolio is increasing, and so is the hurdle
rate µ (w), as long as the project selection remains constant. When the selection changes, it
must be that a project is removed, and ψ̄ (w) jumps downwards, which implies a lower cost
of incentives for the new portfolio, and therefore a lower hurdle rate.

5 Implementation

In this Section I discuss how the optimal contract can be implemented. I consider two setups,
depending on whether the firm can or cannot issue equity on individual projects. In the first
case, the firm holds cash balances and assigns an equity share in every active project to
the manager. The shares are vested, meaning that the manager will lose shares in current
projects, or gain shares in new ones depending on his performance.

When only shares on the total output of the firm, and not the individual projects, can be
issued equity is not sufficient to implement the optimal contract. The intuition for this is
analogous to Section 4.5, and I show that the hurdle rate allocation from that section is
implemented when the implementation consists of firm level equity only. To achieve the
second best, the implementation must feature a measure of the manager’s performance in
the individual projects, which in my model shares many features of bonus contracts observed
in practice.
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5.1 Project-Specific Equity

As a benchmark, consider a firm which can issue equity for each individual project, and holds
a cash balance to finance its operations. Mt denotes the total stock of cash, which can be
allocated among the projects so that Mt =

∑
iMit where Mit is the stock of cash associated

with project i. We have

dMit = rMitdt+ dXit − dDivit − dcit − αiκ (i) dt. (15)

The cash stock earns a total interest of rMit, where r is the interest rate, has inflows from
the project’s output dXit, and outflows from the dividends paid on the equity, the share of
the cost of investment κ (i), and the payout to the agent.20

Equity holders are assumed to require a minimal dividend payoff which satisfies

dDivit = (r − γ)Mitdt− αiκ (i) dt. (16)

The manager is endowed with a personal account21 with balance At, which pays interest at
rate γ, and is used in part to pay the manager. At any point in time, the manager receives
an equity share Ψit in any active project. Whenever a new project is executed, the manager
buys equity in that project at a pre-determined price, and when a project is halted, the
manager sells off the equity. Proceeds from these sales and purchases are deposited in the
personal account.22 Finally, the manager may not access funds inside the account, except
for when a dividend dct is paid. Formally, the account balance satisfies

dAt = γAtdt+ pitdΨit − dcAt (17)

where dcAt is the manager’s consumption paid from the account, pit the transfer price on
share sales and purchases and dΨit = Ψit − limt′↑tΨit′ denotes the amount of shares which
are purchased if dΨit > 0 or sold if dΨit < 0.

By setting the correct transfer prices and equity shares, and firing the agent when the sum
of his stake in the firm and his personal account is sufficiently low, the optimal contract can

20The terms dcit, Mit and αi are for accounting purposes only. Since the agent must receive a payout dct
when w hits w̄, any assignment of payouts to the projects such that

∑
i dcit = dct yields the same result.

The same holds for the assignment of investment costs towards projects, which are split according to share
αi, with

∑
i:ai=1 αi = 1.

21The unit of account is irrelevant, and the balance on the manager’s account can be interpreted in terms
of cash or an incentive point scheme.

22I assume that it is possible for the account to have a negative balance.
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be implemented.

Proposition 9. Suppose the firm holds a cash balance Mt which satisfies
∑

iMit =Mt and
equations (15), (16) and (17) hold. Further, suppose the equity share in each active project
is Ψit =

ψit

σi
, the manager is fired whenever

∑
iΨitMit+At = 0, for each i and t, the transfer

price equals pit = Mit. Then the contract from Section 4.5 will be implemented and the
agent’s continuation value satisfies Wt =

∑
iΨitMit + At.

In the optimal contract, despite the fact that project choice is discrete, the manager’s contin-
uation value Wt is a continuous function of time. An intuitive, but wrong, implementation
of the contract is to simply strip the manager of his equity share whenever a project is halted
without further compensation. This would imply a jump in the continuation value function,
since by losing the equity share, the manager loses the claim to future dividends, and distort
incentives right before the jump. The transfer prices pit are chosen to exactly offset the
change in the manager’s value, which is given by Mit.23

The implementation depends not only on the cash holdings of the firm, as in DeMarzo et al.
(2010), but also on the sum of the value of the personal account At and the naively calculated
value of the managerial share in the firm’s cash stock SCt =

∑
iΨitMit. Whenever the sum

reaches an upper bound, the firm pays dividends, while when the sum reaches zero, the
manager is terminated. When dividend payments dct are made, it is easy to see that it
does not matter whether the money is awarded to the manager from the equity stake, or
an equivalent payout from the personal account. Hence the personal account may serve as
another way to reward the manager without paying special dividends on equity.

5.2 Firm Level Equity

In reality, firms issue stock based on the entire firm’s performance, instead of individual
projects. In the following, I describe how to implement the contract when the equity stake
can only be conditioned on the total cash holdings Mt, and the agent is restricted to a single
equity share Ψ̄t.

The equity stake grants the manager a fraction of ownership in the firm’s total cash holdings
Mt =

∑
iMit, as well as any dividend payments. There is a single dividend process, which

23In DeMarzo et al. (2010), DeMarzo and Sannikov (2006) and many other works, the agent’s effort
level and therefore the optimal risk exposure is constant. In these settings, the optimal contract can be
implemented via an equity share which is constant over time, and changes in the agent’s equity share are
not an issue.
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satisfies simply
dDivt = (r − γ)Mtdt− κ (i) dt, (18)

while the cash holdings process follows

dMt = rMtdt+ dXt − dct − dDivt − κ (i) dt, (19)

and again the personal account is used to escrow proceedings from the manager’s equity
transactions. Its balance evolves as

dAt = γAtdt+ ptdΨt − dcAt . (20)

Inserting the dividend process into equation (19) makes clear that holding a single equity
stake Ψ̄t conditions the manager’s future payouts on the total output of all active projects,
dXt =

∑
it dXit. Therefore, this implementation will not achieve the second best, but instead

implement the hurdle rate allocation from Section (4.5).

Proposition 10. Suppose that cash balance, dividend payouts and personal account balance
follow (19), (18) and (20) respectively. Further, suppose the equity share is

Ψt = max
i:ai=1

h

µi
,

the manager if fired whenever ΨtMt + At reaches zero, and the transfer price is pt = Mt.
Then the contract from Section 4 will be implemented and the agent’s continuation value
satisfies Wt = ΨtMt + At.

To see intuitively why only the hurdle rate allocation can be implemented, note that the
growth of the firm’s cash stock declines by πtµidt on average if the manager shirks. Given
equity share Ψt, the growth in the value of the manager’s holdings declines by Ψtπtµidt,
while he saves πthdt by not exerting effort. Thus, shirking is not optimal if for all active
projects

Ψt ≥ max
i:ai=1

h

µi
,

which is the same expression as for the optimal risk exposure in Section 4.5. Thus, the
implementation provides the same incentives.

Proposition 10 has an interesting interpretation. In Section 4 I have shown that hurdle
rates can arise as a suboptimal outcome. Thus, when the manager’s contract consists pre-
dominantly of an equity share, the inefficient hurdle rate contract is the only one that is
implementable. Therefore, the widespread use of hurdle rates may not be optimal, as for
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example Berkovitch and Israel (2004) suggest, but instead the result of flawed incentive
contracts, which put too much emphasis of firm-level equity to measure performance.

5.3 Firm Level Equity and Bonus Contracts

In order to implement the optimal contract, it is necessary introduce a project-dependent
component. In a survey on managerial compensation, Murphy (1999) finds that the majority
of incentive contracts feature a mix of equity and boni, with the latter being a linearly
weighted function of the manager’s performance in individual categories set by shareholders.
Below, I derive an implementation which rationalizes these features.

Formally, the laws of motion for cash stock and dividends are the same as in equations (19)
and (18). The manager receives a constant equity share Ψt, and bonus payments Pt, which
are linear in individual project outputs

dPt =
∑
i

βitdXit, (21)

with positive weights βit. Since in the optimal contract, the manager is not paid unless wt
hits an upper bound, the bonus payments flow into the personal account, whose balance
evolves as

dAt = γAtdt+ ptdΨt + dPt − dcAt . (22)

Proposition 11. Suppose that the cash balances, dividend process and personal account
balance are given by equations (19), (18) and (22). Further, suppose the managerial equity
share satisfies

Ψt = min
i:ai=1

Ψit,

the transfer prices are pt =Mt, and the weights in the bonus payment process (21) are

βit = Ψit −Ψt

whenever ait = 1. Then the optimal contract is implemented.

Since the shareholders prefer to fine-tune the manager’s risk exposure, the equity share needs
to be low enough to prevent unnecessary risk in the contract, which is achieved exactly by
setting it to the minimal equity stake the manager would hold if project specific shares could
be issued. Although the manager does not receive the bonus payment immediately, it raises
the balance on his account, and thus brings him closer to the payout boundary, raising his
expected continuation value as a response to past performance.
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6 Relations to Real Options

6.1 Overview

In the theory of real options, an investor chooses when to undertake a project with a fixed
cost whose value changes stochastically over time. The project carries an option value of
waiting for a higher payoff in the future, and is started at a strictly positive NPV in order
to compensate for the loss of the option. If starting the project gives access to additional
options, such as follow-up projects, these can compensate for the loss of the initial option
value, and starting a project with negative NPV may be optimal.24 Thus, the real options
framework can rationalize both over- and underinvestment in projects relative to the NPV
criterion.

My model generates both results without relying on irreversibilities or fixed costs, which are
crucial for the real options literature, and without which the option values would necessarily
be zero. Instead, over- and underinvestment arise solely because of the distortions from
moral hazard. A project with more volatile payoffs needs a higher NPV to be chosen at
a particular date not because its option value is higher, but because the principal faces an
increased risk of termination from providing the proper incentives. Similarly, a relatively
safe project with negative NPV may be chosen not because it grants access to more projects,
but serves as a more efficient means to punish the agent.

An inherent difficulty in real options models is characterizing the choice of multiple projects
simultaneously. Since each project is associated with fixed costs of starting, and potentially
stopping, choosing a particular one affects the marginal benefit of all other projects. I
confirm this intuition in Proposition 12, where I show that introducing fixed costs into my
framework induces jumps in the second derivative of the principal’s value function, and thus
in the marginal benefit function (9) whenever a project is started or stopped. When the fixed
costs are small, the model in Section 3 serves as an approximation to one which is closer to
the real options literature, which is detailed in Proposition 13.

6.2 Project Choice under Fixed Costs

Whenever the principal changes the project allocation from a to a′, she incurs an instanta-
neous cost of k (a, a′). The cost function satisfies k (a, a) = 0, k (a, a′) > 0 whenever a′ ̸= a,

24This was shown by Baldwin (1982) for product market competition, and Roberts and Weitzman (1981)
in the context of sequential investment.
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and
k (a, a′′) < k (a, a′) + k (a′, a′′)

for all a, a′, a′′ ∈ A. The last inequality implies that is is never optimal to switch from a to
a′′ via some intermediate allocation a′, compared to switching directly.25

Since the switching cost is strictly positive, it is never optimal to switch an infinite amount
of times on a finite interval of time, since the incurred cost would be infinite. Therefore,
it is possible to describe the times at which a change in the project allocation occurs as a
sequence of stopping times {τs}∞s=1, with τs < τ for all s, and the principal’s value function
can be written as

J(W,π) = E

[ˆ τ

0

e−rt

(
πt

N∑
i=1

µiaitdt− dct − πtκ (it) dt

)
+ (23)

+ e−rτγπt −
∞∑
s=1

e−rτsk (aτs−, aτs)

∣∣∣∣∣F0

]
.

Here, aτs− = limt↑τs at is the project choice right before the switch, and aτs is the one right
after. The principal faces the same constraints as in problem (7), namely the incentive
compatibility conditions and the laws for Wt and πt.

Introducing fixed costs affects the project selection policy in two important ways. First,
project selection is not linearly independent anymore and choosing a project has a first-order
effect on the marginal benefit of all projects. Second, the simple HJB equation approach is
no longer valid for characterizing the value function, because it is not twice differentiable.

Proposition 12. Let Li,a denote the second order differential operator when the investment
is i and project portfolio a is chosen, i.e. for any function ϕ ∈ C2

La,iϕ (w) =

(
(γ − i+ δ)w + h

∑
i

ai

)
ϕ′ (w) + ϕ′′ (w)

1

2

∑
i

ψ2
i . (24)

The solution to problem (23) is determined by the following system of quasi variational
25This prevents the principal from choosing a project allocation a′ for an infinitesimal amount of time.

The previous assumptions are satisfied if each project carries strictly positive fixed costs of starting and
stopping for example.
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inequalities for all a and w

min
{
rja (w)− Li,aja (w)−

∑
i

µi + κ (i) + (i− δ) ja (w) , (25)

ja (w)−max
a′ ̸=a

ja′ (w)− k (a, a′)

}
= 0.

For any a ∈ A, ja is continuously differentiable for all w, twice continuously differentiable
except for a finite number of points, and satisfies the above equation in a viscosity sense.

Further, let w (a, a′) denote the threshold at which project choice switches from a to a′. Then
for any a ̸= a′ and w (a, a′) the following conditions hold

ja (w (a, a′)) = ja′ (w (a, a′)) (26)
j′a (w (a, a′)) = j′a′ (w (a, a′)) ,

and
j′′a (w (a, a′)) ≥ j′′a′ (w (a, a′)) . (27)

Due to the fixed costs of setting up and scrapping projects, the value function depends on
the current project portfolio a, which is expressed by the notation ja(w). Equation (25)
encodes the optimal choice of a as a function of w. When a particular project selection a is
optimal, we have

ja (w) > max
a′ ̸=a

ja′ (w)− k (a, a′) . (28)

By equation (25), the HJB equation (8) holds on this region, albeit with project choice fixed
at a, and under a different set of boundary conditions, which are given by (26). In general,
the inequality (28) does not imply

ja (w) > max
a′ ̸=a

ja′ (w) ,

so that the firm may not alter a locally suboptimal project choice when the benefit of changing
the portfolio does not outweigh the fixed costs.

The principal’s value function is in general not twice differentiable at the thresholds w (a, a′).
By equation (27), j′′a (w) jumps downward after a change in projects occurs, and the firm
becomes more risk averse. Therefore, the marginal benefit function for every project is
experiences a downward jump at the threshold, even if the project itself is taken, or not
taken, at both sides. Because of these direct spillover effects, the optimal choice of projects
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has to be determined jointly, instead of a simple marginal benefit criterion. In particular, if
the new portfolio has strictly more projects than the old one, then the optimality conditions
around the threshold w (a, a′) imply

∑
i: added

(
µi + j′a′ (w)h+ j′′a′ (w)

1

2
ψ2
i

)
= (j′′a (w)− j′′a′ (w))

1

2

∑
i:ai=ai′=1

ψ2
i

+k (a, a′) ,

and the marginal benefit of adding projects must not only exceed the fixed costs, but also
compensate for the increase in risk aversion.

It is possible to recover the previous analysis as a limiting case when fixed costs are relatively
small.

Proposition 13. Let ŵ (a, a′) and w (a, a′) denote thresholds at which the optimal project
choice changes from a to a′ in the case without26 and with fixed costs, and let j and ja denote
the respective value functions. Then as maxa,a′∈A k (a, a′) → 0 we have for all a, a′ ∈ A,
ŵ (a, a′) → w (a, a′), and for all w, ja (w) → j (w) and

∣∣j′′a+ (w)− j′′a− (w)
∣∣→ 0.

The proposition specifies in which sense we may take the model in Section 3 as an approxima-
tion to a real options model with fixed costs. When these costs are small, the value functions
converge towards j, the value function without costs and the marginal benefit function bi

will be approximately continuous. This implies that in the limit, the same criterion can
be used for determining the project selection portfolio as in Section 4 and that the cutoffs
for optimal project choice coincide. Moreover, the measure of the subset of w on which a
particular project choice is optimal with fixed costs, but not chosen when k > 0 converges
to zero.

7 Conclusion

I analyze a continuous time moral hazard problem in which the manager’s effort is distributed
among different projects. Unlike past studies, project choice is simultaneous, and the possible
feedback effect between projects is explicitly considered. The model sheds light on the
optimal choice of projects under moral hazard, as well as the distribution of funds among
projects and the persistence of bonus contracts in CEO compensation. Further, it explains

26Note that without fixed costs we have the symmetry ŵ (a, a′) = ŵ (a′, a).
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the use of different criteria to evaluate projects aside from NPV, which is broad practice in
companies, as shown by Graham and Harvey (2001).

In the optimal contract, projects are selected whenever their NPV is above a cutoff depending
on the firm’s current cash stock, as well as the project’s risk-return ratio. This cutoff changes
stochastically over time, and depends on the agent’s cumulative past performance. Firms
with a large free cash stock relative to firm size feature a relatively efficient investment
portfolio, comprised only of projects with positive NPV, whereas firms with a low cash stock
suffer from an inefficient choice of investment projects, passing up positive NPV projects
when their risk is too high. The absolute benefit of projects with above-average risk increases
with the free cash flow when the cost of incentives is decreasing, while the benefit projects
which are relatively safe decreases. The first best project selection schedule is attained
whenever the free cash flow is large enough. The manager is given riskier projects after a
history of sufficiently good performance, while a poorly performing manager will see either
the number of projects assigned to him diminished, or be given relatively safe projects as a
punishment.

There is a negative externality between projects, which, unlike in the static multitasking
literature is of second order only, and affects the rate at which a project’s benefit changes
with the state variable. If the firm can allocate funds between projects, fund allocation
is distorted away from the most profitable to the most risky projects. This inefficiency
diminishes as the free cash flow becomes sufficiently large. Finally, the contract can be
implemented using an equity share, as well as a bonus payment contingent on performance
in the individual tasks.

As described in the introduction, the model can be applied to investment situations whenever
the choice of projects is discrete. This allows studying issues such as R&D efforts, the opening
of new manufacturing plants, natural resource exploration, and diversification into different
markets, to name a few. The empirical literature on firm investment has overwhelmingly
focused on a firm’s aggregate investment, which is treated as a continuous variable. My
model constitutes a theoretical benchmark which makes predictions on a firm’s entire project
portfolio, and may be used to test against data, once estimates of the individual projects’
risk and volatility have been obtained, instead of providing insights into the choice of one
investment project in isolation.
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A Proofs

A.1 Scaling of the Value Function

Given the combined stopping and control problem in (7), suppose that the principal’s HJB
equation satisfies the following HJB equation

rJ = max
a,i

π
∑
i

µiai − πκ (i) + Jw

(
γW + πh

∑
i

ait

)
+

1

2
Jwwπ

2
∑
i

ψ2
i + Jππ (i− δ) (29)

on some region C of R2, with the boundary conditions J (0, π) = lπ, and Jw (W,π) = −1

and Jww (W,π) = 0 on the boundary of C for which W > 0.

Taking a guess and verify approach, let w = W
π

and πj (w) = J
(
W
π

)
. Using Jπ = j (w)−w ·

j′ (w), Jw = j′ (w) and Jww = 1
π
j′′ (w), we can show that the HJB equation (29) is equivalent

to equation (8), with boundary conditions j (0) = l, j′ (w̄) = −1 and j′′ (w̄) = 0 for some
w̄ > 0 to be determined. Since both laws of motion (2) and (5), as well as the termination
value lπ obey the same scaling, this implies that the control problem in (7) is equivalent to
the scaled control problem in w alone.

A.2 Existence and Uniqueness of the Value Function

In this section, I establish the existence of a twice continuously differentiable solution to the
scaled HJB equation

rj (w) = max
a,i

∑
i

µiai − κ (i) + j′ (w) ((γ − i+ δ)w + hn) (30)

+j′′ (w)
1

2

∑
i

ψ2
i ai + (i− δ) j (w)

with boundary conditions j (0) = 0, j′ (w̄) = −1 and j′′ (w̄) = 0, and verify that this solution
equals the value function under the optimal contract. For simplicity, I assume that for all
i, µi − h is either strictly greater or smaller than zero, which implies that at the first best,
the principal cannot be indifferent between taking a project or not. At w̄, the boundary
conditions imply that

rj (w̄) = max
i

∑
i

(µi − h)+ − κ (i)− (γ − i+ δ) w̄ + (i− δ) j (w̄) ,
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where (µi − h)+ = max {µi − h, 0}. Therefore, they are equivalent to j (w̄) = j∗ (w̄) and
j′ (w̄) = −1, where j∗ (w) is given by

j∗ (w) = max
i

∑
i (µi − h)+ − κ (i)− (γ − i+ δ)w

r − i+ δ
.

The conditions including j∗ are easier to work with, and I will use them for the remainder
of the argument, which relies on a variant of the shooting method. I fix a sufficiently large
but finite domain [0, wmax] and define the function H : [0, wmax]× R2 → R by

H (w, u, p) = −min
a,i

(r − i+ δ)u−
∑

i µia+ κ (i)− p ((γ − i+ δ)w + hn)
1
2

∑
i ψ

2
i ai

.

The HJB equation is equivalent to

j′′ (w) +H (w, j (w) , j′ (w)) = 0. (31)

By Berge’s Maximum Theorem,27 H (w, u, p) is jointly continuous in its parameters. This
implies that for any starting slope s, the initial value problem (IVP) satisfying (31) with
boundary conditions j (0) = 0 and j′ (0) = s has a twice continuously differentiable solution
on the domain [0, wmax], and is uniformly continuous with respect to s.28 I denote a solution
with starting slope s by js (w).

For a large negative number b, choose wb such that j∗ (wb) = b, and define the boundary
B ⊂ R2 as29

B = [(0, b) , (j∗ (wb) , b)] ∪ {(y, w) ∈ [b, j∗ (0)]× [0, wb] : y = j∗ (w)} .

Finally, let w̄ (s) = inf {w : js (w) = j∗ (w)} be the first point at which js hits j∗.30 The
following proposition is crucial for establishing uniqueness of the solution, and establishes
concavity.

Proposition 14. Any solution to the IVP (31) for which 0 > j′s (w̄ (s)) ≥ −1 holds is strictly
concave on (0, w̄ (s)).

Proof. Since s is constant throughout the proof, I omit it for the sake of notation. Note
27See Aliprantis and Border (2006), Theorem 17.31, p. 570.
28See for example Hartman (2002), Chapters 2 and 5.
29Because the optimal value function satisfies j (w) ≥ l − w for all w, and j′∗ (w) < −1, a pair (b, wb) can

always be found, and restricting the solution of the HJB equation to lie in B is without loss of generality.
30w̄ (s) may not exist for all s, for example when s is a large negative number. However, w̄ (s) is only used

in the argument in cases where js actually hits j∗, so this is not an issue.
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that j′ (w̄) ≥ −1 implies that j′′ (w̄) ≤ 0, otherwise j (w̄) > j∗ (w̄). By the boundary
conditions we have ai = 1 whenever µi ≥ h at w̄. By the envelope theorem, j′′′ (w) exists on
a neighborhood left of w̄,31 and is given by

j′′′ (w) =
− (γ − r) j′ (w)− j′′ (w) ((γ − i+ δ)w + hn)

1
2

∑
i ψ

2
i ai

> 0,

which follows from continuity of j′ (w) and j′′ (w). Therefore, j′′ (w) < 0 for w sufficiently
close to w̄. If j′′ (w) ≥ 0 for some w < w̄ (s), the point ŵ = sup {w < w̄ : j′′ (ŵ) ≥ 0} exists.
If j′ (ŵ) ≥ 0, we have

rj (ŵ) ≥ max
a,i

∑
i

µiai − κ (i) + (i− δ) j (ŵ)

and therefore ai = 1 for all i, and

j (ŵ) ≥
∑

i µi − κ (i∗)

r − i∗ + δ

where i∗ is given by the FOC κ′ (i∗) = j (ŵ). The first best value jfb satisfies

jfb (w) =

∑
i (µi − h)+ − κ (ifb)

r − ifb + δ
− w.

Since for all fixed i, ∑
i (µi − h)+ − κ (i)

r − i+ δ
<

∑
i µi − κ (i)

r − i+ δ

we have
jfb (ŵ) <

∑
i µi − κ (ifb)

r − ifb + δ
− w ≤

∑
i µi − κ (i∗)

r − i∗ + δ
− w ≤ j (ŵ) ,

which implies a contradiction. Therefore, we need j′ (ŵ) < 0. If ŵ ∈ intCa for some
continuation region Ca, then j′′′ (ŵ) exists and is given by

j′′′ (ŵ) =
− (γ − r) j′ (ŵ)

1
2

∑
i ψ

2
i ai

> 0

which makes it impossible for j′′ to cross zero from above, as required by the definition of ŵ.
If ŵ does not lie on the interior of any continuation region, there exists a project i such that
bi (ŵ) = µi + j′ (ŵ)h = 0. Take some w > ŵ. Because j′′ < 0 on (ŵ, w), j′ is decreasing on
this region, and bi (w) < bi (ŵ) = 0. Thus, the project cannot be taken again on (ŵ, w), and

31This follows because the boundary conditions imply bi (w̄) = µi − h, which is either greater or smaller
than zero, and bi (w) is continuous.
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the project choice must stay constant on this region. This implies that the right derivative
j′′′+ (ŵ) exists, and it is positive since j′ and j′′ are negative. But then again j′′ (w) cannot
cross zero from above at ŵ. Therefore, j′′ (w) < 0 for all w < w̄.

Lemma 15. There exists at most one s∗ such that j′s∗ (w̄ (s∗)) = −1.

Proof. I first establish two auxiliary results. First, for two initial slopes s and s′ with
s′ > s, we have js′ (w) > js (w) on (0, wmax). To see that this is the case, let ŵ =

inf {w : j′s′ (w) ≥ j′s (w)}. By construction, js′ (ŵ) > js (ŵ). Since H (w, u, p) is decreasing in
its second argument, we have

H (ŵ, js (ŵ) , j
′
s (ŵ)) = H (ŵ, js (ŵ) , j

′
s′ (ŵ)) > H (ŵ, js′ (w) , j

′
s′ (ŵ)) ,

which implies that j′′s′ (ŵ) > j′′s (ŵ). Therefore, j′s′ (w) cannot cross j′s (w) from above at ŵ,
which is a contradiction. Since j∗ (w) is a strictly decreasing function, this result also implies
that w̄ (s′) < w̄ (s) whenever s′ > s.

Now, suppose that for s′ > s, j′s′ (w̄ (s′)) = j′s (w̄ (s)) = −1 . By the preceding argument,

−1 = j′s′ (w̄ (s′)) > js (w̄ (s′)) ,

and by Proposition 14, js is strictly concave, and therefore js (w̄ (s)) < js (w̄ (s′)) < −1.

To conclude the proof, I define a mapping S (s) = j′s (w̄ (s)), which is continuous since the
solutions to the IVP are continuous with respect to s. If there exists a pair {s, s̄} with s̄ > s

such that S (s̄) > −1 and S (s) < −1, there exists an s∗ for which S (s∗) = −1, which
is a consequence of the continuous mapping theorem. The Lemma above then guarantees
uniqueness.

Lemma 16. There exist two values s̄ > s such that all s ≥ s̄, S (s) ≥ 0 and for all s ≤ s,
S (s) ≤ −1.

Proof. First, consider the map T (s) = {(y, w) : w = inf {u : (js (u) , u) ∈ B}}, which asso-
ciates to each s the first point where js hits B. For s ≤ s, where s is chosen sufficiently
small, js hits b, and the first hitting point of b can be made arbitrarily close to zero by the
choice of s. Similarly, choosing s ≥ s̄, where s̄ is large and positive implies that js hits j∗ at
some w close to zero, and that S (s̄) is positive. Define

Bε = [(ε, b) , (j∗ (wb) , b)] ∪ {(y, w) ∈ [b, j∗ (0)]× [ε, wb] : y = j∗ (w)}
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for some positive but small ε. Since the solution to the IVP (31) is uniformly continuous in s
on [0, wmax], T (s) is continuous. Because it maps an appropriately chosen interval [s, s̄] into
the compact set Bε, the mapping is onto, by the continuous mapping theorem. Therefore,
there exists a subinterval of [s, s̄] for which js hits j∗.

Now, take ŵ sufficiently close to wb, so that j∗ (ŵ) is negative and large. By the preceding
argument, there exists a slope s such that js hits j∗ at ŵ. Suppose that 0 > j′s (ŵ) > −1.
By Proposition 14, js is strictly concave on (0, ŵ), and j′s (w) > −1 for w < ŵ. But then
js (ŵ) > js (0)− ŵ > j∗ (ŵ), since j′∗ (w) < −1, and wb was chosen sufficiently large. This is
a contradiction.

If j′s (ŵ) > 0, then necessarily j′′s (ŵ) < 0, otherwise js (ŵ) > j∗ (w). There must exist a
region left of ŵ on which j′′s (w) > 0, otherwise concavity would imply that j′s (w) > 0 for all
w > ŵ, and js (ŵ) = b could not hold. In particular, there must exist some w < ŵ for which
j′′s (w) > 0 and j′s (w) > 0. Then, a similar argument as in Proposition 14 establishes that
js (w) > jfb (w), which is a contradiction. This shows that there exists a number s such that
for all s ≤ s, S (s) ≤ −1.

I now verify that the unique solution to the HJB equation is indeed the optimal contract.

Proposition 17. Let G0 be the payoff from an arbitrary contract (a, c, τ) which is incentive
compatible and for which the law for the agent’s continuation value (5) has a unique strong
solution. Then J0 ≥ G0.

Proof. Take any incentive compatible contract (a, c, τ). By the martingale representation
result in Lemma 1, Wt follows equation (5). I restrict attention to contracts for which (5)
has a unique strong solution. Define the realized payoff from using the contract until time
t ≤ τ as

Gt =

ˆ t

0

e−rs

(∑
i

dXis − πsκ (is) dt− dcs

)
+ e−rtJ (Wt, πt) ,

where dXis is the output process under the effort implemented in the contract. By Itô’s
Lemma and the transformation used in Section A.1,

dGt = e−rtπt

(∑
i

µitdt+
∑
i

σidBit − κ (it) dt−
dct
πt

)

+e−rtπt

(
j′ (wt)

(
γwtdt+ hntdt−

dct
πt

+
∑
i

ψitdBit

)
+ j′′ (wt)

1

2

∑
i

ψ2
itdt

)
+e−rtπt (it − δ) (j (wt)− j′ (wt)wt) dt− rπtj (wt) dt.
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By the construction of the HJB equation (30), for any incentive compatible contract

− (r − i+ δ) j (w) +
∑
i

µi − κ (i) + j′ (w) ((γ − i+ δ)w + hn) + j′′ (w)
1

2

∑
i

ψ2
i ≤ 0, (32)

and for any consumption payout policy, −πt (1 + j′ (w)) dct ≤ 0 on (0, w̄). Since j′ (w) is
bounded, and πt grows at a rate strictly less that r, this term is square integrable, and Gt is
a supermartingale.

For all finite t, the principal’s profit is

E [Gτ ] = E [Gt∧τ ]

+E

[
1{t<τ}e

−rtE

[ˆ τ

t

e−rs

(∑
i

dXis − πsκ (is) dt− dcs

)
+ e−rτπτ l − J (Wt, πt)

]]
.

The second term is bounded from above by, πtjfb (0)− πtwt − J (Wt, πt). Since J (Wt, πt) =

πtj (wt) ≥ πt (l − wt), and j′ (wt) ≥ −1, we have πt (wt + j (wt)) ≥ πtl, so that

πtjfb (0)− πtwt − J (Wt, πt) ≤ πt (jfb (0)− l) .

By the supermartingale property of Gτ , E [Gt∧τ ] ≤ G0 = π0j (w0), and the profit satisfies
the following bound

E [Gτ ] ≤ G0 + e−rtπt (jfb (0)− l) . (33)

Since for all contracts, r > it − δ holds uniformly in t, the transversality condition

lim
t→∞

e−rtπt = 0

holds.

If the optimal contract generates a strong solution for the agent’s continuation value process
Wt, equation (33) holds with equality as t→ ∞, because equation (32) holds with equality.
If the contract does not generate a strong solution, because the project choice and therefore
the volatility of the continuation value does not have bounded variation, there always exists
an ε-optimal strategy which does. The loss in payoff in the HJB equation between the
optimal project selection a and an arbitrary a′ is

L (w, a, a′) =
∑
i

(
µi + j′ (w)h+

1

2
j′′ (w)ψ2

i

)
(ai − a′i)

which is bounded on (0, w̄) by a constant L̄, because j′ (w) and j′′ (w) are continuous. Taking
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a grid for w of step size ε, define a Markov control â (w) which takes the value of the optimal
project choice of the nearest point in the grid. For any w on the interior of a region where
action a is optimal, the loss L (w, a (w) , â (w)) eventually becomes zero for some ε > 0. If w
is on the boundary of Ca and Ca′ and both have a nonempty interior, take w without loss of
generality to be the midpoint of the grid

[
w − 1

2
ε, w + 1

2
ε
]
. The expected loss in this interval

starting from w is bounded below

λ (w) = L̄E

[ˆ τε

0

e−rtdt

]
. (34)

Here, the expectation operator is taken under the action â (w), and τε denotes the first exit
time of wt from the interval. As ε→ 0, this expression converges to zero.32

If w is an accumulation point of regions in which two actions a and a′ are optimal, then
L (w, a, a′) = 0. If w is the midpoint of a grid with size ε, and â (w) is fixed at a′, then by
continuity of L in w, L (w, a (w) , â (w)) converges to zero as ε→ 0.

Then, repeating the previous verification argument with â (w) implies that for ε sufficiently
small, the loss relative to the optimal project selection from the HJB equation (30) is bounded
by L̄ ε

r
.

A.3 Properties of the Value function

A.3.1 Proof of Proposition 3

Lemma 18. Whenever j′ (w) < 0, j′′′ (w) > 0 if it exists.

Proof. Whenever j′′′exists it is given by

j′′′ (w) =
− (γ − r) j′ (w)− j′′ (w) ((γ − i+ δ)w + hn)∑

i ψ
2
i ai

,

and it is positive because j is concave.

Proposition 19. For any w, and all projects j if b′j (w) exists, it is strictly positive if
32Precisely, since â (w) is constant, wt satisfies dwt = (γwt + hn̂) dt +

∑
i ψiâidBit, and λ (w) solves

the differential equation rλ (w) = L̄ + λ′ (w) (γw + hn̂) + λ′′ (w) 1
2 ψ̂

2 subject to the boundary conditions
λ
(
w − 1

2ε
)
= λ

(
w + 1

2ε
)
= 0, where ψ̂ =

∑
i ψiâi. The boundary value problem is linear in w, and the

existence of a C2 solution is standard, see e.g. Friedman (1975), p. 134, Theorem 2.4. Then, an estimate
from Hartman (2002), p. 428, allows to find a bound on λ′ (w) which is uniform in ε. This implies that
|λ (w)| ≤Mε on

[
w − 1

2ε, w + 1
2ε
]

for some M > 0 and all ε > 0, which is the desired result.
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j′ (w) < 0 and
ψ2
j ≥

1

n

∑
i

ψ2
i ai.

Whenever j′′′ (w) < 0, b′j (w) < 0 for all j and if j′′′ (w) > 0, then b′j (w) > 0 if ψ2
i > −2j′′(w)

j′′′(w)
.

Proof. We have b′j (w) = j′′ (w)h+ j′′′ (w) 1
2
ψ2
j . Using the expression of j′′′ (w), we have

b′j (w) = j′′ (w)h− 1

2
ψ2
j

(γ − r) j′ (w) + j′′ (w) ((γ − i+ δ)w + hn)
1
2

∑
i ψ

2
i ai

which is positive whenever

h
1

2

∑
i

ψ2
i ai −

1

2
ψ2
j ((γ − i+ δ)w + hn) <

(γ − r) j′ (w)

j′′ (w)
.

Since the right hand side is positive, a sufficient condition is ψ2
j ≥ 1

n

∑
i ψ

2
i ai. Note that a

sharp condition is ψ2
j >

−2j′′(w)
j′′′(w)

, which is equivalent to

ψ2
j >

2

((γ − i+ δ)w + hn)

(
h
1

2

∑
i

ψ2
i ai −

(γ − r) j′ (w)

j′′ (w)

)
.

A.3.2 Proof of Proposition 5

Suppose that at ŵ, an additional project, indexed by n+ 1, is added. Then, it must be the
case that bn+1 (w) crosses zero at ŵ from below. The derivatives of bn+1 (w) left and right of
ŵ are

j′′′− (ŵ) =
− (γ − r) j′ (ŵ)− j′′ (ŵ) ((γ − i+ δ) ŵ + hn)

1
2

∑
i ψ

2
i ai

j′′′+ (ŵ) =
− (γ − r) j′ (ŵ)− j′′ (ŵ) ((γ − i+ δ) ŵ + h (n+ 1))

1
2

∑
i ψ

2
i ai +

1
2
ψ2
n+1

,

and
j′′′+ (ŵ)− j′′′− (ŵ) = − 1

1
2

∑
i ψ

2
i ai

b′n+1,+ (ŵ) .

Here b′n+1,+ (ŵ) denotes the right derivative of bn+1 (w) at ŵ. Since bn+1 (w) must cross zero,
the derivative is positive, and thus, j′′′+ (ŵ) < j′′′− (ŵ). An analogous calculation in the case
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where a project is removed yields

j′′′+ (ŵ)− j′′′− (ŵ) =
1

1
2

∑
i ψ

2
i ai

b′n+1,+ (ŵ) < 0.

The jump in j′′′ (w) can be equivalently expressed as

j′′′+ (ŵ)− j′′′− (ŵ) = − 1
1
2

∑
i ψ

2
i ai +

1
2
ψ2
n+1

b′n+1,− (ŵ)

in case a project is added, and

j′′′+ (ŵ)− j′′′− (ŵ) =
1

1
2

∑
i ψ

2
i ai − 1

2
ψ2
n+1

b′n+1,− (ŵ)

in case it is removed. Since the expressions must equal in the respective cases, we have

b′n+1,− (ŵ) =

(
1 +

ψ2
n+1∑
i ψ

2
i ai

)
b′n+1,+ (ŵ)

if a project is added, and

b′n+1,− (ŵ) =

(
1−

ψ2
n+1∑
i ψ

2
i ai

)
b′n+1,+ (ŵ)

if it is removed.

A.3.3 Proof of Proposition 7

The principal’s HJB equation is given by

rj (w) = max
a

∑
i

µi + j′ (w) γw + j′′ (w)
1

2

∑
i

ψ2
i ,

with boundary conditions j (0) = l, j′ (w̄) = −1 and j′′ (w̄) = 0. Since this is a special case
of equation (30), it can be verified that the analysis in Section A.2 carries over, so that j has
the same qualitative features.

On any region where project choice is constant, we have

j′′′ (w) =
− (γ − r) j′ (w)− j′′ (w) γw

1
2

∑
i ψ

2
i ai

.

For w sufficiently close to zero, j′′′ (w) is negative independently of the current project choice
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at any point where it exists, since j′ (0) > 0. The marginal benefit function of each project
is given by bi (w) = µi + j′′ (w) 1

2
ψ2
i , and its derivative satisfies

b′i (w) = j′′′ (w)
1

2
ψ2
i .

Therefore b′i (w) < 0 whenever j′′′ (w) < 0. If j′ (w) < 0, then j′′′ (w) > 0, independently of
a and b′i (w) > 0. Whenever another project is added, we have

j′′′+ (w) = j′′′− (w)

∑
i ψ

2
i ai∑

i ψ
2
i ai + ψ2

i′
> 0,

so that j′′′ (w) can never jump below zero in this case. To see that once j′′′ (w) is positive,
it cannot fall below zero on any region where the project choice is constant, note that if
j′′′ (w) = 0, its derivative is given by

j(4) (w) =
− (2γ − r) j′′ (w)

1
2

∑
i ψ

2
i ai

> 0,

and hence j′′′ (w) cannot cross zero from above. Therefore, the cutoff w3 is unique.

Since b′i (w) for all i and w < w3, project choice can only change finitely many times, and
each time a project is removed. Similarly, when w > w3, b′i (w) > 0 and whenever project
choice changes, a project is added.

A.4 Proofs on Implementation

A.4.1 Proof of Proposition 9

First consider the process SCt ≡
∑

iΨitMit, which can be interpreted as the share of the
firm’s cash holdings the manager has at time t. Mit follows the process in equation (15).

I define a process {At}t≥0 such that the decomposition

Wt = SCt + At (35)

holds, and interpret At as the current balance in the manager’s personal account. At the
optimal contract, the agent’s continuation valueWt is a diffusion and its path is a continuous
function of time. By equation (15), SCt is continuous in t whenever no change is made in
the project portfolio, and exhibits a jump of ΨitMit when project i is added, and −ΨitMit
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when project i is dropped.33 Therefore, the process {At} has to be chosen to compensate for
jumps in SCt, otherwise the representation (35) cannot hold. This is achieved by choosing
{At} such that dAt = γAtdt whenever SCt is continuous, dAt = γAtdt − ΨitMit whenever
project i is added, and dAt = γAtdt + ΨitMit whenever it is dropped. The interpretation
of the simultaneous changes in SCt and At is that the manager either sells or buys shares
at the price of Mit per unit, which corresponds exactly to their naive value in terms of the
firm’s cash holdings.

To verify that the manager’s continuation value satisfies (35), by Itô’s Lemma for semi-
martingales34 we have

dWt =
∑
i

(ΨitdMit + dΨitMit) + dAt.

Further, sinceWt is a diffusion at the optimal contract we can use the HJB equation approach
to get

γWt = sup
ai

∑
i

Ψi

(
rMit + πtµiai − αiκ (i)− (r − γ)Mit + αiκ (i)−

dc

dt

)
(36)

= +
∑
i

Ψi
dcit
dt

− πth
∑
i

ai +
∑
i

dΨi

dt
Mit +

dAt
dt

= sup
ai

∑
i

Ψi

(
rMit + πtµiai − αiκ (i)− (r − γ)Mit + αiκ (i)−

dc

dt

)
+
∑
i

Ψi
dcit
dt

− πth
∑
i

ai + γAt

From the above equation we see that if we let the optimal equity share satisfy Ψit ≡ ψit

σi
= h

µi
,

then

γWt = γ

(∑
i

ΨiMit + At

)
and the optimal contract is implemented.

The proof of Proposition 10 proceeds analogously and is omitted.
33Thus, the process SCt is a semimartingale.
34See He et al. (1992), p. 245, Th. 9.35
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A.4.2 Proof of Proposition 11

The agent’s continuation utility is assumed to satisfy Wt = ΨtMt + At, and the personal
account balance now satisfies

dAt = γAtdt+ dPt + SCt − SCt−

where SCt− = lims↑t SCt.

Analogously to the previous proof, the manager’s HJB equation satisfies

γWt = sup
a

Ψt

(∑
i

(
γMit + πtµiai −

dcit
dt

))
+Ψt

dct
dt

− πth
∑
i

ai +

+πt
∑
i

(Ψit −Ψt)µiait + dAt +
dΨt

dt
Mt

= ΨtγMt + sup
a

(
πt
∑
i

(Ψtµi − h+ (Ψit −Ψt)µi) ai

)
+ γAt

= ΨtγMt + γAt

and again the contract is implemented.

A.5 Proofs on the Model with Fixed Costs

A.5.1 Proof of Proposition 12

The proof consists of establishing the existence of a viscosity solution of equation (25),
subject to the appropriate boundary conditions. With the result in Proposition 23, a version
of the verification argument in Proposition 17 implies that this solution equals the principal’s
optimal value function. Throughout, I use the viscosity solution approach.35 In the following,

Ca =
{
w : ja (w) > max

a′ ̸=a
ja′ (w)− k (a, a′)

}
denotes the continuation region at which a certain project selection is optimal, while

Sa,a′ = {w : ja (w) = ja′ (w)− k (a, a′)}
35Standard concepts and further references can be found in Crandall et al. (1992) and Fleming and Soner

(2006).
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denotes the region where the optimal project choice switches from a to a′. I use the abbre-
viation in (24) as well as

fa,i =
∑
i

µiai − κ (i) .

The continuous function ja is a viscosity subsolution to (25), if for any ϕ ∈ C2 and w which
is a local maximum of ja − ϕ,

min
{
rja (w)−max

i
La,iϕ (w) + fa,i + (i− δ) ja (w) , ja (w)−max

a′ ̸=a
ja′ (w)− k (a, a′)

}
≤ 0,

while it is a viscosity supersolution if for any ϕ ∈ C2 and w which is a local minimum of
ja − ϕ,

min
{
rja (w)−max

i
La,iϕ (w) + fa,i + (i− δ) ja (w) , ja (w)−max

a′ ̸=a
ja′ (w)− k (a, a′)

}
≥ 0.

Finally, ja is a viscosity solution if it is both a sub- and supersolution.

Proposition 20. There exists a family of viscosity solutions {ja (w)}a∈A to the system of
equations (25).

Proof. By Ishii (1989), Proposition 3.4, for any particular a, the equation (25) has a contin-
uous viscosity solution with boundary conditions ja (w1) = j1 and ja (w2) = j2, if there exist
continuous super- and subsolutions jSa (w) and jsa (w) satisfying the boundary conditions,
and jsa ≤ jSa . The HJB equation with constant projects is given by

rja (w) = max
i

La,ija (w) + fa,i + (i− δ) ja (w) , (37)

and has a twice differentiable solution subject to the boundary conditions above.36 Since
the solution ignores possible switching, it is possible that ja (w) < maxa′ ̸=a ja′ (w)− k (a, a′).
Therefore, it is a continuous viscosity subsolution to equation (25). To obtain the supersolu-
tion, define jSa (w) = jsa (w) +K (w) for some C2 function K (w) with K (w1) = K (w2) = 0,
which satisfies

K (w) ≥ max
i

1

r − i+ δ
La,iK (w) ,

so that jSa satisfies the HJB equation with the inequality

rjSa (w) ≥ max
i

La,ijSa (w) + fa,i + (i− δ) jSa (w) .

36See Strulovici and Szydlowski (2011).
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As long as j1 > maxa′ ̸=a ja′ (w)− k (a, a′), and the same holds for j2, a K (w) can be found
such that jSa (w) is greater than the switching payoff, and jSa (w) is a supersolution.

Define
ja∗ (w) = max

i

∑
i (µi − h) ai − (γ − i+ δ)w

r − i+ δ
,

and observe that ja∗ (w) and ja′∗ (w) can never cross for a′ ̸= a. For each a, whenever
ja∗ (w) > maxa′ ̸=a ja′∗ (w)− k (a, a′), define the boundary conditions

ja (w̄a) = ja∗ (w̄a)

and
j′a (w̄a) = −1,

while if the opposite inequality holds, set

ja (w̄a) = max
a′ ̸=a

ja′ (w̄a)− k (a, a′) .

For all a, the boundary condition at zero is

ja (0) = l.

Then, in the first case w̄a ∈ Ca, and there exists a region such that equation (37) holds.
Then, a variant of the argument in Section A.2 establishes that there exists a solution which
matches the boundary conditions, while in the second case, Ishii’s result can be applied
directly.

Lemma 21. There exists an ε > 0 such that for any optimal contract, each continuation
region Ca on which the project selection stays constant contains a subinterval of length greater
than ε.

Proof. This is immediate from the continuity of ja (w) for all a ∈ A, and the switching cost
being strictly positive.

Lemma 22. For any project selection a and interval [w1, w2] which satisfies [w1, w2] ⊂ Ca
or [w1, w2] ⊂ Sa,a′ for some a′ ̸= a, ja (w) is twice continuously differentiable.

Proof. By the previous Lemma, a nonempty interval [w1, w2] ⊂ Ca is guaranteed to exist for
all a. In this case, let a1 be the optimal choice just left of w1, and a2 the optimal choice
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right of w2.37 Because project choice is constant on [w1, w2], the HJB equation on this
region reduces to (37), subject to the boundary conditions ja (w1) = ja1 (w1)− k (a, a1) and
ja (w2) = ja2 (w2)−k (a, a2). This problem has a twice continuously differentiable solution,38

and a standard verification argument implies that for w ∈ [w1, w2], this solution equals the
optimal value function.

If [w1, w2] ⊂ Sa,a′ , since Sa,a′ ⊂ Ca′ ,39 equation (37) with a replaced by a′ holds for ja′ , and
therefore

rja (w) = max
i

La′,ija (w) + fa′,i + (i− δ) ja (w)− (r − i+ δ) k (a, a′)

holds on [w1, w2], with boundary conditions ja (w1) = ja′ (w1) − k (a, a′) and ja (w2) =

ja′ (w2)− k (a, a′). Then the same argument implies that ja (w) is twice continuously differ-
entiable.

There only remains to verify that the solution to the variational inequalities (25) is well
behaved at the thresholds where project choice changes.

Proposition 23. Let ŵ be an optimal cutoff at which project selection changes. Then ja is
continuously differentiable at ŵ.

Proof. Suppose that a is optimal on the left, and a′ is optimal on the right of ŵ. By the
previous Lemma, ja is twice differentiable on a neighborhood left and right of ŵ respectively.
It therefore has left and right limits at ŵ, which may not be equal. We have ja (w) =

ja′ (w)− k (a, a′) for w > ŵ and

ja (w) ≥ ja′ (w)− k (a, a′) (38)

for w < ŵ.

Extending the region on which a is chosen to [w1, ŵ
′] for some ŵ′ > ŵ preserves continuity

of ja (w) on that region. Therefore, if inequality (38) is strict at ŵ, we can extend the region
to the right while preserving the inequality. This yields a higher payoff than switching at ŵ,
so that the threshold cannot be optimal, which is a contradiction. Thus ja is continuous at
ŵ.

37It is not necessary that a1 ̸= a or a2 ̸= a.
38See Strulovici and Szydlowski (2011).
39This follows from the fact that k (a, a′) < k (a, a′) + k (a′, a′′). Then, it is never optimal to switch from

a to a′, and then immediately to a′′, since it incurs a higher cost that switching directly to a′′.
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By the previous Lemma, the left and right derivatives j′a,− (ŵ) and j′a,+ (ŵ) exist. Assume
that j′a′,− (ŵ) < j′a,+ (ŵ),40 take any number x ∈

(
j′a,− (ŵ) , j′a,+ (ŵ)

)
, and define

ϕε (w) = ja (ŵ) + x (w − ŵ) +
1

2ε
(w − ŵ)2

for some ε > 0. We have ϕε ∈ C2, and ϕε (ŵ) = ja (ŵ). Since ja is continuous at ŵ, this
point is a local minimum of ja−ϕε for all ε. By the viscosity supersolution property,we have
for some w < ŵ,

(r − i+ δ) · ja (ŵ)− x · ((γ − i+ δ) ŵ + hn)− 1

2ε

∑
i

ψ2
i ai ≥ 0,

and sending ε→ 0 implies a contradiction. If j′a,− (ŵ) > j′a,+ (ŵ), take some x ∈
(
j′a,+ (ŵ) , j′a,− (ŵ)

)
,

and consider the function

ϕε (w) = rja (ŵ) + x (w − w0)−
1

2ε
(w − ŵ)2 .

ŵ is a local maximum of ja (w)− ϕε (w) for all ε, and by the subsolution property we have
for some w > ŵ

(r − i+ δ) · ja (ŵ)− x · ((γ − i+ δ) ŵ + hn′) +
1

2ε

∑
i

ψ2
i a

′
i + k (a, a′) ≤ 0.

Here, n′ =
∑

i a
′
i and the equation holds because ja (w) = ja′ (w)− k (a, a′) for w > ŵ, and

w ∈ Ca′ . Letting ε→ 0 again yields the contradiction, and hence, j′+ (w) = j′− (w).

The following Lemma establishes inequality (27).

Lemma 24. Consider a cutoff ŵ at which the optimal choice changes from a to a′ as w
crosses ŵ from below. Then j′′a′ (ŵ) ≤ j′′a (ŵ).

Proof. For any w ∈ Ca′ we have

rja′ (w) ≥ max
i

La,ija′ (w) + fa,i + (i− δ) ja′ (w)− (r − i+ δ) k (a, a′) , (39)

which can be established using ϕ = ja′ − k (a, a′) as a test function and verifying that w is
a local minimum of ja − ϕ. The equation then follows from the supersolution property.

40By the equality ja (w) = ja′ (w) − k (a, a′) for w ≥ ŵ and the fact that ŵ ∈ intCa′ , we actually have
j′a,+ (ŵ) = j′a′ (ŵ).
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The proof of Proposition 23 shows that ŵ ∈ Ca′ , and therefore equation (39) holds on some
interval [ŵ, w′] ⊂ Ca′ , and can be rewritten as

j′′a′ (w) ≤ 1
1
2

∑
i ψ

2
i ai

(
(r − i+ δ) (ja′ (w) + k (a, a′))−

∑
i

µiai + κ (i)

− j′a′ (w)

(
(γ − i+ δ)w + h

∑
i

ai

))
,

where i is the optimal investment choice. The right hand side of this equation is continuous
at ŵ, and in particular the left and right limits are equal. Since the HJB equation with a as
optimal project choice must hold left of ŵ, we have

j′′a′ (ŵ) ≤ lim
w↑ŵ

1
1
2

∑
i ψ

2
i ai

(
(r − i+ δ) ja (w)−

∑
i

µiai + κ (i)

−j′a (w)

(
(γ − i+ δ)w + h

∑
i

ai

))
= j′′a (ŵ) ,

which is the relation to be proven.

A.5.2 Proof of Proposition 13

Lemma 25. Let k = maxa,a′ k (a, a′) and denote with ja,k (w) the solution to the system
of equations (12) given action a and maximal switching cost k. For all w and a, ja,k (w)
converges uniformly to a function j̃ (w) as k → 0.

Proof. For any a ̸= a′ and w, ja,k (w) ≥ ja′,k (w)−k (a, a′) so that k (a, a′) ≥ ja′ (w)− ja (w).
Since the same inequality holds with a and a′ reversed, we have

k (a′, a) ≤ ja′,k (w)− ja,k (w) ≤ k (a, a′) .

Since the bounds are uniform in w, ja,k and ja′,k converge uniformly to some function j̃ as
k → 0.

The remainder of the proof consists of showing that the limit j̃ equals j, the unique solution
to the HJB equation (8). I index continuation Cka and switching regions Ska,a′ with k, since
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they depend on the switching cost.

Lemma 26. Let w̄a,k ∈ Cka be a family of thresholds such that j′a,k (w̄a,k) = −1 and
j′′a,k (w̄a,k) = 0. Then for k sufficiently small, w̄a,k ∈ Ska,afb for all a, and there exists a
unique finite threshold w̄0 such that w̄a,k → w̄0.

Proof. At w̄a,k , the HJB equation (37) implies

rja,k (w̄a,k) = max
i

∑
i

(µi − h) ai − κ (i)− (γ − i+ δ) w̄a,k + (i− δ) ja,k (w̄a,k) .

Let ia,k be the optimal choice of investment, define

j∗ (w) = max
i

∑
i (µi − h)+ − κ (i)− (γ − i+ δ)w

r − i+ δ

and suppose that w̄a,k ∈ Cka as k → 0. Then,

ja,k (w̄a,k)− j∗ (w̄a,k) ≤ ja,k (w̄a,k)−
∑

i (µi − h)+ − κ (ia,k)− (γ − ia,k + δ)w

r − ia,k + δ

≤
∑

i (µi − h) ai −
∑

i (µi − h)+

r − ia,k + δ

where ia,k is the optimal investment given project choice a and cost k at w̄a,k. Whenever
a ̸= afb, this expression is uniformly bounded below zero for all k, since ia,k ≤ ī < r+ δ. But
the definition of Cka implies that

k (a, afb) ≥ j∗ (w̄a,k)− ja,k (w̄a,k) ,

which yields a contradiction as k → 0. Therefore, for all a and k sufficiently small, w̄a,k ∈
Ska,afb , and Ska,afb ⊂ Ckafb , we have w̄a,k = w̄afb,k . Let w′ be the point closes to w̄afb,k at which
it is optimal to switch from afb to some other project allocation a′. Then

[
w′, w̄afb,k

]
⊂ Ckafb ,

and jafb,k (w) satisfies equation (37) with a = afb, and boundary conditions jafb,k (w′) =

ja′,k (w
′) − k (afb, a

′), j′afb,k
(
w̄afb,k

)
= −1 and j′′afb,k

(
w̄afb,k

)
= 0. The argument in Lemma

15 can be applied to jafb,k (w) on this region, and the threshold w̄afb,k is unique. Therefore
there exists some w̄0 such that w̄a,k → w̄0 for all a and k. The value w̄0 must be finite,
since for all k, ja,k (w) is bounded above −w − k (a, a0), where a0 is the allocation where no
projects are executed, and j′∗ (w) < −1.

By the existence of a finite limit w̄0, we can restrict attention to analyzing the viscosity
solutions to (25) on some finite interval [0, wmax] with wmax > w̄0 as k → 0.
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Lemma 27. j̃ (w) is continuously differentiable on [0, w̄0].

Proof. If w ∈ Cka , j′′a,k (w) is bounded, since ja,k satisfies equation (37). If w ∈ Ska,a′ , we have

rja,k (w) = max
i

La′,ija,k (w) + fa′,i − rk (a, a′) ,

because Ska,a′ ⊂ Cka′ and ja,k (w) = ja′,k (w)−rk (a, a′), so that j′′a,k (w) is again bounded. Since
the number of switching points is finite, j′a,k (w) is differentiable almost everywhere with
bounded derivative, and therefore Lipschitz for all w. The family of functions

{
j′a,k (w)

}
k

is equicontinuous on [0, w̄0], and by the Arzelà-Ascoli Theorem, there exists a subsequence
which converges to a continuously differentiable function. Repeating the argument for all a
implies that j̃ is C1, since the limits have to be equal.

Proposition 28. j̃ is a viscosity solution to the HJB equation 8.

Proof. The proof is a variant of the argument in Dolcetta and Evans (1984), who study
optimal switching in a deterministic setting. Take a C2 function ϕ such that some w0 ∈
[0, wmax] is a strict local minimum of j̃ (w)− ϕ (w). By the uniform convergence of ja,k (w),
for each a ∈ A there exists a point wa,k which is a local minimum of ja,k (w) − ϕ (w), and
which converges to w0 as k → 0. Since ja,k is a viscosity solution to (25), this implies the
inequality

min
{
rja,k (wa,k)−max

i
fa,i + La,iϕ (wa,k) + (i− δ) ja,k (wa,k) ,

ja,k (wa,k)−max
a′ ̸=a

ja′,k (wa,k)− k (a, a′)

}
≥ 0.

By definition of ja,k, ja,k (wa,k) ≥ maxa′ ̸=a ja′,k (wa,k)− k (a, a′), which implies

rja,k (wa,k) ≥ max
i

{fa,i + La,iϕ (wa,k) + (i− δ) ja,k (wa,k)} .

As k → 0, this yields

rj̃ (w0) ≥ max
i

La,iϕ (w0) + (i− δ) j̃ (w0) ,

and repeating the argument for all a ∈ A implies

rj̃ (w0) ≥ max
a,i

La,iϕ (w0) + (i− δ) j̃ (w0) .

Thus, j̃ is a viscosity supersolution of equation (8).
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Taking another C2 function ϕ such that w0 is a strict local maximum of j̃ (w) − ϕ (w), for
k sufficiently small there exist points wa,k which are strict local maxima of ja,k (w)− ϕ (w).
To save notation define jk (w) = ja(k),k (w) and wk = wa(k),k where a (k) is given by

ja(k),k
(
wa(k),k

)
− ϕ

(
wa(k),k

)
= max

a∈A
{ja,k (wa,k)− ϕ (wa,k)} .

Since for each a, wa,k is a strict local maximum of ja,k (w) − ϕ (w), this definition ensures
that

jk (wk)− ϕ (wk) ≥ max
a ̸=a(k)

ja,k (wa,k)− ϕ (wa,k) ≥ max
a ̸=a(k)

ja,k (wk)− ϕ (wk) ,

and therefore
jk (wk) > ja,k (wk)− k (a (k) , a) (40)

for all a ̸= a (k). By the viscosity subsolution property of jk, we have

min
{
rjk (wk)−max

i

{
La(k),iϕ (wk) + (i− δ) jk (wk)

}
,

jk (wk)−max
a′ ̸=a

jk (wk)− k (a, a′)

}
≤ 0,

which combined with equation (40) implies that

rjk (wk) ≤ max
i

{
fa(k),i + La(k),iϕ (wk) + (i− δ) jk (wk)

}
.

Since A is finite, there exists a subsequence {kn} → 0 such that a (kn) converges to some
a0 ∈ A. Since for all a ∈ A, wa,k → w0, we have

rj̃ (w0) ≤ max
i

{
La0,iϕ (w0) + (i− δ) j̃ (w0)

}
≤ max

a,i

{
La,iϕ (w0) + (i− δ) j̃ (w0)

}
.

Hence, j̃ is a viscosity subsolution of the HJB equation (8). Lemmas 26 and 27 imply
that j̃ satisfies the boundary conditions j̃ (w̄) = j∗ (w̄) and j̃′ (w̄) = −1. Since for each k,
ja,k (0) = l, the condition j̃ (0) = l holds as well.

Proposition 29. The viscosity solution of the HJB equation (8) with boundary conditions
j̃ (0) = l, j̃ (w̄) = j∗ (w̄) and j̃′ (w̄) = −1 is unique and equals j, the solution of the HJB
equation.

Proof. The HJB equation satisfies all assumptions of Theorem 3.3 in Ishii (1989), which
implies that it has a unique viscosity solution which satisfies the boundary conditions j̃ (0) = l

and j̃ (ŵ) = j∗ (ŵ) for arbitrary ŵ. Choosing ŵ = w̄, so that j̃′ (w̄) = −1, which is feasible
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by the previous Proposition, implies that the HJB equation has a unique viscosity solution.
The argument in Section A.2 shows hat the equation also has a unique twice differentiable
solution with the same boundary conditions. Since any such solution is a fortiori also a
viscosity solution,41 uniqueness implies that j̃ = j for all w ∈ [0, w̄].

Since j̃ is twice continuously differentiable, the jumps in the second derivatives of the value
function with switching cost must converge to zero, which can be used to show that the
regions of w where a certain project portfolio is chosen at maximal cost k must converge to
the region from the HJB equation, without switching cost, as k goes to zero.

Corollary 30. As k → 0, for all a ∈ A and w ∈ [0, w̄],

∣∣j′′a,k (w)− j′′a′,k (w)
∣∣→ 0,

and
Cka → Ca

in the Hausdorff distance.

41This is verified by taking the twice differentiable solution j instead of the test functions ϕ in the definition
of the viscosity super- and subsolution properties, which are trivially satisfied in this case.
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