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Abstract

Raiffa (1961) criticizes ambiguity-averse preferences by claiming that hedging is

possible with randomization of choices. We argue that the timing of randomization is

crucial for hedging. Ex-ante randomizations, which are randomizations before a state

is realized, could provide only ex-ante hedging but not ex-post hedging, in contrast to

ex-post randomizations, which are randomizations after a state is realized. However,

these two randomizations have been assumed to be indifferent under the reversal of

order axiom proposed by Anscombe and Aumann (1963). We, therefore, propose a

weaker axiom, the indifference axiom, which allows heterogeneous attitudes toward

the timing of randomization. By using this new axiom as well as standard axioms,

we provide an extension of Gilboa and Schmeidler’s (1989) Maxmin preferences that
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am grateful to Jeff Ely, Faruk Gul, Peter Klibanoff, Kyuongwon Seo, and Marciano Siniscalchi for many
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Ben-Porath, Kenneth Binmore, Colin Camerer, Soo Hong Chew, Adam Dominiak, Larry Epstein, Jürgen
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treats a preference for ex-ante randomizations separately from a preference for ex-post

randomizations. In the representation, a single parameter characterizes a preference

for ex-ante randomizations. By parsimoniously changing only the value of that sin-

gle parameter, the representation can be consistent with Raiffa’s (1961) normative

argument as well as recent experimental evidence.

Keywords: Ambiguity; randomization; Ellsberg paradox; maxmin utility.

JEL Classification Numbers: D81, D03.

1 Introduction

Ellsberg (1961) proposed the following thought experiment: Consider an urn containing

balls, each of which is either red or black. There is no further information about the

contents of the urn. You bet on the color of the ball that you will draw. If your bet turns

out to be correct, then you get a positive payoff (i.e., 1). Typically, subjects are indifferent

between betting on either color. However, they strictly prefer the fifty-fifty objective lottery

between 1 and 0 to the bets. This behavior is called ambiguity aversion.

Raiffa (1961) criticizes ambiguity-averse preferences with this argument: by flipping a

fair coin to choose on which color to bet, you can hedge and obtain a constant expected

payoff (i.e., the fifty-fifty lottery between 1 and 0) for each color of the ball you will draw.

(See Figure 1.) Since this argument has such strong intuitive and normative appeal, this

preference for randomization has received little theoretical consideration in the literature.

1
2

1
2 (0 , 1)

(1 , 0)Bet on Red:

Bet on Black:

Figure 1: Raiffa’s (1961) critique (The first and second coordinates in payoff profiles respec-
tively show the payoffs when the color of the drawn ball is red and black. For each color of
the drawn ball, payoffs 1 and 0 are equally likely to occur.)

After careful consideration, however, you would realize that even if you flip a coin, you
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have to face ambiguity again after either side of coin appears. That is, as the left tree in

Figure 2 shows, the randomization performed by flipping a coin is ex ante, i.e., before a

state (red or black) is realized. In contrast, the randomization with which you can remove

all the ambiguity is ex post, i.e., after a state is realized.

1

0

Red

Black

1
2

1
2

1

0

1
2

1

0

Red

Black

0

1

1

0

Red

Black

1

0

1
2

1
2

1
2

Figure 2: Ex-ante randomization (left) and ex-post randomization (right) in tree (The solid
lines correspond to the risk introduced by flipping a coin, while the dotted lines corresponds
to the ambiguity of the color of the drawn ball.)

In other words, ex-ante randomizations provide ex-ante hedging, i.e., hedging in ex-ante

expected payoffs, but not ex-post hedging, i.e., hedging in ex-post payoffs. Admittedly, when

a coin is flipped in the Ellsberg’s (1961) example, the ex-ante expected payoff is constant

(i.e., the fifty-fifty lottery between 1 and 0) and involves no ambiguity, as Raiffa (1961)

argues. After either side of the coin appears, however, ex-post payoffs associated with each

bet is ambiguous.

The above consideration shows that people would treat ex-ante randomizations and

ex-post randomizations differently. Indeed, recent experiments found heterogeneous but

systematic relationship between attitudes toward ex-ante randomizations and those toward

ex-post randomizations.1 The present paper proposes an axiomatic model of preferences

for randomizations which describes the heterogeneous attitudes toward both types of ran-

domizations as well as Raiffa’s (1961) normative argument, in a parsimonious yet tractable

way.

1For instance, see Dominiak and Schnedler (2010) and Spears (2009). These experiments are discussed
in detail in Section 1.1.
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In one sense, the seminal paper by Anscombe and Aumann (1963) address the issue

of the timing of randomizations. In their domain, an ex-ante randomization is defined

as a lottery on payoff profiles over states of the world, such as the lottery illustrated in

Figure 1. Ex-ante randomizations are henceforth indicated by ⊕. For example, the ex-ante

randomization obtained by flipping a coin in the Ellsberg’s (1961) example is denoted as

1
2
(1, 0) ⊕ 1

2
(0, 1) and shown as P in Figure 3.

1
2

1
2

P : 1
2

(1, 0) ⊕ 1
2

(0, 1) =

(0 , 1)

(1 , 0)

f : 1
2

(1, 0) + 1
2

(0, 1) =

1
2

1
2

1

0
1
2

1

0,

1
2

Figure 3: Ex-ante randomization P and ex-post randomization f

In Anscombe and Aumann’s (1963) domain, an ex-post randomization is defined as a

state-wise randomization of payoff profiles and indicated by +, as is conventional in the lit-

erature. For example, the fifty-fifty ex-post randomization in the Ellsberg’s (1961) example,

with which you can remove all the ambiguity, is denoted as 1
2
(1, 0) + 1

2
(0, 1) and shown as

a constant payoff profile f in Figure 3.

However, one axiom assumed by Anscombe and Aumann (1963), the reversal of order

axiom, implies that an ex-ante randomization is indifferent to its ex-post randomization.

For example, the reversal of order axiom implies that P and f are indifferent. Hence, this

axiom precludes the study of a preference for ex-ante randomizations separately from a

preference for ex-post randomizations.

For this reason, we do not assume the reversal of order axiom. Instead, we propose a

new and weaker axiom, the indifference axiom. To explain this new axiom, first notice that

one way to justify the reversal of order axiom is a state-wise comparison: if you look at P

in Figure 3 state-wise (i.e., coordinate-wise), P offers 1 and 0 equally likely for each state

in the same way as f . Indeed, this is the comparison which has been implicitly made by
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Raiffa (1961): by flipping a coin, you can hedge and obtain the constant expected lottery

payoff.

There is, however, another natural comparison to make between P and f . If you look at

each payoff profile in the support of P , P offers nonconstant payoff profiles, namely, (1, 0)

and (0, 1), which would be less attractive than the constant payoff profile f under ambiguity

aversion. This way of evaluating is called support-wise comparison. The indifference axiom

states that two ex-ante randomizations are indifferent if the two randomizations are indif-

ferent not only according to the state-wise comparison but also according to the support-wise

comparison, in contrast to the reversal of order axiom.

Using the indifference axiom together with the standard axioms used in Gilboa and

Schmeidler (1989), we characterize the Ex-ante/Ex-post (EAP) Maxmin preferences that

capture a preference for ex-ante randomizations and also, but separately a preference for

ex-post randomizations as follows:

V (P ) = δ min
µ∈C

∫
S

( ∫
F

u(fs)dP (f)
)
dµ(s) + (1 − δ)

∫
F

(
min
µ∈C

∫
S

u(fs)dµ(s)
)
dP (f), (1)

where S is the set of states, C is a subset of the set of all finitely additive probabilities on

S, and u is a von Neumann-Morgenstern utility function.

In representation (1), the set C of priors captures a preference for ex-post randomizations

as in Gilboa and Schmeidler (1989). On the other hand, the relative weight δ between the

first and the second terms captures a preference for ex-ante randomizations, as will be

formally shown in Section 3.4. To see this, observe that in the first term, the minimum

is taken outside of the integral not only with respect to ex-post randomizations but also

with respect to ex-ante randomizations, in contrast to the second term. Therefore, in the

first term, ex-ante randomizations provide hedging as much as ex-post randomizations, in

contrast to the second term.

Indeed, representation (1) satisfies the reversal of order axiom if and only if δ = 1.

Moreover, this special case implies that by flipping a coin, the decision maker can remove
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all disutilities caused by the ambiguity in the Ellsberg’s (1961) example, as Raiffa (1961)

argues should be the case. Given that our purpose is to develop a model which does not

satisfy the reversal of order axiom, one might wonder why it does not suffice to consider

the other special case in which δ = 0. However, this special case trivially implies the

independence axiom on ex-ante randomizations so that there is no strict preference for

ex-ante randomizations.

The remainder of Section 1 is organized as follows: Section 1.1 demonstrates how EAP

Maxmin preferences can describe recent experimental evidence; in Section 1.2, the related

literature is discussed. Section 2 then introduces the setup. Section 3 provides an axioma-

tization of EAP Maxmin preferences. Axioms are provided in Section 3.1 and the represen-

tation theorem and sketch of proof are provided in Section 3.2. Sections 3.3, 3.4, and 3.5

investigate properties of EAP Maxmin preferences. Finally, further relationships between

our axioms and the axioms developed by Anscombe and Aumann (1963) are investigated in

Section 4. All formal proofs are in the appendix.

1.1 Experiments

Dominiak and Schnedler (2010) have studied the relationship between attitudes toward ex-

ante randomizations and those toward ex-post randomizations. EAP Maxmin preferences

can parsimoniously describe their experimental evidence. Table 1 shows the numbers of sub-

jects who exhibited a corresponding attitude toward ex-ante and ex-post randomizations.2

Dominiak and Schnedler’s (2010) experimental result might be summarized by the fol-

lowing two points. First, subjects who prefer ex-post randomizations differ in their attitudes

toward ex-ante randomizations. This result is inconsistent not only with the reversal of or-

der axiom but also with Raiffa’s (1961) critique. Second, almost all subjects who are ex-post

randomization neutral are ex-ante randomization neutral as well. The result for this group

therefore contrasts with the result for the previous group in that only this group displays the

2In this table, loving and aversion mean strict loving and strict aversion. The table excludes four subjects
who exhibited strict ambiguity loving (i.e., strict ex-post randomization aversion) because ambiguity loving
is outside of our focus in the present paper.
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loving

averse

neutral

loving neutral

Ex-post randomization

Ex-ante randomization

6

17

12

35

0

12

2

14

δ = 0
δ > 0

δ < 0

Table 1: Attitudes toward ex-ante and ex-post randomizations observed by Dominiak and
Schnedler (2010) (EAP Maxmin utility model can describe the date just depending on the
sign of δ.)

overall consistency predicted by the reversal of order axiom and implied by Raiffa’s (1961)

critique.

The first observation is explained by the heterogeneity of parameter δ as follows: Suppose

EAP Maxmin preferences exhibit ex-post randomization loving. Then, as will be shown in

Section 3.5, the preferences exhibit ex-ante randomization loving, neutrality, and aversion,

if and only if δ > 0, δ = 0, and δ < 0, respectively, which is consistent with Table 1.

The second observation is also consistent with EAP Maxmin preferences. As will be shown

in Section 3.5, among EAP Maxmin preferences, ex-post randomization neutrality implies

ex-ante randomization neutrality for any δ, which is also consistent with Table 1.

Spears (2009) independently conducted similar experiments to Dominiak and Schnedler

(2010) and has obtained similar tendencies. On the other hand, in a field experiment,

Dwenger, Kübler, and Weizsäcker (2010) have found a significant evidence for ex-ante ran-

domization loving, which is consistent with δ > 0.

1.2 Related Literature

To our knowledge, no other axiomatic papers have studied a preference for ex-ante random-

izations and a preference ex-post randomizations separately.3

3In a different context of intertemporal decision making under risk, the recursive expected utility models
entail non-neutral attitudes toward timing of randomization. For instance, see Kreps and Porteus (1978).
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However, there are a few axiomatic papers which relax the reversal of order axiom in

different contexts. Among them, to the best of our knowledge, the first is Drèze (1987),

which identifies state-dependent utilities and subjective probability. A more recent paper

is Seo (2009), which axiomatizes the second order subjective expected utility. Both papers

are different from the present paper in the motivations. Indeed, Seo (2009) assumes the

independence axiom on ex-ante randomizations, so that no strict preference for ex-ante

randomizations.

In terms of applications, the present paper is related to a literature on game theory that

studies ambiguity-averse players, in which mixed strategies correspond to ex-ante random-

izations (i.e., lotteries on pure strategies). The special cases of EAP Maxmin preferences

and EAP Choquet preferences (i.e., Choquet counterpart of EAP Maxmin), where δ = 0

or 1, have been used in the literature as follows:4 Klibanoff (1996) and Lo (1996) have

applied EAP Maxmin preferences with δ = 1; Eichberger and Kelsey (2000) have applied

EAP Choquet preferences with δ = 0; Mukerji and Shin (2002) have applied EAP Choquet

preferences with δ = 0 as well as with δ = 1. As these authors note, both assumptions δ = 1

and δ = 0 could provide unintuitively extreme predictions in some games, respectively. In

such games, it can be shown that, δ ∈ (0, 1) could predict more reasonable behavior of

ambiguity-averse players than δ = 0 and 1.

2 Setup

For any set X, let ∆(X) be the set of distributions over X with finite supports. An element

in ∆(X) is called a lottery on X. Let δx ∈ ∆(X) denote a point mass on x.

Let S be a set of states and let Σ be an algebra of subsets of S. Let Z denote a set

of outcomes. A payoff profile f is called an act and defined to be a Σ-measurable function

from S into ∆(Z) with finite range. Let F be the set of all acts.

4Since Choquet expected utilities with convex capacity have Maxmin representations, our axiomatization
of EAP Maxmin preferences is also an axiomatize EAP Choquet preferences with convex capacities.
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A preference relation % is defined on ∆(F ).5 As usual, ≻ and ∼ denote, respectively,

the asymmetric and symmetric parts of %. A constant act is an act f such that f(s) = f(s′)

for all s, s′ ∈ S.6 For f ∈ F , an element lf ∈ ∆(Z) is a certainty equivalent for f if f ∼ lf .

Finally, ex-ante randomizations and ex-post randomizations are formally defined as fol-

lows:

Definition: For all α ∈ [0, 1] and P,Q ∈ ∆(F ), αP ⊕ (1 − α)Q ∈ ∆(F ) is a lottery on

acts such that (αP ⊕ (1 − α)Q)(f) = αP (f) + (1 − α)Q(f) ∈ [0, 1] for each f ∈ F . This

operation is called an ex-ante randomization.7

Definition: For all α ∈ [0, 1] and f, g ∈ F , αf + (1 − α)g ∈ F is an act such that

(αf + (1 − α)g)(s)(z) = αf(s)(z) + (1 − α)g(s)(z) ∈ [0, 1] for each s ∈ S and z ∈ Z. This

operation is called an ex-post randomization.

3 Axiomatization

To characterize EAP Maxmin preferences, instead of the reversal of order axiom, we assume

the indifference axiom as well as the axioms used in Gilboa and Schmeidler (1989).

3.1 Axioms

The first six axioms are due to Gilboa and Schmeidler (1989). However, since the reversal of

order axiom is not assumed, both the continuity axiom and the certainty independence axiom

are assumed for ex-ante randomizations and also, but separately, for ex-post randomizations.

Axiom (Weak Order): % is complete and transitive.

Axiom (Continuity): % is von Neumann-Morgenstern continuous with respect to ex-ante

5Elements in ∆(F ) are denoted by P, Q, and R. Elements in F are denoted by f, g , and h. Elements
in ∆(Z) are denoted by l, q, and r.

6Elements in ∆(Z) are identified as constant acts.
7For degenerate lotteries on acts, we write αf ⊕ (1 − α)g ∈ ∆(F ), instead of αδf ⊕ (1 − α)δg, for any

α ∈ [0, 1], and f, g ∈ F .
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randomizations as well as ex-post randomizations.8

Axiom (Nondegeneracy): There exist z+, z− ∈ Z such that z+ ≻ z−.

Axiom (Monotonicity): For all f, g ∈ F ,

f(s) % g(s) for all s ∈ S ⇒ f % g.

If a preference relation % satisfies the axioms above, then each act f ∈ F admits a

certainty equivalent lf ∈ ∆(Z). The next axiom is called uncertainty aversion in Gilboa

and Schmeidler (1989).

Axiom (Ex-post Randomization Loving): For all α ∈ [0, 1] and f, g ∈ F ,

f ∼ g ⇒ αf + (1 − α)g % f.

Mixing constant acts, ex-ante as well as ex-post, does not provide any hedging. This

suggest the next axiom.

Axiom (Ex-ante/Ex-post Certainty Independence):

(i) For all α ∈ (0, 1], P,Q ∈ ∆(F ), and l ∈ ∆(Z),

P % Q ⇔ αP ⊕ (1 − α)l % αQ ⊕ (1 − α)l.

(ii) For all α ∈ (0, 1], f, g ∈ F , and l ∈ ∆(Z),

f % g ⇔ αf + (1 − α)l % αg + (1 − α)l.

As noted in the introduction, the final axiom, the indifference axiom, states that two

ex-ante randomizations are indifferent if the two randomizations are indifferent not only

according to the state-wise comparison but also according to the support-wise comparison,
8Formally, (i) For all P, Q,R ∈ ∆(F ), if P ≻ Q and Q ≻ R, then there exist α and β in (0, 1) such that

αP ⊕ (1− α)R ≻ Q and Q ≻ βP ⊕ (1− β)R; (ii) For all f, g, h ∈ F , if f ≻ g and g ≻ h, then there exist α
and β in (0, 1) such that αf + (1 − α)h ≻ g and g ≻ βf + (1 − β)h.
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in contrast to the reversal of order axiom. To formalize the state-wise comparison and

the support-wise comparison, state-wise reduction and support-wise reduction of ex-ante

randomizations are introduced as follows:

Definition: For all P ∈ ∆(F ) such that P = P (f1)f 1 ⊕ · · · ⊕ P (fn)fn,

(i) an act

fP = (Ps)s∈S

is called the state-wise reduction, where Ps = P (f 1)f 1(s) + · · · + P (fn)fn(s) for all s ∈ S.

(ii) a lottery

lP = P (f1)lf1 + · · · + P (fn)lfn

is called the support-wise reduction.9

In words, the state-wise reduction fP offers the reduced marginal distribution Ps of P

at each state s.10 The supportwise reduction lP offers the certainty equivalent lf instead of

each act f in the support of P . (See Figure 4, for examples of each comparison based on

these reductions.) Given these definitions, the indifference axiom is defined as follows:11

Axiom (Indifference): For all P,Q ∈ ∆(F ), (i) fP ∼ fQ

(ii) lP ∼ lQ

 ⇒ P ∼ Q.

As suggested, a stronger axiom without condition (ii) is equivalent to the reversal of

order axiom.12 To demonstrate the implication of the indifference axiom, in comparison

with the reversal of order axiom, consider two fifty-fifty ex-ante randomizations P and Q

shown in Figure 4.

9For an act f , certainty equivalent lf might not be unique. Hence, supportwise reduction lP might not
be unique in general. However, any supportwise reductions are indifferent regardless of various choices of
certainty equivalents of each act, under the expected utility on ∆(Z) implied by the other axioms.

10Kreps (1988, p. 106) has also proposed this reduction.
11If the indifference axiom is strengthened to apply (i) and (ii) independently (that is, (i) or (ii) ⇒ P ∼ Q),

together with the other axioms in the theorem, Anscombe and Aumann’s (1963) subjective expected utility
is obtained.

12See Proposition 5 in Section 4, for a formal statement.
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1
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2

fP =

,

l(1, 0)

lP =
l(0, 1)

1
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(i) State-wise
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1

0
1
2

1

0

1
2

1
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1

0

1
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1
2

∼

≺

(1, 1)

(0, 0)

Q :=

1
2

1
2

Ex-ante
randomizations:

1
2

1
2

Figure 4: State-wise comparison and support-wise comparison between P and Q (Both are
indifferent according to the state-wise comparison but are not indifferent according to the
support-wise comparison.)

On the one hand, both P and Q offer the fifty-fifty lottery between 1 and 0 at each

state. Therefore, fP and fQ become the same, so that condition (i) is satisfied. Hence, the

state-wise comparison implies that P and Q are indifferent, as required by the reversal of

order axiom.

On the other hand, since the acts in the support of P are ambiguous, lP becomes a

lottery on certainty equivalents of ambiguous acts. While, lQ becomes the fifty-fifty lottery

between 1 and 0 because the acts in the support of Q are constant, namely (1, 1) and (0, 0).

Hence, according to this support-wise comparison, Q is better than P . This is because,

under ambiguity aversion, lQ ≻ (1, 0) ∼ (0, 1) ∼ lP .13 Therefore, condition (ii) is not

satisfied.

Based on the above two comparisons, therefore, the indifference axiom does not require

that P and Q are indifferent, as opposed to the reversal of order axiom. This conclusion of

the indifference axiom would intuitively make more sense than that of the reversal of order

axiom, because Q is essentially the objective fifty-fifty lottery between 1 and 0 and, hence,

involves no ambiguity, in contrast to P .

13Under ambiguity aversion, lQ ≻ (1, 0) ∼ (0, 1). Hence, the objective expected utility theory implies
lP ∼ (1, 0) ∼ (0, 1).
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3.2 Representation

Before stating the result, we mention that the topology to be used on the space of finitely

additive set functions on Σ is the weak* topology.

Theorem: For a preference relation % on ∆(F ), the following statements are equivalent:

(i) The preference relation satisfies Weak Order, Continuity, Nondegeneracy, Monotonicity,

Ex-post Randomization Loving, Ex-ante/Ex-post Certainty Independence, and Indifference.

(ii) There exist a real number δ, a nonempty convex closed set C of finitely additive proba-

bility measures on Σ, and a nonconstant mixture linear function u : ∆(Z) → R, such that

% is represented by the function V : ∆(F ) → R of the form

V (P ) = δ min
µ∈C

∫
S

( ∫
F

u(f(s))dP (f)
)
dµ(s) + (1 − δ)

∫
F

(
min
µ∈C

∫
S

u(f(s))dµ(s)
)
dP (f).

Definition: A preference relation % on ∆(F ) is called an Ex-ante/Ex-post (EAP) Maxmin

preference if it satisfies axioms in (i) of Theorem.

3.2.1 Sketch of Proof

In this section, we provide a sketch of proof. Formal proof is in the appendix.

By the standard argument as in Gilboa and Schmeidler (1989), there exists a function V

representing % on ∆(F ), which is unique up to positive affine transformation. The axioms of

ex-post randomization loving, ex-ante/ex-post certainty independence, and indifference will

show that V can be taken so that the restriction U of V on F has a Maxmin representation.

That is, there exists a set C of priors and a mixture linear function u on ∆(Z) such that

U(f) = minµ∈C

∫
S

u(f(s))dµ(s). To prove this formally, our new axiom, the indifference

axiom, is necessary. Without the indifference axiom, U can be any monotonic function of

the maximin utility.

Define D = {
(
U(fP ), U(lP )

)
∈ R2

∣∣ P ∈ ∆(F )}. On the set D , a binary relation %̂ is

13



defined as follows: for all (a, b), (a′, b′) ∈ D ,

(a, b) %̂ (a′, b′) ⇔ V (P ) ≥ V (Q),

where P, Q ∈ ∆(F ),
(
U(fP ), U(lP )

)
= (a, b), and

(
U(fQ), U(lQ)

)
= (a′, b′). The indifference

axiom implies that %̂ is a well-defined binary relation.

The purpose of the proof is to show that there exists a real number δ such that for any

(a, b), (a′, b′) ∈ D , the following equivalence holds:

(a, b) %̂ (a′, b′) ⇔ δa + (1 − δ)b ≥ δa′ + (1 − δ)b′. (2)

Together with the definition of %̂, this implies that

V (P ) ≥ V (Q) ⇔ δU(fP ) + (1 − δ)U(lP ) ≥ δU(fQ) + (1 − δ)U(lQ).

Since both V and U are unique up to positive affine transformation and V = u = U on

∆(Z), then V (P ) = δU(fP ) + (1 − δ)U(lP ) for all P ∈ ∆(F ). A straightforward argument

shows that this equation proves that V has an EAP Maxmin representation.

To prove (2), it is convenient to define a subset C = {(u(l), u(l)) ∈ R2
∣∣ l ∈ ∆(Z)}

of D . Then, it will be shown that if (a, b) ∈ D , (c, c) ∈ C , and α ∈ [0, 1], then α(a, b) +

(1 − α)(c, c) ∈ D . (See Figure 5.) In addition, %̂ satisfies completeness, transitivity, a

weaker version of continuity, monotonicity on C , and certainty independence defined as

follows: for all (a′, b′), (a, b) ∈ D , (c, c) ∈ C , and α ∈ [0, 1], (a, b) %̂ (a′, b′) ⇔ α(a, b) + (1 −

α)(c, c) %̂α(a′, b′) + (1 − α)(c, c).14

It is well-known, however, that in general in R2, an additive linear representation such

as (2) requires more than the independence axiom.15 In the rest of the proof, we overcome

this difficulty by taking two steps. First, we show (2) on a subset T of D . Then, we extend

the result into D .

14The certainty independence of %̂ from the certainty additivity of U .
15See Debreu (1960).
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Figure 5: Indifference curves of %̂ on T

Fix any point (a∗, b∗) in the interior of D .16 Consider the case in which (a∗, a∗) %̂ (a∗, b∗).17

Take c such that c ≥ a∗. Then, because of the monotonicity, (c, c) %̂ (a∗, a∗). Hence, by a

weaker version of continuity, we will show that there exists a point (â, b̂) on the line seg-

ment joining (c, c) and (a∗, b∗) such that (â, b̂) ∼̂ (a∗, a∗).18 Since (a∗, a∗) ∈ C , the certainty

independence property shows that any points on the line segment joining (a∗, a∗) and (â, b̂)

are indifferent.

Let T be the triangle which consists of vertices (c, c), (a∗, a∗), and (â, b̂). By this def-

inition, any point in T can be represented as a convex combination between (c, c) and a

point on the line segment joining (a∗, a∗) and (â, b̂). Since any points on the line segment

joining (a∗, a∗) and (â, b̂) are indifferent and (c, c) belongs to C , therefore, the certainty

independence property will show that the indifference curves on T are parallel to the line

segment and, hence, linear, as shown in Figure 5. This is because, mixing (c, c) does not

change preferences.

16If the set C of priors is nondegenerate, such a point exists. If C is degenerate, then U(fP ) = U(lP ), so
that the EAP Maxmin representation holds trivially.

17The other case can be proved in a symmetric way. For details, see footnote 24 in the appendix.
18In the appendix, the weaker version of continuity is called certainty continuity and defined as follows:

for all (a, b),(a′, b′) ∈ D , (c, c) ∈ C , if (a, b) %̂ (a′, b′) %̂ (c, c) or (c, c) %̂ (a′, b′) %̂ (a, b), there exists α ∈ [0, 1]
such that (a′, b′) ∼̂α(a, b) + (1 − α)(c, c).
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Finally, to extend this indifference curves on T into the whole domain D with linearity

preserved, we study a particular property of D . Choose (a, b) ∈ D . There exists P ∈ ∆(F )

such that (a, b) = (U(fP ), U(lP )). Let µ∗ ∈ arg minµ∈C

∫
S
(
∫

F
u(f(s))dP (f))dµ(s). Then

U(fP ) =

∫
F

∫
S

u(f(s))dµ∗(s)dP (f) ≥
∫

F

(
min
µ∈C

∫
S

u(f(s))dµ(s)
)
dP (f) = U(lP ).

Therefore, for all (a, b) ∈ D ,

a ≥ b. (3)

Let (c∗, c∗) =
(

1
2
c + 1

2
a∗, 1

2
c + 1

2
a∗). Then (c∗, c∗) belongs to C as well as T . By

(3), a convex combination of (c∗, c∗) and any point in D belongs to T , if the relative

weight on (c∗, c∗) is close enough to 1. (This statement is not true without (3), because

for (a, b) ∈ T , it must hold that a ≥ b.) This observation, together with the certainty

independence property shows that the indifference curves of %̂ on T can be extended into

D with linearity preserved. Hence, there exists a desired number δ such that (2) holds.19

3.2.2 Uniqueness

By Theorem, EAP Maxmin preferences can be represented by a triple (δ, C, u). Next, we

give the uniqueness property of this representation.

Proposition 1: The following two statements are equivalent:

(i) Two triples (δ, C, u) and (δ′, C ′, u′) represent the same EAP Maxmin preference.

(ii) (a) C = C ′, and there exist real numbers α and β such that α > 0 and u = αu′ +β; and

(b) If C is nondegenerate, then δ = δ′.

19In our proof, the certainty additivity and the concavity of V and U play an essential role. These two
properties exactly characterize Maxmin preferences. Therefore, with our proof, EAP Maxmin is the most
general EAP representation. In Saito (2008, 2010), a stronger EAP representation is obtained in the context
of other-regarding preferences.
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3.3 Characterizations of δ

The parameter δ has a direct behavioral characterization in terms of ex-ante randomization

loving and preference for late randomization:

Axiom (Ex-ante Randomization Loving): For all α ∈ (0, 1) and f, g ∈ F ,

f ∼ g ⇒ αf ⊕ (1 − α)g % f.

Ex-ante randomization neutrality and ex-ante randomization aversion are defined in the

same way by changing the right-hand side of the definition to αf ⊕ (1 − α)g ∼ f and to

f % αf ⊕ (1 − α)g, respectively.

Axiom (Preference for Late Randomization): For all α ∈ (0, 1) and f, g ∈ F ,

αf + (1 − α)g % αf ⊕ (1 − α)g.

Preference for late randomization means that an ex-post randomization is preferred over

its ex-ante randomization. This is because an ex-post randomization provides hedging in ex-

post utilities, whereas an ex-ante randomization provides hedging only in ex-ante expected

utilities. In addition, indifference for timing of randomization is defined in the same way

by changing % to ∼, which is nothing but the reversal of order axiom among two acts.

Proposition 2: Suppose % is an EAP Maxmin preference with nondegenerate C.

(i) % exhibits ex-ante randomization loving if and only if δ ≥ 0.

(ii) % exhibits a preference for late randomization if and only if δ ≤ 1.

Note that given the representation, it is easy to see that EAP Maxmin preferences with

δ = 0 and δ = 1 exhibit ex-ante randomization neutrality and an indifference for timing of

randomization, respectively.

3.4 Comparative Attitudes toward Ex-ante Randomization

We now study comparative attitudes toward ex-ante randomizations.

17



Definition: Given two preference relations %1 and %2, %1 is said to be more ex-ante

randomization loving than %2 if, for every P ∈ ∆(F ) and every f ∈ F ,

P %2 f ⇒ P %1 f.

The next proposition shows that δ captures the attitude toward ex-ante randomiza-

tions.20

Proposition 3: Suppose two EAP Maxmin preferences {%i}i=1,2 are represented by {(δi, Ci,

ui)}i=1,2, where C1 and C2 are nondegenerate. Then, the following statements are equivalent:

(i) %1 is more ex-ante randomization loving than %2.

(ii) δ1 ≥ δ2, C1 = C2, and there exist real numbers α and β such that α > 0 and u1 = αu2+β.

Note that in (ii), both of the preferences coincide in C as well as in u under normalization.

Therefore, Proposition 3 says that stronger ex-ante randomization loving is characterized

only by a larger value of δ. Therefore, δ can be interpreted as an index of ex-ante random-

ization loving.

3.5 Relationship between Attitudes toward Ex-ante Randomiza-

tions and Attitudes toward Ex-post Randomizations

To conclude this section, implications of EAP Maxmin preferences on the relationship be-

tween attitudes toward ex-ante randomizations and those toward ex-post randomizations

are characterized. In particular, it will be shown that the implications of EAP Maxmin pref-

erences are consistent with Dominiak and Schnedler’s (2010) experimental evidence, which

was summarized by two points in Table 1 in Section 1.1 as follows.

Firstly, among strict ex-post randomization loving subjects, the attitude toward ex-ante

randomizations is quite heterogeneous; but secondly most ex-post randomization neutral

subjects are ex-ante randomization neutral as well. These results are formally described by

20Our notion of comparative attitude toward ex-ante randomizations is similar in spirit to the literature
on comparative ambiguity aversion such as Ghirardato and Marinacci (2002).
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EAP Maxmin preferences as follows:

Proposition 4: Suppose % is an EAP Maxmin preference.

(i) (a) Suppose δ > 0. Then, % exhibits strict ex-post randomization loving if and only if %
exhibits strict ex-ante randomization loving.21

(b) Suppose δ < 0. Then, % exhibits strict ex-post randomization loving if and only if %
exhibits strict ex-ante randomization aversion.

(c) Suppose δ = 0. Then, % exhibits ex-ante randomization neutrality.

(ii) For any δ, if % exhibits ex-post randomization neutrality, then % exhibits ex-ante ran-

domization neutrality.

Part (i) shows that the heterogeneity observed in the experiment can be described simply

by the sign of δ. Part (ii) shows that among EAP Maxmin preferences, ex-post randomiza-

tion neutrality implies ex-ante randomization neutrality, as observed in the experiment.

4 Concluding Remarks

To conclude the paper, the relationship between our axioms and axioms used in Anscombe

and Aumann (1963) are discussed. As noted, we will show that the state-wise indifference

axiom, which is a strengthening of the indifference axiom by dropping the support-wise

comparison, is equivalent with the reversal of order axiom. Based on this result above, we

also show that the reversal of order axiom implies the indifference axiom but not vice versa,

and the indifference axiom, in turn, implies the reduction of compound lotteries axiom but

not vice versa.

First, the reversal of order axiom proposed by Anscombe and Aumann (1963) is formally

defined as follows:

Axiom (Reversal of Order): For all set {f i}n
i=1 of acts and set {αi}n

i=1 of nonnegative

21Strict loving and strict aversion are defined by strict preferences.
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numbers such that
∑n

i=1 αi = 1,

α1f
1 ⊕ · · · ⊕ αnfn ∼ α1f

1 + · · · + αnfn.

As noted, the reversal of order axiom turns out to be equivalent to the following axiom:

Axiom (State-wise Indifference): For all P, Q ∈ ∆(F ),

fP ∼ fQ ⇒ P ∼ Q.

Proposition 5: The reversal of order axiom and the state-wise indifference axiom are

equivalent.

Note that the state-wise indifference axiom is a strengthening of the indifference axiom

by dropping the requirement of the support-wise comparison. Hence,

Corollary : The reversal of order axiom implies the indifference axiom.

As the example illustrated by Figure 4 in Section 3 shows, the converse of Corollary

is not true. However, the indifference axiom implies the reversal of order axiom among

constant acts. Formally,

Axiom (Reduction of Compound Lotteries): For all set {li}n
i=1 of lotteries and set {αi}n

i=1

of nonnegative numbers such that
∑n

i=1 αi = 1,

α1l
1 ⊕ · · · ⊕ αnl

n ∼ α1l
1 + · · · + αnl

n.

Proposition 6: The indifference axiom implies the reduction of compound lotteries axiom.
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Appendix: Proofs

A Proof of Theorem

The necessity of axioms is easy to check. Note that Monotonicity is imposed only on the

set F of acts. Thus, EAP Maxmin preferences immediately satisfy the axiom since the

preferences reduce into Gilboa and Schmeidler’s (1989) Maxmin preferences on F . To show

Continuity, note that the set of finitely additive probabilities measures is compact under the

product topology. Therefore, the closed subset C is compact. Hence, the Berge’s Maximum

Theorem can be applied.

In the following, we will prove the sufficiency. The first lemma shows the existence of a

utility function of % as follows:

Lemma 1: Suppose that the preference relation % on ∆(F ) satisfies the axioms in Theo-

rem. Then, there exists a utility function V representing % such that

(i) for all α ∈ [0, 1], P ∈ ∆(F ), and l ∈ ∆(Z), V (αP ⊕ (1 − α)l) = αV (P ) + (1 − α)V (l),

(ii) V is unique up to positive affine transformation,

(iii) moreover, there exists a nonempty convex closed set C of finitely additive probabil-

ity measures on Σ, and a mixture linear function u : ∆(Z) → R such that V (f) =

minµ∈C

∫
S

u(f(s))dµ(s).

Proof of Lemma 1: From the implication of the von Neumann-Morgenstern’s Theorem,

there exists a mixture linear function u : ∆(Z) → R representing % restricted to ∆(Z).

In addition, u is unique up to positive affine transformation. Thus, choose u such that

u(z+) = 1 and u(z−) = −1.

For an arbitrary P ∈ ∆(F ), define

MP = {αP ⊕ (1 − α)l|l ∈ ∆(Z) and α ∈ [0, 1]}.

Thus, MP is the set of ex-ante randomizations of P and the constant acts. Using the von

Neumann-Morgenstern’s Theorem again, there is a function VP : MP → R representing
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% restricted to MP , which is mixture linear with respect to the ex-ante randomizations.

In addition, VP is unique up to positive affine transformation. Thus, choose VP such that

VP (z+) = 1 and VP (z−) = −1.

For all l, r ∈ ∆(Z) VP (l) ≥ VP (r) ⇔ l % r ⇔ u(l) ≥ u(r). Hence, there exists an

increasing function v : u(∆(Z)) → R such that VP (l) = v(u(l)) for all l ∈ ∆(Z). Note that

by Proposition 6, % satisfies Reduction of Compound Lotteries. This property together

with mixture linearities of Vp and u shows that v is also mixture linear.22 In addition, by

the normalization, v(1) = 1 and v(−1) = −1. Hence, we can conclude that v is the identity

function, so that VP (l) = u(l).

Now, we define a real-valued function V on ∆(F ) which represents % by V (P ) = VP (P )

for all P ∈ ∆(F ). Note that V is well defined, because if R ∈ MP ∩ MQ, then VP (R) =

VQ(R). In addition, for all α ∈ [0, 1], P ∈ ∆(F ), and l ∈ ∆(Z),

V (αP ⊕ (1 − α)l) = VP (αP ⊕ (1 − α)l) = αVP (P ) + (1 − α)VP (l) = αV (P ) + (1 − α)V (l).

Hence, parts (i) and (ii) hold.

Finally, to show (iii), fix α ∈ [0, 1], f ∈ F , and l ∈ ∆(Z). Note Indifference shows

that for all α ∈ [0, 1], f ∈ F , and l ∈ ∆(Z), αf ⊕ (1 − α)l ∼ αf + (1 − α)l.23 Hence,

V (αf + (1 − α)l) = V (αf ⊕ (1 − α)l) = αV (f) + (1 − α)V (l), where the second equality

is by (i). Moreover, Ex-post Randomization Loving shows that if V (f) = V (g), then

V (αf+(1−α)g) ≥ V (f) for all f, g ∈ F and α ∈ [0, 1]. Therefore, by Gilboa and Schmeidler

(1989), these two properties (the certainty additivity and the concavity) and continuity with

respect to ex-post randomizations shows that V has a Maxmin representation on F . Hence,

part (iii) holds. ¥

22Choose a, b ∈ u(∆(Z)) and α ∈ [0, 1] to show v(αa + (1 − α)b) = αv(a) + (1 − α)v(b). There exist
l, r ∈ ∆(Z) such that u(l) = a and u(r) = b. Then by Reduction of Compound Lotteries, v(αa+(1−α)b) =
v(u(αl +(1−α)r)) = VP (αl +(1−α)r) = VP (αl⊕ (1−α)r) = αVP (l)+ (1−α)VP (r) = αv(a)+ (1−α)v(b).

23To see this, let P = αf ⊕ (1 − α)l. Then, for all s ∈ S, Ps = αf(s) ⊕ (1 − α)l, note that condition
(i) in Indifference is trivially satisfied. In addition, since lf ∼ f , Ex-post Certainty Independence shows
lP = αlf + (1 − α)l ∼ αf + (1 − α)l, so that condition (ii) in Indifference is satisfied as well. Hence,
Indifference shows P ∼ αf + (1 − α)l.
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Henceforth, we assume that the preference relation % on ∆(F ) satisfies the axioms in

Theorem. Then by Lemma 1, there exists a utility function V representing % and satisfying

the properties (i), (ii), and (iii) in Lemma 1. Let U be the restriction of V on F . Thus, U

is a maxmin representation defined with a set C of priors and a von Neumann-Morgenstern

utility function u. Hereafter, we fix this V, U,C, and u.

In the following, we use the following equations several times. For all P ∈ ∆(F ),

U(fP ) = min
µ∈C

∫
S

u(Ps)dµ(s) = min
µ∈C

∫
S

( ∫
F

u(f(s))dP (f)
)
dµ(s),

U(lP ) =

∫
F

U(lf )dP (f) =

∫
F

(
min
µ∈C

∫
S

u(f(s))dµ(s)
)
dP (f).

(4)

That is, U(fP ) and U(lP ) respectively coincide with the first term and the second term of

EAP Maxmin utility.

By using (4), the next lemma proves Theorem in the case where C is degenerate.

Lemma 2: Suppose that the preference relation % on ∆(F ) satisfies the axioms in Theorem.

If C is degenerate, there exists a real number δ such that (δ, C, u) is an EAP Maxmin

representation.

Proof of Lemma 2: Suppose C = {µ} for some µ ∈ ∆(S). Then for all P ∈ ∆(F ),

U(fP ) =
∫

S

∫
F

u(f(s))dP (f)dµ(s) =
∫

F

∫
S

u(f(s))dµ(s)dP (f) = U(lP ), where the second

equality is by the Fubini’s Theorem. Therefore, fP ∼ lP . Hence, Indifference shows that for

all P ∈ ∆(F ), P ∼ fP ∼ lP . Therefore, V (P ) = U(fP ) = U(lP ). Thus, there exists a real

number δ such that V (P ) = δU(fP ) + (1 − δ)U(lP ). ¥

Hereafter, we consider the case where C is nondegenerate. We will prove three lemmas

to complete the proof. First, we will show a representation result for a preference relation %̂
on a subset set D of R2. To show the statement, we define two properties of the preference

as follows:

(i) %̂ is said to satisfy Certainty Independence, if the following condition holds: for all

(a, b), (a′, b′) ∈ D , (c, c) ∈ C , α ∈ [0, 1], (a, b) %̂ (a′, b′) if and only if α(a, b) + (1 −

α)(c, c) %̂α(a′, b′) + (1 − α)(c, c),
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(ii) %̂ is said to satisfy Certainty Continuity, if the following condition holds: for all

(a, b), (a′, b′) ∈ D , (c, c) ∈ C , if (a, b) %̂ (a′, b′) %̂ (c, c) or (c, c) %̂ (a′, b′) %̂ (a, b), there ex-

ists α ∈ [0, 1] such that (a′, b′) ∼̂α(a, b) + (1 − α)(c, c).

Lemma 3: Let D ⊂ R2 and C = D ∩ {(a, a)|a ∈ R}. Suppose that

(a) for any (a, b) ∈ D , a ≥ b,

(b) for all (a, b) ∈ D , (c, c) ∈ C , and α ∈ [0, 1], α(a, b) + (1 − α)(c, c) ∈ D ,

(c) there exists (a∗, b∗) ∈ D and (c, c), (c, c) ∈ C such that a∗ > b∗ and c > a∗ > c.

If a preference relation %̂ on D satisfies Completeness, Transitivity, Monotonicity on C ,

Certainty Independence, and Certainty Continuity, then there exists a unique real number

δ such that (a, b) %̂ (a′, b′) ⇔ δa + (1 − δ)b ≥ δa′ + (1 − δ)b′.

Proof of Lemma 3: Consider the case where (a∗, a∗) %̂ (a∗, b∗). By assumption (c), c > a∗.

Monotonicity on C shows (c, c) ≻̂ (a∗, a∗). Then by Certainty Continuity, there exist α > 0

such that (a∗, a∗) ∼̂α(a∗, b∗)+(1−α)(c, c). Denote
(
αa∗ +(1−α)c, αb∗ +(1−α)c

)
by (â, b̂).

24 Then, (â, b̂) ∼̂ (a∗, a∗).

Let T be a triangle including the interior which consists of the vertices (c, c), (a∗, a∗),

and (â, b̂) as shown in Figure 5 in Section 3.2.1.25

The first step shows that the preference %̂ is well defined on T .

Step 1: T is a nondegenerate subset of D .

Proof of Step 1: Since a∗ > b∗ and, in addition, α > 0, then â > b̂. Therefore, (a∗, a∗) ̸=

(â, b̂) ̸= (c, c). Hence, T is not degenerate. Choose any (a, b) ∈ T to show (a, b) ∈ D . Since

T is the triangle, the Carathéodory’s Theorem (Hiriart-Urruty and Lemaréchal (1949, p.

24In the other case where (a∗, b∗)%(a∗, a∗), there exist α > 0 such that (a∗, a∗) ∼̂α(a∗, b∗) + (1−α)(c, c).
Denote

(
αc + (1 − α)a∗, αc + (1 − α)b∗

)
by (ã, b̃). Then, instead of the triangle T defined in the proof,

consider a triangle, including the interior, which consists of the vertices (c̃, c̃), (c, c), and (a∗, a∗). Then, the
rest of the proof goes through exactly in the same way.

25Formally, T =
{
(a, b) ∈ R2|a ≥ b,

⟨
(a∗−â, b̂−a∗), (a, b)−(a∗, a∗)

⟩
≥ 0,

⟨
(c−â, b̂−c), (a, b)−(c, c)

⟩
≥ 0

}
,

where ⟨·, ·⟩ is a inner product.
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29, Theorem 1.3.6)) shows that there exist α, β ∈ [0, 1] such that

(a, b) = α(c, c) + β(a∗, a∗) + (1 − α − β)(â, b̂)

= (α + β)(c, c) + (1 − α − β)(â, b̂),

where c ≡ α
α+β

c + β
α+β

a∗. Therefore, since (â, b̂) ∈ D and (c, c) ∈ C , it follows from

assumption (b) that (a, b) ∈ D . ¤

The next step shows the existence of the desired real number δ on the restricted domain

T as follows:

Step 2: There exists a real number δ such that for any (a, b), (a′, b′) ∈ T , (a, b) %̂ (a′, b′) ⇔

δa + (1 − δ)b ≥ δa′ + (1 − δ)b′.

Proof of Step 2:

Substep 2.1: For all (a, b) ∈ T , there exists a unique number α ∈ [0, 1] such that

(a, b) ∼̂α(c, c) + (1 − α)(a∗, a∗).

Proof of Substep 2.1: Choose any (a, b) ∈ T . Since T is the triangle, the Carathéodory’s

Theorem, again, shows that there exist α, β ∈ [0, 1] such that (a, b) = α(c, c) + β(a∗, a∗) +

(1 − α − β)(â, b̂). Since (â, b̂) ∼̂ (a∗, a∗), Transitivity and Certainty Independence show

(a, b) ∼̂α(c, c) + (1 − α)(a∗, a∗). Since c > a∗, Monotonicity on C shows that α is unique.

Hence, Substep 2.1 is proved.

For all (a, b) ∈ T , define

c(a, b) = αc + (1 − α)a∗,

where α is as in Substep 2.1.

Substep 2.2: For all (a, b) ∈ T ,
a − c(a, b)

a − b
=

â − a∗

â − b̂
.

Proof of Substep 2.2: Choose any (a, b) ∈ T . Then,

a − c(a, b)

a − b
=

a − αc − (1 − α)a∗

a − b
=

â − a∗

â − b̂
,

25



The first equality holds because c(a, b) = αc + (1 − α)a∗. To see the second equality, note

that by the Carathéodory’s Theorem, (a, b) = α(c, c)+β(a∗, a∗)+ (1−α−β)(â, b̂) for some

α, β ∈ [0, 1]. Thus, a−αc− (1−α)a∗ = (1−α− β)(â− a∗) and a− b = (1−α− β)(â− b̂).

Hence, Substep 2.2 is proved.

Define

δ = 1 − â − a∗

â − b̂
.

By substituting this into the result of Substep 2.2, we conclude that for all (a, b) ∈ T ,

c(a, b) = δa + (1 − δ)b.

Substep 2.3. For any (a, b), (a′, b′) ∈ T , (a, b) %̂ (a′, b′) ⇔ δa + (1 − δ)b ≥ δa′ + (1 − δ)b′.

Proof of Substep 2.3: Choose any (a, b), (a′, b′) ∈ T . Then

(a, b) %̂ (a′, b′) ⇔ (c(a, b), c(a, b)) %̂ (c(a′, b′), c(a′, b′)) (∵ Substep 2.1)

⇔ c(a, b) ≥ c(a′, b′) (∵ Monotonicity on C )

⇔ δa + (1 − δ)b ≥ δa′ + (1 − δ)b′. (∵ Definition of c) ¤

The next step extends the result of Step 2 on the whole domain D as follows:

Step 3: For all (a, b), (a′, b′) ∈ D , (a, b) %̂ (a′, b′) ⇔ δa + (1 − δ)b ≥ δa′ + (1 − δ)b′.

Proof of Step 3: Let c∗ = 1
2
c + 1

2
a∗. Choose any (a, b), (a′, b′) ∈ D . Then, by assumption

(a), a ≥ b and a′ ≥ b′. Thus, it follows that there exists α ∈ (0, 1] such that α(a, b) + (1 −

α)(c∗, c∗) and α(a′, b′) + (1 − α)(c∗, c∗) belong to T . Therefore,

(a, b) %̂ (a′, b′) ⇔ α(a, b) + (1 − α)(c∗, c∗) %̂α(a′, b′) + (1 − α)(c∗, c∗)

⇔ δ(αa + (1 − α)c∗) + (1 − δ)(αb + (1 − α)c∗) (∵ Step 2)

≥ δ(αa′ + (1 − α)c∗) + (1 − δ)(αb′ + (1 − α)c∗)

⇔ δa + (1 − δ)b ≥ δa′ + (1 − δ)b′. ¤

This completes the proof of Lemma 3. ¥
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With using Lemma 3, we prove the sufficiency of Theorem as follows. Let

D = {(U(fP ), U(lP )) ∈ R2|P ∈ ∆(F )} and C = {(u(l), u(l)) ∈ R2|l ∈ ∆(Z)}.

To define a binary relation %̂ on D , it is convenient to define a real-valued function v on D

as follows: For all (a, b) ∈ D , define v(a, b) = V (P ), where P ∈ ∆(F ) such that U(fP ) = a

and U(lP ) = b. (It will be shown that v is well defined by Lemma 5.) With this function v,

we define a binary relation %̂ on D as follows. For all (a, b), (a′, b′) ∈ D , define

(a, b) %̂ (a′, b′) ⇔ v(a, b) ≥ v(a′, b′).

It will be shown by Lemma 4 that the set D satisfies the properties of (a), (b), and (c) in

Lemma 3. In addition, it will be shown by Lemma 5 that the preference relation %̂ satisfies

the properties in Lemma 3. Define W (P ) = δU(fP )+(1−δ)U(lP ) for all P ∈ ∆(F ). Then,

by these lemmas, for all P,Q ∈ ∆(F ),

P % Q ⇔ V (P ) ≥ V (Q) (∵ Lemma 1)

⇔ v(U(fP ), U(lP )) ≥ v(U(fQ), U(lQ)) (∵ Definition of v)

⇔ (U(fP ), U(lP )) %̂ (U(fQ), U(lQ)) (∵ Definition of %̂ )

⇔ δU(fP ) + (1 − δ)U(lP ) ≥ δU(fQ) + (1 − δ)U(lQ) (∵ Lemma 3)

This shows W as well as V represent % on ∆(F ). In addition, for all P ∈ ∆(F ), l ∈ ∆(Z),

and α ∈ [0, 1],

W (αP ⊕ (1 − α)l) = δU(fαP⊕(1−α)l) + (1 − δ)U(lαP⊕(1−α)l)

= δ(αU(fP ) + (1 − α)U(fl)) + (1 − δ)(αU(lP ) + (1 − α)U(ll))

= αW (P ) + (1 − α)W (l).

Thus, W as well as V satisfy property (i) in Lemma 1. Furthermore, W = U = V on F .

Since V is unique up to positive affine transformation, it follows that V (P ) = W (P ) ≡
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δU(fP )+(1−δ)U(lP ) for all P ∈ ∆(F ). Substituting (4) shows that V has a EAP Maxmin

representation. This completes the sufficiency of Theorem, given Lemmas 4 and 5.

In the following, we will prove Lemma 4 and Lemma 5.

Lemma 4: Suppose that the preference relation % on ∆(F ) satisfies the axioms in Theorem.

Then, the following results hold: (a) for any (a, b) ∈ D , a ≥ b,

(b) for all (a, b) ∈ D , (c, c) ∈ C , and α ∈ [0, 1], α(a, b) + (1 − α)(c, c) ∈ D ,

(c) there exists (a∗, b∗) ∈ D and (c, c), (c, c) ∈ C such that a∗ > b∗ and c > a∗ > c.

Proof of Lemma 4: To show (a), choose (a, b) ∈ D . There exists P ∈ ∆(F ) such that

(a, b) = (U(fP ), U(lP )). Let µ∗ ∈ arg minµ∈C

∫
S
(
∫

F
u(f(s))dP (f))dµ(s). Then

a = U(fP ) =

∫
F

∫
S

u(f(s))dµ∗(s)dP (f) ≥
∫

F

(
min
µ∈C

∫
S

u(f(s))dµ(s)
)
dP (f) = U(lP ) = b.

To show (b), choose any (a, b) ∈ D , (c, c) ∈ C , and α ∈ [0, 1]. Then, there exist

P ∈ ∆(F ) and l ∈ ∆(Z) such that (a, b) = (U(fP ), U(lP )) and u(l) = c. Hence, a direct

calculation based on (4) shows U(fαP⊕(1−α)l) = αU(fP ) + (1 − α)u(l) = αa + (1 − α)c and

U(lαP⊕(1−α)l) = αU(lP )+ (1−α)u(l) = αb+(1−α)c. Therefore, α(a, b)+ (1−α)(c, c) ∈ D .

In the following, we will show (c). By the nondegeneracy of C, there exist f, g ∈ F

such that 1
2
f + 1

2
g ≻ f ∼ g.26 There exists z+, z− ∈ Z such that z+ ≻ z− because of

Nondegeneracy of %. Let l0 = 1
2
δz+ + 1

2
δz− . By appropriately mixing l0 with f and g, we

respectively obtain f ∗ and g∗ such that 1
2
f ∗+ 1

2
g∗ ≻ f∗ ∼ g∗ and z+ ≻ 1

2
f∗+ 1

2
g∗ ≻ z−. Then,

U(f 1
2
f∗⊕ 1

2
g∗) = U(1

2
f∗ + 1

2
g∗) > U(f ∗) = U(l 1

2
f∗⊕ 1

2
g∗). In addition, U(z+) > U(1

2
f ∗ + 1

2
g∗) >

U(z−).

Define (a∗, b∗) = (U(f 1
2
f∗⊕ 1

2
g∗), U(l 1

2
f∗⊕ 1

2
g∗)), c = U(z+), and c = U(z−). Therefore,

a∗ > b∗ and c > a∗ > c. ¥

Lemma 5: Suppose that the preference relation % on ∆(F ) satisfies the axioms in Theorem.

Then, the preference relation %̂ satisfies Completeness, Transitivity, and Monotonicity on

26Otherwise, f ∼ g ⇒ 1
2f + 1

2g ∼ f for all f, g ∈ F . This implies the subjective expected utility, so that
C becomes degenerate.
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C , Certainty Independence, and Certainty Continuity.

Proof of Lemma 5: To show Completeness and Transitivity, it suffices to show v is a

well-defined function. That is, if there exist P,Q ∈ ∆(F ) such that (U(fP ), U(lP )) =

(U(fQ), U(lQ)), then V (P ) = V (Q). The equality (U(fP ), U(lP )) = (U(fQ), U(lQ)) shows

that conditions (i) and (ii) in Indifference are satisfied. Therefore, Indifference shows V (P ) =

V (Q).

To show Monotonicity in C , choose any (c, c), (c′, c′) ∈ C . Then there exist l, l′ ∈ ∆(Z)

such that u(l) = c and u(l′) = c′. Hence, (c, c) %̂ (c′, c′) ⇔ v(u(l), u(l)) ≥ v(u(l′), u(l′)) ⇔

V (l) ≥ V (l′) ⇔ u(l) ≥ u(l′) ⇔ c ≥ c′.

To show Certainty Independence, choose any (a, b), (a′, b′), (c, c) ∈ D and α ∈ [0, 1].

Then, there exist P, Q ∈ ∆(F ) and l ∈ ∆(Z) such that (a, b) = (U(fP ), U(lP )), (a′, b′) =

(U(fQ), U(lQ)), and (c, c) = (u(l), u(l)). A direct calculation based on (4) shows

α(a, b) + (1 − α)(c, c) = (U(fαP⊕(1−α)l), U(lαP⊕(1−α)l)),

α(a′, b′) + (1 − α)(c, c) = (U(fαQ⊕(1−α)l), U(lαQ⊕(1−α)l)).

Therefore,

(a, b) %̂ (a′, b′) ⇔ V (P ) ≥ V (Q)

⇔ αV (P ) + (1 − α)V (l) ≥ αV (Q) + (1 − α)V (l)

⇔ V (αP ⊕ (1 − α)l) ≥ V (αQ ⊕ (1 − α)l) (∵ Lemma 1 (i))

⇔ α(a, b) + (1 − α)(c, c) %̂α(a′, b′) + (1 − α)(c, c).

To show Certainty Continuity, choose any (a, b), (a′, b′) ∈ D , (c, c) ∈ C such that

(a, b) %̂ (a′, b′) %̂ (c, c). Then, there exist P,Q ∈ ∆(F ) and l ∈ ∆(Z) such that (U(fP ), U(lP ))

= (a, b), (U(fQ), U(lQ)) = (a′, b′), and u(l) = c. Then P % Q % l. Then by Continuity,

there exists α ∈ [0, 1] such that Q ∼ αP ⊕ (1 − α)l. Therefore,

(a′, b′) = (U(fQ), U(lQ)) ∼̂ (U(fαP⊕(1−α)l), U(lαP⊕(1−α)l)) = α(a, b) + (1 − α)(c, c).
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The other case where (c, c) %̂ (a′, b′) %̂ (a, b) is proved in the same way.

¥

B Proof of Propositions

To prove propositions, it is convenient to show the following claim:

Claim: For EAP Maxmin preferences, if C is nondegenerate, then there exist f ∗, g∗, f̂ , ĝ ∈

F such that 1
2
f∗ + 1

2
g∗ ≻ f ∗ ∼ g∗, 1

2
f̂ + 1

2
ĝ ≻ f̂ ∼ ĝ, and 1

2
f̂ ⊕ 1

2
ĝ ∼ 1

2
f ∗ + 1

2
g∗.

Proof of Claim: By the proof of statement (c) in Lemma 4, if C is nondegenerate, then

there exist f ∗, g∗ ∈ F such that 1
2
f∗ + 1

2
g∗ ≻ f ∗ ∼ g∗ and z+ ≻ 1

2
f ∗ + 1

2
g∗ ≻ z−. We will

show the existence of f̂ and ĝ as in the claim, in the following two exhaustive cases.

Case 1: 1
2
f ∗ + 1

2
g∗%1

2
f∗ ⊕ 1

2
g∗. By Continuity, there exists α ∈ [0, 1] such that 1

2
f∗ + 1

2
g∗ ∼

αδz+ ⊕ (1 − α)(1
2
f ∗ ⊕ 1

2
g∗). Let f̂ = αδz+ + (1 − α)f ∗ and ĝ = αδz+ + (1 − α)g∗. Then,

1
2
f̂ + 1

2
ĝ ≻ f̂ ∼ ĝ and 1

2
f̂ ⊕ 1

2
ĝ ∼ 1

2
f ∗ + 1

2
g∗.

Case 2: 1
2
f ∗⊕ 1

2
g∗%1

2
f ∗ + 1

2
g∗. By mixing z−, instead of z+, the claim is proved in the same

way as in Case 1. ¥

B.1 Proof of Proposition 1

It is easy to see that (ii) implies (i). In the following, we will show that (i) implies (ii). Fix %
on ∆(F ). Let (δ, C, u) and (δ′, C ′, u′) represent %, then u and u′ are affine representations

of % restricted on ∆(Z). Hence, by the standard uniqueness results, there exist α > 0 and

β ∈ R such that u = αu′ + β. The uniqueness of C follows from Gilboa and Schmeidler

(1989), so that C = C ′.

To show δ = δ′, let V and V ′ be EAP Maxmin representations defined by (δ, C, u) and

(δ′, C ′, u′), respectively. Let U and U ′ be the restrictions of V and V ′ on F , respectively.

Then, U = αU ′+β. Since C is nondegenerate, Claim shows that there exist f∗, g∗, f̂ , ĝ ∈ F

such that 1
2
f̂ + 1

2
ĝ ≻ f̂ ∼ ĝ, and 1

2
f̂ ⊕ 1

2
ĝ ∼ 1

2
f ∗ + 1

2
g∗
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Hence, U(1
2
f̂ + 1

2
ĝ) > U(f̂) and U(1

2
f ∗ + 1

2
g∗) = δU(1

2
f̂ + 1

2
ĝ) + (1− δ)U(f̂). Therefore,

δ =
U(1

2
f ∗ + 1

2
g∗) − U(f̂)

U(1
2
f̂ + 1

2
ĝ) − U(f̂)

=
U ′(1

2
f ∗ + 1

2
g∗) − U ′(f̂)

U ′(1
2
f̂ + 1

2
ĝ) − U ′(f̂)

= δ′,

where the second equality holds because U = αU ′ + β.

B.2 Proof of Proposition 2

Suppose % is an EAP Maxmin preference represented by V with nondegenerate C. Let U

be the restriction of V on F . By the nondegeneracy of C, there exist f ∗, g∗ ∈ F such that

U(1
2
f∗ + 1

2
g∗) > U(f ∗) = U(g∗).

To show (i), fix α ∈ [0, 1] and f, g ∈ F such that f ∼ g. Since V (αf ⊕ (1 − α)g) =

δU(αf + (1 − α)g) + (1 − δ)U(f), then

V (αf ⊕ (1 − α)g) ≥ U(f) ⇔ δU(αf + (1 − α)g) ≥ δU(f)

⇔ δ(U(αf + (1 − α)g) − U(f)) ≥ 0.

Since U(αf + (1 − α)g) ≥ U(f) and U(1
2
f ∗ + 1

2
g∗) > U(f ∗), therefore, % exhibits ex-ante

randomization loving if and only if δ ≥ 0.

To show (ii), fix α ∈ [0, 1] and f, g ∈ F . Since V (αf ⊕ (1−α)g) = δU(αf + (1−α)g) +

(1 − δ)(αU(f) + (1 − α)U(g)), then

U(αf + (1 − α)g) ≥ V (αf ⊕ (1 − α)g)

⇔ (1 − δ)U(αf + (1 − α)g) ≥ (1 − δ)(αU(f) + (1 − α)U(g))

⇔ (1 − δ)(U(αf + (1 − α)g) − (αU(f) + (1 − α)U(g))) ≥ 0.

Since U(αf + (1 − α)g) ≥ αU(f) + (1 − α)U(g) and U(1
2
f ∗ + 1

2
g∗) > 1

2
U(f ∗) + 1

2
U(g∗),

therefore, % exhibits a preference for late randomization if and only if δ ≤ 1.
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B.3 Proof of Proposition 3

Fix two EAP Maxmin preferences {%i}i=1,2 represented by {(δi, Ci, ui)}i=1,2. For all i ∈

{1, 2}, suppose that Ci is nondegenerate; let Vi be EAP Maxmin representation defined

with (δi, Ci, ui); and let Ui be the restriction of Vi on F .

Step 1: (i) implies (ii).

Proof of Step 1: Suppose %1 is more ex-ante randomization loving than %2. A straight-

forward argument shows U1 = U2, so that C1 = C2.
27 In the following, we will show δ1 ≥ δ2.

Since C2 is nondegenerate, Claim shows that there exist f̂ , ĝ ∈ F such that 1
2
f̂ + 1

2
ĝ ≻2

f̂ ∼2 ĝ and 1
2
f̂ ⊕ 1

2
ĝ ∼2

1
2
f ∗ + 1

2
g∗. Since U1 = U2,

1
2
f̂ + 1

2
ĝ ≻1 f̂ ∼1 ĝ. Since %1 is more

ex-ante randomization loving than %2,
1
2
f̂ ⊕ 1

2
ĝ %1

1
2
f∗ + 1

2
g∗. Since Ui(

1
2
f̂ + 1

2
ĝ)−Ui(f̂) > 0

for all i ∈ {1, 2}, therefore,

δ1 ≥ U1( 1
2
f∗+ 1

2
g∗)−U1(f̂)

U1( 1
2
f̂+ 1

2
ĝ)−U1(f̂)

(
∵ δ1U1(

1
2
f̂ + 1

2
ĝ) + (1 − δ1)U1(f̂) = V1(

1
2
f̂ ⊕ 1

2
ĝ) ≥ U1(

1
2
f ∗ + 1

2
g∗)

)
=

U2( 1
2
f∗+ 1

2
g∗)−U2(f̂)

U2( 1
2
f̂+ 1

2
ĝ)−U2(f̂)

(∵ U1 = U2)

= δ2.
(

∵ δ2U2(
1
2
f̂ + 1

2
ĝ) + (1 − δ2)U2(f̂) = V2(

1
2
f̂ ⊕ 1

2
ĝ) = U2(

1
2
f ∗ + 1

2
g∗)

)
¤

Step 2: (ii) implies (i).

Proof of Step 2: Suppose δ1 ≥ δ2, C1 = C2, and there exist α > 0, β ∈ R such that

u1 = αu2 + β. Then, U1 = αU2 + β. Fix any P ∈ ∆(F ) and f ∈ F such that P %2 f to

show P %1 f . We will show the result, in the following two exhaustive cases.

Case 1: U2(fP ) =
∫

F
U2(g)dP (g). Then V2(P ) = U2(fP ) ≥ U2(f). Since U1 = αU2 + β,

V1(P ) = U1(fP ) ≥ U1(f), as desired.

27 For all i ∈ {1, 2}, since ui is unique up to positive affine transformation, we can normalize ui by
ui(z+) = 1 and ui(z−) = −1, without loss of generality. Let, l0 = 1

2δz+ + 1
2δz− . Then, ui(l0) = 0 for all

i ∈ {1, 2}. Suppose to the contrary that U1 ̸= U2. Then, without loss of generality, assume that there
exists f ∈ F such that U1(f) > U2(f). Moreover, by the constant linearity, without loss of generality,
assume 1 > U2(f) > 0. Fix a positive number ε such that ε < min{U1(f) − U2(f), 1 − U2(f)}. Define
l = (U2(f)+ε)δz+ +(1−U2(f)−ε)l0. Then Ui(l) = U2(f)+ε < U1(f) for all i. Let P = δl. Then, P ≻2 f
but f ≻1 P . This is a contradiction. Hence, U1 = U2, so that C1 = C2.
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Case 2: U2(fP ) ̸=
∫

F
U2(g)dP (g). Since U1 = αU2+β, U1(fP ) ̸=

∫
F

U1(g)dP (g). Therefore,

δ1 ≥ δ2

≥ U2(f)−
R

F U2(g)dP (g)

U2(fP )−
R

F U2(g)dP (g)
(∵ δ2U2(fP ) + (1 − δ2)

∫
F

U2(g)dP (g) = V2(P ) ≥ U2(f))

=
U1(f)−

R

F U1(g)dP (g)

U1(fP )−
R

F U1(g)dP (g)
(∵ U1 = αU2 + β)

Hence, V1(P ) = δ1U1(fP ) + (1 − δ1)
∫

F
U1(g)dP (g) ≥ U1(f), as desired. ¤

¥

B.4 Proof of Proposition 4

Suppose % is an EAP Maxmin preference represented by V . Let U be the restriction of V

on F .

We will show (i). To show (a), suppose δ > 0. It is easy to see that strict ex-post

randomization loving implies strict ex-ante randomization loving. To see the converse,

suppose that % exhibits strict ex-ante randomization loving. Fix α ∈ [0, 1] and f, g ∈ F

such that f ∼ g to show αf + (1 − α)g ≻ f . Since αf ⊕ (1 − α)g ≻ f , then U(f) <

V (αf ⊕ (1− α)g) = δU(αf + (1− α)g) + (1− δ)U(f), so that δU(f) < δU(αf + (1− α)g).

Since δ > 0, then U(αf + (1 − α)g) > U(f). Part (b) is proved in the same way.

Next, we will show (c). Suppose δ = 0 to show ex-ante randomization neutrality. To

show this fix α ∈ [0, 1] and f, g ∈ F such that f ∼ g. It suffices to show αf ⊕ (1−α)g ∼ f .

This indifference holds because δ = 0 shows V (αf⊕(1−α)g) = αU(f)+(1−α)U(g) = U(f).

Hence, (i) is proved.

In the following, we will show (ii). Assume ex-post randomization neutrality to show

ex-ante randomization neutrality. To show this, fix α ∈ (0, 1) and f, g ∈ F such that

f ∼ g. It suffices to show αf ⊕ (1−α)g ∼ f . Ex-post randomization neutrality implies that

U(αf + (1 − α)g) = U(f). This implies V (αf ⊕ (1 − α)g) = U(f), as desired.

33



B.5 Proof of Proposition 5

To see that Reversal of Order implies State-wise Indifference, fix P, Q ∈ ∆(F ) such that

fP ∼ fQ to show P ∼ Q. Then, there exist sets {f i}n
i=1 and {gj}m

j=1 of acts and sets

{αi}n
i=1 and {βj}m

j=1 of nonnegative numbers such that P = α1f
1 ⊕ · · · ⊕ αnf

n, and Q =

β1g
1 ⊕ · · · ⊕ βmgm. Then, Reversal of Order shows P ∼ α1f

1 + · · · + αnf
n = fP ∼ fQ =

β1g
1 + · · · + βmgm ∼ Q.

To see that State-wise Indifference implies Reversal of Order, fix any set {f i}n
i=1 of acts

and set {αi}n
i=1 of nonnegative numbers such that

∑n
i=1 αi = 1. Let P = α1f

1 ⊕ · · · ⊕ αnfn

and Q = α1f
1+ · · ·+αnfn to show P ∼ Q. Then for all s ∈ S, Ps = α1f

1
s + · · ·+αnfn

s = Qs,

so that fP ∼ fQ. Then, State-wise Indifference shows P ∼ Q.

B.6 Proof of Proposition 6

To see that Indifference implies Reduction of Compound Lotteries, fix any set {li}n
i=1 of

lotteries and set {αi}n
i=1 of nonnegative numbers such that

∑n
i=1 αi = 1. Let P = α1l

1 ⊕

· · · ⊕ αnln and Q = α1l
1 + · · · + αnl

n to show P ∼ Q. Then, Ps = α1l
1 + · · · + αnl

n = Qs

for all s ∈ S, so that condition (i) is satisfied. In addition, lP = α1l
1 + · · · + αnln = lQ, so

that condition (ii) is also satisfied. Hence, Indifference shows P ∼ Q.
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