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Abstract

I study the optimal supply of �exible commitment devices to people who value both
commitment and �exibility, and whose preferences exhibit varying degrees of time incon-
sistency. I �nd that, if time inconsistency is observable, then both a monopolist and a
planner supply devices that enable each person to commit to the e¢ cient level of �exi-
bility. If instead time inconsistency is unobservable, then both face a screening problem.
To screen a more time-inconsistent from a less time-inconsistent person, the monopolist
and (possibly) the planner ine¢ ciently curtail the �exibility of the device tailored to the
�rst person, and include unused options in the device tailored to the second person. These
results have important policy implications for designing special savings devices that use
tax incentives to help time-inconsistent people adequately save for retirement.
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1 Introduction

Evidence from economics and psychology shows that people have self-control problems (see,
e.g., DellaVigna (2009)). Signs of such problems are, for example, chronic splurging, amassing
excessive credit-card debt, and saving too little for retirement. People often understand their
self-control problems and thus look for commitment devices. At the same time, they also face
uncertainty about their future and thus they value �exibility.1 These con�icting desires create
a demand for �exible commitment devices. Examples include illiquid savings devices such as
savings accounts, individual retirement accounts (IRAs), and 401(k) plans.2

To get a sense of the importance of such devices, consider the U.S. retirement market. As of
June 2012, this market had assets of $18.5 trillion, which is roughly 120% of U.S. GDP and 36%
of all U.S. household �nancial assets. Of these, $3.3 trillion (17.8%) was in 401(k) plans, and $5.1
trillion (26.5%) was in IRAs.3 IRAs and 401(k) plans are examples of "tax-shielded" investment
accounts, which obey special tax rules that set limits on contributions to their balances and
penalties for withdrawals. Authorizing such special accounts is also particularly costly: For the
�scal years 2010-2014, the resulting burden on the U.S. federal budget amounts to $711 billion
(12.7%) of the estimated tax expenditures.4

This paper o¤ers a novel theoretical investigation of markets for �exible commitment de-
vices. It is the �rst to consider simultaneously three essential aspects of such markets. First,
people demand devices that provide both commitment and �exibility. Second, people di¤er in
their degrees of self-control, so they demand di¤erent devices (see, e.g., Ashraf, Karlan, and
Yin (2006)). Third, the provider of these devices� whether it is a pro�t-maximizing �rm, or a
welfare-maximizing government� cannot observe people�s degrees of self-control when tailoring
its supply to individual needs. Thus, it faces the problem of screening each individual according
to his preference for commitment and for �exibility. Understanding this problem and character-
izing its pro�t- and welfare-maximizing solutions represent the core of the present paper.5

I model a market for �exible commitment devices using a dynamic principal-agent framework
with two periods.6 In period 1, the principal o¤ers the agent an incentive device, which allows
him to choose among several actions in period 2, and for each action speci�es a payment to the
principal. As an example, consider a savings device that allows the agent to contribute to and
withdraw from its balance by paying some fee. In period 1, agents desire �exible devices because
their preference over period-2 actions depends on an unknown (non-contractible) state (Kreps
(1979)). Moreover, in period 1 some agents also desire commitment, because for each state their

1For an alternative analysis of the trade-o¤s between commitment and �exibility see, e.g., Amador, Werning,
and Angeletos (2006). I will compare my analysis with theirs in Section 6.2:

2Other examples include gym memberships with large upfront fees but no per-visit charge, automatic drafts
from checking to investment accounts, Christmas clubs, rotating savings and credit associations, and microcredit
savings accounts in developing countries. (See Ashraf, Gons, Karlan, and Yin (2003), Ashraf, Karlan, and Yin
(2006), DellaVigna and Malmendier (2006), Bryan, Karlan, and Nelson (2010)).

3Investment Company Institute, �The U.S. Retirement Market, Second Quarter 2012�(September 2012).
4Source: Estimates of The Federal Tax Expenditures for the Fiscal Years 2010-2014 (2010)
5In their survey, Bryan, Karlan, and Nelson (2010) raise the question of whether markets can provide products

to solve people�s commitment problems, but the answer lies beyond the scope of their paper. Laibson (1998)
questions the optimality of the retirement instruments created by the U.S. government. Amador, Werning, and
Angeletos (2006) study the design of paternalistic commitment policies such as minimum-savings requirements.

6DellaVigna and Malmendier (2004), and Eliaz and Spiegler (2006) adopt a similar approach. Hereafter, the
principal is a she and the agent is a he.
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preference is time inconsistent (Strotz (1956)). Finally, the agents� self-control problems are
unobservable, because they privately know their degree of time inconsistency (i.e., their type).
For clarity�s sake, in most of the paper I focus on a two-type case: agents of type C are time
consistent, and agents of type I are all time inconsistent to the same degree. In Section 4.3 I
extend the results to markets with more realistic heterogeneity.
In Section 3 I show that, if the agents� types were observable, then the principal would

o¤er each type a (possibly di¤erent) device with a perfect mix of commitment and �exibility�
independently of whether she maximizes pro�ts or welfare. Such a device helps each type
commit to a �exible plan of action that is e¢ cient in each state from the viewpoint of his
period-1 preference.7 I call this outcome e¢ cient, adopting the standard interpretation of the
agent�s period-1 preference as his long-run preference (O�Donoghue and Rabin (1999)). I also
show that, in some cases, the principal can sustain the e¢ cient outcome using the same device
with all types� so their unobservability is irrelevant. Otherwise, it creates a screening problem.
This screening problem arises because, thanks to his stronger self-control, type C values

any �exible device strictly more than does type I. So, if the principal wants to sustain a
�exible outcome with type I, she must grant type C enough rents for him not to pretend to
be I. Unfortunately, these rents can jeopardize the incentives of type I to reveal his time
inconsistency. This second aspect of the screening problem, however, admits an unconventional
remedy. Remember that type I desires commitment. Therefore, the principal can promote his
honesty by adding to the device of type C tempting items that type C never uses, but type I
would. These items make type I view the device of type C as o¤ering less commitment, and
thus deter I from pretending to be C.
I derive the optimal screening devices in Section 4.2. First, when designing the device for

type I, the principal faces a standard trade-o¤ between maximizing e¢ ciency with type I and
extracting rents from type C. Intuitively, since these rents depend on the �exibility of the device
of type I, the principal should curtail it below the e¢ cient level. She can, however, do so in
many ways, and �nding the optimal one represents a novel, challenging question. I illustrate
the answer with a concrete example in Section 1.1 and present the general result in Section
4.2.2. Second, when designing the device of type C, the principal always wants to maximize its
e¢ ciency, but she must also take into account� as noted� that this device may induce type I
to pretend to be C. To prevent this, she may have to modify the device of type C� relative to
the symmetric-information, e¢ cient one� in two ways: (1) she may add unused items;8 and (2)
she may also sustain an ine¢ cient outcome with type C. Property (2) is a failure of the �no
distortion at the top�property, which marks previous screening models, both static (e.g., Mussa
and Rosen (1978)) and dynamic (e.g., Courty and Li (2000)). Comparing the monopolist�s and
the planner�s optimal device for type C, I show that if the monopolist has to do (1) (respectively
(2)), then the planner does as well.
This paper contributes to the growing literature on behavioral contract theory.9 It adds to

this literature the result that, when a pro�t-maximizing �rm faces diversely time-inconsistent
agents, it screens them using contracts with di¤erent degrees of �exibility. Moreover, the paper
characterizes the speci�c form that this screening takes: The contracts for time-inconsistent

7A related result appears in DellaVigna and Malmendier (2004), as discussed in Section 6.2.
8A related result appears in Esteban and Miyagawa (2005), as discussed in Section 6.2.
9This literature includes DellaVigna and Malmendier (2004, 2006); Esteban and Miyagawa (2005); Eliaz and

Spiegler (2006, 2008); Heidhues and Koszegi (2010); and Spiegler (2011) among others.
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agents ine¢ ciently curtail �exibility as illustrated in Section 1.1; instead, the contracts for time-
consistent agents may intentionally in�ate �exibility by o¤ering more options than such agents
deem useful.
This paper also contributes to the study of optimal paternalism (O�Donoghue and Rabin

(2003)). It demonstrates that paternalistic planners play an important role in providing �exible
commitment devices to people with self-control problems: When such problems are unobserv-
able, pro�t-maximizing �rms create ine¢ ciencies especially for the people who need commit-
ment. The paper also derives the best paternalistic provision of such devices. To illustrate
its properties, in Section 5 I address this question: How should the government design special
savings devices (SDs), with speci�c tax rules that help time-inconsistent agents appropriately
save for retirement? The main points can be summarized as follows: (1) like �rms, the govern-
ment cannot observe people�s self-control problems, and therefore it faces a trade-o¤ between
the corrective and the redistributive role of taxation; (2) solving this trade-o¤ calls for curtailing
the liquidity of the special SDs relative to the standard SDs; and (3) the optimal way to do so
involves limiting, through binding caps, the ability both to tap and to contribute to a special
SD.
I �nd that my policy implications are consistent with some general features of the U.S.

regulation of IRAs and 401(k) plans, which are special SDs with tax incentives. I also �nd
that some evidence in Amromin (2002, 2003) is consistent with the principle that curtailing
the liquidity of the special SDs� namely, the IRAs and the 401(k) plans� helps keep people
with stronger self-control choosing the standard SDs� namely, the so-called �regular taxable
accounts.� I believe that my results are useful for understanding some e¤ects of the current U.S.
regulation of SDs, and for assessing its future revisions.
Finally, this paper relates to the literature on dynamic mechanism design. First, it high-

lights an important methodological point: In models with time-inconsistent agents, one cannot
in general restrict attention to mechanisms that are de�ned only on the path of play. Indeed, to
characterize the optimal devices, one must allow for options that are o¤ path. This can never
occur in standard models without time inconsistency. Second, deriving the devices that opti-
mally screen the agents�time inconsistency requires some non-standard and recent techniques.
For reasons that I will explain later, to handle the incentive constraints involving the agents�
types, I use Lagrangian methods from Luenberger (1969). This approach di¤ers from a standard
optimal-control approach and the standard dynamic-mechanism-design approach (Courty and
Li (2000); Pavan, Segal, and Toikka (2011)). Moreover, to ensure that each device satis�es a
necessary monotonicity property in the period-2 states, I adapt Toikka�s (2011) generalization
of Myerson�s (1981) ironing procedure to my setting with o¤-path options.
In Section 6, I provide a more detailed literature review; I also discuss the possibility of

introducing overcon�dent agents into the model. Section 7 concludes. All proofs are in the
appendix.

1.1 An Illustrative Example: Savings Devices

Consider the following situation. In period 1, the principal o¤ers savings devices (SDs) to the
agent, who is planning his future savings. An SD allows the agent to contribute to and withdraw
from its balance in period 2 (his working life) at some fee, thereby providing a tool to smooth
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consumption between that period and some future period of retirement.10 Speci�cally, given an
SD, in period 2 the agent chooses the action a and pays the fee p, where a < 0 for contributions
and a > 0 for withdrawals. For each a, SDs give a return at retirement, according to a rate that
I assume �xed and exogenous. On the other hand, the principal can design di¤erent SDs by
changing how the fee p depends on the action a. Finally, in this example, the principal incurs
no cost to provide SDs.
The agent�s choice among SDs depends on how he evaluates, in period 1, the decisions that

he expects to make in period 2. In period 1 the agent is uncertain about what action a is
optimal in period 2, as this decision hinges on an unknown state s� e.g., his period-2 health.
Speci�cally, in period 1 he assigns to a the direct utility sa+ d(a) in state s; for instance, think
of sa as the period-2 bene�t of withdrawing from an SD, and of d(a) as the resulting expected
well-being at retirement. So, in period 1 the agent evaluates his expected period-2 choices using
the utility sa + d(a) � p. However, when actually choosing a in period 2, the agent may use
a di¤erent utility function. Speci�cally, if he is of type C, in period 2 he still assigns to a the
direct utility sa+ d(a). Instead, if he is of type I, in period 2 he systematically overweights the
immediate utility of withdrawals and disutility of contributions; he is therefore time inconsistent.
To capture this inconsistency, I will let �sa + d(a), with � > 1, be the direct utility that type
I derives from a in period 2. In state s, the agent then chooses a based on its period-2 direct
utility net of the associated fee p.
Suppose that, according to the period-1 utility sa + d(a), for some states it is optimal to

contribute to an SD (a� < 0), but for others (e.g., unexpected health problems) it is optimal
to withdraw from it (a� > 0). For simplicity, let this optimal plan correspond to the function
a�(s) = s � s0, where s ranges from s to s.11 Note that a� de�nes what I call the e¢ cient
outcome, since the principal�s costs are zero.
Before describing the optimal SDs, I want to brie�y give some intuition for why type C values

strictly more any �exible SD provided to type I, than does I himself. Suppose that the principal
wants to help type I commit to the plan a�. To do so, the SD of type I must feature penalties for
withdrawals and rewards for deposits, since in period 2 type I cares systematically more about
his immediate utility than about his retirement well-being. How does type C evaluate such an
SD in period 1? Since type C has stronger self-control, roughly speaking, he expects to reap the
rewards and avoid the penalties more often than does type I; so C expects a larger payo¤ from
the SD of type I than does I himself. In contrast, suppose that the principal o¤ers type I an
SD with only one option, anf , i.e., no �exibility at all. Then, type I doesn�t need any penalty
or reward to commit to anf , and type C cannot bene�t from his stronger self-control. More
generally, by making the SD of type I less �exible, the principal can reduce the penalties and
rewards that help type I commit. These changes curtail how much type C expects to bene�t
from lying in period 1, and consequently reduce the rents that keep C from doing so.
I shall now describe the SDs that the principal o¤ers to screen the agents�types. I consider

the case in which she maximizes her expected pro�ts from the fees p. The detailed derivation is
in Section 4.2.
Consider �rst the SD designed for type I. Figure 1 illustrates his resulting savings decisions�

10In the language of DellaVigna and Malmendier (2004), contributions are "investment" goods and withdrawals
are "leisure" goods.
11This plan is optimal if, for example, d(a) = � 1

2 (a+ s0)
2 with s < s0 < s.
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the function denoted by �I� and compares them with the e¢ cient plan a�.

Figure 1: E¢ cient Outcome vs. Second Best with Type I

By comparing �I and a�, we see exactly how the principal curtails the �exibility with which
type I adjusts his savings decision to the period-2 states. Speci�cally, there are three key
properties: (1) type I obtains fewer savings options than in the e¢ cient plan, since the range
of �I is a strict subset of that of a�; (2) type I will contribute too little for small states, where
�I(s) > a�(s), and will withdraw too little for large states, where �I(s) < a�(s); and (3) type
I will not adjust at all his savings decisions to some extreme states, where �I is constant. This
last property always occurs for very small states; it also occurs for very large states (as in the
right panel) if, for example, the share of type I in the market is small. As I show in the rest of
the paper (see Proposition 3), properties (1)-(3) hold quite generally, as long as the principal�s
goal assigns some weight to pro�ts. Concretely, we can think of the SD o¤ered to type I as
an account that, besides possibly rewarding contributions and punishing withdrawals, also sets
limits on these transactions. Such limits appear, for example, in some individual-development
accounts� a form of matched savings accounts� and Christmas-club accounts o¤ered by some
�nancial institutions in the U.S. (see also Ashraf, Gons, Karlan, and Yin (2003)).
Consider now the SD designed for type C. Figure 2 compares the savings options that this

SD o¤ers type C� the function denoted by xC� with the e¢ cient plan a�.

Figure 2: E¢ cient Outcome vs. Second Best with Type C
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We see that the device of type C commits him to the e¢ cient savings plan a� on the relevant
range [s; s]. But it also includes one option that involves an ine¢ ciently high withdrawal (a)
in period 2, and that type C never uses because he deems it reasonable only for s above the
largest possible state s. I shall later discuss how the presence of unused options depends on the
primitives of the model.

2 The Model

A principal interacts with an agent over two periods. In period 1 (the contracting stage), the
principal o¤ers the agent a device that gives him the opportunity to choose an action a in period
2 (the consumption stage).12 The contractible action a belongs to a feasible set A := [a; a] � R
with �1 < a < a < +1. For each a, a device speci�es a payment p from the agent to the
principal. The principal incurs a production cost in period 2, which is given by the di¤erentiable,
non-decreasing, and convex function c : A! R. The principal can perfectly commit to a device,
which� if accepted by the agent� is then binding for both parties. I also assume that there is
no spot market for a in period 2.
Agents may have time-inconsistent preferences, but they are always sophisticated. To model

time-inconsistent agents, I follow Strotz (1956). For each agent, I call self-1 the self who
chooses a device and self-2 the self who chooses an option from the resulting menu. Both selves�
preferences depend on a state s, which occurs in period 2 and re�ects shocks to taste, income,
or health. These shocks induce self-1 to desire �exibility; moreover, they are not contractible,
for example because only the agent observes them.13 Conditional on s, the direct utilities of
self-1 and self-2 from action a are

u1 (a; s) := sa+ d (a) and u2 (a; s; �) := �sa+ d (a),

where the function d : A! R is di¤erentiable and strictly concave. Finally, agents�preferences
are quasi-linear in the payment p.
The positive parameter � determines the preferences�degree of time inconsistency, and leads

self-1 to desire commitment. When � 6= 1, self-1 foresees that, in each state, his self-2 trades
o¤ the bene�t and the cost of any action a in a systematically di¤erent manner. This modeling
assumption is based on the idea, proposed by cognitive psychologists, of �salience:� Decision-
makers seem to perceive the bene�t of their actions (sa) as more (or less) salient than their cost
(d(a)) depending on whether the decision they face is immediate, or occurs in the future (see,
e.g., Akerlof (1991) and the references therein).
The illustrative example in Section 1.1 gives one interpretation of the model for the case in

which the principal o¤ers savings devices. The model can however capture other situations. For
instance, the principal may o¤er gym memberships as in the next example.14

12Alternatively, we could interpret a as the utils resulting from some underlying contractible action.
13If s were contractible, the perfect ability of the principal to commit would make the solution for the agents�

time inconsistency trivial.
14The role of gym memberships as commitment devices has been extensively studied, e.g., by DellaVigna and

Malmendier (2004, 2006).
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Example 1 In period 1, a gym o¤ers the agent a membership contract. Becoming a member
allows the agent to exercise in period 2 (e.g., the following month) at the gym�s facility; the
time he spends there determines a fee p. Exercising involves some immediate discomfort a < 0
for the agent, which is proportional to the time he exercises, but it improves his physical health
by d (a). In period 1, the agent�s self-1 anticipates that his willingness to exercise will depend
on how tired he will be after work or whether he will be sick (s). Furthermore, the self-1 may
foresee that, when the time comes, the self-2 systematically overweights the downsides of going
to the gym and tends to exercise less than the self-1�s goal. To capture the agent�s preferences,
we can use the functions sa+d(a)�p for his self-1 and �sa+d(a)�p, with � > 1, for his self-2

As far as period-2 states are concerned, s belongs to the set S := [s; s] � R with 0 < s <
s < +1. This assumption simply says that, in each state, the agent assigns a weight to the
bene�t and the cost of his actions which is bounded away from zero. States have distribution
F , which has continuous and positive density f and is commonly known in period 1.
For clarity�s sake, most of the analysis focusses on the case with only two types: agents of

type C are time consistent, and agents of type I are all time inconsistent to the same degree.15

I assume that type I systematically overweights the bene�t of his actions, since agents with
self-control problems typically tend to consume more, eat more, or exercise less than they would
like to. Formally, type I has �I > 1 and type C has �C = 1; also, let the fraction of agents
of type C be 
 2 (0; 1). Because the agents are sophisticated, they know their degree of time
inconsistency � before contracting occurs. In contrast, the principal cannot observe �; she,
however, knows the possible types and the share 
.
To evaluate any device in period 1, type i has to take into account what his self-2 does in

period 2. Therefore, I restrict attention to devices for which self-2�s optimal decisions are always
well-de�ned, independently of the agent�s type. So, the payo¤ to self-1 of any device is just the
expected utility of the resulting decisions of self-2, computed using the period-1 preference.
Finally, if an agent rejects all the principal�s o¤ers, he receives the outside option whose value
is normalized to zero.16

I adopt the following de�nition of e¢ ciency, which adheres to the standard interpretation of
the self-1�s preference as the long-run preference of the agent (O�Donoghue and Rabin (1999)).

De�nition 1 (E¢ ciency) For each state s, the ex-ante social surplus of action a is u1 (a; s)�
c (a), and the e¢ cient outcome is

a� (s) := argmax
a2A

u1 (a; s)� c (a) .

I also assume that it is never e¢ cient to induce the smallest and the largest action, and that
the maximum ex-ante social surplus is positive in every state.

Assumption 1 For every s, a� (s) is interior and u1 (a� (s) ; s)� c (a� (s)) > 0.

By standard arguments, the outcome a� is already non-decreasing; by Assumption 1, a� becomes
increasing. Thus, a� involves choosing a di¤erent action in each state and de�nes the e¢ cient,
benchmark level of �exibility.

15I extend my results to the case with more than two types in Section 4.3.
16I discuss the case in which the outside option has type-dependent values in Section 6.1.
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Finally, I assume that, when designing her devices in period 1, the principal maximizes
a weighted sum of her expected pro�ts and the expected ex-ante social surplus, with weight
� 2 [0; 1] on pro�ts and 1� � on welfare. This assumption is simply a convenient way to cover
the case of a monopolist (� = 1), as well as the case of a paternalistic planner who may also have
to worry about the pro�tability of her devices (� < 1). Intuitively, this situation may arise when
the planner is the exclusive provider of commitment devices and has limited resources to �nance
them, or when she only regulates the market of such devices and has to ensure that third-party
providers expect enough pro�ts to enter the market. In these cases, I could alternatively let the
planner maximize the expected ex-ante social surplus subject to the constraint of generating
some minimum (possibly negative) level of pro�ts. As I show in Appendix C, this alternative
speci�cation would only make � endogenous, without a¤ecting my results.

3 Symmetric Information: A Benchmark

In this section I show that, if the agents�degree of time inconsistency � were observable, then
the principal would o¤er each type a device that sustains the e¢ cient outcome, independently of
how much she cares about pro�ts. In so doing, she would provide a perfect mix of commitment
and �exibility.
When the agent�s type is observable, by the Revelation Principle, I can characterize optimal

devices using direct revelation mechanisms (DMs) that induce the agent to report truthfully
the state s in period 2. Formally, a DM is a pair of functions (a;p), where a : S ! A and
p : S ! R. DMs must satisfy the constraintsR

S
[u1 (a (s) ; s)� p (s)] dF (s) � 0 (IR)

and
u2 (a (s) ; s; �)� p (s) � u2 (a (s0) ; s; �)� p (s0) for all s; s0. (IC )

Note that the IR constraint uses the preference of self-1, whereas the IC constraints use the
preference of self-2. Subject to these constraints, the principal then chooses (a;p) to maximize

(1� �)
R
S
[u1 (a (s) ; s)� c(a (s))]dF (s) + �

R
S
[p (s)� c (a (s))] dF (s) .

Although changing � modi�es the principal�s goal, it turns out that she always helps time-
inconsistent agents fully solve their self-control problems.

Lemma 1 (First Best) Suppose that the agents�degree of time inconsistency � is observable.
Then, for any �, the principal o¤ers a device that sustains the e¢ cient outcome a� for all
� 2 [0; 1].

The intuition for Lemma 1 is as follows. Since the agent has no private information at
the contracting stage, he has no advantage over the principal. Thus, the principal becomes
the residual claimant of the utility that the agent expects when choosing a device, i.e., of the
expected utility of the agent�s self-1. Hence, independently of �, the principal�s goal becomes
to maximize the expected ex-ante surplus. There is, however, a twist here, compared to a
model with only time-consistent agents: When � > 1, the principal has to make sure that the
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agent�s self-2 is willing to go along with her e¢ cient plan. Doing so is feasible, despite time-
inconsistency, because self-1 and self-2 agree that moving from any state to a higher one must
correspond to choosing a (weakly) larger action. As I discuss in Section 6.2, DellaVigna and
Malmendier (2004) prove a result similar to Lemma 1, which relies on the same intuition.
The goal of the present paper is to explain why and how the agent�s private information

about his time inconsistency a¤ects the principal�s supply of �exible commitment devices. As
I show in Appendix A, if the number of states is �nite and the gap between them is large
enough relative to the degree �I , then the agent�s private information plays no role with regard
to sustaining the e¢ cient outcome. However, with a continuum of states, private information
always matters.

4 Asymmetric Information

4.1 Screening Problem and Implementable Outcomes

In this section, I explain how the agents�private information about their degree of time incon-
sistency � causes a screening problem. Understanding this mechanism is interesting on its own,
since it is not obvious a priori how � shapes the agents�incentives to choose among commitment
devices. Furthermore, to �nd the devices that the principal will o¤er, we �rst need to understand
how asymmetric information about � restricts the outcomes that she can implement.
The initial step consists in describing how agents choose from a menu of actions and payments

in period 2, and how they consequently choose among devices (i.e., menus) in period 1. We can
again do so using DMs. Note that, in each state, the self-2 preference of type i is pinned down
by the single number �is. So, call these numbers the self-2 �valuations�of action a, and represent
them with the set

�i := f� j � = �is; s 2 Sg = [�i; �i].
By the Revelation Principle (Myerson (1986)), we can then focus on DMs that satisfy two
properties: (1) they assign an action-payment pair to the agent�s sequential reports of � and
�� these reports correspond to choosing a device and then one of its options; and (2) they
ensure that it is optimal to report truthfully � in period 1 and to report truthfully � in period
2, conditional on having truthfully reported � in period 1. To easily track the agents�behavior
after any period-1 report, I consider DMs that assign action-payment pairs to coherent as well as
incoherent reports, like �C followed by � > �

C
. Formally, de�ne � :=

�
�; �
�
where � := �C and

� := �
I
(i.e., � = co(�C [ �I)). A DM is then a collection of functions fX;Tg = (xi; ti)i=C;I ,

where xi : � ! A is an allocation rule and ti : � ! R is a payment rule. It remains to ensure
that fX;Tg also satis�es property (2).
The self-1�s incentives to report � depend on what he expects the self-2 to choose afterward.

So, we need to work backward, starting from the self-2�s incentives to report truthfully � for
any self-1�s report of �. With a slight abuse of notation, let u2 (a; �) := u2 (a; s; �) for � = �s. I
require that the DMs satisfy the following property.17

17Although this property is stronger than the second part of property (2), it entails no loss of generality. To
see this, �x the device that the principal designs for type j. Suppose that, given such a device, �j and �i, with
�j 6= �i, both choose the pair (a; p). We can describe this behavior with a P2-IC DM that o¤ers two copies
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De�nition 2 (Period-2 Incentive Compatibility) A DM fX;Tg is period-2 incentive com-
patible (P2-IC) if and only if, for i = C; I and every �; �0 2 �,

u2(x
i (�) ; �)� ti (�) � u2(xi (�0) ; �)� ti (�0) .

By standard arguments, fX;Tg is P2-IC if and only if two conditions hold: for i = C; I,

xi 2M := fx : �! A j x non-decreasingg , (MON i)

and
ti (�) = u2(x

i (�) ; �)�
R �
�
xi (y) dy + ki for each �, (ENV i)

where ki := ti (�)� u2 (xi (�) ; �). Hereafter I will consider only P2-IC DMs, which I will denote
by fX;kg = (xi; ki)i=C;I and I may simply call DMs. Similarly, I will refer to the pair (xi; ki)
as the i-menu, as it fully speci�es the menu of options included in the device o¤ered to type i.
Since DMs assign actions to coherent and incoherent reports of �, we need to distinguish an

allocation rule xi from the outcome that it implies when type i chooses the i-menu.

De�nition 3 (Outcome sustained by the i-menu) Let fX;kg be a P2-IC DM and �i :
�i ! A. I say that the i-menu (xi; ki) sustains the outcome �i with type i if the restriction of
the allocation rule xi to �i equals �i (i.e., xij�i = �i).

In particular, menus that sustain the e¢ cient outcome a� will be of focal interest. To easily
compare them with other menus, I express a� in terms of � by de�ning �i� (�) := a�(�=�i) for
� 2 �i and i = C; I. Also, to describe i-menus containing only the actions required to sustain
the outcome �i�, I will use the allocation rules xi�, which coincide with �i� over �i and satisfy
xC� (�) = xC�(�

C
) for � > �

C
, and xI� (�) = xI�(�I) for � < �I .

Having restricted attention to P2-IC DMs, we can now easily compute the utility that each
type expects when choosing a menu, and hence study his incentives to report � truthfully.
Speci�cally, let F i be the distribution that F induces on � conditional on being type i, and let
H i be its inverse hazard rate. The utility that i�s self-1 expects from the j-menu is

U i(xj; kj) = E
�
u1(x

j (�) ; �=�)� tj (�) j � = �i
�

(EU)

=
R �i
�i
xj (�) vi (�) dF i (�) +

R �i
�
xj (�) d� � kj,

where I used ENV j to substitute for tj(�) and vi (�) = �=�i � (� �H i (�)). Then, to ensure
truthful reports of � as well as participation, a DM fX;kg must satisfy the standard constraints

U i(xi; ki) � U i(xj; kj) for i 6= j, (IC i)

and
U i(xi; ki) � 0 for i = C; I. (IR i)

The constraints IC i are the key to understanding the problem of screening the agents�degrees
of time inconsistency, and the resulting restrictions on the set of implementable outcomes.
Examining such constraints will therefore be the focus of the rest of this section.

of (a; p) after a report of �i, one indexed by �i and one by �j . The same applies if �i and �j make di¤erent
decisions. For more details see, e.g., Pavan (2007).
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To ensure that type i truthfully reports his degree of time inconsistency �i, we �rst need to
understand his incentives to pretend to be type j. To do so, de�ne

Ri(xj) := U i(xj; kj)� U j(xj; kj).

and re-write IC i as

U i(xi; ki) � U j(xj; kj) +Ri(xj) for i 6= j. (R-IC i)

We see that i�s willingness to mimic j depends on two things: the �rst, U j(xj; kj), is the overall
expected payo¤ to j; the second, Ri(xj), is how much i expects to gain or lose, relative to j, by
facing the j-menu while being of type i. The function Ri(xj) is crucial, because it determines
whether type i will enjoy information rents due to the allocation sustained with type j. By
analogy, recall that in the screening model of Mussa and Rosen (1978), a high-valuation buyer
has an incentive to misreport his type because he values more any quality o¤ered to low-valuation
buyers (the analog of xj) than they do. This advantage ultimately determines his information
rents.
In my model, it is type C who enjoys an information advantage at the contracting stage,

provided that the I-menu involves some �exibility. The next proposition presents this result; an
intuitive explanation follows.

Proposition 1 Time-consistent agents enjoy an information advantage over time-inconsistent
agents: For any direct revelation mechanism fX;Tg that is period-2 incentive compatible,
RC(xI) � 0 and R I(xC) � 0. Furthermore, the (dis)advantage of one type disappears if and
only if the menu of the other type involves no �exibility: For i 6= j, R i (xj) = 0 if and only if
xj is constant over (�; �).18

To see the intuition for Proposition 1, recall our initial example about SDs and, for simplicity,
suppose that there are only two states: sw > sd. Consider �rst the I-menu, and suppose that
it makes type I withdraw aw > 0 in sw and deposit ad < 0 in sd. To do so, the I-menu must
provide I�s self-2 with the right incentives: Intuitively, the payment �premium�pw � pd must
be big enough to prevent I�s self-2 from choosing aw in sd. Since this premium is tailored to
the preference of I�s self-2, it may induce C�s self-2 to make di¤erent contingent choices, if C
faces the I-menu. The key observation is that C�s choices re�ect the common self-1 preference.
Therefore, if in period 2 C�s choices from the I-menu di¤er from I�s, then in period 1 C must
assign to the I-menu a strictly higher expected payo¤than does I (i.e., RC(xI) > 0). Conversely,
suppose that the C-menu also makes type C withdraw aw in sw and deposit ad in sd. To do so,
now the premium p̂w � p̂d must be tailored to the preference of C�s self-2. Therefore, it may
induce I�s self-2 to make di¤erent contingent choices, if I faces the C-menu. It follows that, if in
period 2 I�s choices from the C-menu di¤er from C�s, then in period 1 I must assign to the C-
menu a strictly lower expected payo¤ than does C (i.e., RI(xC) < 0). The proof of Proposition
1 generalizes these observations by showing that, with a continuum of states, C�s and I�s choices
from the j-menu di¤er with positive probability unless xj corresponds to a singleton menu.19

18The allocation xj can jump at � and � without making Ri(xj) 6= 0 simply because the distribution F is
atomless. Since this indeterminacy has no economic content, hereafter I focus on the extension of xj to [�; �] by
continuity, whenever possible.
19In the two-state case, Lemma 8 in Appendix A implies that C�s self-2 will always choose (ad; pd) from the

I-menu and I�s self-2 will always choose (aw; p̂w) from the C-menu, provided that �I is large enough.
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The bottom line is that the cause of i�s (dis)advantage is� and can only be� the di¤erent
behavior of i and of j given the j-menu. This also explains why it is essential that xj features
some �exibility. Furthermore, the two-state example shows that using payments to achieve
�exible commitment plays an important role. As noted, to commit I to the �exible plan (aw; ad),
the I-menu must provide his self-2 with the right prizes and penalties� the �premium�pw�pd�
to carry it out. However, I�s self-1 would rather reap the prizes and avoid the penalties. Since
C manages to do so, he has an advantage.20

Finally, to further understand Proposition 1, it is useful to think about what would change
if agents were heterogeneous, but all time consistent. Speci�cally, consider a model that is
identical to mine except that the agents�utility function is u2 (a; s; �) � p in both periods, and
suppose that a > 0.21 Call Ic the time-consistent agent with � = �I , and C the one with
� = �C . As did I before, Ic expects to have a systematically higher valuation than does C. But
now Ic has an advantage over C, because Ic enjoys a more already in period 1. Moreover, Ic�s
advantage is at work even if C�s menu is a singleton.
Using Proposition 1, we can now express a condition that, together with monotonicity

(MON i), fully describes the set of feasible allocations. To do so, given non-decreasing xC and
xI , construct payment rules tC and tI using ENV j. Combining the resulting R-IC constraints,
we get that a DM can implement xC and xI if and only if

RC(xI) � �RI(xC). (RR)

In words, xC and xI are feasible if and only if C�s advantage under the I-menu does not exceed
I�s disadvantage under the C-menu.
Not all non-decreasing xC and xI meet this condition. For instance, if xC is constant and

xI jumps at � 2 (�; �), then RC(xI) > 0 = RI(xC). More generally, the RR condition can fail
when both allocation rules sustain a �exible outcome� even the same one. To see this, recall
our SD example with two states, and suppose that C always chooses (ad; pd) from the I-menu,
whereas I always chooses (aw; p̂w) from the C-menu. On the one hand, since the I-menu is
�exible, the C-menu must grant type C a discount on its options� to avoid C mimicking I� by
lowering the payments p̂w and p̂d (see EU and R-IC C). On the other hand, I may worry only a
little about choosing (aw; p̂w) in state sd, when C chooses (ad; p̂d) instead; for instance, sd may
be very unlikely. So, if the discount on the C-menu is large enough, then I may overall prefer
the C- to the I-menu, even though I dislikes the C-menu for being a weak commitment device.
Building on this intuition, the next lemma shows that also the e¢ cient pair (xC�;xI�) may

violate the RR condition and thus be infeasible.

Lemma 2 Let xC� and xI� be the allocation rules associated to the e¢ cient outcome a�. There
is a family of distributions F , such that (xC�;xI�) is infeasible since RC(xI�) > �RI(xC�).

Under xC�, type I and type C behave similarly in states close to s. Thus, if such states are
likely enough according to F , then in period 1 type I values the C-menu almost as much as does
type C. And since RC(xI�) > 0, the discount on the C-menu lures I to mimic C. For instance,
one can show that, in our initial example about SDs, (xC�;xI�) is infeasible if F is uniform.

20A further discussion of this lest point appears in Section 6.2, in relation to Amador, Werning, and Angeletos�
(2006) model which rules out payments across states.
21A similar model appears in Courty and Li (2000).
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The second part of Proposition 1 hints at the possibility of relaxing I�s incentives to lie about
�� and hence the RR condition� by adding to the C-menu items that type C never uses. The
next lemma shows how to do so in the most e¤ective way; an intuitive explanation follows.22

Lemma 3 (Usefulness of Unused Items) Fix a non-decreasing outcome �C with �C(�
C
) <

a. Let the allocation rule xCu satisfy x
C
u

��
�C
= �C and

xCu (�) =

(
�C(�

C
) if �

C
< � � �u

a if � > �u
.

Then, there exists �u < �
I
such that xCu minimizes R

I(xC). Furthermore, if x̂C is non-decreasing,
it sustains �C, and it minimizes RI(xC), then x̂C(�) = xCu (�) for � 2 (�

C
; �d) [ (�u; �

I
), where

�d � �u and depend only on �I and F .

To relax the R-IC I constraint, the principal adds to the C-menu one item that type C
never chooses, but deters I from mimicking C. To see why, consider our SD example with two
states, in which the C-menu had only two savings options (aw and ad). Assume that, given
such a menu, I would always withdraw aw. Now, suppose we add to the C-menu the option to
withdraw more than aw, say a. We can design payments (the fees) so that C still chooses aw
and ad as before, yet I, who has less self-control, would withdraw a in some state. So, the new
C-menu makes I and C behave di¤erently not only in state sd, but also in state sw; thus, it
makes lying in period 1 even less attractive for I.
However, to make lying the least attractive for type I, the C-menu need not induce I to

give in to temptation whenever his self-2 valuation exceeds �
C
� for instance, if F is uniform,

one can show that �u = �d > �
C
. Intuitively, the fee charged for withdrawing a� our �tempting�

option� controls both the probability and the disappointment that I assigns ex ante to paying
it when C doesn�t. A low fee� tailored to a � close to �

C
�makes I expect that he would

withdraw a with high probability, but with little disappointment. Instead, a high fee� tailored
to a � close to �

I
�makes I think that he would withdraw a with low probability, but with much

disappointment. Clearly, depending on the distribution F , charging the high fee for a may deter
mimicking more.23

Although enlarging the C-menu as shown in Lemma 3 maximally relaxes the R-IC I con-
straint, it may still fail to make a pair of outcomes implementable. Indeed, meeting the RR
condition requires that the unused action a be large enough.

Corollary 1 Suppose that the non-decreasing outcomes �C and �I are not implementable with-
out exploiting unused items. Then, enlarging the C-menu as in Lemma 3 allows to implement
them if and only if a� �C(�C) � D(�C ;�I) > 0.

Thus, if the principal can freely enlarge the C-menu, asymmetric information about time in-
consistency adds no restrictions on the set of outcomes that she can sustain. Moreover, o¤ering
type C unused items may be necessary and su¢ cient to sustain the e¢ cient outcome with both
types.
22I discuss how my results relate to Esteban and Miyagawa�s (2005) use of "decorated" menus in Section 6.2.
23It is easy to see that enlarging the I-menu with unused items never helps screening. Such items would create

more opportunities for C to behave di¤erently than does I, given the I-menu, thus strengthening C�s advantage.
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4.2 Optimal Screening of Time Inconsistency

4.2.1 Trade-o¤s in Designing the Screening Devices

With asymmetric information, the advantage of time-consistent agents complicates the task
of supplying �exible commitment devices. My goal here is to describe the trade-o¤s that the
principal faces when designing the C- and I-menus to optimally screen the agents. I �rst provide
an intuitive argument based on the insights from the previous section; the formal argument
follows in Lemma 4.
With regard to the I-menu, in general, the principal faces a trade-o¤ between maximizing

the surplus with type I and extracting rents from type C. If the principal o¤ers a �exible I-menu
that sustains the e¢ cient outcome with type I, then she maximizes not only the surplus with I�s
self-1, but also the pro�tability of the menu. But, by Proposition 1, a �exible I-menu triggers
the advantage of type C, thereby boosting his information rents. Since such rents make any
C-menu less pro�table, the principal faces a trade-o¤. Similarly, in Mussa and Rosen (1978),
serving the low-valuation buyers e¢ ciently requires granting a high-valuation buyer rents that
make trading with him less pro�table. In the present model, however, the principal also has
to worry about the rents that her I-menu creates for type C because they may jeopardize I�s
incentives to choose the I-menu (recall the RR condition).
With regard to the C-menu, the principal wants to maximize the surplus with type C,

but again she has to worry about how her C-menu a¤ects I�s incentives to reveal his time-
inconsistency. As for the I-menu, sustaining the e¢ cient outcome with type C is necessary to
maximize the surplus with him and hence the pro�tability of the C-menu. However, although
for any �exible C-menu I�s expected payo¤ is strictly lower than C�s (Proposition 1), this gap
may not be enough to deter I from mimicking C (again, recall RR and Lemma 2).
To turn these intuitive considerations into a formal argument, we �rst need to describe the

problem of �nding the optimal C- and I-menus under the restrictions of Section 4.1. To do so,
recall that the ex-ante social surplus of action a in state s = �=�i is u1(a; �=�

i)�c (a) (De�nition
1). So, let the ex-ante social surplus that type i expects from choosing the i-menu be

W i(xi) :=
R �
�
[u1(x

i (�) ; �=�i)� c(xi (�))]dF i (�) . (ES)

Then, if a DM fX;kg ensures participation and truthful reports of �, its expected ex-ante social
surplus is

W (X) = 
WC(xC) + (1� 
)W I(xI),

and its expected pro�ts are

�(X;k) = 

R �
�

�
tC (�)� c(xC (�))

�
dFC (�) + (1� 
)

R �
�

�
tI (�)� c(xI (�))

�
dF I (�)

= 

�
WC(xC)� UC(xC ; kC)

�
+ (1� 
)

�
W I(xI)� U I(xI ; kI)

�
.

Therefore, we can write the principal�s problem as

P :=
(
maxfX;kg(1� �)W (X) + ��(X;k)

s.t. xi 2M, IRi, and R-IC i for i = C; I.
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We can simplify P with a few standard steps. By Proposition 1, IR I and R-IC C imply IRC .
Now, recall that U i(xi; ki) is decreasing in ki (see EU). So, if � > 0, R-IC C must bind, and
R-IC I becomes RI(xC)+RC(xI) � 0, which is the RR condition. Similarly, if � > 0, IR I must
also bind. If � = 0, we can safely focus on DMs that make R-IC C and IR I hold with equality,
since we are ultimately interested in the optimal X. Given X, we can then uniquely pin down
k using the conditions U I(xI ; kI) = 0 and UC(xC ; kC) = RC(xI). Thus, the problem P reduces
to

P 0 =

8<: maxx 
W
C(xC) + (1� 
)

h
W I(xI)� �


1�
R
C(xI)

i
s.t. xC ;xI 2M and RR.

The next lemma gives necessary and su¢ cient conditions for xC and xI to solve P 0. It relies
on Lagrangian techniques that don�t require assuming any property about xC and xI beyond
the necessary monotonicity condition. (For simplicity, for i = I let �i = C, and vice versa.)

Lemma 4 (Optimality) The allocation rules xC and xI solve the principal�s problem P 0 if
and only if, for some real number � � 0, (xC ;xI ; �) satis�es

xi 2 argmax
x2M

W i (x)� ��iR�i (x) for i = C; I,

RC(xI) +RI(xC) � 0, and �
�
RC(xI) +RI(xC)

�
= 0,

where �C := �
+�
1�
 and �I := �



.

The �rst condition in Lemma 4 formally captures the trade-o¤s that I intuitively explained
before. With regard to the I-menu, the principal maximizes the surplus with type I net of the
resulting rents of type C, weighted by �C . Such a weight depends on three things: (1) how much
the principal cares about pro�ts, i.e., �; (2) how much type C matters for her pro�ts, i.e., 
;
and (3) whether C�s rents interfere with I�s incentives to choose the I-menu, i.e., �. Note that a
positive weight on pro�ts (� > 0) always implies a positive weight �C on C�s rents. However, �C

may be positive even for � = 0; that is, even for a planner with no resource constraint. Finally,
with regard to the C-menu, again the principal maximizes the surplus with type C, but she may
also take into account� through �I� the extent to which the C-menu deters I from mimicking
C, namely, RI(xC).
The form of the maximizations in Lemma 4 suggests deriving each xi and its properties

directly as a function of ��i. For this reason, it is worth observing at this point that the weight
�C is increasing in �, 
, and �. I consider xI �rst.

4.2.2 The Optimal Device for Time-Inconsistent Agents

I now characterize how the principal distorts the I-menu to limit the rents to type C. These
distortions always involve curtailing the �exibility of the I-menu as described in the initial
example about SDs.
To gain some intuition for why the trade-o¤between surplus with type I and rents to type C

leads to distorting the �exibility of the I-menu, consider �rst an analogy with Mussa and Rosen
(1978). In their model, to curb the rents to high-valuation buyers, the monopolist distorts the
quality for low-valuation buyers below the e¢ cient level. This is because lowering such a quality
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curbs the advantage of the high-valuation buyers. Similarly, in the present model, the principal
should distort the feature of the I-menu that causes C�s advantage, namely, its �exibility. To
further help intuition, consider now our SD example with two states. Recall that C gains when
he mimics I, because C avoids the premium (pw � pd) that commits I to not withdrawing aw
in state sd. Reducing such a premium should then lessen C�s advantage. Also, suppose that
I�s incentive to choose aw over ad increases in how much I can withdraw. Then, allowing I to
withdraw less than aw, say a0, does the job: Deterring I from withdrawing a0 in state sd requires
a smaller premium; and C gains less from being able to avoid it. Finally, if e¢ ciency calls for I
to withdraw aw in sw and to deposit ad in sd, then having only the options ad and a0 amounts
to ine¢ ciently low �exibility.
The bottom line is then this: Reducing the gap between I�s and C�s choices from the I-

menu curbs C�s advantage, through the induced changes in the prizes and penalties (t) that
help I achieve commitment. If we start from the e¢ cient �exible I-menu, this strategy requires
limiting I�s ability to respond to future information. The optimal way to do so, however, is
less immediate than lowering quality as in Mussa and Rosen. We may curtail I�s �exibility for
intermediate states, but leave it for extreme states, where it seems more valuable. Of course,
another possibility is to do the opposite. To see which strategy is better, we need to delve more
deeply into the model.
The �rst step is to write the objective W I(xI) � �CRC(xI), derived in Lemma 4, as an

expected virtual surplus. Recall that i�s expected utility U i(xI ; kI) depends on xI through the
function vi (�), as shown in expression EU.
Lemma 5 (Virtual Surplus with Type I) The objective W I(xI)��CRC(xI) equals the ex-
pected virtual surplus

VS I(xI ; �C) := �C
R �I
�C
xI (�)FC (�) d� +

R �I
�I

�
xI (�)wI(�; �C) + d(xI (�))� c(xI (�))

�
dF I (�) .

For � 2 �I , wI(�; �C) := �=�I + �CV I (�) is the virtual valuation of xI (�), where

V I (�) := vI (�)� f
C (�)

f I (�)
vC (�) .

We can interpret VS I as follows. The �rst term measures how the I-menu a¤ects C�s rents,
through what C expects to choose when � < �I . Intuitively, if xI (�) increases by one unit, its
payment rises by � (see ENV I). But the direct bene�t to C�s self-1 also rises by �, o¤setting
the local change in tI . However, the payments tI also increase by one unit for all �0 < � (see
ENV I). This global e¤ect reduces RC , and its magnitude depends on the mass FC (�) of �0 < �.
The second term of VS I is the virtual surplus generated by I�s choices, which correspond to
self-2 valuations in �I . The virtual valuation wI(�; �C) and the self-1 valuation �=�I di¤er by
the wedge �CV I (�), which accounts for the e¤ects of xI(�) on C�s rents. Intuitively, xI(�) has
an indirect e¤ect� captured by vI (�)� if xI(�) implies that, in state s = �=�I , C and I choose
di¤erently from the I-menu. But, for � 2 �C \�I , xI (�) has also a direct e¤ect� captured by
�fC(�)
fI(�)

vC (�)� because for such �s, xI (�) enters directly in C�s expected payo¤ from the I-menu.
I now show that a non-decreasing maximizer of VS I exists and is unique; I also describe its

behavior as the weight �C gets arbitrarily small or large.24 Recall that xI� corresponds to an
24For instance, if � > 0, this happens as the share 
 of type C goes to zero or to one, provided that the

constraint RR doesn�t bind (� = 0).
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I-menu that sustains the e¢ cient outcome a�. Also, let

anf := argmax
a2A

aE (s) + d (a)� c (a)

be the ex-ante e¢ cient action if the agent is not allowed to respond to future information at
all� �nf�stands for �no �exibility.�

Proposition 2 (Existence and Uniqueness) For every �C > 0, there exists an allocation
rule xI(�C) that is non-decreasing in � and maximizes VS I . Furthermore, xI(�C) is unique,
continuous in � and �C, and satis�es

lim
�C!+1

max
�

��xI(�; �C)� anf�� = 0 and lim
�C!0

xI(�; �C) = xI� (�) for � 2 �.

The proof builds on Toikka�s (2011) generalization of Myerson�s (1981) ironing technique, and
explicitly constructs the optimal extension of xI o¤ path. Uniqueness follows from strict con-
cavity of the function d. The �rst limit says that, as the principal becomes extremely concerned
about C�s rents, she tends to disregard I�s desire for �exibility, in the limit o¤ering I a menu
with only anf� a radical reduction of �exibility vis-à-vis the �rst best. For example, whenever
the principal cares about pro�ts, she tends to induce such an outcome if time-consistent agents
represent almost the entire market (if � > 0, �C ! +1 as 
 ! 1).
The next proposition contains the main characterization result of the paper. It con�rms that,

for positive �C , the principal ine¢ ciently curtails the �exibility of the I-menu; it also shows the
key features of how she does so. To prove Property (c), I assume that the distribution F satis�es
the following minor regularity property.

Assumption 2 The inverse hazard rate H (s) = 1�F (s)
f(s)

is non-increasing over
�
sy; s

�
for some

sy < s.

Assumption 2 is meant to rule out the possibility that H keeps oscillating on its way to zero as
s converges to s. It is implied by the standard regularity assumption of Myerson (1981). It is
also satis�ed by any distribution with continuously di¤erentiable, positive density.

Proposition 3 (Distortions of the I-menu) For every �C > 0, the optimal I-menu has the
following properties:

(a) Range Reduction with �Overconsumption�at the Bottom and �Underconsumption�at the
Top: xI(�; �C) > xI�(�) over [�I ; ��) 6= ?, and xI(�; �C) < xI�(�) over (��; �

I
] 6= ?;

(b) No Flexibility at the Bottom: xI(�C) is constant over [�C ; �b] with �b > �
I . Furthermore, if

�b < �
I
, it must satisfyR �b

�I
[wI(�b; �

C)� �=�I ]dF I (�) = �C
hR �I
�C
FC (�) d� +

R �b
�I
V I (�) dF I (�)

i
; (NFB)

(c) No Flexibility at the Top: There exists a bounded �C such that, if �C > �C, then xI(�C) is
constant over [�b; �

I
] with �b < �

I
.
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By Property (a), the screening I-menu always restricts I�s choices to a strict subset of the
e¢ cient set of actions, which corresponds to the range of xI�. The I-menu may, however, let
type I act on his period-2 information: xI need not be constant at anf . By continuity of xI(�C),
this �exibility extends over a range of states with a rich set of options. The I-menu features
some �exibility, for example, when the share 
 of time-consistent agents is small and the largest
feasible action a is big (see Propositions 2 and Corollary 1).
The principal makes type I �overconsume�over small states and �underconsume�over large

states for the following reason. Recall that to curb C�s rents, she has to shrink the gap between
what C and I choose from the I-menu in each state, as doing so lowers the payment premia
separating their choices. Therefore, the key is understanding how distorting xI a¤ects tI . To
do so, �x � 2 �I and recall ENV I . On the one hand, raising xI (�) has a positive local e¤ect
on tI (�) and a negative global e¤ect on tI (�0) for every �0 above �; so, the premia between
the choices at � and �0 shrink for every �0 > �, but rise for every �0 < �. On the other hand,
reducing xI (�) has the opposite e¤ects. Thus, for � close to �I , curbing C�s rents involves
raising xI(�) because the mass of �0 > � prevails over that of �0 < �. Instead, for � close to �

I
,

curbing C�s rents involves reducing xI(�) because the mass of �0 < � prevails over that of �0 > �.
Of course, the principal weighs the bene�cial e¤ects on RC of distorting xI against its welfare
costs� through the virtual valuation wI . Nevertheless, the direction of the distortions does not
change.
By Property (b), the screening I-menu always makes type I not respond to information

over a range of small states. This bunching yields an e¢ ciency loss� captured by the left hand
side of NFB� because a self-1 with valuation �=�I is forced to choose the allocation assigned
to the higher valuation wI(�b; �C). However, bunching also yields a bene�t� captured by the
right hand side of NFB� as it curtails C�s rents for the same reason as before. To see why, �x
an I-menu and identify the lowest action that I chooses, i.e., xI(�I). If there are items with
a < xI(�I), then tossing them doesn�t change the outcome with I, but curbs C�s rents: In the
states below �I , a dishonest C would now choose the larger action xI(�I), which is closer to
what I chooses. This argument applies a fortiori if, over those states, C would pick an even
larger action, say ab > xI(�

I). This extra step, however, requires that also I chooses a larger
action for some �s above �I . The smaller is the set of �s a¤ected by this change, the lower is the
loss in I�s welfare. So, the best strategy is to bunch at ab every � that was choosing a smaller
action� formally, every � < �b� and not to change the allocation for all other �s. Finally, for
every threshold �b > �

I , a dishonest C would behave more similarly to an honest I for the states
in [s; �b], whereas I must choose a larger action only for the states in [s; �b=�

I ]. Therefore, for
�b close enough to �

I = �Is, I�s welfare falls less than do C�s rents, and some bunching is always
optimal.
Finally, by Property (c), the screening I-menu also makes type I not respond to information

over a range of large states, provided that the principal cares enough about C�s rents. By
Property (a), the principal curbs C�s rents by ine¢ ciently reducing xI (�) for large �s. Also,
recall that the global e¤ect on tI of changing xI limits these reductions, but loses power as �
tends to �

I
. So, intuitively, the principal wants to reduce xI(�) more, the higher is �. Now,

recall that what justi�es distorting xI is the weight �C on C�s rents. So, intuitively, a higher
�C justi�es larger distortions: in particular, reductions in xI(�) that grow faster as � tends to
�
I
. By this mechanism, the principal may wish that a higher � chose a smaller action than
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does a lower �. Since this is impossible (by MON I), at most the principal can pool top self-2
valuations of type I at the same action. However, the principal cares also about e¢ ciency with
type I, which requires that xI be strictly increasing. Which interest prevails ultimately depends
on the virtual valuation wI . As I show in Appendix B, for �C large enough, wI is decreasing at
the top of �I , which causes bunching.
To achieve a more precise comparison of the screening I-menu (i.e., xI(�C)) with the e¢ cient

one (i.e., xI�), it is necessary to introduce further assumptions about the distribution F ; this
is because of the complexity of the virtual valuation wI . Nonetheless, Appendix B o¤ers a
complete derivation of xI(�C). For illustrative purposes, I consider here the case with uniform
F . In this case, a simple relationship also emerges between the weight �C and the set of actions
in the I-menu, as well as the range of states involving �exibility (i.e., [�b; �

b]).

Lemma 6 Suppose that s is uniformly distributed and �I < s=s. Then, the allocation rule
xI(�C) crosses xI� only once and is increasing over [�b; �

b]. Furthermore, as �C rises, xI(�C)
changes as follows: �b and xI(�b; �C) increase, and xI(�

b; �C) decreases; when �b < �
I
, then �b

decreases as well.

In general, more complicated patterns can occur, including bunching at intermediate points
for standard ironing reasons. The main point is that, in the present model, bunching at the
bottom and at the top arise for new reasons, which hold for a general class of distributions F .

4.2.3 The Optimal Device for Time-Consistent Agents

Proposition 1 suggests that, in the present model, time-consistent agents are the �strong�type.
In standard screening models, the agents of the �strongest�type usually achieve an undistorted
outcome, as if information were symmetric; this familiar result is known as the �no distortion at
the top�(NDT) property. In Mussa and Rosen (1978), for instance, the buyers with the highest
valuation always trade e¢ ciently with the monopolist. This is because, in their setup, the
monopolist can always trade e¢ ciently with the �strongest�buyers without triggering mimicking
by weaker buyers. In the present model, instead, sustaining the e¢ cient outcome with C may
jeopardize I�s incentives to behave honestly (see Section 4.1). The goal here is to study what
this implies for the optimal screening C-menu.
As a preliminary step, I show that the screening C-menu sustains the e¢ cient outcome with

type C if and only if the RR constraint does not bind.

Lemma 7 There exists xC 2M that sustains the e¢ cient outcome �C� and maximizesWC (x)�
�IRI (x) if and only if �I = 0.

In other words, the NDT property holds if and only if sustaining �C� with C, while o¤ering I
the I-menu of Section 4.2.2, does not induce I to mimic C.
This equilibrium may be infeasible� independently of �� if the C-menu doesn�t include

unused items, i.e., if xC = xC�. To see why, recall that as the principal cares less about C�s
rents (i.e., �C ! 0), she tends to o¤er an I-menu that resembles the �rst-best one, i.e., xI�

(Proposition 2). By Lemma 2, however, in some environments the principal can�t implement
xC� and xI�. Therefore, by continuity, she can�t also sustain xC� and xI(�C) for �C small enough.
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Although the principal can relax a binding RR constraint by adding unused items to the
e¢ cient C-menu (Lemma 3), in the present model with time inconsistency the NDT property
fails. To actually satisfy RR, the unused action must be deterring enough for I not to mimic
C: As Corollary 1 shows, its gap with the largest e¢ cient action �C�(�

C
) must be at least

D(�C�;�I). Therefore, if D(�C�;�I) is too large, the principal must also distort the outcome
with type C, since any enlargement of the e¢ cient C-menu is too weak a deterrent for I.
Otherwise, although the C-menu may di¤er from the symmetric-information one, it still sustains
the e¢ cient outcome with C. In our initial example about SDs, Figure 2 corresponds to this
second case.
It turns out that the less the principal cares about pro�ts, the more likely she is to include

unused items in her optimal C-menu and to violate the NDT property. Intuitively, as the weight
� falls, the principal cares less about C�s rents. Therefore, she distorts less the I-menu, and has
to grant a larger discount on the C-menu to convince C to choose it. But this larger discount
also makes I more willing to mimic C. Thus, as � decreases, the principal has to increase the
lack of commitment that I associates to the C-menu.

Proposition 4 (C-menu and Pro�ts Weight) If for pro�ts weight �̂ the optimal C-menu
must include unused items, so does for any � < �̂. Furthermore, if for �̂ the optimal C-menu
violates the �no distortion at the top�property, so does for any � < �̂.

In particular, by Proposition 4, if the monopolist (� = 1) has to add unused items to her C-
menu, so does the planner (� < 1). Similarly, if the monopolist�s solution violates the NDT
property, so does the planner�s.
The largest feasible action a can be su¢ ciently bigger than the largest e¢ cient one a� (s)�

so that the NDT property holds� for several reasons. The principal may be able to o¤er very
attractive actions, without any technological or legal constraint. More generally, if we view a
as the immediate grati�cation of some underlying action� e.g., shopping with credit cards� the
maximal grati�cation a is likely far bigger than the e¢ cient one a� (s), which takes into account
the disutility d and the cost c� e.g., repaying the debt and bearing the default risk.
Finally, when unused items alone cannot ensure truthfulness by type I, the allocation rule xC

must maximizeWC (x)��IRI (x) with �I > 0. The weight on RI calls for designing the C-menu
so as to worsen I�s disadvantage, which depends on the gap between I�s and C�s choices from
the C-menu. To gain some intuition, consider again the SD example with two states. Recall
that the three-option C-menu deters I from mimicking C only if it charges a high enough fee
for withdrawing the larger amount a. Now, suppose that I enjoys more withdrawing a than aw,
but only by a little. To be able to charge a high fee for a, the principal must then lower the
amount a of the middle and (possibly) of the bottom option below e¢ ciency. When there are
many states and self-2�s valuations overlap across types, deriving the optimal xC requires more
work. The principle is, however, the same: make I�s and C�s choices from the C-menu more
di¤erent, to increase the payment premia separating them.

4.3 Extension: Many Degrees of Time Inconsistency

I now extend the analysis of the two-type model to a model with more realistic variety in self-
control problems. Screening any two agents, who have di¤erent degrees of time inconsistency,
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raises the same issues as screening type C and type I. However, with more than two types,
deriving the optimal supply of menus is more intricate. Nonetheless, I show that the menu
of the least time-inconsistent agents� who represent the �strongest� type� sustains the same
outcome as does the C-menu in the two-type model. The menus of the other agents, instead,
may ine¢ ciently curtail �exibility; if so, they again induce �over-consumption�and no �exibility
at the bottom, and �under-consumption�and possibly no �exibility at the top. Finally, not only
the menu of the least time-inconsistent agents may feature unused items, but also the menus of
intermediate types.
To consider a population featuring more than two degrees of time inconsistency, I modify

the model in Section 2 as follows. Let the set of types be
�
�1; : : : ; �N

	
, with N > 2 �nite; for

convenience, order the types so that a higher index coincides with a stronger degree of time
inconsistency, i.e., 1 � �1 < �2 < : : : < �N < +1. Finally, let the share of type i be 
i > 0.
All the other primitives remain as in Section 2.
As in Section 4.1, we can characterize implementable outcomes using direct revelation mech-

anisms. A DM is an array fX;Tg = (xi; ti)Ni=1, with x
i : � ! A and ti : � ! R, where

� = co
�SN

i=1�
i
�
. It is still without loss of generality to consider only period-2 incentive com-

patible DMs (De�nition 2), which I still denote by fX;kg = (xi; ki)Ni=1. Also, for any j-menu
(xj; kj), the expected utility to type i, U i(xj; kj), is still given by EU. Thus, the period-1
information and participation constraints are

R-IC i;j: U i(xi; ki) � U j(xj; kj) +Ri(xj) and IRi: U i(xi; ki) � 0.

For convenience, I have already written the standard IC i;j constraints in terms of the functions
Ri(xj), as in Section 4.1.
With regard to each type�s information (dis)advantage, Proposition 1 generalizes as follows.

A less time-inconsistent agent enjoys an information advantage over any more time-inconsistent
agent; i.e., Ri(xj) � 0 if i < j, and Ri(xj) � 0 if i > j. This is because Proposition 1 relies only
on 1 � �C < �I (see the proof in Appendix B). Moreover, i�s (dis)advantage disappears if and
only if the j-menu makes i and j behave (almost) always identically; i.e., Ri(xj) = 0 if and only
if xj is constant over (minf�i; �jg;maxf�i; �jg). For � outside this range, neither i nor j get to
choose xj (�), so Ri(xj) cannot depend on it.
With regard to period-1 incentive compatibility, two other insights extend to the general

model. First, the information rents granted to a less time-inconsistent agent can jeopardize
the incentives of a more time-inconsistent agent to disclose his self-control problems. Second,
adding unused items to the menu of a less time-inconsistent agent helps promote truthfulness
by a more time-inconsistent agent. Moreover, the most e¤ective way to do so is still given by
Lemma 3, except that the thresholds �d and �u now depend on �

i, �j, and F .
Consider now the principal�s problem of �nding an optimal DM. Similarly to Section 4.2.1,

we can express this problem� using the ENV i conditions, EU, and ES� as

PN :=
(
maxfX;kg(1� �)W (X) + ��(X;k)

s.t., xi 2M, R-IC i;j, and IRi, for all i; j.
,

where
W (X) =

PN
i=1 
iW

i(xi) and �(X;k) =
PN

i=1 
i[W
i(xi)� U i(xi; ki)].

22



With more than two types, the problem PN raises new di¢ culties, which I solve with a novel
approach. First, in general, local necessary conditions for period-1 incentive compatibility do
not imply global incentive compatibility. A similar issue appears in the literature on dynamic
mechanism design with only time-consistent agents, which has developed a speci�c approach to
it (Courty and Li (2000); Pavan, Segal, and Toikka (2011)). This approach involves introducing
additional, potentially ad-hoc, restrictions on the primitives so that local conditions ensure
global incentive compatibility. I �nd using this approach for studying a new screening problem
unappealing; moreover, �nding e¤ective� let alone reasonable� restrictions is particularly hard
in my context. Second, in my context, there isn�t an ordering of types that allows one to
identify, a priori, which constraints will bind. For these two reasons, to solve PN , I take a
di¤erent approach that does not introduce new restrictions on the primitives, and deals with
period-1 incentive constraints all at once. My approach builds on Lagrangian methods and relies
on having a �nite number of constraints.
Applying these methods reveals that, when designing each j-menu, the principal trades o¤

the surplus with type j and the rents that the menu causes for (some of) the less time-inconsistent
agents (see Appendix B). Such a trade-o¤ generalizes the one highlighted in the two-type model.
Furthermore, the principal has to ensure that each j-menu deters any type who is more time
inconsistent than j from mimicking j. Consistently with Section 4.2.3, I focus on the case in
which unused items su¢ ce to guarantee this property.

Proposition 5 Suppose a is large so that unused items su¢ ce to satisfy R-IC i;j for i > j. A
solution fX;kg to PN exists with xi unique over (�i; �i), for every i. Furthermore, we have:
1) The 1-menu always sustains the e¢ cient outcome;

2) If � = 0, then all menus sustain the e¢ cient outcome, otherwise at least the N-menu sustains
a distorted outcome;

3) If the i-menu sustains a distorted outcome, it features properties (a), (b), and possibly (c),
as in Proposition 3;

4) For every i < N , the i-menu may have to include unused items with a > xi(�
i
).

As long as the principal cares about pro�ts (� > 0), she will distort the menu of the most
time-inconsistent agents, and possibly of other intermediate types. Whether intermediate types
obtain a distorted menu depends on the exact con�guration of the active incentive constraints,
which cannot be predicted a priori.

5 Policy Implications for Paternalistic Savings Devices

In this section, I discuss the implications of my analysis for how a paternalistic government should
design special SDs, to tackle the tendency of some people to save too little for retirement. I
argue that my policy implications are consistent with some broad features of the U.S. regulation
of �tax-shielded�and taxable investment accounts.25

25Of course, I do not intend this section to be seen as providing an explanation for all the complicated rules
governing these types of accounts in the U.S..
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People�s tendency to undersave is a well-documented phenomenon about retirement income,
which has been usually attributed to self-control problems (Diamond (1977), Thaler (1994),
Laibson (1998), Bernheim (2002)) and has attracted governments�attention. To help people
with self-control problems save adequately, a paternalistic government may want to create special
SDs that provide appropriate tax incentives. However, when trying to sustain e¢ cient savings
decisions with all individuals, the government faces two natural constraints. First, it can usually
allocate limited �scal resources to �nance its policies. Second, casual evidence suggests that
people value �exibility, because they are uncertain about their best savings decisions in the
future; moreover, they have di¤erent tendencies to undersave, because their self-control varies.
Since the government cannot observe people�s self-control, it has to induce each individual to
select voluntarily the SD that best �ts his desires for commitment and for �exibility. The
question is then how the government should design its SDs, given these two constraints.
My model helps answer this question. To see how, recall our initial example about SDs.

Again, each SD allows the agents to contribute to (a < 0) and withdraw from (a > 0) its
balance. Now, however, each choice of a leads to a tax burden or bene�t p� think of p as the
�scal consequences of a distribution from or a contribution to an SD. As in our initial example,
it seems natural that e¢ ciency calls for distributions (a > 0) when spending in period 2 has high
enough priority (s > s0), and for contributions (a < 0) otherwise. Finally, since the government
can allocate limited resources to its SDs, it seems natural that it also takes into account their
overall pro�tability, i.e., 0 < � < 1.
The results of Section 4 have the following implications:

� The unobservability of people�s self-control o¤ers one economic justi�cation for govern-
ment intervention in the market for SDs. Indeed, asymmetric information leads pro�t-
maximizing �rms (� = 1) to supply SDs ine¢ ciently, especially to the agents who actually
need commitment devices.

� When designing its SDs, a �nancially constrained government faces a trade-o¤ between
corrective and redistributive taxation; its solution calls for curtailing the liquidity of the
special SDs, relative to the standard SDs. By Proposition 1, special SDs� tailored to
time-inconsistent agents� make time-consistent agents less willing to choose the standard
SDs tailored to them. To make the time-consistent agents choose the standard SDs, it is
necessary to grant a tax discount on them. Doing so drains �scal resources, in addition to
any tax incentives for the time-inconsistent agents. Curbing the discount on the standard
SDs calls for curtailing the �exibility, or liquidity, of the special SDs.

� To optimally curtail the liquidity of the special SDs, the government should set limits on
the owners� freedom to make contributions (in small states) and distributions (in large
states). In small states, the special SDs should induce ine¢ ciently low contributions by
setting a binding cap (Proposition 3, Properties (a) and (b); Proposition 5); in large
states, they should induce ine¢ ciently low distributions, possibly using again a binding
cap (Proposition 3, Properties (a) and (c); Proposition 5). It is important to remark
that, according to the present analysis, the reason for setting limits on distributions from
the special SDs is not to help the time-inconsistent agents avoid depleting their savings.
Indeed, if the government could observe the agents� self-control, its special SDs could
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and should allow time-inconsistent agents to e¢ ciently respond to all future states (recall
Section 3).

� The government should not take for granted that time-inconsistent agents will never choose
the standard SDs tailored to time-consistent agents. The tax discount on the standard SDs
may lure the time-inconsistent agents into choosing them. To avoid this, the standard SD
should include the possibility of taking large distributions in period 2, but make it so
costly that only time-inconsistent agents would use it (Lemma 3 and Proposition 4). For
example, a standard SD could allow unlimited borrowing against its balance, and also
charge very high penalties for loans beyond a certain threshold.

To compare my policy implications with existing SDs, I consider the U.S. retirement market.
In this market, federal laws regulate the special SDs, called �tax-shielded�investment accounts
(TSAs), as well as the standard SDs, called taxable investment accounts (TAs). As the names
suggest, TSAs and TAs have di¤erent tax rules. Examples of TSAs include the individual
retirement accounts (IRAs) and the 401(k) plans, which are important savings instruments in the
U.S. and account for signi�cant tax expenditures in the federal budget. More generally, savings
taxation contributes to �nance other redistributive goals. Therefore, budget considerations are
likely to play a role in how the U.S. Congress regulates the TSAs and the TAs.
Comparing the TAs with the TSAs� in particular with the IRAs and the 401(k) plans�

reveals some general features that are consistent with my implications. Both the IRAs and the
401(k) plans set maximal contribution limits; TAs don�t. These limits are enforced with dear
tax penalties for crossing them, and sometimes they bind: In 2007 (2008), about 59% (49%)
of IRA-owners contributed at the limit (Holden et al. (2010b)), and roughly 11% of all 401(k)
participants did so in 2004 (Munnell and Sundén (2006)). Also, both the IRAs and the 401(k)
plans limit distributions; again, TAs don�t. Except for a list of quali�ed cases (e.g., �rst-time
home purchase for IRAs), any amount withdrawn before the age of 591

2
incurs a tax penalty,

which seems to actually limit access to these TSAs: According to Holden and Schrass (2008-
2010a), the vast majority of IRA withdrawals are retirement related, and only about 5% occurs
before the owner turns 591

2
. Moreover, any IRA-backed loan is de facto prohibited, and although

for some 401(k) plans loans are allowed, they are capped and subject to quick repayments.
Finally, Amromin (2002, 2003) presents some evidence that is consistent with the principle

that curtailing �exibility in the special SDs helps curb their appeal to less time-inconsistent
agents. He shows that a share of U.S. savers does not take full advantage of the TSAs�tax
bene�ts, and prefers to invest in the TAs because of the TSAs� liquidity constraints. These
savers reveal that they care more about �exibility than about commitment, which may depend,
among other things, on them being less time inconsistent.

6 Discussion and Literature Review

6.1 Discussion

Overcon�dence. The empirical evidence suggests that people can underestimate their self-
control problems, i.e., they can be overcon�dent (see, e.g., DellaVigna 2009 and the references
therein). In my model, an agent is overcon�dent if in period 1 he believes that his type is �̂,
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but learns in period 2 that it is � > �̂. Overcon�dence a¤ects the analysis as follows. On the
one hand, the characterization of the set of implementable outcomes does not change, because
it only depends on the belief that each agent holds in period 1 about his type. On the other
hand, the principal�s problem of �nding the optimal screening menus changes. Now the principal
has to design each menu taking into account that both sophisticated and overcon�dent agents
can choose it. Therefore, depending on her goal (i.e., on �), she may exploit or counteract
the agents� overcon�dence. This is especially relevant to the design of unused options. In
the two-type model, for example, the principal may have to enlarge the C-menu to screen the
sophisticated type I. However, if in period 1 some agent of type I wrongly believes that his
type is C, the principal may also want to enlarge the C-menu to exploit his overcon�dence in
period 2. Thus, she may face a trade-o¤ between optimally dealing with the overcon�dent type
I and ensuring that the sophisticated type I does not choose the C-menu.26

Outside Option with Type-Dependent Values. Since only the principal can provide
�exible commitment devices, we can interpret any period-1 outside option as the set of state-
contingent choices that the agents would make in period 2 if left to their means. Without loss of
generality, we can describe these choices through a menu fx0; k0g, using the formalism of Section
4.1. For simplicity, consider the two-type model. By Proposition 1, UC(x0; k0) � U I(x0; k0) with
equality if and only if x0 is constant over �. In other words, C and I value the outside option
equally� as I have assumed throughout the paper� if and only if the menu fx0; k0g is singleton.
For example, the outside option may lead to the same default action in every state. Instead, if
x0 is �exible, then C and I value the outside option di¤erently. Similarly, in Mussa and Rosen
(1978) a high-valuation buyer would value more an outside option featuring strictly positive
consumption than would a low-valuation buyer. When C values fx0; k0g more than does I, my
analysis changes to the extent that the constraint IRC may bind, together with or even before the
constraint ICC . Obviously, if x0 = xI�, then the principal will never o¤er a distorted I-menu,
because she can never extract from type C more than UC(xI�; k0) = U I(xI�; k0) + RC(xI�).
Similarly, if in Mussa and Rosen the outside option features the e¢ cient level of trade with low-
valuation buyers, then the monopolist will never o¤er them a distorted level of trade. Finally, if
ICC binds before IRC , then the principal will distort the I-menu as discussed in Section 4.2.2,
possibly stopping if IRC starts to bind too.
Di¤erent Period-1 Heterogeneity. In this paper, time-inconsistent agents overweight

(� > 1) the immediate bene�ts (or costs) of their actions when they have to choose one. If
all time-inconsistent agents have � < 1, the substance of the paper doesn�t change. Signi�cant
di¤erences appear, instead, if some agents have � < 1 and others have � > 1. For example,
with two types and �1 > 1 > �2, neither may have an information advantage (see Appendix A).
However, the approach that I introduced in Section 4.3 should be useful to analyze this case as
well.

6.2 Relation to the Previous Literature

As noted in the Introduction, this paper relates to the literature on behavioral contract theory
and optimal paternalism. Several papers have already studied how to design incentive schemes
to tackle people�s self-control problems (e.g., O�Donoghue and Rabin (1999)). The novelty of the

26A more detailed analysis of the model with overcon�dent agents is available upon request.
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present paper consists in studying, in a market environment, the role of asymmetric information
about people�s con�icting desires for commitment and for �exibility. A more detailed comparison
of my work to the closest papers in the literature follows.
Amador, Werning, and Angeletos (AWA) (2006). In AWA, a decision-maker faces

a consumption-savings problem and lacks self-control. Anticipating this situation, ex ante he
desires commitment, but because he still doesn�t know how much he will value consumption, he
also desires �exibility. AWA focus on commitment strategies that only entail removing options
from the decision-maker�s future budget set; they purposefully rule out payments across states to
eliminate any form of insurance. AWA�s main contribution is to identify necessary and su¢ cient
conditions for the optimal (paternalistic) strategy to coincide with minimum-savings plans.
In contrast, I look at markets in which, to commit to a desired plan, agents obtain incentive

schemes from a pro�t- or welfare-maximizing supplier; I also allow for payments across states.
AWA�s model is more appropriate to study public pension plans which involve no payments,
such as Social Security and de�ned-bene�t plans. But to study de�ned-contribution plans and
other forms of voluntary savings that receive tax incentives from the government, my model
seems better suited.
Furthermore, AWA essentially assume that people�s self-control is observable. However,

with unobservable self-control, AWA�s analysis does not change because their commitment poli-
cies raise no incentive compatibility issue. To see why, suppose AWA allowed for both time-
inconsistent and time-consistent agents, type I and type C. AWA�s optimal policies involve an
e¤ective minimum-savings constraint for I, but not for C. Given these policies, by de�nition, C
doesn�t want to mimic I ex ante, although if C did, ex post C would save at least as much as
does I in every state and strictly more in some states. The �ip side of AWA�s policies is that I�s
ex-post choices are (almost) always ine¢ cient, according to his ex-ante preference. By contrast,
I show that allowing for payments would permit to fully solve the agent�s self-control problems
under symmetric information, but causes screening problems under asymmetric information.
DellaVigna and Malmendier (DM) (2004). DM�s in�uential work studies how �rms

design two-part tari¤s when selling to quasi-hyperbolic buyers goods that cause immediate costs
(bene�ts) and deferred bene�ts (costs). DM�s model helps explain why �rms set per-usage prices
below (above) their marginal costs, and introduce renewal or cancellation fees.
DM�s model di¤ers from mine as follows. First, in DM �rst- and second-period preferences

di¤er for any given agent, but they coincide across agents within each period. Also, at the
�rst-period contracting stage, some agents correctly forecast their preference at the second-
period consumption stage, but others are partially naive in the sense of O�Donoghue and Rabin
(2001). Second, DM restrict a priori the agent to a buy-or-not-buy decision� with no quantity
variable� a restriction that precludes studying the trade-o¤between commitment and �exibility.
Finally, DM assume that �rms know the agents�degree of time inconsistency and of naivete.
This symmetric information assumption is relaxed by Jianye (2011), who takes DM�s model and
studies whether their predictions about per-usage prices are robust to asymmetric information.
DM also �nd that �rms will provide sophisticated agents with a two-part tari¤ that perfectly

solves their self-control problems. I con�rm and extend this result in Section 3. Nonetheless,
I cast doubt on DM�s optimistic message in two directions. First, the result is not robust to
asymmetric information, which leads a monopolist to supply commitment ine¢ ciently. Second,
the result relies on the property, which holds also in DM, that self-1 and self-2 rank any two
states in the same order. To see this, suppose the utility function of self-1 is sa+ d (a)� p, but
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that of self-2 is a
s
+d (a)�p� the inconsistency is now about which state makes a more valuable.

In this case, to be period-2 incentive compatible, an allocation rule x must be non-increasing;
so, the e¢ cient outcome a�� which is increasing� cannot be sustained with self-2.
Esteban and Miyagawa (EM) (2005). EM study a standard model of non-linear pricing

except that buyers have Gul-Pesendorfer (2001) preferences and the monopolist can o¤er them
non-singleton menus. EM�s �nd that the monopolist may fully extract buyers�surplus using
"decorated" menus. EM have two types of buyers (H and L), which have di¤erent valuations of
the monopolist�s good, but also di¤erent self-control costs. Buyers dislike exerting self-control
and desire commitment. So, intuitively, by adding to the singleton L-menu an item that makes
a dishonest H incur high self-control costs, the monopolist makes the L-menu less appealing to
H and can extract more surplus from H. In my model, the unused item added to the C-menu
works similarly: By making I view the C-menu as o¤ering even less commitment, it increases
I�s expected cost of mimicking C.
Except this similarity, EM�s paper is quite di¤erent from mine. In EM, agents value com-

mitment but not �exibility, so no trade-o¤ can arise between the two. In EM, unused items
help screen �strong� from �weak�buyers; instead, in my model, they help screen �weak� from
�strong�agents. In EM, maximizing welfare never requires adding unused items to menus, but
maximizing pro�ts may; instead, in my model, maximizing welfare may require unused items
while maximizing pro�ts may be possible without them.
Eliaz and Spiegler (ES) (2006). ES analyze a model in which agents sign contracts with

a monopolist in period 1, to get access to a set of actions in period 2. All agents have the
same utility function u in period 1, which changes to v in period 2 with probability q. The
monopolist knows q; instead, in period 1, each agent has his own private belief q̂ about the
chance of switching to v. Crucially, in ES the agents�private information a¤ects what they
are willing to pay for a given contract in period 1, but it doesn�t a¤ect what the monopolist
expects them to choose in period 2. Instead, in my model, period-1 private information also
matters in predicting the period-2 outcome of a (non-trivial) device� as in adverse-selection
models. Furthermore, in ES, the agents have the same information about the environment in
both periods, so they care about commitment (unless q̂ = 0), but not about �exibility.

7 Conclusion

I study how a monopolist and a paternalistic planner supply �exible commitment devices to
agents who privately know their preference for commitment and for �exibility. If information
were symmetric, both the monopolist and the planner would help each agent fully solve his self-
control problems. This is generally not true, however, with asymmetric information: Agents with
superior self-control enjoy an information advantage, which causes a screening problem. I derive
the optimal screening devices using non-standard techniques for solving dynamic mechanism-
design problems. To screen a more time-inconsistent from a less time-inconsistent agent, the
monopolist and (possibly) the planner ine¢ ciently curtail the �exibility of the device tailored
to the �rst agent, and include unused items in the device tailored to the second agent. Finally,
in my model the familiar �no distortion at the top�property fails.
My results are relevant to the problem of how governments should design special savings

devices with tax incentives that help time-inconsistent people adequately save for retirement.
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Although such incentives also involve penalties, the special devices will appeal to time-consistent
agents. So, to ensure that time-consistent agents don�t choose the special devices, the standard
devices should receive a tax discount. Finally, in order to curb this discount, the liquidity of
the special devices should be ine¢ ciently curtailed, by setting limits on the ability both to tap
and to contribute to their balance. These implications are useful for assessing, for instance, the
U.S. regulation of individual retirement accounts and 401(k) plans.
The paper does not look at the e¤ects of competition among many providers of �exible com-

mitment devices. While a detailed study of this case is beyond the scope of the current paper,
I expect that even perfectly competitive markets lead to ine¢ cient outcomes, with distortions
qualitatively similar to the monopolistic case. Intuitively, competition pushes �rms to generate
the largest possible surplus and payo¤ for each type of agent. However, the asymmetric informa-
tion creates an adverse-selection problem for the �rms, who have to screen the di¤erent types.
Conditional on sustaining the e¢ cient outcome with time-consistent agents, each �rm has to
balance the e¢ ciency with time-inconsistent agents against the incentives of the time-consistent
agents to pretend to be time-inconsistent. This trade-o¤ is similar to that analyzed in the paper,
and hence is likely to have similar implications.

8 Appendix A: Irrelevance of Asymmetric Information
with Finitely Many States

In this appendix, I show that if the number of states is �nite, then asymmetric information at
the contracting stage may be immaterial as far as sustaining the e¢ cient outcome is concerned.
To understand the role of the discreteness of the state space S, consider the case with two

states, s2 > s1. If � is observable, the principal sustains a�2 = a
�(s2) > a

�(s1) = a
�
1 (Lemma 1),

with payments p1 = p(s1) and p2 = p(s2) that satisfy the condition

u2(a
�
2; s2; �)� u2(a�1; s2; �) � p2 � p1 � u2(a�2; s1; �)� u2(a�1; s1; �), (1)

which follows by combining the IC constraints. Since u2 (a; s; �) has strictly increasing di¤er-
ences in (a; s), the discreteness of S creates some slack in the period-2 incentive constraints
evaluated at (a�2; a

�
1). Thus, for any �, condition (1) does not uniquely pin down p1 and p2.

Now suppose that type C and type I have about the same self-control, i.e., that �I is almost
equal to �C . Intuitively, to implement the same outcome with both types, it should be possible
to use incentive devices that are su¢ ciently alike. Furthermore, if the discreteness of S leaves
some leeway in the choice of payments, it may be even possible to �nd one device that works
for both types. On the other hand, if �I is very di¤erent from �C , then sustaining the e¢ cient
outcome with both type requires di¤erent devices. Since �I > �C , type I is more tempted to
pick a�2 also in state s1 than is type C, and the more so, the higher �

I is relative to �C . Thus,
for I to choose a�2 only in state s2, a

�
2 must be su¢ ciently more expensive than is a

�
1, and this

price premium must increase as �I rises. Therefore, it must eventually exceeds C�s willingness
to pay for switching from a�1 to a

�
2 in s2.

The following lemma formalizes this intuition. Since the result does not depend on having
two types with �I > �C = 1, consider a �nite set � of types, which may include both � > 1 and
� < 1. Let � := max� and � := min�.
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Lemma 8 Suppose S is �nite with sN > sN�1 > : : : > s1. There exists a single commitment
device that sustains the e¢ cient outcome a� with each � 2 � if and only if �=� � mini si+1=si.

Proof. With N states the period-2 incentive constraints become

u2(ai; si; �)� pi � u2(aj; si; �)� pj (ICi;j)

for all i; j = 1; : : : ; N , where ai := a(si) and pi := p(si). By standard arguments, it is enough
to focus on the adjacent constraints IC i;i�1 and IC i�1;i. For i = 2; : : : ; N , let �i := pi � pi�1.
If a(si) = a�(si) for all i, then a�N > a

�
N�1 > : : : > a

�
1 (Assumption 1). To implement a

� with �,
we must have, for i = 2; : : : ; N ,

u2 (a
�
i ; si; �)� u2(a�i�1; si; �) � �i � u2 (a�i ; si�1; �)� u2(a�i�1; si�1; �). (CIC �

i;i�1)

Recall that for any s and �, u2 (a0; s; �)�u2 (a; s; �) = �s (a0 � a)+d (a0)�d (a). Let sk=sk�1 =
mini si=si�1 and suppose �sk�1 > sk�. Then,

u2(a
�
k; sk�1; �)� u2(a�k�1; sk�1; �) > u2(a�k; sk; �)� u2(a�k�1; sk; �),

and no �k satis�es CIC �
k;k�1 for both � and �. If instead �si � �si�1 for every i = 2; : : : ; N ,

then for each � and i

u2 (a
�
i ; si; �)� u2(a�i�1; si; �) � u2(a

�
i ; si�1; �)� u2(a�i�1; si�1; �)

� u2 (a
�
i ; si�1; �)� u2(a�i�1; si�1; �).

Set ��
i := u2(a

�
i ; si�1; �) � u2(a�i�1; si�1; �) for each i. Then f��

i gNi=2 satis�es all the CIC �
i;i�1

conditions for each �. And the payment rule de�ned by p�i = p�1 +
Pi

j=2�
�
j� with p

�
1 small

enough to ensure participation� sustains a� with each �.
Therefore, if the heterogeneity across agents� measured by �

�
�� is small enough, the prin-

cipal can sustain the e¢ cient outcome without worrying about period-1 incentive constraints.
The condition in Lemma 8, however, is not necessary for asymmetric information to be

irrelevant when sustaining the e¢ cient outcome a�. Even if �=� is large, it may be possible to
design di¤erent devices such that each device sustains a� with one type of agent, and each agent
optimally chooses the device designed for his type. To see why, consider a simple example with
two types with �h > �l, and two states, s2 > s1. Suppose that �

h > 1 > �l, �hs1 > �
ls2, but

s2 > s1�
h and s2�

l > s1. Consider all payments (p1; p2) that satisfy (1) and the IR constraint
with equality, i.e.,

(1� f) p2 + fp1 = (1� f)u1 (a�2; s2) + fu1 (a�1; s1) (2)

where f := F (s1). Finally, choose (ph1 ; p
h
2) so that h�s self-1 strictly prefers a

�
2 in state s2� i.e.,

u1(a
�
2; s2)�ph2 > u1(a�1; s2)�ph1� and (pl1; pl2) so that l�s self-1 strictly prefers a�1 in state s1� i.e.,

u1(a
�
1; s1) � pl1 > u1(a

�
2; s1) � pl2. Then, the device de�ned by (pl1; pl2) (respectively (ph1 ; ph2))

sustains a� and generates zero expected payo¤s to the agent if and only if type l (h) chooses it.
Moreover, I claim that type l (h) strictly prefers the device with payments (pl1; p

l
2) (respectively

(ph1 ; p
h
2)). Note that, if the self-1 of either type had to choose in period 2, under either device

he would strictly prefer to behave exactly as does his self-2. Therefore, by choosing the �wrong�
device, either type can only decrease his payo¤ below zero.
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The next lemma provides a necessary condition for asymmetric information to be irrelevant
when sustaining a�. Let �u := � \ [0; 1] and �o := � \ [1;+1). For k = o; u, let �k := max�k

and �k := min�k, and set rk := �
k
=�k.

Lemma 9 Suppose that S is �nite with sN > sN�1 > : : : > s1. If maxfru; rog > mini si+1=si,
there is no collection of commitment devices, each tailored to a speci�c type � 2 �, such that
(I) type � chooses �his�device, (II) each device sustains the e¢ cient outcome a� with the corre-
sponding type �, and (III) all types enjoy the same expected payo¤.

Proof. Suppose max fru; rog = ru; the other case follows similarly. Suppose that devices
that satisfy (I)-(III) exist. Let fp�g�2� be the corresponding payment schedules, and normalize
each type�s expected payo¤ to zero. Consider p�

u

and denote it by p. I claim that if �
u
selects

p rather than p�
u

, he enjoys a positive expected payo¤. Given p, let ai(�) be an optimal choice
of � 2 �u in si (this is well de�ned by assumption). For �

u, ai(�
u) = a�i for every i. Let

S� := fi : si+1/ si < rug 6= ?. We have: (a) for every i, �
u
si > �

usi and hence ai(�
u
) � a�i ;

(b) for i 2 S�, �usi > �usi+1, and hence ai(�
u
) � a�i+1 > a�i . Observations (a) and (b), together

with � � 1, imply that

p(ai(�
u
))� p (a�i ) � u2(ai(�

u
); si; �

u
)� u2(a�i ; si; �

u
) � u1(ai(�

u
); si)� u1 (a�i ; si) ,

where the �rst inequality is strict for i 2 S�. The expected payo¤ to �u from p is thenPN
i=1[u1(ai(�

u
); si)� p(ai(�

u
))]fi >

PN
i=1[u1(a

�
i ; si)� p(a�i )]fi = 0,

where fi := F (si)� F (si�1) for i = 2; : : : ; N and f1 := F (s1).
Note that, if either �u n f1g = ? or �o n f1g = ?, then the su¢ cient condition in Lemma 8

becomes also necessary for sustaining the e¢ cient outcome without worrying about the agent�s
private information.

9 Appendix B: Omitted Proofs from Sections 3-4.

All proofs allow for �C � 1, unless the speci�c result assumes otherwise.

9.1 Proof of Lemma 1

The planner�s problem is

max
fa;pg

�
(1� �)

R
S
[u1 (a (s) ; s)� c(a(s))]dF + �

R
S
[p (s)� c (a (s))] dF

	
s.t. IR and IC.

If � > 0, IR must bind; if � = 0, assume w.l.o.g. that IR holds with equality. Thus, the problem
reduces to

max
a

�R
S
[u1 (a (s) ; s)� c(a(s))]dF

	
s.t. IC.

Ignoring IC, the resulting relaxed problem admits a � a� as its unique solution (up to the set
of zero measure fs; sg). It remains to show that there exist p that sustains a� with self-2. For
any �, standard arguments imply that the necessary and su¢ cient condition for the existence
of such a p is that a is non-decreasing in s, a property satis�ed by a�.
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9.2 Proof of Proposition 1

Using expression EU and changing variables, re-write U i (xj; kj) as

U i(xj; kj) =
R s
s
[sxj(s�i)� s�ixj(s�i) +

R s�i
�
xj (y) dy]dF � kj. (3)

Now de�ne for each s

�(sjxi) = s(1� �C)xi(s�C) +
R s�C
�

xi (y) dy � s(1� �I)xi(s�I)�
R s�I
�
xi (y) dy (4)

= s(�C � 1)(xi(s�I)� xi(s�C)) +
R s�I
s�C
(xi(s�I)� xi (y))dy.

Note that xi 2 M and �I > �C � 1 imply that �(sjxi) � 0 for every s. Also, if xi (�) = a for
every � 2 (�; �), then �(sjxi) = 0 for every s 2 (s; s).
Consider �rst type C. Using (3) and (4), we have

RC(xI) = UC(xI ; kI)� U I(xI ; kI) =
R s
s
�(sjxI)dF � 0, (5)

with equality if xI (�) = a over (�; �). Now suppose xI (�) is not constant over (�; �). Since
xI is non-decreasing, there exists ~� 2 (�; �) such that xI (�) < xI (�0) for every �; �0 such that
� < ~� < �0. Let ~s1 := ~�=�

I and ~s2 := ~�=�
C , and consider the interval I := (~s1; ~s2) \ [s; s] 6= ?.

For s 2 I, s�C < ~� < s�I ; hence xI(s�C) < xI(s�I). To prove that RC(xI) > 0, it is enough to
show that R

I

hR s�I
s�C
(xI(s�I)� xI (y))dy

i
dF > 0. (6)

For s 2 I, the integrand in (6) satis�esR s�I
~�
(xI(s�I)� xI (y))dy +

R ~�
s�C
(xI(s�I)� xI (y))dy �

R ~�
s�C
(xI(s�I)� xI (y))dy > 0,

where the �rst inequality follows from MON I and the last from xI (y) < xI(s�I) for every
y 2 (s�C ; ~�). Since I has positive measure, (6) follows.
Now consider type I. Using again (3) and (4), we have �RI(xC) =

R s
s
�(sjxC)dF , and the

properties of RI(xC) follow from the same type of arguments used for RC(xI).

9.3 Proof of Lemma 2

Using (4) and splitting the integral at the state s such that �I = �
C
, we have

�RI(xC�) =
R s�C

�I

s
�(sjxC�)dF +

R s
s�

C

�I

�(sjxC�)dF .

For every s � s�C
�I
, since xC�(s�I) = xC�(s�C),

�(sjxC�) = s�CxC�(s�C)� s�CxC�(s�C)�
R s�C
s�C

xC� (y) dy + s(xC�(s�C)� xC�(s�C)),

and because xC� is continuous, �(sjxC�) ! 0 as s ! s. Now consider RC(xI�). Recall that
since s�I > s�C , �(sjxI�) > 0 for s > s. For convenience, �x s0 := 1

2
(s+ s). By continuity,

32



min[s0;s]�(sjxI�) = � > 0. Choose s�=2 < s so that �(sjxC�) � �=2 for s 2 [s�=2; s]. Finally,
let s1 := maxfs0; s�=2g. We have:

RC(xI�) �
R s
s1
�(sjxI�)dF � � (1� F (s1)) ,

�RI(xC�) � sup
s<s1

�(sjxC�)F (s1) +
�

2
(1� F (s1)) .

Therefore, RC(xI�) > �RI(xC�) if (1� F (s1))/F (s1) > 2
�
sups<s1 �(sjxC�).

9.4 Proof of Lemma 3

Using EU, we have

RI(xC) =
R �
�

�
1� �I

�I
�xC (�) +

R �
�
xC (y) dy

�
dF I �

R �
�

�
1� �C

�C
�xC (�) +

R �
�
xC (y) dy

�
dFC .

Changing the order of integration and rearranging, we can express RI(xC) as

RI(xC) = �
R �I
�
CxC (�) gI (�) d� +

R �C
�C
xC (�)V C (�) dFC , (7)

where the function gI : [�
C
; �
I
]! R is given by

gI (�) :=
�I � 1
�I

�f I (�)� (1� F I (�)),

and the function V C : [�C ; �
C
]! R is given by

V C (�) :=
�C � 1
�C

� +
FC (�)

fC (�)
� f I (�)

fC (�)

�
�I � 1
�I

� +
F I (�)

f I (�)

�
.

Then, minimizingRI(xC) overM while sustaining�C corresponds to maximizing
R �I
�
C x(�)gI (�) d�

by choosing a non-decreasing function x : (�
C
; �
I
] ! [�C(�

C
); a]. Although gI(�

I
) > 0 and by

continuity also for � close to �
I
, nothing ensures that gI(�) is always positive, or at least non-

decreasing. I therefore apply Toikka�s (2011).
Let eF be the uniform distribution on [�

C
; �
I
] and eF�1 : [0; 1] ! [�

C
; �
I
] its continuous and

increasing inverse function. For q 2 [0; 1], de�ne

z (q) := gI( eF�1 (q)) and Z (q) :=
R q
0
z (y) dy.

Let 
 := convZ be the convex hull of Z on [0; 1] (see, e.g., Rockafellar (1970), p.36), i.e.,
the highest convex function on [0; 1] that satis�es 
 � Z. By de�nition, 
 is continuously
di¤erentiable except at possibly countably many points, so de�ne ! : [0; 1]! R as

! (q) := 
0 (q) ,

whenever 
0 (q) exists. Also, w.l.o.g. extend ! (q) by right-continuity to all [0; 1) and by left-
continuity at 1. For � 2 [�C ; �I ], let gI (�) := !( eF (�)); so gI is non-decreasing.
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Lemma 10 If z is continuous at q 2 (0; 1), then so is !.

Proof. Continuity of z at q implies that Z 0 (q) = z (q). There are two cases to consider.
First, suppose 
 (q) < Z (q). By de�nition, ! (�) must be constant at ! (q) in a neighborhood
of q. It follows that ! is continuous at q. Second, suppose 
 (q) = Z (q). Since 
 is convex and
Z (y) � 
 (y) for every y, we have:


+ (q) = lim
y#q


 (y)� 
 (q)
y � q � lim

y#q

Z (y)� Z (q)
y � q = Z+ (q)


� (q) = lim
y"q


 (q)� 
 (y)
q � y � lim

y"q

Z (q)� Z (y)
q � y = Z� (q) .

Since 
� (q) � 
+ (q) and Z is di¤erentiable at q, we have that 
� (q) = 
+ (q), and ! is
continuous at q.
Let �m := maxf�C ; �Ig < �I and qm := eF (�m) < 1. Since gI is continuous over [�I ; �I ], by

Lemma 10 ! is continuous over [qm; 1], hence gI is continuous over [�m; �
I
].

Lemma 11 gI(�
I
) � gI(�I).

Proof. If the opposite holds, then ! (1) < z (1). Since z is continuous over [qm; 1] and ! is
non-decreasing, there exists q < 1 such that ! (y) < z (y) for every y � q. Since Z (1) = 
 (1),
it follows that

Z (q) = Z (1)�
R 1
q
z (y) dy < 
 (1)�

R 1
q
! (y) dy = 
(q) .

A contradiction.
It follows that �u := inff� 2 [�C ; �I ] j gI (�) > 0g < �

I
. Similarly, de�ne �d := supf� 2

[�
C
; �
I
] j gI (�) < 0g, if the set is non-empty, otherwise �d := �

C
. By Theorem 3.7 of Toikka

(2011), any best extension xC of �C must satisfy xC (�) = a for � 2 (�u; �
I
) and xC (�) = �C(�

C
)

for � 2 (�C ; �d), if any. Letting xC (�d) = �C(�
C
) is w.l.o.g.. Finally, over (�d; �u], xC can be

any non-decreasing function mapping to [�C(�
C
); a], so long as it satis�es the necessary pooling

property described by Toikka (see De�nition 3.5). By Corollary 3.8 of Toikka (2011), it is then
w.l.o.g. to set xC (�) = �C(�

C
) for � 2 (�d; �u].

9.5 Proof of Corollary 1

Using EU, we have

RC(xI) =
R �
�

�
1� �C

�C
�xI (�) +

R �
�
xI (y) dy

�
dFC �

R �
�

�
1� �I

�I
�xI (�) +

R �
�
xI (y) dy

�
dF I

The same steps as in the derivation of RI(xC) in (7) lead to

RC(xI) = �
R �I
�C
xI (�) gC (�) d� �

R �I
�I
xI (�)V I (�) dF I (�) , (8)
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where gC (�) : [�C ; �I)! R and V I : [�I ; �I ]! R are given by

gC (�) := �C�1
�C
�fC (�) + FC (�) and V I (�) := vI (�)� fC(�)

fI(�)
vC (�) . (9)

Observe that gC (�) > 0 for � 2 (�C ; �I). Therefore, given �I , the rule xI 2 M that minimizes
RC(xI) while sustaining �I must satisfy xI (�) = �I(�I) for � 2 (�C ; �I). So, let x̂I (�) = �I(�I)
for � 2 [�C ; �I), and x̂I (�) = �I (�) otherwise. Using (7) and the best extension xCu in Lemma
3 of �C , the RR condition becomes

RC(x̂I) +
R �C
�C
�C (�)V C (�) dFC � �C(�C)

R �I
�
CgI (�) d� � (a� �C(�C))

R �I
�u
gI (�) d�.

By assumption the left hand side is positive; by construction RC(x̂I) has been minimized, andR �I
�u
gI (�) d� > 0. The result follows.

9.6 Proof of Lemma 4

The space X := f(xC ;xI) j xi : � ! R; i = C; Ig is linear and Y := M�M is a convex
subset of X . The constraint functional RI(�) + RC(�) maps X into R, which has nonempty,
positive, and closed cone R+. The objective is concave becauseW i (x) is so due to the concavity
of d and �c. The constraint RI(�) + RC(�) is linear, and there exists (xC ;xI) 2 Y such that
RI(xC) +RC(xI) < 0: e.g., xC = xC� and xI constant.
Let � � 0 and de�ne the Lagrangian

L(xC ;xI ; �) : = 
WC(xC) + (1� 
) [W I(xI)� �

1�
R

C(xI)]� �[RI(xC) +RC(xI)]

= 
[WC(xC)� �IRI(xC)] + (1� 
) [W I(xI)� �CRC(xI)].
(10)

By Corollary 1, p. 219, and Theorem 2, p. 221, of Luenberger (1969), (xC ;xI) solve P 0 if and
only if there exists � � 0 such that, for all (xC0 ;xI0) 2 Y ; �0 � 0,

L(xC ;xI ; �0) � L(xC ;xI ; �) � L(xC0 ;xI0; �).

Given � � 0, xC and xI maximize the �rst and the second term in brackets in (10) withinM
if and only if L(xC ;xI ; �) � L(xC0 ;xI0; �) for every (xC0 ;xI0) 2 Y. Moreover, if (xC ;xI ; �) satis�es
RC(xI) +RI(xC) � 0 and �[RC(xI) +RI(xC)] = 0, then L(xC ;xI ; �0) � L(xC ;xI ; �) for every
�0 � 0. Finally, if (xC ;xI) solves P 0, then RC(xI) +RI(xC) � 0. And if RC(xI) +RI(xC) < 0,
then � must equal zero: otherwise there exists �0 2 [0; �) such that

L(xC ;xI ; �0)� L(xC ;xI ; �) = (�� �0) [RI(xC) +RC(xI)] < 0.

9.7 Proof of Lemma 5

It follows from ES and (8) in the proof of Corollary 1.
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9.8 Proof of Proposition 2

Part 1: Existence and Uniqueness.
Step 1: Construction of the generalized version of VS I using Toikka�s (2011) technique over

[�I ; �
I
].

Since the density f is positive, the inverse function (F I)�1 : [0; 1] ! [�I ; �
I
] is well-de�ned,

increasing, and continuous. Fix �C and de�ne, for q 2 [0; 1],

z(q; �C) := wI((F I)�1 (q) ; �C) and Z(q; �C) :=
R q
0
z(y; �C)dy.

The function z is continuous in q, except possibly at qm := F I (�m) < 1 (recall �m = maxf�C ; �Ig):
if �C > 1 and �I < �

C
, so that �m = �

C
, we have

lim
�"�C

wI(�; �C) = lim
�#�C

wI(�; �C)� �C f
C(�

C
)

f I(�
C
)

�C � 1
�C

�
C
. (11)

Let 
 := convZ be the convex hull of Z on [0; 1]. Let ! : [0; 1] ! R be de�ned as !(q; �C) :=

0(q; �C), whenever 
0(q; �C) exists. Also, w.l.o.g., extend !(q; �C) by right-continuity to all
[0; 1) and by left-continuity at 1.

Lemma 12 The function ! is continuous in q and �C.

Proof. (Continuity in q). Throughout this part of the proof suppress �C . Continuity at 0
and 1 holds by construction. Since z is continuous at every q 2 (0; 1) n fqmg, so is ! for the
same argument as in Lemma 10. Consider now qm. If �m = �I , then qm = 0 and we are done.
To prove that ! is continuous if qm 2 (0; 1), it is enough to show that if z jumps at qm, then

 (qm) < Z (qm). Recall that

z (qm�) := limq"qm z (q) = lim�"�m w
I(�; �C) and z(qm+) := limq#qm z (q) = lim�#�m w

I(�; �C).

Hence z can at most jump down at qm (see (11)), in which case z (qm�) > z (qm+). Also
recall that z (qm�) = z (qm). Suppose 
 (qm) = Z (qm). By the same steps as in Lemma 10,

� (qm) � Z� (qm) = z (qm). By convexity of 
, ! (q) � 
� (qm) for all q � qm. Therefore, for
q close enough to qm from the right


 (q) =
R q
qm
! (s) ds+ 
(qm) >

R q
qm
z (s) ds+ Z (qm) = Z (q) .

A contradiction.
(Continuity in �C). The function Z(q; �C) is continuous in �C for every q. So 
 is continuous

if q 2 f0; 1g, since 
(0; �C) = Z(0; �C) and 
(1; �C) = Z(1; �C). Consider q 2 (0; 1). For every
q and �C � 0, 
 is de�ned as


(q; �C) := min
�
�Z(q1; �

C) + (1� �)Z(q2; �C) j (�; q1; q2) 2 [0; 1] ; q = �q1 + (1� �) q2
	
.

By continuity of Z(q; �C) and the Maximum Theorem, 
 (q; �) is continuous in �C for every
q. Furthermore, 
(�; �C) is di¤erentiable in q with derivative !(�; �C). Fix q 2 (0; 1) and any
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sequence f�Cn g such that limn!1 �
C
n = �C . Since limn!1
(q; �

C
n ) = 
(q; �C), it follows from

Theorem 25.7, p. 248, of Rockafellar (1970) that limn!1 !(q; �
C
n ) = !(q; �

C).
Now, for � 2 �I , de�ne the generalized virtual valuation

wI(�; �C) := !(F I (�) ; �C),

which is non-decreasing by construction and continuous by Lemma 12. Replace wI with wI in
VS I to get:

VS
I
(x; �C) :=

R �I
�I

�
x (�)wI(�; �C) + d (x (�))� c (x (�))

�
dF I + �C

R �I
�C
x (�) gC (�) d�.

Step 2: Derivation of a candidate solution, which maximizes VS
I
, in two steps.

For � 2 �I , de�ne �(a; �; �C) := awI(�; �C) + d (a)� c (a) and let

xI(�; �C) := argmax
a2A

�(a; �; �C), (12)

and xI(�; �C) = a for � 2 [�C ; �I); xI is the unique pointwise maximizer of VS I . Although xI(�C)
is non-decreasing on �I , it may violate MON I . The next lemma shows that any monotone
maximizer of VS

I
, if it exists, must belong to a certain subclass ofM.

Lemma 13 Suppose xI 2M and VS
I
(xI ; �C) = maxx2MVS

I
(x; �C).Then, xI must satisfy

xI(�; �C) =

(
ab(�

C) if �C < � � �b

xI(�; �C) if �b < � < �
I
,

where �b 2 [�I ; �
I
] and ab(�C) � xI(�b; �C). Furthermore, if �b < �

I
, then ab(�C) = xI(�b; �C).

Proof. Suppress �C and suppose that xI 2M maximizes VS
I
. I claim that xI (�) = xI(�I)

for � 2 (�C ; �I ]. Otherwise, there exists �0 2 (�C ; �I) such that xI (�) < xI(�I) for every � < �0.
But then xI can�t be optimal withinM becauseR �I

�C

�
xI(�I)� xI (�)

�
gC (�) d� �

R �0
�C

�
xI(�I)� xI (�)

�
gC (�) d� > 0.

Now consider xI (�) for � 2 �I . Recall that � (a; �) in (12) is strictly concave in a and continuous
in �. Because xI (�) is continuous and non-decreasing over �I , only two cases can arise.
Case 1: xI(�I) � xI(�

I
). I claim that xI (�) = xI(�I) for � 2 [�I ; �

I
). If not, there ex-

ists �0 < �
I
such that xI (�) > xI(�I) � xI (�) for every � � �0. By strict concavity, for

� 2 [�I ; �I), �(xI(�I); �) � �(xI (�) ; �), with strict inequality at least for every � � �0; henceR
�I
�(xI(�I); �)dF I >

R
�I
�(xI (�) ; �)dF I , contradicting the optimality of xI .

Case 2: xI(�I) = xI (�b) < xI(�
I
) for some �b 2 [�I ; �

I
). I claim that xI (�) = maxfxI (�b) ;xI (�)g

for � 2 [�I ; �I). Suppose not. First, consider [�I ; �b) and suppose that xI (�) > xI (�b) for some
� < �b. Then, by the same argument as in case 1, setting xI (�) = xI (�b) for every � 2 [�I ; �b)
is a strict improvement on xI : the resulting allocation rule is inM and

R �b
�I
�(xI (�b) ; �)dF

I >
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R �b
�I
�
�
xI (�) ; �

�
dF I . Second, consider [�b; �

I
) and suppose xI (�0) 6= xI (�0) for some �0. If

xI (�0) > xI (�0), then by continuity of xI and monotonicity of xI there exists a �00 > �0 such
that xI (�) > xI (�) for every � 2 (�0; �00). Similarly, if xI (�0) < xI (�0), then there exists �000 < �0
such that xI (�) < xI (�) for every � 2 (�000; �0). Finally, since xI is the unique maximizer of
� (a; �), for � 2 [�b; �

I
), �(xI (�) ; �) � �(xI (�) ; �), with strict inequality at least for every

� 2 (�000; �0) [ (�0; �00); hence
R �I
�b
�(xI (�) ; �)dF I >

R �I
�b
�(xI (�) ; �)dF I , which contradicts the op-

timality of xI .
It remains to show that xI(�I) < xI(�I) is impossible. Suppose the opposite is true. By the
same argument as in case 2, xI (�) = xI (�) for � 2 (�I ; �I). Then setting xI(�I) < xI(�I) can�t
be optimal for the following reason: since xI (�) = xI(�I) for � 2 (�C ; �I), and gC (�) is positive,
raising xI(�I) up to xI(�I) satis�es monotonicity and strictly improves VS

I
.

By Lemma 13, xI must be continuous on (�C ; �
I
). Although Lemma 13 doesn�t pin down

xI at �
I
and �C , it is w.l.o.g. to extend xI at �

I
and �C by continuity. The next lemma proves

that a maximizer of VS
I
exists, and shows that it is unique over (�C ; �

I
) and, therefore, also

over [�C ; �
I
] w.l.o.g..

Lemma 14 There exists xI such that VS
I
(xI ; �C) = maxx2MVS

I
(x; �C); such xI is unique.

Proof. Suppress �C . By Lemma 13, if a solution xI exists, it can take only two forms: (1)
xI equals a constant a � xI(�

I
) over [�C ; �

I
], (2) xI is constant at xI (�b) over [�

C ; �b], with
�b � �I , and equals xI (�) for every � � �b. So we only need to look for a solution within this
subclass ofM.
Subclass 1: If xI constant at a over [�C ; �

I
], then VS

I
(xI) =VS I(xI) = W I(xI): the �rst

equality follows from R �I
�I
[wI (�)� wI (�)]dF I =

R 1
0
[z (q)� ! (q)] dq = 0;

the second from Proposition 1. Moreover, if xI is constant at a over [�C ; �
I
]

W I(xI) = a
R �I
�I
(�=�I)dF I + d (a)� c (a) . (13)

Since d (�)� c (�) is continuous and strictly concave, there exists a unique constant function that
maximizes VS

I
(xI). Call it xI1.

Subclass 2: Using � (a; �) in (12), VS
I
equals to the following function of �b:

�(�b) =
R �b
�I
�(xI (�b) ; �)dF

I +
R �I
�b
�(xI (�) ; �)dF I + xI (�b)K, (14)

where K := �C
R �I
�C
gC (�) d�. Continuity of xI implies that �(�b) is continuous, therefore there

exists an optimal �b 2 [�I ; �
I
] that completely identi�es a maximizer within the second subclass

of functions. Since xI can be locally �at, there can be multiple solutions �b. Nonetheless, I
claim that there can�t be two solutions �1b and �

2
b such that x

I(�1b) 6= xI(�2b). Suppose to the
contrary that �1b < �

2
b both maximize �(�b), and x

I(�1b) < x
I(�2b). W.l.o.g. assume that �

2
b is
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the smallest � such that xI (�) = xI(�2b). Let x
1 and x2 be the allocation rules corresponding to

�1b and �
2
b, and for � 2 (0; 1) let ex := �x1 + (1� �)x2 2 M. For � 2 [�C ; �2b], x2 (�) 6= x1 (�),

whereas for � 2 [�2b; �
I
], x2 (�) = x1 (�) = xI (�). By the strict concavity of � (a; �), we haveR �2b

�I
�(ex (�) ; �)dF I + R �I

�2b
�(ex (�) ; �)dF I + ex (�)K > ��(�1b) + (1� �)�(�2b).

Note that ex is constant on ��C ; �1b� at some xI(~�b), with ~�b 2 (�1b; �
2
b). Therefore, the rule

xI (�) = maxfxI(~�b);xI (�)g satis�es property (2) and, by the same argument as in Lemma 13
(Case 2),

�(~�b) �
R �2b
�I
�(ex (�) ; �)dF I (�) + R �I

�2b
�(ex (�) ; �)dF I (�) + ex (�)K > �(�1b).

The claim follows. Hence any maximizer of �(�b) yields a unique xI that satis�es property (2).
Call it xI2.
By an argument similar to that for the uniqueness of xI2, VS

I
(xI2) = VS

I
(xI1) if and only if

xI2 � xI1 (over (�
C ; �

I
)). Therefore, the overall maximizer of VS

I
is unique, and equals xI1 if

VS
I
(xI1) � VS

I
(xI2), and x

I
2 otherwise.

Step 3: The unique maximizer of VS
I
, denoted xI(�C), is also the unique maximizer of

VS I . The argument modi�es Toikka�s (2011) proof of Theorem 3.7 and Corollary 3.9 to account
for [�C ; �I).

Lemma 15 The allocation xI(�C) is the unique maximizer of VS I .

Proof. Suppress �C . Integrating by parts and recalling that x 2M, we haveR �I
�I
x (�) [wI (�)� wI (�)]dF I =

R �I
�I
x (�) [z(F I (�))� !(F I (�))]dF I

= x (�) [Z(F I (�))� 
(F I (�))]
���I
�I

�
R �I
�I
[Z(F I (�))� 
(F I (�))]dx (�)

=
R �I
�I
[
(F I (�))� Z(F I (�))]dx (�) � 0.

The last equality follows from Z (0) = 
 (0) and Z (1) = 
 (1); the inequality follows from
x 2M and 
 (q) � Z (q) for q 2 [0; 1]. Re-writing VS I , we have

sup
x2M

VS I (x) = sup
x2M

fVS I (x) +
R �I
�I
[
(F I (�))� Z(F I (�))]dx (�)g.

We know that xI 2M and achieves the supremum of VS
I
(x). We only have to show thatR �I

�I
[
(F I (�))� Z(F I (�))]dxI (�) = 0. (15)

If xI is constant over [�C ; �
I
], then dxI � 0 and we are done. Otherwise, consider the pointwise

solution xI over [�I ; �
I
] as de�ned in (12), and a � such that 
(F I (�)) < Z(F I (�)). For some

39



open interval N around �, wI (�) = !(F I (�)), and xI is constant over N . Therefore, dxI (�)
assigns zero measure to any such N , and satis�es (15). I claim that also dxI does so to any
such N . Consider [�C ; �b], over which xI is constant at xI (�b). If N � [�C ; �b], the claim is
immediate. The same holds if N \ [�C ; �b] = ?, because then xI (�) = xI (�) for � 2 N . Finally,
if both N \ [�C ; �b] 6= ? and N \ (�b; �

I
] 6= ? (therefore, �b < �

I
), then xI equals xI (�b) for

every � 2 [�C ; �b] [N , which implies the claim. Hence (15) holds also for a non-constant xI .
By Lemma 14, for any ex 2M that di¤ers from xI over (�C ; �

I
), VS

I
(ex) < VS I(xI). Uniqueness

follows on (�C ; �
I
), and extending it to [�C ; �

I
] is w.l.o.g..

Part 2: Continuity and Limit Behavior of xI

I proved continuity of xI in � in Part 1; I now prove continuity in �C . By the de�nition of
xI(�; �) in (12) and the Maximum Theorem, xI (�; �) is continuous in �C for � 2 [�I ; �I ]. Now
consider �(�b; �C) in (14). Pointwise continuity of wI(�; �C) and xI(�; �C) implies that �(�b; �C)
is continuous in �C , hence �b(�C) := argmax�2�I �(�; �

C) is u.h.c.. Furthermore, recall that
for every �; �0 2 �b(�C), xI(�; �C) = xI(�0; �C). Take any sequence f�Cn g with limn!1 �

C
n =

�C . Then, limn!1 �b(�
C
n ) = �b 2 �b(�

C). Recall that the candidate xI2(�
C) maximizing

�(�b; �
C) satis�es xI2(�; �

C) = maxfxI(�b(�C); �C);xI(�; �C)g for � 2 [�I ; �
I
], and xI2(�; �

C) =
xI(�b(�

C); �C) for � < �I . Hence, by continuity of xI , limn!1 x
I
2(�; �

C
n ) = xI2(�; �

C) for every
� 2 [�C ; �I ]. Finally, recall that the constant solution xI1 in the proof of Lemma 14, as well as
(13), is independent of �C . It remains to show that the actual solution xI(�Cn ) converges point-
wise to the actual solution xI(�C). Suppose �rst that VS I(xI1) >VS

I(xI2(�
C)) = �(�b(�

C); �C).
By continuity of �, there exists N such that n � N implies VS I(xI1) >VS

I(xI2(�
C
n )). Therefore,

for n � N , xI(�; �Cn ) = xI1 for every � 2 [�C ; �
I
]. Now, suppose that VS I(xI1) <VS

I(xI2(�
C)).

Similarly, for n large enough xI(�Cn ) = x
I
2(�

C
n ) which converges pointwise to x

I(�C). Finally, if
VS I(xI1) =VS

I(xI2(�
C)), then xI1 � xI2(�C). Hence

��xI1 � xI(�; �Cn )�� � maxf0; ��xI1 � xI2(�; �Cn )��g !
0 as n!1.
To prove that xI(�C)! xI� pointwise as �C ! 0, it is enough to observe that VS I (x; 0) =

W I (x). Therefore, xI (�; 0) = xI� (�) for � 2 (�I ; �
I
), which can be extended to [�C ; �

I
]

by letting xI(�
I
; 0) = xI�(�

I
) and xI (�; 0) = xI�(�I) for � � �I . Finally, I prove that

max�
��xI(�; �C)� anf�� ! 0 as �C ! +1 by �rst showing pointwise convergence. Recall that

xI(�C) maximizes VS I(x; �C) = W I (x) � �CRC (x) and that, by Proposition 1, RC (x) > 0

for any x 2 M that is not constant on (�C ; �
I
). Clearly, xI(�C) cannot converge to a constant

function that takes value a0 6= anf , because anf is the unique maximizer of W I (�) in (13). Now,
suppose that xI(�C) converges pointwise to a function, denoted xI1, that is not constant on
(�C ; �

I
). Then, there exists �̂C large enough so that for every �C > �̂C , xI1 is strictly dominated

by anf . This is because W I(xI1) is bounded and R
C(xI1) > 0; hence there exists �̂

C � 0 so that
W I(xI1)� �̂CRC(xI1) � W I(anf). Now, consider the unique extension of xI(�C) by continuity.
By monotonicity, we have

max
�

��xI(�; �C)� anf�� = maxf��xI(�; �C)� anf�� ; ��xI(�; �C)� anf��g,
which completes the argument.
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9.9 Proof of Proposition 3

Property (b): Suppress �C . Recall: (1) xI satis�es Lemma 13; (2) for � 2 �I , xI is de�ned
by (12) and is continuous; (3) �(�) as in (14). Let � (�) := c (�) � d (�). Suppose �b < �

I
. For

� > �b, xI (�) = xI (�) > xI (�b) = xI (�b) by Lemma 13, and �(�b) � �(�) by construction;
hence

�(�)��(�b)
xI (�)� xI (�b)

=
R �
�I
wI (y) dF I � �(x

I (�))� �(xI (�b))
xI (�)� xI (�b)

F I (�) +K

�
R �
�b

xI (y)� xI (�b)
xI (�)� xI (�b)

wI (y) dF I +
R �
�b

�(xI (y))� �(xI (�b))
xI (�)� xI (�b)

dF I � 0.

Since xI and wI are non-decreasing,

0 �
R �
�b

xI (y)� xI (�b)
xI (�)� xI (�b)

wI (y) dF I � wI(�I)(F I(�)� F I(�b)).

Since xI is continuous, there exists ~� 2 (�b; �
I
] such that xI (�) is interior for � 2 (�b; ~�). By the

Mean Value Theorem, for every � 2 (�b; ~�), there exists y 2 (�b; �) such that

�(xI (�))� �(xI (�b))
xI (�)� xI (�b)

= �0(x (y)) = wI (y) ,

hence for � 2 (�b; ~�)

�
��wI (�b)�� (F I(�)� F I(�b)) � R ��b �(xI (y))� �(xI (�b))xI (�)� xI (�b)

dF I � wI(�I)(F I(�)� F I(�b)).

Therefore,

lim
�#�b

�(�)��(�b)
xI (�)� xI (�b)

=
R �b
�I
wI (y) dF I (y)� �0(xI (�b))F I (�b) +K � 0. (16)

It follows that �b > �
I because K > 0 and �0(xI (�b)) 2 [wI(�I); wI(�

I
)].

I claim that there exists � 2 [�I ; �b) such that xI (�) < xI (�b). Suppose not. If xI (�b)
is interior, wI (�) = �0(xI (�)) for every � � �b, and (16) is violated. If xI (�b) = a and the
set �a :=

�
� 2 �I j wI (�) < �0 (a)

	
is non-empty� if �a = ?, we are back to the previous

case� then (16) is violated again. To see this, note that since �b is the largest � for which
wI (�) = �0 (a), Z(F I (�b)) = 
(F I (�b)), i.e.,

R �b
�I
wI (y) dF I =

R �b
�I
wI (y) dF I ; hence

R �b
�I
[wI (y)� �0(a)]dF I +K =

R �b
�I
(y=�I � �0(a))dF I + �C

hR �I
�C
gC (y) dy +

R �b
�I
V I (y) dF I

i
.

By Assumption 1 and convexity of �, �I=�I = �0(a�(�I=�I)) � �0 (a), so the �rst integral is
positive. The second term is too, contradicting 16. To see this, integrate by parts:R �I

�C
gC (�) d� = �

R �I
�C

�
�=�C

�
dFC + �IFC(�I),
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R �b
�I
vi (�) dF i =

R �b
�I
(�=�i)dF i + �b(1� F i(�b))� �I(1� F i(�I))

=
R �I
�I
(�=�i)dF i �

R �I
�b
(�=�i � �b)dF i � �I(1� F i(�I)).

Thus, we haveR �I
�C
gC (�) d� +

R �b
�I
V I (�) dF I =

R �I
�C
gC (�) d� +

R �b
�I
vI (�) dF I �

R �b
�I
vC (�) dFC

=
R �I
�b
(�=�C � �b)dFC �

R �I
�b
(�=�I � �b)dF I

=
R �b=�C
�b=�

I (�b � s)dF > 0, (17)

where the second equality uses
R �
�
�dF i = �iE (s), the third is a change of variables, and the

inequality follows from �
I
> �b > �

I > 0 and �I > �C � 1.
Now de�ne �1 := minf� j xI (�) = xI (�b)g > �I . For � < �1, xI (�) < xI(�1) and �(�) �
�(�1) = � (�b). The same steps that led to (16) yield

lim
�"�1

�(�1)��(�)
xI(�1)� xI (�)

=
R �1
�I
wI (y) dF I � �0(xI(�1))F I(�1) +K � 0.

As xI (y) is interior and constant over [�1; �b], �
0(xI (y)) = wI (y) = wI (�b) = �

0(xI (�b)), and

0 �
R �1
�I
[wI (y)� wI(�1)]dF I +K =

R �b
�I
[wI (y)� wI (�b)]dF I +K � 0.

Finally, since Z(F I (�b)) = 
(F I (�b)), the same argument as in Lemma 10 yields wI (�b) =
wI (�b). Therefore,R �b

�I
[wI (y)� wI (�b)]dF I +K =

R �b
�I
[wI (y)� wI (�b)]dF I +K,

which gives NFB by rearranging wI (y).
Property (a): Since both xI(�C) and xI� are continuous and non-decreasing, it is enough

to prove that xI(�I ; �C) > xI�(�I) and xI(�
I
; �C) < xI�(�

I
).

Case 1: xI not constant. This implies that �b < �
I
, and by Lemma 13 xI(�I ; �C) =

xI(�b; �
C) = xI(�b; �

C). To show that xI(�I ; �C) > xI�(�I) for �C > 0, it is enough to prove
that wI(�b; �C) > �

I=�I . This inequality holds because �b and wI(�b; �C) must satisfy (see the
proof of Property (b))R �b

�I
(wI(�b; �

C)� y=�I)dF I = �C
hR �I
�C
gC (y) dy +

R �b
�I
V I (y) dF I

i
> 0.

I now show that xI(�
I
; �C) < xI�(�

I
). Given �C > 0, let �b := minf� j wI(�; �C) = wI(�I ; �C)g.

Lemma 16 wI(�
I
; �C) � wI(�I ; �C). Moreover, if the inequality is strict, then �b < �I .

Proof. Suppress �C and recall that wI(�
I
) = ! (1) and wI(�

I
) = z (1). If ! (1) < z (1), the

same argument as in Lemma 11 leads to a contradiction. Suppose that ! (1) > z (1) and let
q̂ := inffq j 8q0 > q; !(q0) > z(q0)g; q̂ < 1 by continuity. Then, for every 1 > q > q̂,

Z (q) = Z (1)�
R 1
q
z (y) dy > 
 (1)�

R 1
q
! (y) dy = 
(q) ,
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It follows that �b � (F I)�1 (q̂) < �I .
So if wI(�

I
; �C) = wI(�

I
; �C), it equals (�

I
=�I)(1��C(�I�1)) < �I=�I . If insteadwI(�I ; �C) >

wI(�
I
; �C), then it is constant over [�b; �

I
] atwI(�b; �C). Since at �b it must be that Z(F I(�b); �C) =


(F I(�b); �C), and Z(1; �C) = 
(1; �C), �b must satisfyR �I
�b
[wI(y; �C)� wI(�b; �C)]dF I = 0 (18)

or equivalently, R �I
�b
(y=�I � wI(�b; �C))dF I = ��C

R �I
�b
V I (y) dF I . (19)

Integrating by parts, we haveR �I
�b
V I (y) dF I =

R �I
�b
vI (y) dF I �

R �I
�b
vC (y) dFC

=
R �I
�b
(y=�I � �b)dF I �

R �I
�b
(y=�C � �b)dFC = �

R �b=�C
�b=�I

(�b � s)dF < 0,

where the last equality follows from a change of variables and the inequality from �
I
> �b > 0

and �I > �C � 1. Therefore the left hand side of (19) must be positive, and wI(�b; �C) < �I=�I .
In either case, xI(�

I
; �C) must be interior and strictly smaller than xI�(�

I
).

Case 2: xI constant. From the proof of Lemma 14, xI(�; �C) equals anf for every � 2 �.
Since �I=�I < E (s) < �

I
=�I , Assumption 1 implies xI�(�I) < anf < xI�(�

I
).

Property (c): By Assumption 2, HI (�) = �IH(�=�I) is non-increasing over [�y; �
I
] where

�y = �Isy. For any �; �0 2 [maxf�y; �mg; �I ] (recall �m = maxf�C ; �Ig) with �0 > �,

wI(�0; �C)� wI(�; �C) = �0 � �
�I

(1� �C(�I � 1)) + �C(HI(�0)�HI (�)).

Hence, there exists 0 < �C � (�I � 1)�1 + 1
2
with the following property: if �C > �C , then

wI(�; �C) is decreasing over [maxf�y; �mg; �I ], which implies that wI(�; �C) and xI(�C) must be
constant over [�b; �

I
] 6= ?.

9.10 Proof of Lemma 7

Suppose �I > 0. Using RI(x) in (7), rewrite WC (x)� �IRI (x) as

VSC(x; �I) =
R �C
�C
[x (�)wC(�; �I)� �(x (�))]dFC + �I

R �I
�
Cx (�) gI (�) d�,

where � (�) = c (�) � d (�) and wC(�; �I) = �=�C � �IV C (�). Let xCu be the best enlarge-
ment of �C� as in Lemma 3 and M� be the set of xC 2 M that sustain �C�. By construc-
tion, VSC(xCu ; �

I) = maxx2M�VSC(x; �I). I claim that there exists x̂C 2 MnM� such that
VSC(x̂C ; �I) >VSC(xCu ; �

I). Focus on [�C ; �m] with �m := minf�
C
; �Ig, and let ŵC be the gener-

alized version of wC over this interval obtained with the same techniques as in the proof of Propo-
sition 2. Since wC is continuous on [�C ; �m], so is ŵC (Lemma 10). Because �I > 0, V C implies
wC(�; �I) < �=�C for � 2 (�C ; �m]. I claim that ŵC(�m; �I) < �m=�

C . By the same argument as
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in Lemma 16, ŵC(�m; �I) � wC(�m; �I) and, if the inequality is strict, then there exists �0 < �m
such that ŵC(�; �I) = wC(�0; �

I) for � 2 [�0; �m]. If ŵC(�m; �I) = wC(�m; �
I), then the claim

follows. If ŵC(�m; �I) = wC(�0; �I), then ŵC(�m; �I) � �0=�C < �m=�C . Finally, because ŵC is
continuous and non-decreasing, in either case there exists �1 < �m such that ŵC(�; �I) < �=�

C

for � 2 [�1; �m]. Construct x̂C by letting x̂C (�) = argmaxa2A aŵC(�; �I)� � (a) if � 2 [�C ; �m],
and xCu (�) if � 2 (�m; �

I
]. Then, x̂C 2 M, but x̂C (�) < �C� (�) for every � 2 [�1; �m]; so

x̂C =2M�. Finally,

VSC(x̂C ; �I)�VSC(xCu ; �I) =
R �m
�C
[x̂C (�)wC(�; �I)� �

�
x̂C (�)

�
]dFC

�
R �m
�C
[xCu (�)w

C(�; �I)� �(xCu (�))]dFC > 0.

9.11 Proof of Proposition 4

Recall that 
 2 (0; 1) and let �̂C := �̂
+�
1�
 and �C := �
+�

1�
 . By revealed optimality, �̂
C >

�C implies that RC(xI(�̂C)) � RC(xI(�C)). Uniqueness of xI(�C) (Proposition 2) implies
RC(xI(�̂C)) = RC(xI(�C)) if �̂C = �C .
For the �rst part, I claim that RC(xI(�̂C)) + RI(xC�) > 0. By Lemma 4, xC� is part of a

solution to P 0 if and only if xC� 2 argmaxx2MWC (x) � �IRI (x). By Lemma 7 this occurs
if and only if �I := �



equals zero, which implies �̂C = �̂


1�
 . By assumption (x
I( �̂

1�
 );x

C�)

is not a solution to P 0, and the claim follows by Lemma 4. Suppose (xI(�C);xC�) solves P 0.
Repeating the same argument implies �C = �


1�
 <
�̂

1�
 . But then, R

C(xI(�C)) + RI(xC�) > 0.
A contradiction.
For the second part, suppose (xI(�C);xC) solves P 0 with xC 2 M that sustains �C�.

Lemma 4 and Lemma 7 imply that �C = �

1�
 . By construction, the enlargement xCu of

�C� (Lemma 3) implies RC(xI(�C)) + RI(xC) � RC(xI(�C)) + RI(xCu ). By de�nition of
D(�C�;�I( �̂


1�
 )) (Corollary 1), a < D(�
C�;�I( �̂


1�
 ))+a
� (s) implies RC(xI( �̂


1�
 ))+R
I(xCu ) > 0.

Since RC(xI( �

1�
 )) � R

C(xI( �̂

1�
 )), D(�

C�;�I( �

1�
 )) � D(�

C�;�I( �̂

1�
 )).

9.12 Proof of Lemma 6

The inverse hazard rate of the uniform distribution is H i (�) = �
i � �. By Lemma 5, we have

wI(�; �C) =

8<: (�=�I)(1� �C(2�I � 1)) + �C�I if � 2 (�C ; �I ]

(�=�I)(1 + �C(�I � 1)2) if � 2 [�I ; �C ]
.

The function wI is continuous at �
C
. It is increasing and greater than �=�I over [�I ; �

C
], because

�C > 0 and �I > 1; wI is increasing over (�
C
; �
I
] if and only if �C < (2�I�1)�1. So, the threshold

�C in Proposition 3 equals (2�I � 1)�1.
Consider �rst the behavior of �b and �

b, when �b < �b and xI is not constant. If �C <
(2�I � 1)�1, then wI is increasing and coincides with wI (see the proof of Proposition 2); hence
xI (see (12)) is increasing over [�I ; �

I
], which implies �b = �

I
. Otherwise, �b � �C < �I and �b
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is characterized by (18), which boils down to

(�
I � �b)2 = � 1� �C(�I)2

1 + �C(�I � 1)2
(�
I � �C)2 (20)

Since wI is always increasing over [�I ; �b], it coincides with wI . Using NFB, �b must satisfyR �b
�I
[wI(y; �C)� wI(�b; �C)]dy = �(�

I � �I)�C
R �I
�C
gC (y) dy. (21)

Since
@

@�b

R �b
�I
[wI(y; �C)� wI(�b; �C)]dy = �wI�(�b; �C)(�b � �I) < 0.

for �C > 0, there is a unique �b < �
b that satis�es (21). LettingK =

R �I
�C
gC (y) dy > 0, condition

(21) becomes

�C [2�I(�
I � �I)K] =

8<: ((1 + �C(�I � 1)2)(�b � �I)2 if �b � �
C

�C(�I)2(�
C � �I)2 + (1� �C(2�I � 1))(�b � �I)2 if �b > �

C
.

The function �b(�C) is constant at �
I
for �C < (2�I � 1)�1 and at (2�I � 1)�1 it jumps from

�
I
to �

C
. Monotonicity for �C > (2�I �1)�1 follows by applying the Implicit Function Theorem

to (20):
d�b

d�C
= �1

2

�
�I

1 + �C(�I � 1)2

�2
(�
I � �C)2

(�
I � �b)

< 0.

Similarly, for �b(�C) we have:

d�b
d�C

=

8<:
�b��I

2�C(1+�C(�I�1)2) > 0 if �b � �
C

�b��I
2�C(1��C(2�I�1)) > 0 if �b > �

C
;

for the second inequality, recall that �b > �b > �
C
if and only if �C < (2�I � 1)�1.

Consider now the behavior of xI(�C). By Proposition 3 and Assumption 1, xI(�; �C) is always
interior. Also, xI(�; �C) = argmaxa2A awI(�; �C) � �(a). By strict convexity of �, it is enough
to consider the properties of wI(�C) in relation with the function �=�I . The function wI(�; �C)
crosses �=�I only once at some �I < �� < �

I
. Furthermore, for � 2 [�b; �b], wI(�; �C) = wI(�; �C).

Hence, it is enough to show that, as �C rises, wI(�b(�C); �C) rises and wI(�
b(�C); �C) falls.

Lemma 17 Suppose �b and �b are characterized by NFB and (18). If wI�(�b; �
C) > 0 and

wI�(�
b; �C) > 0, then d

d�C
wI(�b(�

C); �C) > 0 and d
d�C
wI(�b(�C); �C) < 0.

Proof. It follows by applying the Implicit Function Theorem to NFB and (18).
Consider wI(�b(�C); �C). If �C < �C , then �b(�C) = �

I
and wI�(�

I
; �C) = (1��I)(�I=�I) < 0.

Therefore, as �C " �C , wI(�I ; �C) # wI(�I ; �C) = wI(�
C
; �C). By Lemma 17 wI(�b(�C); �C)

decreases in �C , for �C > �C , because here wI�(�
b(�C); �C) is positive when �b < �

C
. Hence,

�C # �C implies wI(�b(�C); �C) " wI(�C ; �C). By the same argument wI(�b(�C); �C) increases
in �C again because here wI�(�b(�

C); �C) is positive when �b < �
b.
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9.13 Proof of Proposition 5

Step 1: There exists a large enough so that unused items su¢ ce to satisfy R-IC i;j for i > j.
Recall that R-IC i;j is U i(xi; ki) � U j(xj; kj) +Ri(xj). If i < j, �i < �j and

Ri
�
xj
�
= �

R �j
�i
xj (�)Gi (�) d� �

R �j
�j
xj (�)V j;i (�) dF j,

where
Gi (�) = �i�1

�i
�f i (�) + F i (�) and V j;i (�) = vj (�)� f i(�)

fj(�)
vi (�) ;

if i > j, �
j
< �

i
and

Ri
�
xj
�
= �

R �i
�
j xj (�)G

i
(�) d� �

R �j
�j
xj (�)V

j;i
(�) dF j,

where

G
i
(�) =

�i � 1
�i

�f i (�)�
�
1� F i (�)

�
V
j;i
(�) =

�j � 1
�j

� +
F j (�)

f j (�)
� f i (�)

f j (�)

�
�i � 1
�i

� +
F i (�)

f i (�)

�
.

Take j > i. Suppose that R-IC j;i is binding (and all the other constraints are satis�ed), i.e.,
U j(xj; kj) < U i(xi; ki) + Rj (xi). Fix xi for every � � �

i
, and let xi (�) = a for every � > �

i
.

Then,

Rj
�
xi
�
= �a

R �j
�
i G

j
(�) d� �

R �i
�i
xi (�)V

i;j
(�) dF i.

Lemma 18
R �j
�
i G

j
(�) d� > 0.

Proof. Rewrite the integral asR �j
�
i (�j � 1)(�=�j)f j (�) d� �

R �j
�
i

�
1� F j (�)

�
d�.

Integrate by parts the second term, to get

�
R �j
�
i (�=�j)f j (�) d� + (1� F j(�i))�i =

R �j
�
i (�

i � (�=�j))f j (�) d�.

Finally, note that �
i � s � �=�j, with strict inequality for � 2 (�j; �i).

It follows that there exists a large enough so that the exi so constructed satis�es U j(xj; kj) �
U i(xi; ki) +Rj (exi). Now, we need to check the other constraints. For all j0 < i, the values that
xi takes for � > �

i
are irrelevant; so, all R-IC j0;i remain unchanged. For |̂ > i and |̂ 6= j, it could

be that exi is such that R|̂ (exi) > R|̂ (xi), and exi may violate R-IC j0;i while xi did not. However,
since Lemma 18 holds for every j > i and N is �nite, clearly we can �nd a large enough so that
no j > i wants to mimic i. Thus, for the rest of the proof I will assume that R-IC j;i never binds
for j > i.
Step 2: Reformulation of the principal�s problem.
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Recall that, given xj, there is a one-to-one relationship between U j (xj; kj) and kj. Therefore
de�ne uj := U j (xj; kj), and write

R-IC i;j: ui � uj +Ri (xj) and IRi: ui � 0.

As usual, IRN and R-IC i;N imply IRi for all i < N .
Now, let Y := (M� R)N be the the subspace of (X�R)N , where X= fxjx : �! Rg. Let

�(X;u) =
PN

i=1 
i [W
i (xi)� ui] and rewrite PN as

PN :=
(
maxfX;ug2Y(1� �)W (X) + ��(X;u)

s.t. � (X;u) � 0
,

where the functional �: (X�R)N ! Rr (r = 1 + N(N�1)
2

) is given by �1 (X;u) = �uN and, for
all n = 2; : : : ; r, �n (X;u) = Ri (xj) + uj � ui for some i 2 N , j > i.
Step 3: Existence of interior points.

Lemma 19 In PN , there exists fX;ug 2 Y such that � (X;u) < 0.

Proof. The condition � (X;u) < 0 is equivalent to uN > 0, and ui > uj + Ri (xj) for every
i 2 N , j > i. For every i 2 N , let xi = xi� over [�; �

i
] and possibly extend it over (�

i
; �] to

include appropriate unused items. Note that these extensions are irrelevant for Rj (xi) if j < i.
Recall that Rj (xi) � 0 for all j < i, and it can be easily shown that R1 (xi) � Rj (xi) for all
1 < j < i. Thus, let uN = 1, and for every i < N , let ui = ui+1 +R1 (xi+1) + 1. Now, �x i < N
and consider any j > i. We have

ui = uj +
Pj�i

n=1R
1
�
xi+n

�
+ (j � i) � uj +Ri

�
xj
�
+ (j � i) > uj +Ri

�
xj
�
.

Note that since Ri (xj) are bounded and N is �nite, the constructed vector u is well de�ned.
Step 4: Lagrangian characterization of the solution to PN .
To characterize the solutions to PN , I use Corollary 1, p. 219, and Theorem 2, p. 221, of

Luenberger (1969). Note that (X�R)N is a linear vector space, and Rr is normed spaces with
the usual Euclidean norm, with positive closed cone containing an interior point. Y is a convex
subset of (X�R)N . By Lemma 19, � admits interior points. Finally, � and W are concave by
the assumptions on d (�) and c (�). Hence, the objective is concave and � (X;u) is convex.
Now, for � 2Rr+, de�ne the Lagrangian

L (X;u;�) = (1� �)W (X) + ��(X;u) + �NuN �
PN

i=1

P
j<i �

j;i (Rj (xi) + ui � uj)

=
PN

i=1 
i

h
W i (xi)�

P
j<i

�j;i


i
Rj (xi)

i
+
PN

i=1 u
i�i (�;
;�) ,

where

�i (�;
;�) =

( P
j>i �

i;j �
P

j<i �
j;i � �
i if i < N

�N �
P

j<N �
j;N � �
N if i = N

.

Then fX;ug solve PN if and only if there exists � � 0 such that

L (X;u;�0) � L (X;u;�) � L (X0;u0;�)
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for all fX0;u0g 2 Y, �0 � 0. The second inequality is equivalent to

xi 2 argmax
x2M

W i (x)�
P

j<i

�j;i


i
Rj (x) (22)

and
ui 2 argmax

u2R
�i (�;
;�)u. (23)

The �rst inequality is equivalent to the complementary slackness conditions

�uN � 0 and �NuN = 0 , (24)

and for every i 2 N , j > i

Ri (xj) + uj � ui � 0 and �i;j [Ri (xj) + uj � ui] = 0. (25)

Lemma 20 If (X;u;�) satis�es the conditions (22)-(25), then �i (�;
;�) = 0 for all i 2 N .

Proof. Recall that ui � 0 for all i 2 N , by combining IRN and R-IC i;N . Therefore,
�i (�;
;�) � 0 for all i 2 N . On the other hand, (1 � �)W (X) + ��(X;u) is bounded below
by anfE(s) + d(anf)� c

�
anf
�
> 0, hence �i (�;
;�) � 0.

This lemma has two immediate implications about the binding constraints.

Corollary 2 If � = 0, then � = 0. If � > 0, IRN binds and, for every i < N , there is j > i
such that R-ICi;j binds.

Proof. The second part follows from the last Lemma. For the �rst part, note that, since
�i (�;
;�) = 0 for all i = 1; : : : ; N ,

0 =
NP
i=1

�i (�;
;�) =
N�1P
i=1

"P
j>i

�i;j �
P
j<i

�j;i

#
+ �N �

P
j<N

�j;N � � = �N � �,

where the last equality follows from re-arraging
PN�1

i=1

P
j>i �

i;j. So, if � = 0 = �N , then
�N (�;
;�) = 0 implies

P
j<N �

j;N = 0. Hence, �j;N = 0 for all j < N . Suppose for all j � i+1,
�n;j = 0 for all n < j. Then, by �i (�;
;�) = 0, we have

P
j<i �

j;i =
P

j>i �
i;j = 0. Hence,

�j;i = 0 for all j < i.
Therefore, although �i (�;
;�) = 0 makes any ui 2 R solve (23), we can use the upward

binding constraints to pin down u, once X has been chosen.
Thus, a solution to the PN exists if we can �nd (X;�) so that, for every i = 1; : : : ; N , xi

solves (22), �i (�;
;�) = 0, and (24) and (25) hold. By replicating the arguments in the proof
of Proposition 2 (see Step 5 below), we have that, for every � � 0, a solution xi to (22) always
exists unique over (�i; �

i
) and is pointwise continuous in �. Furthermore, if �j;i ! +1 for some

j < i, then xi ! anf over (�j; �
i
), i.e., Rj (xi)! 0. Moreover, since �i (�;
;�) = 0, �i;j

0 ! +1
for some j0 > i, so that Ri

�
xj

0�! 0 and ui ! 0 (using the binding R-IC i;j0). Therefore, there
exists �j;i large enough to make (25) hold. Finally, (24) always hold with uN = 0.
Step 5: Characterization of expected virtual surplus and existence of a solution.
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Fix i > 1. Then, by (22), xi must solve

max
x2M

W i (x)�
Pi�1

n=1 �
n;iRn (x) ,

where �i 2 Ri�1+ . Now, using the expression of Rn (xi), and letting �(�) = c(�)� d(�), we have

W i
�
xi
�
�

i�1P
n=1

�n;iRn
�
xi
�
=

i�1P
n=1

�n;i
R �i
�n
xi (�)Gn (�) d� +

R �i
�i
[xi (�)wi

�
�;�i

�
� �(xi(�))]dF i

: = V Si
�
xi;�i

�
,

where

wi
�
�;�i

�
:=

�

�i
+

i�1P
n=1

�n;iV i;n (�) =
�

�i
+

i�1P
n=1

�n;ivi (�)�
i�1P
n=1

�n;i
fn (�)

f i (�)
vn (�) .

We can now apply to VS i
�
xi;�i

�
the technique used in the two-type case to characterize

xI (Proposition 3). Clearly, if �i = 0, VS i (xi;0) =W i (xi) and xi = xi� on �i. For � < �i, we
can let xi (�) = xi(�i). For � > �

i
, xi (�) may be strictly larger than xi(�

i
) to ensure that the

downward constraints involving i as the mimicked type are satis�ed.
Now, suppose �n;i > 0 for some n < i. Apply the Myerson-Toikka ironing technique on �i,

by letting
zi
�
q;�i

�
= wi

�
(F i)�1(q);�i

�
and Zi

�
q;�i

�
=
R q
0
zi
�
y;�i

�
dy.

Let 
i
�
q;�i

�
= convZi

�
q;�i

�
, and !i

�
q;�i

�
= 
iq

�
q;�i

�
wherever de�ned. Extend !i by right

continuity, and at 1 by left continuity. For !i to be continuous, it is su¢ cient to show that, if zi

is discontinuous of q, then zi jumps down at q. To see this, note that wi can be discontinuous
only at points like �

j
for j < i and such that �

j 2 (�i; �i). At such a point, we have

wi(�
j�;�i) = lim

�"�j

�

�i
+
Pi�1

n=1 �
n;ivi(�)�

Pi�1
n=1 �

n;if
n(�)

f i(�)
vn(�).

Note that (1) for n < j, �
n
< �

j
, which implies that fn(�

j
) = 0, and (2)

vj(�
j
) = (�

j
=�j)� �j +Hj(�

j
) = �(�j � 1)(�j=�j) < 0.

So,

wi(�
j�;�i) = �

j

�i
+
Pi�1

n=1 �
n;ivi(�

j
)�

Pi�1
n=j �

n;if
n(�

j
)

f i(�
j
)
vn(�

j
).

On the other hand,

wi(�
j
+;�i) = lim

�#�j

�

�i
+
Pi�1

n=1 �
n;ivi(�)�

Pi�1
n=1 �

n;if
n(�)

f i(�)
vn(�)

=
�
j

�i
+
Pi�1

n=1 �
n;ivi(�

j
)�

Pi�1
n=j+1 �

n;if
n(�

j
)

f i(�
j
)
vn(�

j
).
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Therefore,

wi(�
j�;�i)� wi(�j+;�i) = ��j;if

j(�
j
)

f i(�
j
)
vj(�

j
) = �j;i

f j(�
j
)

f i(�
j
)

�j � 1
�j

�
j � 0.

This proves that zi can at most jump down, and, hence, !i is continuous. Letting wi(�;�i) =
!i(F i(�);�i) for � 2 �i, construct the generalized virtual surplus VS i, as we did in the proof
of Proposition 2.
Now, note that Gn (�) > 0 for � 2

�
�n; �i

�
. Therefore, since �n;i > 0 for some n < i,

the �rst term in VS i is strictly positive. Let n = min
�
n : �n;i > 0

	
. Then, over (�n; �

i
), the

characterization of Lemma 13 of any maximizer to VS
I
extends to VS

i
. In particular, xi must

be constant at aib over (�
n; �ib), where �

i
b � �i and aib � xi(�i). Furthermore, aib = xi(�ib), if

�ib < �
i
; and xi (�) = xi (�) for � 2 [�ib; �

i
]. Next, the same argument as in Lemma 14 for VS

I

yields that a (unique) maximizer of VS
i
exists as well. Finally, the same argument as in Lemma

15 implies that the (unique) maximizer of VS
i
is also the (unique) maximizer of VS i.

Step 6: Properties of the solutions to (22).
Suppose that �n;i > 0 for some n < i and let n be de�ned as before. Letting

Ki =
Pi�1

n=n �
n;i
R �i
�n
Gn (�) d� > 0,

the analog of the ironing condition for �b applies to �
i
b:R �ib

�i

�
wi
�
y;�i

�
� wi

�
�ib;�

i
��
dF i +Ki = 0,

which implies �ib > �
i, and can be written asR �ib

�i
[wi
�
�ib;�

i
�
� (�=�i)]dF i =

hR �ib
�i

Pi�1
n=1 �

n;iV i;n (�) dF i +Ki
i
.

To prove that wi
�
�ib;�

i
�
> �i=�i, it is enough to show that the right hand side is positive:R �ib

�i

i�1P
n=1

�n;iV i;n (�) dF i +
i�1P
n=n

�n;i
R �i
�n
Gn (�) d� =

i�1P
n=n

�n;i
hR �ib
�i
V i;n (�) dF i +

R �i
�n
Gn (�) d�

i
> 0

which follows by (17). Therefore, xi exhibits bunching over [�n; �ib] with �
i
b > �

i, and at value
aib > x

i�(�i).
Now, consider the top of [�i; �

i
]. By the same argument as in Lemma 16, wi(�

i
;�i) �

wi(�
i
;�i) with strict inequality if �ib < �

i
. Furthermore, for � > �

i�1
, wi

�
�;�i

�
= �=�i +Pi�1

n=1 �
n;ivi (�) and wi(�

i
;�i) = (�

i
=�i)[1 �

�
�i � 1

�Pi�1
n=1 �

n;i] < (�
i
=�i). So if wi(�

i
;�i) =

wi(�
i
;�i), then xi(�

i
;�i) < xi�(�

i
). Otherwise, there is ironing at the top over [�ib; �

i
] 6= ? and

the following must hold R �i
�ib

�
wi(y;�i)� wi(�ib;�i)

�
dF i = 0,

which corresponds toR �i
�ib

�
y=�i � wi(�ib;�i)

�
dF i = �

i�1P
n=1

�n;i
R �i
�ib
V i;n (y) dF i.
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Now, for each n < i,R �i
�ib
V i;n (y) dF i =

R �i
�ib
vi (y) dF i �

R �i
�ib
vn (y) dF n

=
R �i
�ib

�
y=�i � �ib

�
dF i �

R �i
�ib

�
y=�n � �ib

�
dF n

=
R s
�ib=�i

�
s� �ib

�
dF �

R s
�ib=�n

�
s� �ib

�
dF = �

R �ib=�n
�ib=�i

�
�ib � s

�
dF < 0.

Therefore, wi(�ib;�i) < �
i
=�i, and xi(�

i
;�i) < xi�(�

i
).

Finally, for bunching at the top, note that for � > �
i�1
,

wi
�
�;�i

�
= �=�i +

Pi�1
n=1 �

n;i[(1� �i)(�=�i) +H i (�)].

Hence, for �0 > � > �
i�1

wi
�
�0;�i

�
� wi

�
�;�i

�
=
�0 � �
�i

[1�
i�1P
n=1

�n;i
�
�i � 1

�
] +

i�1P
n=1

�n;i
�
H i (�0)�H i (�)

�
.

Under the Assumption 2, for �0 > � � maxf�iy; �i�1g, we have

wi
�
�0;�i

�
� wi

�
�;�i

�
� �0 � �

�i
[1�

�
�i � 1

�Pi�1
n=1 �

n;i].

Hence, bunching at the top may occur if
Pi�1

n=1 �
n;i is large enough, i.e., if the principal assigns

high enough shadow value to not increasing the rents of the types below type i.

10 Appendix C: The Planner�s Constrained Problem

I consider the alternative speci�cation of the planner�s problem as that of maximizing the ex-
pected ex-ante social surplus subject to a budget constraint. For simplicity, I do so in the
two-type model. I suggest looking at Section 4 before reading this part.
Let B be the planner�s budget. Assume that B is less than the maximal expected surplus:

B � W i(xi�). Using ES and �(X;k), the planner�s constrained problem is

PB :=

8>><>>:
maxfX;kg 
W

C(xC) + (1� 
)W I(xI)

s.t. xi 2M, IRi, and R-IC i for i = I; C, and

�(X;k) � B. (IRB)

In PB, given X, multiple vectors k may be optimal. However, we can safely focus on DMs that
make R-IC C and IR I hold with equality. Then, let

�(xC ;xI ;B) := 
WC(xC) + (1� 
)
�
W I(xI)� 


1� 
R
C(xI)

�
�B,
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to reduce PB to

PB0 =

8>><>>:
maxx 
W

C(xC) + (1� 
)W I(xI)

s.t. xC ;xI 2M, RR and

�(xC ;xI ;B) � 0. (IR
B
)

Let X and Y be as in the proof of Lemma 4. By concavity of d and �c, 
WC(xC) +
(1� 
)W I(xI) and �(xC ;xI ;B) are concave; RC(xI) + RI(xC) is linear. The constraint func-
tional �(xC ;xI) := (RC(xI) + RI(xC);��(xC ;xI ;B)) maps to R2, which has non-empty, posi-
tive, and closed cone R2+. Let � � 0 and � � 0 and de�ne the Lagrangian

L(xC ;xI ; �; �) : = 
WC(xC) + (1� 
)W I(xI) + ��(xC ;xI ;B)� �[RC(xI) +RI(xC)]

= (1 + �)
n

[WC(xC)� �


(1+�)
RI(xC)]+

+ (1� 
) [W I(xI)� 
�+�
(1�
)(1+�)R

C(xI)]
o
� �B.

(26)
Now, comparing (26) with (10), we see that here the weights on pro�ts and therefore on C�s rents
depend endogenously on the multiplier � � 0, rather than on �. However, the same fundamental
trade-o¤s arise in �nding the optimal xC and xI .
Speci�cally, by Theorem 2, p. 221, of Luenberger (1969), if (xC ;xI ; �; �) is such that, for all

(xC0 ;x
I
0) 2 Y ; �0 � 0; �0 � 0,

L(xC ;xI ; �0; �0) � L(xC ;xI ; �; �) � L(xC0 ;xI0; �; �), (27)

then (xC ;xI) solves PB0. Condition (27) essentially implies the same optimality conditions as
in Lemma 4. Also, if there exists (x̂C ; x̂I) 2 Y such that �(x̂C ; x̂I) < 0, then by Corollary 1,
p. 219, of Luenberger (1969), the condition (27) is also necessary for (xC ;xI) to solve PB0.
In particular, let B1 be the pro�ts that the optimal DM� derived in Section 4.2� yields in the
monopolist�s case (� = 1).

Lemma 21 There exists xC ;xI 2M such that �(xC ;xI) < 0 if and only if B < B1.

Proof. ()) By de�nition of B1, if xC ;xI 2M and RR holds, then �(xC ;xI ;B1) � 0.
(() Consider a solution (xC1 ;xI1) to the problem P with � = 1. Since B < B1, �(xC1 ;xI1;B) > 0.
If RC(xI1)+R

I(xC1 ) < 0, we are done. Suppose R
C(xI1)+R

I(xC1 ) = 0. Recall that x
I
1 = x

I(�̂C) =
argmaxx2MW

I (x)� �̂CRC (x) with �̂C > 0 (Lemma 4). By revealed optimality RC(xI(�̂C)) �
RC(xI(�C)) for every �C > �̂C . Because RR holds with equality, RC(xI(�̂C)) > 0 and xI(�̂C)
is not constant (Proposition 1). I claim that there exists ~�C > �̂C such that RC(xI(�̂C)) >
RC(xI(~�C)): by Proposition 2 RC(xI(�C)) is continuous in �C , and lim�C!+1R

C(xI(�C)) = 0
(Proposition 1). Finally, since also � is continuous in �C , it remains to choose �C" > �̂

C so that
RC(xI(�C" )) = R

C(xI(�̂C))� " and �(xI(�C" );xC1 ;B) > 0.
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