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Abstract. Given a consistent (closed) convex programming problem and one of
its corresponding dual problems, it is known that Fenchel's hypothesis for

the dual problem guarantees both the absence of a duality gap and the existence
of an optimal solution to the primal problem. In this paper we show that a
negation of Fenchel's hypothesis for the dual problem guarantees the existence
of a recession direction for the primal problem. We also show that, except

in certain pathological situations, the existence of a recession direction for
the primal problem guarantees a negation of Fenchel's hypothesis for the dual
problem. We then show that, except in the same pathological situations, Fenchel's
hypothesis for the dual problem is actually equivalent to the existence of a
nonempty bounded optimal solution set for the primal problem.

Each of these results takes on a differént form with different duality
formulations, and each provides useful information about various special pro-
gramming types -- such as linear programming, quadratic programming, posynomial
programming, zp-regression analysis, optimal location, discrete optimal con-
trol with linear dynamics, monotone network analysis, chemical equilibrium
analysis, and ordinary programming. Although some of this information is not

new, none of it seems to be well-known.
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1. Introduction. In convex programming there are at least five different

formulations of duality -- the original Fenchel formulation [6,16], the (gen-
eralized) geometric programming formulation [3,8,11], the Fenchel-Rockafellar
formulation [14,16], the ordinary Lagrangian formulation [17,5,16], and the
Rockafellar formulation [15,16]. Although each formulation has its own ad-
vantages and disadvantages, each can also be viewed as a special case of each
of the other four (by virtue of the specializations given in [8,16]). In
particular, a given theorem in one formulation has its counterparts in each
of the other four formulations, all of which can be used to supply important
informtion about various special programming types.

For gimplicity, we begin by establishing our main results in the con-
text of the most recent unconstrained geometric programming formulation [11].
This also provides a convenient mechanism for translating them into the con-
text of the most recent constrained geometric programming formulation [11], as
well as both the Fenchel-Rockafellar formulation [16](including the original
Fenchel formulation) and the more recent Rockafellar formulation [16]. 1In
turn, the latter provides a convenient mechanism for translating them into
the context of the ordinary Lagrangian formulation [16]. When appropriate, we
also consider applications to special programming types.

Familiarity with the usual facts, terminology, and notation from "convex
analysis" [16] is assumed. For example, (ri S) denotes the "relative interior"
of a set S ;EN (N-dimensional Euclidean space). Moreover, all cones and functions

introduced are assumed to be both '"convex'" and "closed".

2, The Main Results. Given a closed convex cone Z@;En and given a closed convex

functiong with (effective) domain G&zEn, consider the resulting "geometric pro-

gramming problem" &.



PROBLEM ¢/. Using the feasible solution set

A
S=XNC,

calculate both the problem infimum

A
o= inf g(x)
X €S

and the optimal solution set

A
pe = {x € | g(x) =00}

Geometric duality is defined in terms of both the "dual cone"
A
Y= {yEEn | o <{x,y) for each x€X}

and the '"conjugate transform function' 7%, whose domain

ﬁé{yEEnl sup [(y,x> -g(x)] is finitel,
x€C

and whose functional wvalues

A
n(y) = sup [(y,x) -g@@)].
XEC

In particular, given the geometric programming problem (7, consider the re-

sulting ''geometric dual problem'" 5.

PROBLEM /2. Using the feasible solution set

A
T=%n3,

calculate both the problem infimum

¢£ inf A(y)
yed



and the optimal solution set

>

Tx={yeJ | n@ =¢}.

The following Rockafellar version of "Fenchel's theorem” [16] is ome of

the most important theorems in geometric programming [11].

Theorem 1. If problem & has both a feasible solution 7° € (ri%) N (rif) and

a finite infimum {, then

(i) problem ¢7 has both a nonempty feasible solution set ,/ and a finite

infimum ¢, and

0=t 4,

(ii) problem & has a nonempty optimal solution set %,

The existence of a feasible solution y° € (ri¥) N (ri.f) is termed Fenchel's

hypothesis for problem /. It is to be intimately related to the existence

of a recession direction for problem ¢, namely, a nonzero (direction) wvector

6 € X such that for each x€C the function g @+ ¢§).is defined and monotone non-
increasing on the set of all nonnegative real numbers.

The following theorem brings to light an important duality between the
negation of Fenchel's hypothesis for problem /= and the existence of recession

directions for problem ¢¢. It is the key to the main theorems of this paper.

Theorem 2. If problem & has no feasible solution 3° €(ri?%) N (rif), then there

exists a nonzero (direction) vector § € X such that for each X €C the function

g+ e«8 is defined and monotone nonincreasing on the set of all nonnegative

real numbers (but not conversely). On the other hand, if there exists a non-

zero (direction) vector § €X such that for some x € the function g+ 6) is

defined and achieves its maximum value on the set of all nonnegative real




numbers at zero, and if there is no (7-1)-dimensional vector space that con-

tains both % and B (e.g. if either the vector space generated by % or the

vector space generated by % is En)’ then problem # has no feasible solution

° € (i) N (xrib).

Proof. Since both % and & are convex (by virtue of conjugate transform theory
[16]), Theorem 6.2 on page 45 of [16] implies that both (ri?Y) and (ri.f) are
convex. Consequently, our assumption that (ri%) ) (rif) is empty and (the
separation) Theorem 11.3 on page 97 of [16] imply that % and ./ can be "properly
separated” by a hyperplane in E, . Moreover, since % is a cone, Theorem 11.7
on page 100 of [16] shows that there is at least one such hyperplane that
passes through the origin of En' In particular then, there exists at least

one nonzero vector & E’E.n such that

0<(8,y) for each y€¥Y 69
and

(8,y) <0 for each y€E.RA. )

Now, statement (1) and the well-known symmetry of the duality between X and %
imply that 8§ €%. Moreover, elementary considerations show that the validity
of statement (2) is not altered when ./ is replaced by the closed conical hull
(cl cone.®) of B. Furthermore, the resulting statement (2) and Theorem 14.2 on
page 122 of [16] imply that 8§ is in the "recession cone" for g:C, which means
that for each x€(C the function g(x+ + &) is defined and monotone nonincreasing
on the set of all nonnegative real numbers. Finally, a counterexample to the
converse of the assertion just proved can easily be obtained by letting X be
any nontrivial vector space in E

A

with domain C= E2 °

2 while letting ¢ be any constant function



Now, according to Theorem 8.7 on page 70 of {[16], our assumption that
there exists a nonzero vector § €X such that for some x €C the function g(x++ 8)
is defined and achieves its maximum value on the set of all nonnegative real
numbers at zero means that there exists a nonzero vector § in both X and the
recession cone for g:@. Given such a vector §, we know from the definition of

% and Theorem 14.2 on page 122 of [16] that

0=<(8,y> for each y€Yy ¢
and

(8,1 <0 for each y€ (cl coned). @Y

Since S < (cl cone), the validity of statement (2') is not altered when

(cl cone.p) is replaced by 2. Now, statement (1) and the resulting statement (2)
along with our assumption that there is no (n-1)-dimensional vector space (i.e.
no hyperplane through the origin) that contains both Y and S clearly imply via
Theorem 11.1 on page 95 of [16] that % and . can be properly separated by a
hyperplane in E . It is then a consequence of Theorem 11.3 on page 97 of [16]

that (ri%) N (rif) is empty. g.e.d,

It is worth noting that the existence of a recession direction § for
problem ¢ does not require that problem ¢ have a nonempty feasible solution set
/. However, i1f o/ happens to be nonempty, the existence of § does obviously
imply that the optimal solution set ¥ for problem ¢ is either empty or a
union of half-lines. In either case, the dimensionality of problem & can be
reduced via the procedures described in [1]. 1In fact, such a "reduction" can
frequently be carried to such an extent that Fenchel's hypothesis is satisfied

for the geometric dual B' of the resulting '"canonical form'" &' for problem &.

For example, see [4,12,7,13,2].



The following theorem brings to light an important duality between
Fenchel's hypothesis for problem /# and a certain boundedness property for pro-
blem 7. It also points out certain important consequences of the boundedness

property.

Theorem 3. Suppose that problem ¢ has a nonempty feasible solution set #/. If

there is a real number 7 greater than or equal to the infimum ¢ for problem &

such that the corresponding objective function "level set"

A
;£r={x€ef lg &) <r}

is nonempty and bounded, then

(i) for each s>, the level set is is nonempty, convex and compact,

(ii) the optimal solution set o»** for problem ¢¢ is nonempty, convex and

compact,

(iii) problem 5 has a feasible solution 3° € (ri W N id).

On the other hand, if problem 5 has a feasible solution y° € (riY) N (xriB), and

if there is no (n-1)-dimensional vector space that contains both ¥ and 5

(e.g. if either the vector space generated by ¥ or the vector space generated

by B is En), then for each real number 7 greater than or equal to the infimum

¢ for problem & the corresponding objective function level. set ;Zr is bounded.

Proof. It is easy to see that the objective function g:of/ inherits the con-
vexity and closedness of X and ¢:C; and it is then a consequence of Theorem
4.6 on page 28 of [16] and Theorem 7.1 on page 51 of [16] that ;ZS is convex
and closéd for each s =0,

Now, our assumption that ;{ir is nonempty and bounded implies via Theorem



8.4 on page 64 of [16] that the recession cone for i} consists solely of

the zero vector. It is then a consequence of Theorem 8,7 on page 70 of [16]
that the recession cone for i%_consists solely of the zero vector for each s
for which ié is nonempty. We now infer from Theorem 8.4 on page 64 of [16]
that ié is bounded for each s >¢. In summary then, i% is convex and compact
for each 8 2. Since is is obviously nonempty for each s>, the proof of
conclusion (i) is now complete. Moreover, the convexity and compactness of
#** have also been established, because o is clearly identical to iﬁf To show
that »#* is nonempty and hence complete the proof of conclusion (ii);'first
note from the assumption that r‘zgyand the definition of i} that the infimum
of gzi} is just o, and that the corresonding optimal solution set £¢==d*. Since
it is easy to see that g:i} inherits the (previously established) closedness
of g:/, and since closedness of g:{r implies via Theorem 7.1 on page 51 of
[16] that g:i} is lower semicontinuous, the (previously established) com-
pactness of;{r and a standard argument from analysis can now be used to show
the existence of an x*¢€ §==a*. Finally, conclusion (iii) ié now a straight-
forward consequence of the first assertion of Theorem 2.

To prove the final assertion of Theorem 3, suppose to the contrary that
there is an 7 > such that i} is not bounded. Then, Theorem: 8.4 on page 64 of
[16] shows that the recession cone for i} contains a nonzero vector §. Now,
according to Theorem 8.7 on page 70 of [16], & must also be in the recession
cone for g:/. Consequently, Theorem 8.6 on page 68 of [16] implies that for
each x €/ the function g+ ¢ 8) is defined and achieves its maximum value on
the set of all nonnegative real numbers at zero. Moreover, the definition of
o/ shows that 8 is also in the recession cone for X; and it is then a con-
sequence of the conicality of X and Theorem 8.1 on page 61 of [16] that § €X.

The final assertion of Theorem 2 now contradicts our assumption that problem
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/3 has a feasible solution 1° € (riY) N (riB); so £r_ is bounded for each 7 >e. qg.e.d.

It should be emphasized that the assumption in the first assertion of
Theorem 3 is satisfied when the optimal solution set #* for problem ¢ is nonempty
and bounded (because £cp=af"f)o Moreover, it is worth noting that the second
assumption in the final assertion of Theorem 3 is needed for the validity of
that assertion. 1In fact, a counterexample to that assertion without its second
assumption can be obtained by letting X be any nontrivial vector space in E2’
while letting g be any constant function with domain GQEZ.

For the preceding counterexample, it is important to note that problem
¢ has a nonempty feasible solution set =’ and that its objective function gp:/

has a "

constancy space" [16] with dimension one, namely, X. That is, given an
arbitrary x €2/, the vector x+vy €2 and gl{r+v) =g(x) for each yv€X. The fol-

lowing theorem shows that the existence of this constancy space with positive

dimension is not accidental,

Theorem 4, Suppose that problem 7 has a nonempty feasible solution set /. Then,

the orthogonal complement &' of the smallest vector space & containing both

% and B is contained in the constancy space for g:2/; that is, given an arbitrary

x €2/, the vector x++y €2/ and g(x+vy) =g (x) for each yEcﬁ"L. In particular, if

there is an (7-~1)-dimensional vector space that contains both % and L, then the

objective function g:/ has a constancy space with dimension at least one.

Proof. Since ¥<é, it is clear from the duality of X and Y that

v €X when \/E(ﬁ'l.
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Moreover, since BAcd, it is clear that (v,y? =0 when yEé’l and y €. Hence,

sup [{x+vy,u) ~h@)] = sup [{x,p) -hA(@)] when yéé'l; from which it follows via
ved yeEDH

the conjugacy of g:C and A:p that
x+v€C and g(r+vy) =g(x) when x€C and yEé‘J‘.

Now, the convex conicality of % and both of the preceding displayed relations
obviously imply the first assertion of Theorem 4. Moreover, the second assertion
of Theorem 4 is then an immediate consequence of the well-known dimensional

complementarity of ¢ and g . g.e.d.

A consistent problem & whose objective function g:o/ has a constancy
space with dimension at least one is clearly pathological -- in that the
dimension 72 of the space En in which the problem has been formulated is obviously
larger than it needs to be. In fact, it is not difficult to see that En can
be replaced by & in such a way that such problems are reduced to equivalent
consistent problems whose objective functions have constancy spaces with dimension
Zero,

The following theorem summarizes the main results of this paper in the

context of nonpathological consistent problems .

Theorem 5. Suppose that problem & has a nonempty feasible solution set 2/ and

that the constancy space for its objective function ¢:/ has dimension zero,

Then, the following four conditions are equivalent:

(I) there exists no nonzero (direction) vector 8§ €X such that for some

x €C the function g(r++8) is defined and monotone nonincreasing on the set

of all nonnegative real numbers,

(I1) the objective function g:o has a level set i} that is nonempty and

bounded,
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(I11) the optimal solution set o is nonempty and bounded,

(IV) problem 5 has a feasible solution }° € (xri%) N (xriB).

Moreover, if any of these four conditions are satisfied, then

(i) for each 8 2w, the level set :ZS is nonempty, convex and compact,

(ii) the optimal solution set #* for problem 7 is nonempty, convex and

compact,

Proof. Simply note that our second hypothesis implies via Theorem 4 that there
is no (n-1)-dimensional vector space that contains both Y% and Jf; and then

use Theorems 2 and 3 repetitively. gq.e.d.

In view of the crucial nature of the second hypothesis of Theorem 5,
it is helpful to have the following information about the constancy space for

the objective function g:/s

Theorem 6., Given that problem ¢ has a nonempty feasible solution set o/, the

constancy space for its objective function g:»/ is the intersect of the largest

subspace contained in the cone X with the constancy space for g:C.

Proof. First, note from the definition of g:./ and Theorem 8.3 on page 63 of
[16] along with Corollary 8.6.1 on page 69 of [16] that the constancy space for
g: is simply the intersect of the recession cone for X with minus the recession
cone for % and the constancy space for g:®. Now, use the conicality of X and
Theorem 8.1 on page 61 of [16] to show that the recession cone for X is just X
itself; and then observe from Theorem 2.7 on page 15 of [16] that the intersect

of X and minus X is simply the largest subspace contained in X. q.e.d.
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The following corollary is frequently all that is needed to show that

the second hypothesis of Theorem 5 is satisfied.

Corollary 6A. Given that problem ¢/ has a nonempty feasible solution set o/, if

either the largest subspace contained in X contains only the zero vector (i.e.

the cone X is "pointed") or the constancy space for g:C contains only the

zero vector, then the constancy space for g:of has dimension zero.

It is worth noting that the symmetry of conical duality (implied by
Theorem 14.1 on page 121 of [16]) together with-the symmetry of functional
conjugacy (asserted in Corollary 12.2,1 on page 104 of [16]) induces a symmetry
on the theory that relates problem ¢ to problem /. 1In particular, each of
the preceding theorems about ¢ and /@ automatically produces an equally valid
Ydual theorem" about £ and & (obtained by interchanging the symbols X and %,
the symbols C and ./, the symbols g and A, the symbols o/ and J, the symbols ¢ and
¥, the symbols »* and J*, and the symbols x and y)., To be concise, the
statement of each dual theorem is left to the reader,

The most effective applications of the preceding theorems and their duals
also employ many of the basic facts about relative interiors (given in section

6 of [16]). In particular, the following basic facts are usually crucial:

) (xri U) ¥U when U is a vector space,

(B) (riv) = i((ri Vk) when V= >1(Vk and the sets Vk are convex,

and

© (ri W) = (int W), the "interior" of W, when W is a convex set with the

same "dimension' as the space in which it is embedded.
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Fact (&) is derived on page 44 of [16]; fact (B) can be obtained inductively
from the formula at the top of page 49 of [16]; and fact (C) is explained on
page 44 of {16].

The preceding theory can be applied directly to posynomial programming,
ﬁp-regression analysis, optimal location, discrete optimal control with linear
dynamics, and monotone network analysis -- simply by consulting examples 1
through 5 respectively in section 2 of [11]. Needless to say, such applications

are actually left to the interested reader.

3. Other Formulations. For each of the other formulations, we simply specify

problem ¢ and then give the resulting dual problem /~ along with the corresponding
Fenchel hypothesis for problem /2. The reader can then easily construct the
corresponding counterpart of each of the main results given in section 2.

The following three subsections are pedagogically independent of one

another, but the fourth subsection utilizes the third subsection.

3.1. The Constrained Geometric Programming Formulation., First, suppose

that:
I and J are two nonintersecting (possibly empty) positive-integer

index sets with finite cardinality o(I) and o(J) respectively,

xk and yk are independent vector variables in E for kéEfO}lJILJJ,
and xI and yI denote the respective cartesian products of the vector
variables xi, i€I, and yi, i€ 1, while xJ_and yJ denote the respective
cartesian products of the vectorvvariables ij, je€J, and yj, JeJ; so
the cartesian products (xo,xI,xJ) é‘x'élnd (YO,YI,YJ) éy are independent

vector variables in En,dwherer

A
n=n0+2n. +En.:
S |
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a and A are independent vector variables with respective components 0 and
7\1 for i €I, and B and u are independent vector variables with re-

spective components Bj and Kj for j€J,

X and Y are closed convex dual cones in En’ and By and hk are closed

convex conjugate functions with respective domains C, €E and D, cE
k n, k ny
for k€ {o}UuIUJ.

-Now, let

A ‘I J
Z:{(XO,XI’Q’XJ',K) EEn I (XO,X s X )Ex; a=0; MEEO(J)}’

where n+0(I) +0(J) =n. 1In addition, let
C’/S{(xo xICLxJ%)E leEC'xiEC a, €EE,, and
5 b 5 3 En O’ i’ i 1’
i , j + o,
+q, < :
gi(x) a, <0, i€1; (x ,nj)ECj, jET},
and let
0 I J A 0 +, 3 A
Q(X 3 X H0,X ’%) =8 (X )+2 g-(x 3%-) =G(X:%):
0 7 J ]
. + .
where the (closed convex) function gj has a domain

+4 0] . _ j .3 3

C.={(x,un,) |either n, =0 and sup {x’,d" )<+, or u,>0 and x €x,C,}

j j ] alep. k i3
J

and functional values

sup (x3,d) if », =0 and sup (x?,d)<+
@e% ] ﬂe%

+, i A
(x,m,) =
Bj j

j . o o~
n.g. (x'/un,) if n,>0 and x” €xn.C,.
383 & /ny) i 33

Then, section 6 of [10] shows that
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_,0 I, J 0 I J . o

Y={G .y 0y ,B)EEnl(y ¥,y ) EY; AEEO(I), B=0}.
Section 6 of [10] also shows that

., 0 I . 3 0 i 4+, ]

B={G .y 0y B €E, |y €Dy (T,1) €D, i€15y €.,

_€E,, and h,(y)) 48, <0, j€J),
B an J(y) B j €3}

1

and that
0 I J 0 4+ i A
Gy Ay sB) =hy(y) +2h, (37,4,) =HE,N),
I
where the (closed convex) function h: has a domain

+4. 1 . _ i i i
Di—f(y sAy) | either A\; =0 and sup (y",c )<+, or A;>0 and y~ € )\iDi}

¢ €C,
i

and functional values

;SUP (yl,cl> if ki=0 and SUP (yl,cl><+m
c GECi c (ECi

+, i A
hi(}’ 9>\i) -

i , i
Aihi(y /Ai) if Ai>0 and y E}\_iDi.
Now, the preceding formula for % along with facts (A) and (B) implies
that
. r, 0 1 J o I J .
(rl’?f/)={(y ' ,X,Y s.B)EEn l (Y Y Y )€ (rlY); }\GEO(I); B=O}°

Moreover, the preceding formula for .5 along with facts (A) and (B) implies

that

. 0 I J .0 . . i .
@iB) ={ G .y Ny »B) CE, |y~ € (HDO)_; ;>0 and yE A  (ri Di),

; . ol v j .
i€1l; y € (r1DJ.), B;€E; and hj(y ) +8,<0, j€J},
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by virtue of both the equation
e A i i .
(riD)) ={(z",1;) [A;>0 and y €1, i D))}
and the equation
i {),8,) |yl €p, and b )y +p, <o) =
J J J J
J j . 3
{G7,8,) |8;€E), y € (xiDy), and h,(v)) +B, <0).

To derive the latter equation, simply use Theorem 6.8 on page 49 of [16] along
with fact (C). To derive the former equation, first consider the point-to-set

+ +
mapping Yi:Ai where

+ A4 i +
Yl[ki] - B’ l (Y ’Ki) € Di}
and

e 1yt 1 4
Ai-{Xi lYi[Ki] is not empty}.
Now, Corollary 6.8.1 on page 50 of [16] implies that
C o4 .+ i, .+
(ri Di)-{(y shy) l%ié (ripy) and y= € (rlYi[xi])j-

+
Moreover, the definition of Di clearly shows that AI¥={X1.20}, which means of

course that

. S
(rif) = {Ai>0].

) + +
Furthermore, for ki>>0 the definition of Di clearly shows that Yi[ki]==kiDi,

which means that

R _ . .t
(ri Yi[ki]) =), (ri D) for A € (rin),
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by virtue of Corollary 6.6.1 on page 48 of [16]. Consequently, our derivation
of the preceding formula for (ri.) is complete.
In particular then, the corresponding Fenchel hypothesis for problem 3

simply asserts that

there is a vector (yo,yI,A,yJ)

such that (yO,yI,yJ) €E(ri V) ; yO € (ri DO);
i . T .

>\1>0 and y Gli(rl Di)’ i€I; y' € (ri Dj)

and h; <) <0, jea.

Moreover, it is probably worth noting that this hypothesis is in fact equivalent

to the hypothesis

there is a vector ("}"'O,?I,‘X,'}?J)

L i —
such that (§ ,¥ ,?J) €Y; '}7061)0; 671,)\1)6331-,

i€I; '}"'JGDj and hj(Sr‘J)<0, jEJ - - - and

0 LI ~J
there is a vector (yo,y A

such that (?O,yI,y YE (riY); O € (ri DO);

7(>0 and § 67( (r1D),1€I y€(r1D),J€J

Obviously, a vector (yo,yI,}\,yJ) that satisfies the former hypothesis satisfies
both parts of the latter hypothesis. On the other hand, Theorem 6.1 on page
45 of [16] and Theorem 7.1 on page 51 of [16] imply that a convex combination
0T T) +BGLFT.K,5) of vectors GULFN.TT) and GULFT.X.57) that
satisfy the latter hypothesis will satisfy the former hypothesis for
sufficiently small B>»0., Needless to say, the latter Fenchel hypothesis is

generally the easiest to verify. Although the condition yJ GD and h, ("J)<O
jed
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resembles the well-known "Slater constraint qualification', it is, of course,
to be deleted when J is empty -- which is the situation in most applications.

The theory established in section 2 can now be applied to constrained
posynomial programming, linear programming, and ordinary programming -- simply
by consulting examples 6 through 8 respectively in section 2 of [11]. Moreover,
the interested reader should also have no trouble making applications to
chemical equilibrium analysis, quadratic programming, constrained zp-regression
analysis, and constrained optimal location =-- simply by consulting the references

alluded to in section 2 of [11],

3.2. The Fenchel-Rockafellar Formulation. Let

A I
X =the column space of [MrJ ,

where Ir is the rXr identity matrix, M is an arbitrary s xr matrix, and r+s=n.

In addition, let

A A
c=ct xc? and g () =gl &) - g2y,

where the closed convex function gl has domain CIS;Er, and the closed concave
function g2 has domain CZQ;ESu

Then, section 5 of [8] shows that

Mt

=T ?
.8

Y =the column space of

t. . . s . s
where M is the transpose of M, and IS is the s x s identity matrix. Section 5

of [8] also shows that

5= x[-0? | and hp) =0’ 1) -0’ (v,

1

where hl:D is the (convex) conjugate transform of gl:Cl, and hz:D2 is
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the concave conjugate transform of gz:C2 obtained by replacing sup with inf
in the definition of the conjugate transform. (Actually, section 5 of [8]
also shows how to use simple linear transformations to eliminate the trouble-
some minus signs and hence achieve the true symmetry of the original Fenchel-

Rockafellar formulation, but those details need not be of any direct concern

here.)

Now, the preceding formulas for ¥ and .f along with fact (A) and fact

(B) imply that

(ri}y) =%

and

@id) = (zidb) x [ - (xri DD,

by virtue of Corollary 6.6.1 on page 48 of [16].

In particular then, the corresponding Fenchel hypothesis for pro-

blem & simply asserts that

. , 2
there is a vector z € (ri D7) such

that Mtz € (ri Dl) .

Finally, it should be mentioned that the original Fenchel formulation

A
can be obtained by letting M==Ir, in which case s=r.

3.3, The Rockafellar Formulation. Let

A
% =the column space of Op ,

where Ip is the p xp identity matrix, 0q is the g Xp zero matrix, and p+q=n.

Then, section 5 of [8] shows that
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% = the column space of Ip s

where Iq is the q xq identity matrix and 0p is the p xq zero matrix.

Now, the preceding formula for % along with fact (A) implies that

(ri%) =Y.

In particular then, the corresponding Fenchel hypothesis for problem

B simply asserts that
there is a vector kEEq such that (O,)) € (riB).

Moreover, it is probably worth noting that Theorem 6.8 on page 49 of [16] and
Theorem 6.2 on page 45 of [16] imply that this hypothesis is in fact equivalent

to the hypothesis
0€ (ri M),
where

A .
M= {u l @,2) €5 for some A}.

Finally, it should be mentioned that the original Rockafellar formulation
can be obtained by simple linear transformations of the resulting problem

5 into an equivalent maximization problem.

3.4, The Ordinary Lagrangian Formulation. In the context of the pre-

ceding Rockafellar formulation, suppose that

A
X = (z,u) where zEEp and u€ Eq.
Then, let

A A
C={(z,u) | z€C and Gy (2) +u, <0, 1€1} and g(z,u) =G, (2),
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where I is a (possibly empty) positive - integer index set with finite cardinality

0(1), and the G,, k€{0}UI, are closed convex functions with a common domain

k’
CQEP. Problem A now consists of minimizing G0 (z) over C subject to the con-
straints G, (z) <0, i €1I.

i

Now, suppose that

A .
Y= u,A) where p.EEp and >\€Eq.

Then, an elementary computation (given essentially in section 30 of [16])
shows that
B={@,\) | A>0 and sup Eu,z) - Go(z) -2 KiGi(z_)]‘s<+°°]
z€C I -

and

AG,A\) = sup [{u,z) - Go(z) -2J AiGi (z)].
z€C I

Problem & now consists of computing the minimax of the negative of the
ordinary Lagrangian GO (z) +2J KiGi(z) .
I
Now, the preceding formula for .f along with the next-to-last paragraph of

subsection 3.3 implies that the corresponding Fenchel hypothesis for problem

2 simply asserts that
0€ (riM),
where

A
M={u l sup [(u,z) -Go(z) -2 xiGi(z)]<+co for some A >01J,
z€C I

However, this hypothesis is generally difficult to check because of the com-
plicated nature of M. In fact, it should be contrasted with the relatively
simple alternative hypothesis that results from utilizing the constrained

geometric dual 2 (as indicated toward the end of subsection 3.1). The alter-

native hypothesis is simply that
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there is a vector (yo,yI,A ) such

that yo +5y" =0; yOE (ri DO); A;>0 and
I

i s .
Ti D I
y Gkixl iL i€I,

.where D, is the domain of the conjugate transform of G :C, k€ {0} UI.

k k

Since the preceding functions ¢ and A are different in nature, a formula
for (ri ) should also be developed. To do so, note that the preceding formula
for C along with fact (B), Theorem 6.8 on page 49 of [16], and fact (€) implies

that
(ri®) ={(z,u) | 2€ (ri C) and G, (2) +v, <0, 1€1}.
In particular then, the corresponding Fenchel hypothesis for problem & simply
asserts that
there is a vector zE(‘ri C) such that Gi(z) <0, i1,

a condition that is slightly stronger than the well-known "Slatér constraint

qualification",

References

L. Abrams, R.A., "Projections of Convex Programs with Unattained Infima”,
SIAM Jour. Control, 13(1975), in press.

2. , "Consistency, Superconsistency, and Dual Degeneracy in
Posynomial Geometric Programming', erations Research, to appear.

3. Duffin, R.J., "Dual Programs and Minimum Cost", SIAM Jour. Appl. Math.,
10(1962), 119.

4, Duffin, R.J., Peterson, £.L., and Zener, C., Geometric Prograrming-Theory
and Applications, Wiley, New York (1967)--~Russian translation by D.
Babayev, Mir, Moscow (1972).

5. Falk, J.E., "Lagrange Multipliers and Nonlinear Programming", Jour. Math.
Anal. Appls., 19(1967), 141.




10.

11.

2
<.

13.

14,

15.

14,

i7.

=22~

Fenchel, W., "Convex Cones, Sets and Functions', Math. Dept. mimeographed
lecture nctes, Princeton Univ., Princeton, N.J. (1951).

Hall, M.A., and Peterson, E.L., "Traffic Equilibria analysed via Geometric
Programming', Proc. Intern. Symp. Traffic Equilibrium Methods, Floriaun (ed.),
to appear.

Peterson, E.L., "Symmetric Duality for Generalized Uncomnstrained Geometric
Programming', SIAM Jour. Appl. Math., 19(1970), 487.

, "Mathematical Foundations of Geometric Programming"',
Appendix to “Geometric Programring and Some of Its Extensions’, Optimization
and Design, Avriel, Rijckaert, and Wilde (eds.), Prentice-Hall, Englewood
Cliffs, N.J. (1973}, 244,

» "Generalization and Symmetrization c¢f Duality in Ceometric
Frogramming'', to appear.

» "Geometric Programming®, SIAM Rav,., to appear.

Peterson, E.L., and Ecker, J.G., "Geometric Programming: Duality in
Quadratic Prograrming and {_-approximation I", Proc. Intern. Svm. Math,
Prog., Kuhn (ed.), Princetoh Univ. Press, Princeton, N.J. (1970), 4315,

Peterson, E.L., and Wendell, R.E., "Optimal Location by Geometric Programming",
to appear.

Rockafellar, R.T., "Duality and Stability in Extremum Problems Involving
Convex Functions", Pfacific Jour. Math., 21(1967), 167.

» ""Duality in Nonlinear Programming", Amer. Math. Soc.
Lects. Appl. Math., 11, Dantzig and Veinott {eds.), amer, Math. Scc.,
Providence, R.I. (1968), 401,

, Convex Analysis, Princetcn Univ. Press, Princeton,

N.J. (1970).

Wolfe, P., "A Duality Theorem for Nonlinear Programming’, Quart,. Appl.
Math., 19(1961), 239.



