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Abstract

A budget-constrained buyer wants to purchase items from a short-
listed set. Items are differentiated by observable quality and sellers
have private reserve prices for their items. The buyer’s problem is to
select a subset of maximal quality. Money does not enter the buyer’s
objective function, but only his constraints. Sellers quote prices strate-
gically, inducing a knapsack game. We derive the Bayesian optimal
mechanism for the buyer’s problem. We find that simultaneous take-
it-or-leave-it offers are optimal. Hence, somewhat surprisingly, ex-post
competition is not required to implement optimality. Finally, we dis-
cuss the problem in a detail free setting.
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Consider a buyer who has a fixed budget to spend on items from a shortlisted
set. The items differ in quality. The quality of a subset of items is the sum
of the individual qualities of its elements. A subset of higher quality is
preferred to one of lower quality. Subsets of the same quality are considered
as perfect substitutes. Each seller has private information about his reserve
price for his item. The buyer’s problem is to select a subset of items of
maximal quality subject to his budget constraint.
Under complete information, the buyer faces a binary knapsack problem
with qualities corresponding to values and reserve prices corresponding to
weights in the standard notation. In the realm of incomplete information,
any buying mechanism induces a knapsack game where sellers choose the
weight of their item (i.e. the price they quote) strategically.
For an important application of this problem, consider government funds to
subsidize R&D activities by private businesses. Typically, an agency has a
fixed budget to spend to support research projects. Researchers apply for
grants by submitting both a detailed plan of the research to be conducted
and the associated costs. The quality of the proposals is then evaluated
by a panel of independent experts. Based on these evaluations and on the
stated costs the agency makes a funding offer. The agency’s objective is to
maximize the total quality of the supported projects.
What makes this problem non-standard is the procurer’s objective, which
requires special attention. In most other procurement problems money is
part of the procurers objective function in the sense that the procurers
welfare depends directly on the prices at which procurement happens. Not
so here. Program managers do not value money in the sense that they assign
a marginal value to it. Rather, they will support an additional project as
long as they have enough money to do so. In other words, for them, there
is no tradeoff between funding a shortlisted project and keeping the money.
In fact, many public funding agencies are under pressure to spend all the
money they have in one year in order to avoid a budget cut in the next.
Hence, when we model this setting, money does only enter the procurer’s
constraints, not the objective function.
The surprising fact from an economic point of view is that the agencies usu-
ally do not enforce financial competition among the proposers. Instead, once
all projects have been evaluated by the panel of experts, the agencies make
multiple, simultaneous take-it-or-leave-it offers to the proposers. However,
one could think that it would be better to engage proposers in a price com-
petition. For example, as often the case in procurement, the agency could
award to the projects with the best quality-per-money score. In this paper
we show that the procedure we observe in the real world, that is, making si-
multaneous take-it-or-leave-it offers might indeed be optimal and that price
competition is not needed to implement the optimal expected allocation.
While the analysis of subsidy schemes for R&D projects is the main moti-
vation for this paper, we would like to mention that one can easily think of
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many other applications, for example scholarships and bursaries for students
and emissions abatement (see below).
We proceed as follows. Section 1 introduces the formal model. In section 2,
we derive an optimal Bayesian mechanism for the problem. In section 3, we
analyse the problem in a detail free setting, i.e. when sellers’ distributions
are not assumed to be public knowledge. We discuss an intuitive auction
mechanism which favourable properties in that setting. Section 4 concludes.

Literature Despite its practical relevance, the problem has received sur-
prisingly little attention in the mechanism design literature. To the best
of our knowledge, there is no published paper on this issue. There are,
however, two related unpublished manuscripts: In his Nancy L. Schwartz
lecture, Eric Maskin (2010) analyses the UK emissions reduction auction.
In this auction, the UK government spent a predetermined fixed fund to pay
firms to cut CO2 emissions. Since firms abatement costs are private infor-
mation, this is a mechanism design problem. Maskin proceeds to derive the
optimal ex-post mechanism (that is, a mechanism which satisfies ex-post IC,
ex-post IR and ex-post budget balance) for special classes of distributions.
In an unpublished response, and independent to this work, Chung and Ely
(2002) derive the optimal Bayesian (interim) mechanism. The results, where
applicable, coincide with the ones presented in this paper. In particular,
Chung and Ely also find that the optimal mechanism does not require ex-
post competition. However, in this paper we derive the optimal mechanism
more explicitly and in a constructive way.
Papadimitriou and Singer (2010), define a whole new class of mechanism
design problems that includes our problem as a special case. They call
mechanisms which have to satisfy a budget constraint as the one present
in this problem budget feasible mechanism. The authors, however, focus on
worst-case analysis rather than Bayesian analysis of the problem.
On the more technical side, our problem is a game-theoretic variant of the
knapsack problem (see e.g. Korte and Vygen, 2005). More precisely, consider
the quality of the projects as their value and the required funding as their
weight. Then the size of the knapsack is given by the budget and we have a
knapsack problem where the items are controlled by players who choose the
weight of the item strategically.
Finally, we should mention that this problem can be seen as the Utility
Maximization problem with private information.

1. the model

Assume that there are N potential sellers and let i ∈ {1, . . . , N} denote a
typical seller. Each seller has an item to sell for which only he knows his
private reserve price, θi, i.e., θi ∈ [θi, θi] with 0 ≤ θi < θi <∞ for all i.
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Denote θ := (θ1, . . . , θN ) and Θ := [θ1, θ1] × · · · × [θN , θN ]. As usual, the
subscript −i denotes a vector with the ith component removed (or a product
with the ith factor removed).
We shall impose the classic assumption that there exist probability density
functions fi : [θi, θi] → R for i’s reservation price, θi, which is common
knowledge. We assume that the fi are continuous and strictly positive func-
tions on [θi, θi]. Furthermore, let Fi : [θi, θi] → [0, 1] be the corresponding
cumulative distribution functions such that

Fi(θi) =
∫ θi

θi

fi(si)dsi. (1)

We also assume that the distributions of the θi are independent random vari-
ables. We denote the joint densities and cumulative distribution functions
by f and F , respectively.
Items are differentiated by a fixed quality wi > 0, which are common knowl-
edge. While this might not always be a perfect model of real world szenarios,
we believe that it still poses a good approximation, in particular for cases
where the same circle of sellers apply repeatedly. We thereby assume that
the differences in qualities can be expressed qualitatively, i.e. that the ex-
perts can state cardinal preferences for the individual projects.
Sellers are assumed to be risk–neutral. A seller with reserve price θi who
receives a price ti in return for selling his item with probability qi has utility

ui = ti − θiqi. (2)

Sellers are faced by a single buyer who has a finite budget B to acquire
as many items as possible weighted by quality. In particular, money does
not enter the buyer’s objective function, it only enters his (budget) con-
straint. Thus, the buyer’s problem is to find a mechanism that maximizes
EΘ(

∑N
i=1wiqi(θ)) subject to sellers’ incentive and participation constraints

and his own budget constraint.1
More formally, let CN denote the N–dimensional unit cube,

CN = {(x1, . . . , xN )| 0 ≤ xi ≤ 1} . (3)

Define a direct mechanism as a pair of functions q and t where

q : Θ→ CN , (4)
t : Θ→ RN . (5)

Let qi(θ) and ti(θ) denote the ith components of q and t, respectively.
1The particular nature of the objective function deserves a caution note. An additive

function like this assumes that projects are substitutes. This might not always be the case
in reality. It could well be the case that there are two very similar projects of which an
organization would only like to fund one.
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For now we shall only impose a soft budget constraint, i.e. we will merely
require that the budget is not exceeded in expectation. We later show that
this is no restriction.
So the buyer’s problem is

max
{q,t}

∫
Θ

N∑
i=1

wiqi(θ)f(θ)d(θ) (6)

s.t. Ui(θi|θi) ≥ 0 ∀i, θi, (7)
Ui(θi|θi) ≥ Ui(θ′i|θi) ∀i, θi, θ′i, (8)∫

Θ

N∑
i=1

ti(θ)f(θ)dθ ≤ B, (9)

where

Ui(θ̃i|θi) :=
∫

Θ−i

(
ti(θ̃i, θ−i)− θiqi(θ̃i, θ−i)

)
f−i(θ−i)dθ−i (10)

denotes the expected utility of a seller with type θi if he reports type θ̃i and
all other sellers report truthfully.
We shall denote

Ui(θi) := Ui(θi|θi). (11)

Similarly, define

Ti(θi) :=
∫

Θ−i

ti(θi, θ−i)f−i(θ−i)dθ−i, (12)

Qi(θi) :=
∫

Θ−i

qi(θi, θ−i)f−i(θ−i)dθ−i (13)

to be the expected transfer and the expected probability of selling for seller
i, respectively.
The buyer’s expected utility from seller i is

wi

∫ θi

θi

Qi(θi)fi(θi)dθi. (14)

Thus, the buyer’s problem is

max
{q,t}

N∑
i=1

wi

∫ θi

θi

Qi(θi)fi(θi)dθi (15)

s.t. Ti(θi)− θiQi(θi) ≥ 0 ∀i, θi, (16)
Ti(θi)− θiQi(θi) ≥ Ti(θ̃i)− θiQi(θ̃i) ∀i, θi, θ̃i, (17)∫

Θ

N∑
i=1

ti(θ)f(θ)dθ ≤ B. (18)
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2. analysis

The technical proofs of this section are left to the appendix.
Standard analysis shows that

Lemma 1. The two conditions

Ui(θi|θi) ≥ 0, ∀i, θi (19)
Ui(θi|θi) ≥ Ui(θ̃i|θi), ∀i, θi, θ̃i, θi < θ̃i (20)

are equivalent to

Qi(θi) ≥ Qi(θ̃i), ∀i, θi, θ̃i, θi < θ̃i (21)

Ui(θi|θi) = Ui(θi|θi) +
∫ θi

θi

Qi(s)ds, ∀i, θi (22)

Ui(θi|θi) ≥ 0. (23)

Equations (22) are equivalent to

Ti(θi) = Ti(θi)− θiQi(θi) + θiQi(θi) +
∫ θi

θi

Qi(s)ds. (24)

In the following, we refer to a feasible mechanism as any mechanism that
satisfies (18) and (21)-(23).
Next, we show that the expected utility of the worst type can be set to zero.

Lemma 2. W.l.o.g. we can restrict attention to mechanisms satisfying
Ui(θi|θi) = 0 for all i = 1, . . . , N .

Then (24) becomes

Ti(θi) = θiQi(θi) +
∫ θi

θi

Qi(s)ds. (25)

The budget constraint, (18), can be written as

N∑
i=1

∫ θi

θi

Ti(θi)fi(θi)dθi ≤ B. (26)

Clearly, with an arbitrarily large budget the whole problem is trivial. More
precisely, if B ≥

∑N
i=1 θi, then the mechanism qi(θ) = 1 and ti(θ) = θi for

all i is trivially optimal.
Thus, in the following we assume that B <

∑N
i=1 θi. It follows that

Lemma 3. The budget constraint, (26), is binding.

6



Applying Lemma 3 and inserting (25) in (26) gives

N∑
i=1

∫ θi

θi

(
θiQi(θi) +

∫ θi

θi

Qi(s)ds
)
fi(θi)dθi = B (27)

for any optimal mechanism. Integrating by parts, this gives

N∑
i=1

∫ θi

θi

Qi(θi)
(
Fi(θi)
fi(θi)

+ θi

)
fi(θi)dθi = B, (28)

where each summand is the buyer’s ex ante expected payment to seller i.
Then,

∫ θi

θi

Qi(θi)
(
Fi(θi)
fi(θi)

+ θi

)
fi(θi)dθi = B −

∑
j 6=i

∫ θj

θj

Qj(θj)
[
Fj(θj)
fj(θj)

+ θj

]
fj(θj)dθj︸ ︷︷ ︸

=:Bi

.

(29)

The next lemma shows that, in the optimal mechanism, a seller’s expected
transfer can never exceed that seller’s highest type.

Lemma 4. Bi ≤ θi.

Let Q := (Q1, . . . , QN ) and T := (T1, . . . , TN ) be functions satisfying (21),
(25), and (28). Then note that setting qi(θ) := Qi(θi) and ti(θ) := Ti(θi)
defines a feasible mechanism.
Hence, there exists an optimal mechanism where each seller’s ex-post allo-
cation equals its interim allocation.
This is remarkable, as it implies that there exists an optimal mechanism
in which there is no ’ex-post competition’, i.e. seller i’s allocation depends
only on her own report and all the priors (supports and distributions) but
not on other sellers’ types.
Let B :=

{
(B1, . . . ,BN )|Bi ∈ [0, θi]

}
. Then our problem is

max
B

N∑
i=1

Pi(Bi) s.t.
N∑
i=1
Bi = B, (30)

where

Pi(Bi) := max
Qi

∫ θi

θi

wiQi(θi)fi(θi)dθi (31)

s.t. Qi(θi) ≥ Qi(θ′i) if θi ≤ θ′i, (32)∫ θi

θi

Qi(θi)
[
Fi(θi)
fi(θi)

+ θi

]
fi(θi)dθi = Bi. (33)
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Lemma 5. The set of Qi(θi) that satisfy (32) and (33) is not empty.

This establishes

Observation 1. Ex-post competition is not necessary for optimality.

Let us see if we can characterize in more detail. For this, define player i’s
virtual cost function,

vi(θi) := Fi(θi)
fi(θi)

+ θi. (34)

Then

Lemma 6 (Neyman-Pearson). Ignoring the monotonicity requirement, (32),
an optimal function Q∗i is given by

Q∗i (θi) =
{

1 if vi(x) ≤ c
0 if vi(x) > c,

(35)

where c ≥ 0 is chosen such that (33) is satisfied.

Generally, function Q∗i from Lemma 6 is not monotone, as required in (32).
We can however, specify an optimal function Qi for a subset of distributions.

Corollary 1. If Fi is regular, i.e., v(x) is strictly increasing, then there
exists θ∗i ∈ [θi, θi] such that the step function

Q∗(θi) :=
{

1 if θi ≤ θ∗i
0 if θi > θ∗i

(36)

is optimal. Thus, in this case it is optimal to make multiple simultaneous
take-it-or-leave-it offers.

From now on, assume that Fi is regular, i.e., vi is strictly increasing.
But then,

max
Qi

∫ θi

θi

wiQi(θi)fi(θi)dθi = max
θ∗i

∫ θ∗i

θi

wifi(θi)dθi = max
θ∗i

wiF (θ∗i ), (37)

and (33) becomes ∫ θ∗i

θi

Fi(θi)dθi +
∫ θ∗i

θi

θifi(θi)dθi = Bi (38)

Integrating Fi(θi) by parts, we get that (33) becomes

θ∗i Fi(θ∗i ) = Bi. (39)
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But since θ∗i Fi(θ∗i ) is a strictly increasing function, the max operator in (37)
is redundant and we get

Pi(Bi) = wiFi(θ∗i ) s.t. θ∗i Fi(θ∗i ) = Bi. (40)

Summing up, our mechanism design problem is now

max
Θ

N∑
i=1

wiFi(θ∗i ) s.t.
N∑
i=1

θ∗i Fi(θ∗i ) = B. (41)

Summarizing the above, we arrive at the following.

Optimal mechanism There exists θ∗i for all i s.t.
∑N
i=1 θ

∗
i Fi(θ∗i ) = B so

that

qi(θ) =
{

1 if θi ≤ θ∗i
0 else.

(42)

Ti(θi) = θiQi(θi) +
∫ θi

θi

Qi(s)ds. (43)

We can set ti(θ) := Ti(θi) for all i. This mechanism is

1. Ex–post IC

2. Ex–post IR

3. Interim budget–feasible.

However, we can use AGV–budget–balancing (see, e.g., Börgers and Nor-
man, 2009) to get a mechanism which is ex–post budget–feasible. For this,
set

ti(θ) := Ti(θi)−
1

N − 1
∑
j 6=i

Tj(θj) +
∫
θ−i

1
N − 1

∑
j 6=i

Tj(θj)dθ−i. (44)

This mechanism is

1. Ex–post IC

2. Ex–post budget–feasible

3. intermim IR.

Note that it is not ex–post IR in general.
We show that the problem is characterized by FOCs. To this end, we need

Lemma 7. Pi(Bi) is a concave function.
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Using Lemma 7 we can characterize the solution of program (40). Using the
Lagrange multiplier λ for the budget constraint, and µi for the constraints
θi ≥ θi and γi for θi ≤ θi, we get the first-order conditions

wifi(θi) = λ(Fi(θi) + θifi(θi))− µi + γi ∀i = 1, . . . , N (45)
µi(θi − θi) = 0, θi ≥ θi, ∀i = 1, . . . , N (46)
γi(θi − θi) = 0, θi ≤ θi, ∀i = 1, . . . , N (47)
N∑
i=1

θiFi(θi) = B. (48)

Conditions (45) - (47) reveal that, in principle, the optimal mechanism can
treat players in three different ways. Player i’s cutoff value θ∗i might be
in the range (θi, θi), i.e. he might have strictly positive selling probability
(but does not sell with certainty). Thus, µi = γi = 0, by (46) and (47).
Then there might be players l with zero selling probability, i.e., µl > 0 and
θ∗l = θl. Finally, there might be sellers k who will sell with certainty, γk > 0
and θ∗k = θk. However, by (45), for all these players i, l and k, the ratios
below must be equal (to λ).

λ = wifi(θi)
Fi(θi) + θifi(θi)

= wlfl(θl) + µl
Fl(θl) + θlfl(θl)

= wkfk(θk)− γk
Fk(θk) + θkfk(θk)

, µj , γk > 0

(49)
Thus, all players i and j who sell with strictly positive probability (but not
with certainty) must have the same ratio of quality and virtual cost (just
writing the above condition for player i in terms of vi(θi) and simplifying)
and that ratio is equal to the multiplier for the (binding) budget constraint.

λ = wi
vi(θi)

= wj
vj(θj)

, for all i, j with θ∗i ∈ (θi, θi), θ∗j ∈ (θj , θj) (50)

Lemma 8. The optimal mechanism has the following properties:

1. wi
vi(θ∗i ) = wj

vj(θ∗j ) for all i, j where the optimal mechanism prescribes θi <
θ∗i < θi and θi < θ∗i < θi.

2. If θi = 0 for some player i, then θ∗i > θi, i.e., player i is in the
allocation with strictly positive probability.

3. In case of symmetry, i.e., all players are ex ante equal, w1 = · · · = wN ,
F1 = · · · = FN , all players have the same strictly positive selling
probability, but they do not sell with certainty.2

2(excluding the non-generic case where θ∗i = θ is an interior solution of the problem if
one ignores the constraint θi ≤ θ).
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Example Let N = 2, Fi = U [0, 1], w1 = w2, B = 1. Then the problem is
maxθ θ1 + θ2 s.t. θ2

1 + θ2
2 = 1.

L(λ) = θ1 + θ2 − λ(θ2
1 + θ2

2 − 1) (51)

⇒1 = 2λθ1 ⇒ θ1 = 1
2λ (52)

1 = 2λθ2 ⇒ θ2 = 1
2λ. (53)

Now choose λ s.t. θ2
1 + θ2

2 = 1 =
(

1
2λ

)2
+
(

1
2λ

)2
.

⇒ 1
4λ2 + 1

4λ2 = 1
2λ2 = 1 (54)

⇒λ = 1√
2

(55)

⇒θ∗1 = θ∗2 =
√

2
2 = 1√

2
. (56)

So,

q1 = q2 =

1 if θi ≤ 1√
2

0 else.
(57)

Ti(θi) =


1√
2 if θi ≤ 1√

2
0 else.

(58)

If we want ex–post budget–feasibility,

ti(θ) = Ti(θi)− Tj(θj) +
∫ 1

0
Tj(θj)dθj (59)

= Ti(θi)− Tj(θj) + 1
2 . (60)

3. a detail-free mechanism

In the last section we derived a (procurer) optimal Bayesian mechanism.
This model assumes that all distributions are public knowledge. This is a
good assumption in many settings, e.g. in settings where the same sellers
compete again and again. However, in other settings the assumption might
be too restrictive. What can we say if the distributions are not known?
Clearly, there is no mechanism that is globally optimal in the sense that it is
at least as good as any other mechanism on any instance. Thus, there is no
’detail free’ optimal mechanism. But if we restrict the class of mechanisms
in a suitable way we can find such a mechanism. In this section, we will
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present a simple and intuitive auction mechanism that pays a uniform trans-
fer relative to the quality of the item. In the special case where all qualities
are the same, this mechanism is detail free optimal among all mechanisms
that pay all sellers a uniform transfer. We introduced this mechanism in
Ensthaler and Giebe (2009). Papadimitriou and Singer (2010) analyse the
worst case performance of a similar mechanism. The mechanism can be seen
as an extension of the greedy split heuristic to this game theoretic knapsack
problem.

3.1. The detail-free setting

The buyer’s objective is now to purchase a subset of items of maximal qual-
ity, where the quality of a set of items is the sum of qualities of its elements.
As before, money does not enter the buyer’s utility function. We assume
that the probability of two types being equal is zero and that there is no
known statistical relation between sellers’ types, resp. between quality and
types.
We consider an open auction mechanism, where the sellers submit bids bi ≥
0. The vector of sellers’ bids is b = (bi, b−i) = (b1, . . . , bN ). Let A(b) := {i ∈
I|qi(b) = 1} denote the allocation resulting from the play of the auction
when the vector of final bids is b, and denote the complementary set by Ac.
The allocation is the set of sellers whose objects are procured. For simplicity,
denote ui(b) := ui(b|θi) and A := A(b) if confusion is unlikely.
The buyer’s utility is the total quality of the procured items,

ubuyer(A) =
∑
j∈A

wj =
∑
i∈I

qiwi, qi ∈ {0, 1}. (61)

Under complete information, the buyer faces a simple knapsack problem,

arg max
q

∑
i∈I

wiqi s.t.
∑
i∈I

θiqi ≤ B, q ∈ {0, 1}N . (62)

Call (62) the first-best allocation(s).

3.2. The Auction

Consider the following open descending clock auction. A central continuous
clock counts down the price-per-quality ratio r, beginning from the highest
initial ratio among all bidders, rmax := maxi∈I B/wi. A bidder can quit the
auction at any time, but can never come back. Being active at clock reading
r implies that bidder i is willing to accept a payment of rwi in return for
his item.
As the clock counts down, each active bidder’s current financial bid, rwi,
decreases. As long as the sum of active financial bids exceeds the budget,
the countdown continues. As soon as that sum fits in the budget, say, at
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round rf , the auction ends, and each active bidder i sells his item at the
price rfwi.
The sum of active financial bids decreases smoothly as the clock counts
down, until some bidder j exits, at which point that sum is reduced by the
amount rwj .
Two events can end the auction. First, the end can be triggered by an exit,
when before the exit, the sum of active financial bids exceeded the budget,
but after the exit the remaining active bids can be accomodated without
exhausting the budget. Second, it may end because at some point all active
bids exactly use up the budget.
After the auction, each loser j has a final ratio rj = bj/wj with financial
bid bj since j quit the auction at clock reading r = rj . All winners i have
the same final ratio rf = bi/wi with (different) selling prices bi.
In order to give a direct characterization of the auctions’ equilibrium result
we need the following notation.
Let li denote the set of players with final ratio not above that of bidder
i. Let rAc denote the smallest ratio among all players who are not in the
allocation (unless Ac = ∅).

li :=
{
j ∈ I

∣∣∣∣∣ bjwj ≤ bi
wi

}
(63)

rAc :=

min
{
bj

wj

∣∣∣ j ∈ Ac} if Ac 6= ∅
B

minj∈I wj
if Ac = ∅

(64)

Lemma 9.

1. The stop rule bi(θi) = θi is a weakly dominant strategy.

2. In equilibrium (setting bi = θi), the auction implements allocation A
and payments t where

qi(b) =
{

1 if bi
wi

∑
j∈li wj ≤ B

0 otherwise,
(65)

ti(b) =

min
{
rAcwi,

B∑
j∈A wj

wi

}
if qi(b) = 1

0 otherwise.
(66)

3. Truth-telling is ex-post rational.

4. The mechanism is ex-post budget feasible.

Let us now show that, if all bidders are ex ante identical, the auction mecha-
nism is detail-free optimal among all mechanisms that are deterministic and
pay all sellers in the allocation a uniform price per unit of quality.
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Lemma 10. Let θ ∈ Θ, wi = wj for all i, j and let (q̃, t̃) be any feasible,
deterministic mechanism with t̃i(θ) = t̃j(θ) for all i, j with q̃i(θ) = q̃j(θ) = 1.
Then

∑N
k=1 qi(θ) ≥

∑N
k=1 q̃i(θ).

Finally, we should mentioned there is another meaningful measure of opti-
mality in the detail free setting that we could have chosen for our analysis,
namely that worst-case performance of a mechanism. For the special case
where all items have the same quality, one can easily show that the auc-
tion is a 2-approximation, which means that in every instance, the first-best
allocation is at most twice as good as the allocation chosen by the auction:3

Lemma 11 (2-approx of First-Best). Suppose wi = wj for all i and j. The
proposed auction mechanism is a 2-approximation mechanism of the first-
best solution and this approximation is tight, i.e., if the auction selects an
allocation containing c items, then the first-best allocation does not contain
more than 2c items, c ∈ N, c > 0.

4. conclusion

We derived the Bayesian optimal mechanism for a novel type of mechanism
design problem, namely the Bayesian optimal budget feasible mechanism
for an additive objective function. We show that the mechanism can be im-
plemented in dominant strategies and does not require ex-post competition.
We use this mechanism to explain the granting procedure of public agencies
such as the National Science Foundation. We see room for further research.
For example, what can we say about the optimal selling mechanisms for
more general, non-additive objective functions. Also, it would be interest-
ing to derive the optimal ex-post mechanism, i.e. the optimal mechanism in
the class of mechanisms which are Dominant strategy incentive compatible,
ex-post individually rational and observe the ex-post budget constraint.

5. appendix

Proof of Lemma 1. First, we show that (19) and (20) imply (21), (22), and
(23). Start with (20):

Ui(θi|θi) ≥ Ui(θ̃i|θi) (67)
= Ti(θ̃i)− θiQi(θ̃i) (68)
= Ti(θ̃i)− θ̃iQi(θ̃i) + θ̃iQi(θ̃i)− θiQi(θ̃i) (69)
= Ui(θ̃i|θ̃i) +Qi(θ̃i)(θ̃i − θi). (70)

3For the general case with different qualities Papadimitriou and Singer (2010) show
that a slightly modified direct mechanism is a 6-approximation.
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Analogously, (with the roles of θi and θ̃i interchanged)

Ui(θ̃i|θ̃i) ≥ Ui(θi|θi) +Qi(θi)(θi − θ̃i). (71)

Suppose θi < θ̃i. Then we can combine (70) and (71) as

Qi(θ̃i) ≤ −
Ui(θi|θi)− Ui(θ̃i)|θ̃i

θi − θ̃i
≤ Qi(θi), (72)

which implies (21). From (72) we get (analogous to Myerson (1981))

U ′i(θi|θi) = −Qi(θi), (73)

which, after integrating, becomes (22). Finally, (19) together with (22)
implies (23).
Now prove that (21), (22), and (23) imply (19) and (20). Suppose θi < θ̃i.
We have

Ui(θi|θi)− Ui(θ̃i|θ̃i) =
∫ θi

θi

Qi(s)ds (74)

≥ Qi(θ̃i)(θ̃i − θi), (75)

where the first line follows from (22), and the second from (21). This,
however, implies (20):

Ui(θi|θi) ≥ Ui(θ̃i|θ̃i) +Qi(θ̃i)(θ̃i − θi) (76)
= Ti(θ̃i)− θ̃iQi(θ̃i) +Qi(θ̃i)(θ̃i − θi) (77)
= Ti(θ̃i)− θiQi(θ̃i) (78)
= Ui(θ̃i|θi) (79)

Finally, (22) and (23) together imply (19).

Proof of Lemma 2. Take any mechanism (q, t) with corresponding Ti(θi)
and Qi(θi) that satisfies (18) and (21)-(23) and suppose there is a player
i for which Ui(θi|θi) = Ti(θi) − θiQi(θi) > 0. Then the mechanism (q, t′)
where t′i = ti − Ui(θi|θi) is a feasible mechanism where U ′i(θi|θi) = 0. Thus,
any value of the objective function, (15), that is achievable with Ui(θi|θi) > 0
is also achievable with Ui(θi|θi) = 0.

Proof of Lemma 3. The proof is done in two steps. First, we show that for
any feasible mechanism (q, t) there exist i and θ̃i < θi such that Qi(θi) < 1
for all θi ≥ θ̃i. Suppose not. Then Qi(θi) = 1 almost everywhere for all i.
But then, by (25),

∫ θi
θi
Ti(θi)fi(θi)dθi = θi for all i. By feasibility, we know

that
∑N
i=1

∫ θi
θi
Ti(θi)fi(θi)dθi ≤ B. But then,

∑N
i=1 θi ≤ B, a contradiction

to our assumption that B <
∑N
i=1 θi.
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Second, we show that a mechanism with
∑N
i=1

∫ θi
θi
Ti(θi)fi(θi)dθi < B is not

optimal since the value of the objective, (15), can be improved without
exceeding the budget.
In order to see this, take any feasible mechanism (q, t) where the budget is
not exhausted,

∑N
i=1

∫ θi
θi
Ti(θi)fi(θi)dθi < B. Let θ∗i be the maximal θi such

that Qi(θi) = 1, and if it does not exist, let θ∗i be the minimal θi such that
Qi(θi) < 1 (by the above, we know such a θ∗i exists). Let ∆ > 0 and define
a mechanism (q′, t′) where

q′i(θi, θ−i) =
{

1 θi ∈ [θi, θ∗i + ∆]
qi(θi, θ−i) θi > θ∗i + ∆

(80)

t′i(θi, θ−i) =

θ∗i + ∆ +
∫ θi
θ∗i +∆Qi(s)ds θi ∈ [θi, θ∗i + ∆]

ti(θi, θ−i) θi > θ∗i + ∆.
(81)

For this mechanism, it is straightforward to show that

Q′i(θi) =
{

1 θi ∈ [θi, θ∗i + ∆]
Qi(θi) θi > θ∗i + ∆

, (82)

T ′i (θi) =
{
t′i(θi, θ−i) θi ∈ [θi, θ∗i + ∆]
Ti(θi) θi > θ∗i + ∆.

(83)

This mechanism is feasible: First, (25) and (21) are satisfied (the former is
easily shown and the latter is obvious). Second, if Ui(θi|θi) = 0 is satisfied
under (q, t) then it is also satisfied under (q′, t′). Third, since Q′i(θi) is
monotonic and thus continuous almost everywhere, it follows that there is
a sufficiently small ∆ such that (q′, t′) satisfies the budget constraint, (26).
Since

∫ θi
θi
Q′i(θi)fi(θi)dθi >

∫ θi
θi
Qi(θi)fi(θi)dθi, the value of the objective

function, (15), of (q′, t′) exceeds that of (q, t).

Proof of Lemma 4.

Bi =
∫ θi

θi

Qi(θi)
(
Fi(θi)
fi(θi)

+ θi

)
fi(θi)dθi (84)

=
∫ θi

θi

Qi(θi)Fi(θi)dθi +
∫ θi

θi

Qi(θi)θifi(θi)dθi (85)

≤
∫ θi

θi

Fi(θi)dθi +
∫ θi

θi

θifi(θi)dθi (86)

=
∫ θi

θi

Fi(θi)dθi + [θiFi(θi)]θi
θi
−
∫ θi

θi

Fi(θi)dθi (87)

= θi, (88)
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where the third line follows from Qi(θi) ≤ 1 and the fourth from integration
by parts.

Proof of Lemma 5. Define

Q∗i (θi) :=
{

1 if θi ≤ θ∗i
0 else,

(89)

which satisfies (32). Then we have

∫ θi

θi

Q∗i (s)
(
Fi(s)
fi(s)

+ s

)
fi(s)ds =

∫ θ∗i

θi

(
Fi(s)
fi(s)

+ s

)
fi(s)ds, (90)

which is equal to zero for θ∗i = θi and equal to θi for θ∗i = θi. By Lemma
4, Bi ∈ [0, θi]. Since (90) is continuous (by continuity of Fi and fi), there
must exist a θ∗i ∈ [θi, θi] such that (90) is equal to Bi.

Proof of Lemma 6. Consider (35). First, we argue that there exists a c ≥ 0
such that (33) is satisfied for every Bi ∈ [0, θi]. For c = 0, the LHS of
(33) is equal to zero: We have Q∗(θi) = 0 almost everywhere, see (35). For
c ≥ max vi(θi), we have Q∗(θi) = 1 and, thus, the LHS of (33) is equal to
θi (after integrating by parts). By continuity of vi(θi) and fi(θi), it follows
that there is a c ≥ 0 such that the LHS of (33) takes any value from the
range [0, θi].
Second, take any function Qi, that satisfies (32) and (33) and has range
[0, 1].

(Q∗i (θi)−Qi(θi)) (fi(θi)(c− vi(θi))) ≥ 0 (91)

⇒
∫ θi

θi

(Q∗i (θi)−Qi(θi)) (fi(θi)(c− vi(θi))) dθi ≥ 0 (92)

⇐⇒ c

(∫ θi

θi

Q∗i (θi)fi(θi)dθi −
∫ θi

θi

Qi(θi)fi(θi)dθi

)
(93)

≥
∫ θi

θi

Q∗i (θi)vi(θi)fi(θi)dθi −
∫ θi

θi

Qi(θi)vi(θi)fi(θi)dθi = 0 (94)

⇒
∫ θi

θi

Q∗i (θi)fi(θi)dθi ≥
∫ θi

θi

Qi(θi)fi(θi)dθi (95)

There, the first line follows from feasibility of Qi and (35). The equality in
the fourth line follows from feasibility, i.e., both Q∗i and Qi satisfy (33).
Thus, the objective function, (30), reaches a (weakly) larger value with
Q∗i .
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Proof of Lemma 7. The constraint (39) defines a unique θi for every given
Bi. Thus, we can write θi as a function of Bi and the constraint becomes
Bi = θi(Bi)Fi(θi(Bi)), the derivative of which is

1 = θ′i(Bi)Fi(θi(Bi)) + θi(Bi)fi(θi(Bi))θ′i(Bi) (96)

⇐⇒ θ′i(Bi) = 1
Fi(θi(Bi)) + θi(Bi)fi(θi(Bi))

(97)

⇐⇒ fi(θi(Bi))θ′i(Bi) = 1
Fi(θi(Bi))
fi(θi(Bi)) + θi(Bi)

. (98)

By the regularity assumption, Fi(θi)/fi(θi) + θi is strictly increasing. Thus,
f(θi(Bi))θ′i(Bi) is strictly decreasing, which makes P ′i (Bi) = wfi(θi(Bi))θ′i(Bi)
strictly decreasing as well. Thus, Pi(Bi) is concave.

Proof of Lemma 8.

1. Since θi < θ∗i < θ
∗
i and θi < θ∗i < θ

∗
i , we get µi = γi = µj = γj = 0 by

(46) and (47). Therefore, see (50), the assertion follows.

2. This follows from (49) since θl = 0 implies division by zero.

3. If players are symmetric, then (by strict monotonicity of v)

wf(θ)− γi
v(θ)f(θ)

<
wf(θ)
v(θ)f(θ)

<
wf(θj)

v(θj)f(θj)
<

wf(θ)
v(θ)f(θ) <

wf(θ) + µj
v(θ)f(θ) .

(99)

Thus, by (49), all players must have either θ∗i = θ or θ∗i = θ or θ∗i ∈
(θ, θ). The first is not feasible by the proof of Lemma 3 and the second
cannot be optimal. Thus, θ∗i ∈ (θ, θ) for all players. Then, by (50),
and the strict monotonicity of v, θ∗i = θ∗ ∈ (θ, θ) for all players i.

Proof of Lemma 9.

1. Suppose a seller plays the candidate. His profit is either zero, if he has
to quit before the auction ends, or it is positive, if the auction ends
before he quits. Consider stopping earlier. Either there is no change
or he quits but could have made a profit. Consider stopping later.
Either there is no change, or he makes a loss if the auction ends after
r = θi but before he quits.

2. By Lemma 9, winners’ true ratios are below the final ratio, θi/wi <
rf = bi/wi since they were active at the end of the auction. Thus,
winners have lower true ratios than losers. All winners are paid ac-
cording to the same ratio, rf , i.e. winner i gets bi = rfwi. Thus, i is
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a winner iff it is feasible to pay every player with same or lower final
ratio according to i’s final ratio, see (65).
Losers receive no payment and keep their items. The payments to the
winners i ∈ A depend on which event ends the auction. If the end is
triggered by an exit, then the exiting player’s final ratio determines
the payments, rAcwi, otherwise payments are B∑

j∈A wj
wi, i.e., they use

up the budget.
The second line in (64) just makes the definition complete but is never
payoff-relevant.

3. Obvious.

4. Obvious.

Proof of Lemma 10. Suppose w.l.o.g. that the type vector is ordered, θ1 <
θ2 < · · · < θN and suppose that the auction mechanism selects allocation
{1, . . . , c}. Suppose per absurdum that there exists a feasible determinis-
tic mechanism (q̃, t̃) with uniform transfers to winners and

∑N
k=1 qi(θ) <∑N

k=1 q̃i(θ). Then there exists an i ∈ {c + 1, . . . , N} with q̃i(θ) = 1. By
feasibility, t̃i(θ) ≥ θi. But then, θc+1(c+ 1) ≤ B, a contradiction.

Proof of Lemma 11. As a proof of tightness, suppose B = 100, and there are
two sellers with θ1 = 49, θ2 = 51. The first-best allocation is {1, 2}, while
the auction selects {1}. Thus, the first-best allocation contains exactly twice
as many elements.
In order to proof the 2-approximation property, suppose, w.l.o.g., the vector
of types is ordered such that θ1 < θ2 < · · · < θN . Furthermore, suppose the
allocation selected by the auction is {1, 2, . . . , c}. We show that the first-best
allocation cannot contain 2c+1 elements (or more). Since A = {1, 2, . . . , c},
we have θc+1(c + 1) > B, otherwise, by (65), seller c + 1 would also be in
A. Suppose, per absurdum, that {1, 2, . . . , c, . . . , 2c + 1} is a subset of the
first-best allocation, i.e., the first-best allocation has at least 2c+1 elements.
Then

∑2c+1
i=1 θi ≤ B which implies

∑2c+1
i=c+1 θi ≤ B. Since the type vector is

ordered, it follows that θc+1(c+ 1) ≤ B which implies that seller c+ 1 is in
the allocation selected by the auction, a contradiction.
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