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Abstract

This paper studies the competitive equilibrium outcome in decentralized asset

markets when both search frictions and adverse selection play a role. In a dynamic

environment with heterogeneous sellers and buyers, I show how adverse selection

leads to the downward distortion of equilibrium market liquidity. As our setup

captures two important dimensions in the trading market, price and liquidity, it

shows how price and liquidity are jointly determined as an equilibrium outcome

and further sheds lights on market segmentation. The model predicts a strong

link between the market liquidity and the underlying uncertainty stemming from

adverse selection and provides an explanation for the existence of massive illiquidity.

It further allows for a richer analysis of how sorting patterns are determined in such

an environment and how di¤erent market distortion may arise when sellers�motives

for sale are unknown to the market.

Key words: Liquidity; Search frictions; Adverse selection; Over-the-Counter;

Market segmentation

�I am indebted to Dale Mortensen for continuous support and encouragement. The paper also bene�ts

from the discussion with Andrea Eisfeldt, Veronica Guerrieri, Arvind Krishnamurthy, Philpp Kircher,

Alessandro Pavan, Robert Shimer, Martin Eichenbaum, Martin Schneider, Matthias Doepke, Randall

Wright, Mirko Wiederholt, Daniel Garrett, Simone Galperiti, and Martin Szydlowski. I also thank sem-

inar participants at the SED Annual Meeting and North American Summer Meeting of the Econometric

Society.
yNorthwestern University, Dept. of Economics. Email: bri.c@northwestern.edu / For the latest version,

please see: www.brianachang.com

1



1 Introduction

It is commonly believed that massive illiquidity in asset markets has been a catalyst for the

current �nancial crisis. Illiquid markets make it di¢ cult for companies to access capital

and likewise for investors to �nd a place to put their money to work. The real question is

why markets remain illiquid even when there is a positive gain from trade. Furthermore,

market liquidity usually presumes that there are buyers on the other side. However, as

the recent crisis has demonstrated, the possibility of a "buyers strike" arises. This concept

seems contradictory to the standard notion that prices should adjust downward to the

level at which buyers will be willing to enter the market. These phenomena show that for

a model to speak on this issues, it is important to understand both the trading price and

the market liquidity. To this end, this paper studies a dynamic environment in which the

decentralized trading markets are subject to both search frictions and adverse selection. It

demonstrates how illiquidity arises endogenously as an competitive equilibrium outcome

and analyzes the impact of market distortions on both the price and the market liquidity.

As lot of assets are traded in decentralized markets, traders must search for the coun-

terparty. Traders therefore care about both the selling price as well as liquidity, which, in

line with the Over-the-Counter and monetary search literature, is de�ned as the expected

search time. This de�nition here emphasizes the idea that market liquidity is provided by

buyers on the other side of the market. How fast a seller can cash his assets will depend

crucially on how many buyers are out there, ie, how tight the market is. The other key

element in our framework is adverse selection, which can not be overemphasized. For ex-

ample, the di¢ culty in assessing the fundamental value of asset-backed securities, which

therefore leads to the adverse selection problem, has been one of the prevailing expla-

nations for the recent crisis. Introducing search frictions with adverse selection is not

only realistic but further allows the analysis on the impact of information frictions on the

market liquidity (the extensive margin of trade) besides the trading price (the terms of

trade). This makes this paper distinct from the long literature on adverse selection, which

only focuses on the price discount. In particular, as our setup employes the competitive

search equilibrium where uninformed principals (buyers) post prices to attract informed

agents (sellers) and sellers direct their search toward their preferred market, traders sort

themselves into di¤erent market environments taking into account both price and liquid-

ity. Hence, the model gives predictions on price, market liquidity (trading volume) as well

as market segmentation.

The �rst result shown in our basic model illustrates that with the existence of adverse
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selection, the equilibrium market liquidity will be downward distorted when compared to

an environment with complete information. In fact, as an equilibrium outcome, prices

will not adjust downward and fewer buyers will enter. In particular, the market with a

higher quality asset will su¤er a more distorted market tightness when compared to the

benchmark with complete information. The key intuition is that holding di¤erent quality

assets results in di¤erent liquidity preference. This is essentially the mechanism behind

this paper, which demonstrates an agent�s type is revealed by his choice of market. The

same mechanism also plays a role in a contemporaneous work by Guerrieri and Shimer

(2011), who studies the competitive equilibrium outcome in a dynamic asset market with-

out search frictions. In both Guerrieri and Shimer (2011) and our basic model, liquidity

distortion works as a screening mechanism at the equilibrium. This outcome is unique and

no pooling equilibrium, which involves the price distortion in the standard lemon model,

can be sustained. Furthermore, in such an environment, I establish a strong link between

the market liquidity (tightness) and the underlying uncertainty stemming from adverse

selection. It is shown that the underlying dispersion, or more precisely, the possible range

of underlying asset qualities, plays an important role in determining the equilibrium mar-

ket liquidity: the higher the dispersion, the more illiquid the market. Contrary to the

standard lemon model, what matters is the dispersion (range) of the asset instead of the

expected value.

It is important to note, however, that such an equilibrium outcome relies on the fact

that buyers� willingness to pay aligns with sellers� preference over liquidity, which in

general is not necessarily the case. For example, in a setting when sellers�motives for sale

are unknown to the market, the types who are willing to wait longer are not necessarily

the ones with more valuable assets. Therefore, the corresponding mechanism must adjust.

In a more general setting, we �rst identify the key condition for the existence of our

baseline result and then show how a combination of both price and liquidity distortion

arises when this condition does not hold. Utilizing this result, I investigate a setting

when sellers� liquidity position are their private information and show how this setup

can be nested in our general model. Interestingly, a semi-pooling equilibrium, behaving

like a �re sale, arises endogenously in such an environment, which is then di¤erent from

Guerrieri and Shimer (2011) and Guerrieri et al. (2010). In such an equilibrium, certain

types of sellers will choose to enter a submarket that is liquid but has a heavy price

discount. On the other hand, di¤erent types of sellers will enter a submarket with liquidity

distortion but with a high selling price. It is important to note that although the impact of

market illiquidity and the price discount is well understood, most analyses are conducted
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assuming their existence; little is known about why each occurs in the �rst place. For

example, the standard model for lemons which focuses in price discounts is only one

special type of market distortion. Our framework allows us to answer the question as to

why some asset markets remain illiquid while some markets su¤er price discount. The

contribution is therefore twofold: it is �rst to establish how price and market liquidity are

jointly determined by adverse selection and by the market�s perceived motives for selling.

Second, it demonstrates that depending on sellers�liquidity preference as well as buyers�

willingness to pay, di¤erent types of market segmentations and hence di¤erent forms of

market distortions, arise as an equilibrium outcome.

The key ingredient of our model is the endogenous market liquidity stemming from

search frictions and adverse selection in the competitive decentralized trading markets.

Theoretically, our work is closest to Guerrieri et al. (2010), who apply the notion of

competitive search equilibrium to an environment with adverse selection in a static en-

vironment. As discussed in Guerrieri et al. (2010), this equilibrium concept is similar

to the re�ned equilibrium concept developed in Gale (1992) and Gale (1996). In the

above works, uninformed principals post (exchange) contracts, and it is important that

the contract satis�es the sorting condition so that agents are screened. This assumption

however does not hold here, as the contract space is limited to the payment in our trading

environment. Therefore, the only instrument to screen agents here is the market liquidity.

This di¤erence allows us to use a di¤erent approach to characterize the equilibrium by

establishing the decentralized competitive equilibrium as a mechanism design problem.

This method simpli�es the equilibrium characterization to solving a di¤erential equation

and it further facilitates the analysis for a more general environment. A market designer

in such environment needs to match agents from two sides of the market, designing the

price and market liquidity for each submarkets subject to both sellers�and buyers�opti-

mality constraints. We �rst identify the conditions under which the least-cost separating

equilibrium is obtained, which ties our result to Guerrieri et al. (2010). However, it is

important to understand that the screening mechanism in such environment is a combi-

nation of a downward distorted market liquidity and a upward price schedule. Hence, it is

necessary that buyers are willing to pay more for a more patient seller, which is governed

by the monotonicity in the matching value. Economically, the monotonicity condition

says that the more patient types generate higher matching value to buyers, which how-

ever does not hold in general. With this new approach, we further expand our analysis

to an environment when the monotonicity in the matching value is relaxed and show how

the equilibrium behaves di¤erently. In particular, a semi-pooling equilibrium arises in
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such an environment and, in general, it is not unique.

Furthermore, our setup is dynamic and is designed to handle two-sided heterogeneity

with a general payo¤ function, so that it can be easily applied to a more general trading

environment. Allowing for heterogenous buyers takes into account the competition among

buyers as well as their diversity, which is the hallmark of economic exchange. It therefore

sheds light on the sorting pattern. In particular, it is well known that, supermodularity

in matching value is not enough to guarantee positive assortative matching (PAM) in

a search framework. For example, Eeckhout and Kircher (2010) studies the sorting of

heterogeneous agents in a competitive search trading market with complete information

and identi�es the condition under which PAM obtains. We show that, however, with

adverse selection, positive assortative matching is guaranteed by the supermodularity in

matching value.

This paper is related to two lines of literature which focuses on search friction and

adverse selection in asset markets separately. First of all, the literature focusing on

the e¤ect of search friction in asset markets includes the OTC literature put forth by

Du¢ e et al. (2005), Du¢ e et al. (2007)1 and the monetary search literature2 ( for

example, Kiyotaki and Wright (1993), Trejos and Wright (1995)). Compared to the

above literature, this paper focuses on how equilibrium market liquidity, ie, the market

tightness, is determined in a direct search framework, which is developed in the labor

search literature, put forth by Moen (1997), Burdett et al. (2001) and Mortensen and

Wright (2002). Two important elements in such a framework are 1) buyers commit

to the posting price and 2) sellers direct their search toward their preferred markets.

This framework is important as it allows us to analyze how traders sort themselves into

di¤erent submarket. Furthermore, we consider the environment in which sellers have

private information about their asset quality. There are few works which also consider

both search frictions and adverse selection and most are done in a framework of random

search. For example, in a model of production and exchange under private information,

Williamson and Wright (1994) studies the impact on the time it takes to buy and sell and

shows how the introduction of �at money can improve welfare. Also, a recent work by

Chiu and Koeppl (2011) studies trading dynamics and policy implication in OTC market

in a random search setting, where a pooling equilibrium is obtained.

Our work is also related to the large literature on the classic market for lemons Akerlof

1Building on their model, the emerging literature studies the e¤ects of liquidity in search models of

asset pricing. For example, Weill (2008), Lagos and Rocheteau (2009)
2Williamson and Wright (2008) provides a detailed survey for this line of literature.
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(1970) and on dynamic adverse selection models. In most cases, all trades are assumed to

take place at one price so a pooling equilibrium and therefore a price discount is obtained,

for example, Eisfeldt (2004) and Daley and Green (2009). Compared to this line of

literature, our setting introduces another important dimension of the market distortion:

liquidity. In fact, in our basic model, a pooling equilibrium can not be sustained as long

as buyers have freedom to post the price and sellers can direct their search to each market

(price) and a fully separated equilibrium is the unique outcome. This therefore implies

several distinct features: 1) All markets, in the equilibrium, are priced and open if and

only if there is a positive gain from trade for the worst possible asset; 2) Nevertheless,

some high quality asset markets are rather illiquid (or even close to frozen) so it is hard

for sellers to get rid of their assets; 3) More importantly, di¤erent dispersion of the asset

quality will have a �rst order e¤ect on market illiquidity. Contrary to the standard

adverse selection problem, which predicts that the equilibrium outcome highly depends

on the expected value of assets because of the feature of a pooling equilibrium, what

matters in our framework is the dispersion of asset quality. Furthermore, in a more general

environment, we show how both price discount and liquidity distortion can arise resulting

from di¤erent types of market segmentation. A submarket involving pooling exists and

its behavior then shares similar feature with this line of literature. However, the novelty

is show how di¤erent market segmentations may arise as an equilibrium outcome, without

imposing it.

The rest of the paper is organized as follows. Section 2 introduces the basic model

and characterizes the equilibrium outcome. Section 3 extends the basic model to allow for

heterogenous buyers, resale, and the non-monotonicity in the matching value. Section 4,

we further consider a setup when sellers�motives for sale are unobserved by the market.

Section 5 and Section 6 discuss e¢ ciency, sorting behaviors, and other related implica-

tions. For example, we show that why some types of �nancial securities, paying similar

cash �ows, are more liquid than others. Furthermore, applying the developed method to

explain �rms�capital reallocation, our framework provides the micro-foundation of the

reallocation pattern documented in Eisfeldt and Rampini (2006) and allows for a richer

analysis of how this market friction respond to varied economic shocks.

2 A Basic Model

There is a continuum of sellers who own one asset with di¤erent quality indexed by s 2 S,
which is a seller�s private information. Assume that S = [sL; sH ] � R+ and G0(s) denote
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the measure of sellers with asset quality weakly below s at t = 0. While holding the asset

s, the seller enjoys a �ow payo¤ s but must at the same time pay a holding cost c as long

as the asset remains unsold. One can think of this as a simple way to model a seller�s need

to "cash" the asset. As explained in Du¢ e et al. (2007), we could imagine this holding

cost to be a shadow price for ownership due to, for example, (a) low liquidity, that is,

a need for cash; (b) high �nancing cost; (c) adverse correlation of asset returns with

endowments; or (d) a relatively low personal use for the asset, for example, for certain

durable consumption goods such as homes. For now, one should think the holding cost

c as an easy way to generate the gain from trades. As shown in our general model, the

main result holds for a general payo¤. There is a large continuum of homogenous buyers.

That is, we assume that the measure of buyers is strictly larger than sellers and free-entry

condition holds on the buyers�side. A buyer who owns the asset s enjoys a �ow payo¤

s: In order to buy the asset, the buyer needs to enter the market to search for the seller,

incurring a search cost, k > 0 for the duration of the search. The measure of buyers who

decide to enter the market is endogenously determined by free-entry condition. For our

basic model, we assume traders leave the market once the trade takes place.

All agents are in�nitely lived and discount at the interest rate, r:Time is continuous.

The setup borrows the direct search framework. Buyers (uninformed principals) post a

trading price and sellers direct their search toward their preferred market. All traders have

rational expectations in the equilibriummarket tightness, the buyer-seller ratio, associated

with each market �(p), which will be endogenously determined in the equilibrium. As

standard, in each submarket, matching is bilateral and traders are subject to the random

matching function. A seller who enters the submarket (p; �(p)) matches a buyer with

the Poisson rate m(�(p)): The idea that relatively more buyers make it easier to sell is

captured by assuming m(�) is a strictly increasing function in �. On the other hand, a
buyer at the market (p; �(p)) meets a seller with the rate q(�(p)); where q(�) is assumed to
be a strictly decreasing function in �. That is, when there are relatively more buyers, it

becomes harder for buyers to trade. Trading in pairs further requires that m(�) = � �q(�).
Particularly, throughout this paper, we assume that the matching function takes Cobb-

Douglas form so that m(�) = �� where 1 > � > 0: Our result is robust to a di¤erent form

of search technology with standard assumptions3.

3That is, m(�) is twice continuously di¤erentiable and strictly concave.
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2.1 Benchmark: Complete information

We �rst establish the benchmark with complete information, which is the canonical com-

petitive search model put forth by Moen (1997). In our particular setup, buyers simply

post a trading price and sellers direct their search toward their preferred market. More-

over, following the interpretation of Mortensen and Wright (2002), one can imagine the

competitive search equilibrium as if there is a market maker who can costlessly set up a

collection � of submarkets. Each market can be characterized by a pair (�(p); p), which is

known ex ante to participants. Given the posting price and the market tightness in each

market, each trader then selects the most preferred submarket in which to participate

(search). With the assumption that there is perfect competition among market makers,

the market maker�s problem is then to maximizes traders�utilities.

Sellers�and buyers�expected utilities who enter the market with the pair (�; p) can be

expressed as follows, respectively:

rV (s; �; p) = s� c+m(�))(p� V (�; p; s))

rUb(s; �; p) = �k +
m(�)

�
(
s

r
� p� Ub(�; p; s))

Free entry condition for buyers is assumed. That�s, buyers�entry and exit decisions

are instantaneous and they will adjust until free entry condition holds. With perfect

information, one can solve the equilibrium independently for each asset s. The market

maker�s optimization problems for each asset s is:

max
p;�

U(s) = max
p;�

s� c+ pm(�)
r +m(�)

st : Ub(s) =
m(�)( s

r
� p)� �k

r� +m(�)
= 0

One can easily see that �FB solves following FOC:

c

k
=
1

�
(r�1��FB + (1� �)�FB) (1)

Notice that �FB is an increasing function of the cost ratio, ck . Namely, it is relatively

easier for sellers to meet the buyer, and it takes longer for the buyer to �nd the seller

when the holding cost is higher. Also, the �rst best solution is independent of the asset

quality. The intuition is clear since the gain from trade is simply the holding cost, which

is independent of the asset quality. The price of each asset is then: pFB(s) = s
r
� k�FB

m(�FB)
,
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the expected value of the asset minus the expected searching cost paid by buyers. One

can easily check that IR constraint holds for all types of sellers. Obviously, �rst-best

allocations can not be implemented in the environment with adverse selection. Facing the

same market tightness, sellers always want to pretend a higher type so that they can get

a higher payment.

2.2 Equilibrium with Adverse Selection

We now turn to the environment with adverse selection, that is, sellers have private

information about the asset quality. As in the complete information environment, buy-

ers/sellers choose the price they would like to o¤er/accept, and all traders have rational

beliefs about the ratio of buyers to sellers �(p) in each market p: The key di¤erence is that,

given sellers�types are unobserved, buyers now form rational beliefs about the distribu-

tion of sellers�types in each market p; which determines the expected asset quality they

receive in each submarket. It is important to note that given the expected asset quality

in each submarket, free-entry condition determines the measure of active buyers in each

market independently of the distributions of sellers in other submarkets. As a result, the

equilibrium market tightness function �(�) does not depend on the distributions of sellers
in other submarkets. This property is important as it simpli�es our analysis to stationary

equilibria where the set of o¤ered prices P � and the market tightness function �(�) are
time invariant even though the aggregate distribution might change over time.

To elaborate, consider the set of o¤ered price and the function �(�) which are time
invariant. Each market is then characterized by a pair (p; �(p)):It is su¢ cient for sellers

to choose their searching decision and, obviously, sellers�strategy are stationary facing

the time invariant (p; �(p)): Sellers�trading decisions then determine the expected asset

quality in each submarket, which pin down the buyers�expected value of buying an asset

in each market p : �J(p) =
R
J(~s)�(~sjp)d~s; where �(sjp) denotes the probability of a type-s

seller conditional on a match in the market p and J(s) denotes buyers�value of buying the

asset from type-s seller. Notice that given sellers�searching decisions are stationary and

the matching is random in each submarket, the composition of sellers�types is therefore

stationary as well as buyers�expected matching value �J(p). Furthermore, the free entry

condition guarantees that at each point of time the measure of active buyers generates

the correct ratio �(p) in each submarket such that p = �J(p) � k�(p)
m(�(p))

for all p 2 P � and
therefore the market tightness function �(p) is then stationary. Finally, one still needs

to show that the set of o¤ered prices P � is time invariant. As it will become clear in
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the later discussion, the set of o¤ered prices depends on sellers�equilibrium utilities and

the range of underlying asset quality; both of them are time invariant in the constructed

environment. Hence, the above discussion shows that traders� strategy are stationary

in such an environment even though the aggregate distribution might change over time

and a¤ect aggregate statics. Note that in a setting of competitive search models with

heterogeneous agents, it is well known that the type distribution does not play a role as

the standard result in the literature is the full separation, for example, Moen (1997). Shi

(2009) further establishes the block recursive property in the environment when search

on the job is allowed. The outlined argument here shares the same spirit with Shi (2009)

but with the following modi�cations: 1) The possibility of (semi) pooling is allowed. In

that case, the distribution of sellers�types in other submarkets does not play a role, as

implied by block recursive property, but, clearly, the distribution within each market

matters, which is governed by �(�jp): 2) As it will become clear later, the determination
of � in each market depends on the range of underlying distribution, which is the key

feature stemming from adverse selection. Nevertheless, as shown in the above discussion,

to solve for the equilibrium, it is enough to characterize the set of active markets P �, the

equilibrium market tightness function �(�); and the composition �(sjp) in each market.
This property, eliminating the role of the aggregate distribution, makes our dynamic

environment tractable. The following section then characterizes traders�decision in such

stationary equilibria, neglecting the role of aggregate distribution, and one can easily back

up the aggregate dynamics afterward.

Clearly, no trade takes place at prices below zero and above J(sH); and we de�ne the

set of feasible prices as P = [0; J(sH)]. An equilibrium consists of a set of o¤ered price P �,

a market tightness function �(�) and traders�trading decisions. First of all, buyers�and
sellers�expected payo¤, entering a active markets (p; �(p)); can be expressed as following:

rUb(p; �; �(p)) = �k + m(�(p))
�(p)

(

Z
~s

r
�(~sjp)d~s� p� Ub)

rV (p; �(p); s) = s� c+m(�(p))(p� V (p; �(p); s))

Given the markets which are open, which can be characterized as (p; �(p)); sellers

direct their search toward their preferred market and can always choose the option of no

trade, denoted by ?4. The equilibrium expected utilities of seller s then must satisfy:

4To make the choice of no trade consistent with the rest of our notation, let ?p = �P > J(sH) denote

a nonexistent price which is higher than the feasible pirce and the trading probability at ?p is zero,
�(?p) = 0: Hence, a seller achives his outside option s�c

r if ? = argmaxV (p; �(p); s):
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V �(s) = max
p2P �[?

V (p; �(p); s)

We now need specify the belief out of the equilibrium path. Our equilibrium concept

adopts Guerrieri et al. (2010), which is also similar to the re�ned Walrasian general-

equilibrium approach developed in Gale (1992)5. The spirit follows the market utility

property used in the competitive search equilibrium literature6. When a buyer contem-

plates a deviation and o¤ers a price p which has not been posted; p =2 P �; he has to form
a belief about the market tightness and the types he will attract, taking sellers�utilities

V �(s) as given. First of all, a buyer expects a positive market tightness only if there is a

type of seller who is willing to trade with him. Moreover, he expects to attract the type

s who is most likely to come until it is no longer pro�table for them to do so. Formally,

de�ne:

�(p; s) � inff~� > 0 : V (p; ~�; s) � V �(s)g
�(p) � inf

s2S
�(p; s) (2)

By convention, �(p; s) =1 when V (p; ~�; s) � V �(s) has no solution, mainly �(p; s) =
1 for any p < V �(s) . Intuitively, we can think of �(p) as a lowest market tightness for

which he can �nd such a seller type. Now let T (p) denote the set of types which are most

likely to choose p:

T (p) = arg inf
s2S
f�(p; s)g

Therefore, this suggests that, given �(p); p is optimal for every type s 2 T (p) but not
optimal for s =2 T (p): Hence, the buyer�s assessment about �(sjp) for any posting price p
needs to satisfy the following restriction:

For any price p =2 P � and type s, �(sjp) = 0 if s =2 T (p) (3)

In the case when T (p) is unique, a buyer then expects this deviation will only attract

seller T (p) and therefore �(sjp) = 1 if s = T (p) and �(sjp) = 0 for 8 s =2 T (p). To simplify
the notation, let �p denote the sellers�distribution �(�jp) conditional on the market p:

5See Guerrieri et al. (2010) for the detailed discussion regarding its relationship with di¤erent re�ne-

ment developed in the previous literature.
6Burdett, Shi and Wright (2001) prove that a competitive search equilibrium is the limit of a two

stage game with �nite numbers of homogeneous buyers and sellers, which can be understood as a micro-

foundation for the market utility property.
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De�nition 1 An equilibrium consists of a set of o¤ered price P �, a function of seller�s

expected utilities V �(s), a market tightness function in each market p, �(�) : P ! [0;1];
the conditional distribution of sellers in each submarket � : S �P � ! [0; 1]; such that the

following conditions hold:

E1 (optimality for sellers): let

V �(s) = maxfs� c
r
;max
p02P �

V (p0; �(p0); s)g

and for any p 2 P � and s 2 S; �(sjp) > 0 implies p 2 argmaxp02P �[? V (p0; �(p0); s)
E2 (optimality for buyers and free-entry): for any p 2 P �

0 = Ub(p; �(p); �p)

;and there does not exist any p0 2 P such that Ub(p0; �(p0); �p0)) > 0, where �(p0) and

�(sjp0) satis�es (2) and (3)

As explained earlier, the aggregate distribution does not play a role. The law of motion

of the stock of sellers in each market is given by the transaction out�ow. On the other

hand, buyers�participation must generate the correct buyer-seller ratio �(p) at each point

time in all the submarkets according to E2: To characterize the equilibrium, one does not

need to track the aggregate distribution and, therefore, the role of traders�distribution

is eliminated in the above de�nition. Nevertheless, one can back up traders�distribution

over time after solving the equilibrium above as shown in the later discussion.

2.3 Characterization

We now show that the equilibrium outcome can be characterized as the solution of a

mechanism design problem which takes into account both sellers�and buyers�optimality

condition. Intuitively, one can think of a market designer who promises the price and the

market tightness in each submarket so that sellers truthfully report their type, that is,

condition E1 has to hold. Moreover, a feasible mechanism must satisfy the market clear

condition. In other words, the market tightness must equal the ratio of the measure of

buyers who are willing to pay p to the measure of types-s sellers who are willing to accept

p. Meanwhile, given that buyers can post the price freely in the decentralized markets,

any price schedule recommended by the market designer has to be optimal for buyers.

Otherwise, buyers will deviate by posting price other than the ones recommended by the

mechanism designer. This point is characterized by condition E2:
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Overview of the solution: Our approach therefore follows two steps: First, we
characterize the set of feasible mechanism � 2 A; which satis�es E1 and free-entry condi-
tion (Proposition 1). Second, we use E2 to identify the necessary condition for which the

solution to the mechanism can be decentralized in equilibrium. This result enables us to

pin down the unique candidate among the set of feasible mechanism A , which is a fully

separating one. At the end, we show that this candidate is indeed the solution, that is,

E2 and participating constraints are all satis�ed.

To �nd out the set of mechanism that satis�es sellers�IC constraints, we setup the

problem as a mechanism design problem (of an imaginary market designer). By the reve-

lation principle, it will be without loss of generality to focus direct revelation mechanisms.

A direct mechanism is a pair (�; p) where � : S ! R+ is the market tightness function

and a price function p : S ! R+. The mechanism is interpreted as follows. A seller who

reports his type ŝ 2 S will then enter the market with the pair (�(ŝ); p(ŝ)): Hence, the
value of seller s announces his type ŝ;denoted by V (ŝ; s); can then be expressed as:

rV (ŝ; s) = s� c+m(�(ŝ))(p(ŝ))� V (ŝ; s))

The seller�s optimal search problem can be rearranged as:

V �(s) = fs� c
r
;max

ŝ

s� c+ p(ŝ)m(�(ŝ))
r +m(�(ŝ))

g

Notice that a seller can always choose not to participate and he will get his autarky

utility s�c
r
in that case. For convenience, one can think of not entering the market as if

choosing the market where the matching rate is zero. As the mechanism has to satisfy

sellers�IR constraint, we set �(s) = 0 whenever IR constraint is binding. Sellers�optimal

search problem can be re-written as the requirement that s 2 argmaxs02S V (ŝ; s): First
of all, we can prove that any mechanism which satis�es E1 can be characterized with

following proposition:

Proposition 1 The pair of function f�(�); p(�)g satis�es sellers�optimality condition (E1)
if and only if following conditions are satis�ed:

1

r +m(��(s))
is non-decreasing (M)

V �(s) =
u(s) + p�(s) �m(��(s))

r +m(��(s))
= V �(sl) +

Z s

sl

Vs(�
�(~s); ~s)d~s (ICFOC)

V �(s) � u(s)

r
(IR)

13



Proof. Standard proof in mechanism design literature (Milgrom and Segal (2002)). See

Appendix. In this basic model, u(s) = s� c:
De�ne B(p0) � fs 2 Sj p(s) = p0g; buyers�expected asset quality in the market p

is calculated as the conditional expectation: E[sjs 2 B(p)]: Furthermore, for any fea-
sible mechanism, the free entry condition must hold for buyers, which means that the

mechanism needs to satisfy the following constraint:

p =
E[sjs 2 B(p)]

r
� k�(p)

m(�(p))

Proposition 1 and the free-entry condition then de�ne the set of feasible mechanisms,

A. Market clear condition is guaranteed by free-entry condition. Namely, buyers will

entry until the "right" market tightness is satis�ed. Moreover, let V (�; s) denote the ex-

pected payo¤ to a type-s seller under the mechanism � � (p; �) Each mechanism � 2 A is
then composed of a price schedule p�(�);market tightness ��(�);and corresponding sellers�
utilities V �(�):This set then includes all possible pooling as well as separating equilibrium.
Nevertheless, not all of them can be sustained in the decentralized equilibrium. A decen-

tralized equilibrium has to satisfy buyers�optimality condition. Hence, (p; �; V (s;�)) is

only an equilibrium if there is no pro�table deviation for buyers to open a new market

p0;where the o¤-equilibrium belief is speci�ed in (2) and (3), as discussed earlier. When

a buyer considers to open a new market p0 =2 range of P , they expect to only attract the
type who is most likely to come, T (p0); as de�ned (3). To facilitate the analysis, we �rst

prove following lemma:

Lemma 1 Given any the mechanism � 2 A; which includes a price function pa : S ! R+,

market tightness function �� : S ! R+, and sellers utilities V � : S ! R+, for any price

p0 =2range of p;the unique type who will come to this market p0 is given,

T (p0) = s+ [ s�

where s� = inffs 2 Sjp0 < p�(s)g
s+ = supfs 2 Sjp0 > pa(s)g

Proof. Notice that p�(�) is non-decreasing for 8� 2 A given (M). Therefore, T (p0) is

uniquely de�ned7. Namely, the type which is most likely to come is unique. For any
7With the expection when some types of sellers are out of the market. In this case, there then exists

a marginal type s� such that �(s) = 0 for 8s > s�: For any s > s� and p0 > u(s)
r ; type-s will come to the

market even when �(p0; s) ! 0. Hence T (p0) is then a set of these types of sellers. Neverthless, it will

not change our equilibrium result and it will become clear later that a buyer will deviate even when he

expects the worst type among those set.
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p0 =2range p�; by de�nition, �(p0; s) � inff~� > 0 : U(p; ~�; s) � V (s;�)g: Therefore, for any
p0 > V (s;�); �(p0; s) solves: U(p0; �; s)� V (s;�) � G(p0; �; s);

d�(p0; s)

ds
= �(dG=ds

dG=d�
) / 1

r +m(��(s))
� 1

r +m(�(p0; s))

=

�
< 0 if p0 > p�(s); (* �(p0; s) < ��(s))
> 0 if p0 < p�(s); (* �(p0; s) > ��(s))

�
Recall that, posting a new price p0; a buyer should expect the lowest market tightness

�(p0) = infsf�(p0; s)g and the type T (p0) = arg inff�(p0; s)g: Above relation then implies
that, for example, if a buyer deviates to posting a new price p0 which is lower than all

the existing price, so that s� = sL and s+ = ?;he should attract only the lowest type,
given that �(p0; s) is increasing in s and, therefore, sL = arg infs �(p; s) = T (p0): Similar

argument holds for any p0 =2range of p�:
With this condition, we can then prove following lemma:

Claim 1 There is no pooling submarket in equilibrium when hs(s) > 0

Proof. See Appendix. Let h(s) denote buyers��ow value over s and h(s) = s in our basic
model. Intuitively, a buyer can post a new price p0 which is only slightly higher that the

original pooling price. In that case, he only pays a little bit more but gets the best type

in the original pooling for sure (as implied from lemma 1), which therefore generates a

pro�table deviation.

Claim 1 then allows us to focus on a fully separating equilibrium. In each market,

(�; p; s);the price schedule then has to satisfy:

p(s) =
s

r
� k�(s)

m(�(s))
(4)

Substituting this payment schedule into (ICFOC) :

V (s) =
s� c+ ( s

r
� k�

m(�)
)m(��(s))

r +m(��(s))
= V (sl) +

Z s

sl

Us(�
�(~s); ~s)d~s

One can then get di¤erential equation of ��(s) :

[c+
k

�
((�� 1)� � r�

m(�)
)]
d�

ds
= � �

�r
(r +m(�)) (5)

Therefore, the market tightness function ��(�) has to be the solution of (5) subject to
the monotonic condition, (M) in order to satisfy the incentive compatible constraints and
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free-entry condition. Left hand side of (5) is monotonically decreasing in � and reaches

zero at �FB: Therefore, for any initial condition �0 > �FB;the solution will be explosive

and violate the monotonic solution. (5) is a separable nonlinear �rst-order di¤erential

equation with a family solution form:

s = C +

Z
1

f(�)
d�

where f(�) =
� �
�r
(r+m(�))

[c+ k
�
((��1)�� r�

m(�)
)]
:One can understand the qualitative properties the solutions

by constructing a simple phase diagram. The solution is illustrated as below, which can

be understood by observing that for any � 2 (0; �FB), a) f(�) < 0; b) f 0(�) > 0 and c)
lim�!0 f(�) = 0.

s L s H

M a rk e t  t i g h tn e s s

The First Best

w/ Adverse S election

Equilibrium Market Liquidity ��(s)

With the following initial condition8, we are able to pin down the unique solution

which satis�es both sellers�and buyers�optimality constraints.

Claim 2 In a full separated equilibrium, the lowest type has to achieve his �rst-best utility.
That is, the initial condition is:

�(sL) = �
FB(sL) (6)

Proof. See Appendix for detail. The intuition is clear: a downward distorted market
tightness is to preventing a lower-type from mimicking a higher-type. Therefore, it should

be clear that there is no reason to distort � for the lowest type.

The mechanism can be summarized as following. Because of the asymmetric informa-

tion, sellers will then face a lower meeting rate, ��(s) < �FB for all s but get a higher

8One can see that standard condition of the uniqueness does not hold with this initial condition. In

fact, there will be two solutions. However, the other soluction increases with s and therefore violates our

monotonic condition.
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transfer p�(s) = s
r
� k��

m(��) > p
FB(s): There will be also less buyers participating the market,

who needs to pay a higher price but with relatively high meeting rate. To note that, this

result holds for any arbitrary distribution of sellers. Traders�participation and therefore,

the trading volume, which is governed by the meeting rate, is endogenously determined.

Also, we can easily check that IR constraint holds for all sellers9 and, indeed, buyers will

not deviate by a opening market p0 other than those which are already open. The argu-

ment is following: First, note that the price function is continuous. Denote (pL; pH) as

the lower bound and the upper bound support of function p(s) constructed above. From

Lemma 1, if buyers post the price p0 > pH ; he will only attract the highest type. One can

easily show that it involves more distortion and hence not pro�table. Similarly, if posting

p
0
< pH , buyer will attract the lowest type and buyers�utilities will decreases due to the

distortion. Namely, it con�rms that no pro�table deviation exists for buyers.

3 Generalization

The goal of this section is to study a more general economic environment where traders

have di¤erent valuation of the asset. Similar as before, there is a mass of heterogenous

sellers who are indexed by a type s 2 S that is sellers�private information. The �ow payo¤
of the asset s to the seller is now given by u(s), where u is a continuously di¤erentiable

function, u : S ! R+ The indices s that are ordered such that they increase the utility

of sellers: u0(s) > 0:On the other side of the market, there is a large mass of buyers. The

�ow payo¤ of an asset bought from seller s is given by h(s) and h is a strictly positive

function. I now make following assumptions on traders�preferences and will discuss how

these assumptions can be relaxed in the later section.

Assumption 1: h(s) is (1a) a continuously di¤erentiable function and (1b) strictly
increasing in s; hs(s) > 0

Assumption 2: g(s) = h(s)� u(s) > 0 for 8s 2 S
Monotonicity in the matching value (1b) is an important assumption for our basic re-

sult. In particular, it is crucial to Lemma 2 under which we show that there is no pooling

submarkets and an unique full-separated equilibrium is obtained under this assumption.

9De�ne G(s) = V (s)� s�c
r and lims!1Gs) = 0, given lims!1�(s) = 0: From (ICFOC) :

dg(s)

ds
=

1

r +m(��(s))
� 1
r
< 0 for all �(s) > 0

Hence V (s) > s�c
r for 8 s <1:
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As shown in our basic model, one can think of s represent the quality of an asset, which

gives both sellers and buyers a higher payo¤. In the later section, I consider an environ-

ment when this assumption does not hold and show how the equilibrium outcome behaves

di¤erently. The second assumption simply guarantees that there is a gain from trade.

Given these two assumption, it is straightforward to see all our previous results holds.

The only di¤erence is now that equilibrium solution of the market tightness ��(s) needs

to solve a more general form of di¤erential equation, which is given by:

[(h(s)� u(s)� k(r +m(�)� �m
0(�)

m0(�)
)]
d�

ds
= �(r +m(�)) � �

�

hs(s)

r
(7)

and the corresponding price schedule has to satis�es:

p(s) =
h(s)

r
� k��(s)

m(��(s))
(8)

According to Claim 2, the initial condition is given by ��(sL) = �FB(sL); where the

�rst best market tightness �FB(s) solves:

h(s)� u(s)
k

=
r +m(�)� �m0(�)

m0(�)
(9)

Claim 3 1) The �rst best solution f�FB(s); pFB(s)g is not implementable when hs > 0;
2) The equilibrium market tightness ��(s) with the initial condition ��(sL) = �

FB(sL) is

downward distorted compared to the �rst best, that is,

��(s) < �FB(s) for 8s > sL

Proof. See Appendix.
Observing from (7), one can see d��(s)

ds
< 0 given that ��(s) < �FB(s) and hs >

0:Therefore, ��(s) is decreasing and hence condition (M) is satis�ed. As before, given ��(s);

the equilibrium price is pinned down by (8). The equilibrium can then be summarized

as follows: type-s sellers enter the submarket which is characterized by (p(s); �(s)) and

buyers who enter the market (p(s); �(s)) pay the price p(s), expecting type-s asset. That

is, �(sjp(s0)) = 1 if s0 = s and zero otherwise. The transaction out�ow for each type-s

asset is then determined by the matching rate ��(s); following the law of motion dgt(s)
dt

=

�m(�(s))gt(s); where gt(s) is the size of type-s sellers at time t: On the other hand, the
measure of active buyers in each market is endogenously determined by the ratio ��(s);

that is, �tB(s) = �
�(s)�gt(s). Hence, as discussed earlier, one can back up traders�aggregate

distribution accordingly. Furthermore, as a full-separated equilibrium is obtained in such
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an environment and the distribution does not have impact on equilibrium price and market

tightness (conditional on the same range), allowing for the new in�ow of sellers only

changes the law of motion of the stock in each market but not the market characterization

(p(s); �(s)).

3.1 Heterogeneous Buyers

The setup is now chosen to allow for heterogenous buyers in the market so that it can

be easily applied to trading environments with two-sided heterogeneity. Many decen-

tralized markets have this feature. Understanding the trading pattern is crucial since it

determines the allocation and therefore welfare. For example, in the factor market, the

resource allocation determines aggregate productivity. Di¤erent companies might have

di¤erent technology to utilize the assets (machine or capital). Productivity of the assets

is determined by assets allocation, which is mainly governed by both the pattern of trade

and the equilibrium liquidity. With this generalization, the model further sheds light on

the sorting pattern. We show that, supermodularity in the matching value is enough

to guarantee positive sorting, which is a distinct feature compared to the environment

without adverse selection.

Consider that there are two types of buyers, bi 2 fbh; blg and buyers�type are observ-
able. For simplicity, we assume that the measure of each type is larger than the one of

sellers and the outside option of buyer bi is given by �(bi)10: The �ow payo¤ of an asset

owned by buyer bi and bought from seller s is given by h(bj; s), where h shares the assump-

tion as our basic model. The indices s and bi that are ordered such that they increase the

utility of sellers: h(bh; s) > h(bl; s):For example, h(bi; s) represents the payo¤produced by

the �rm with technology bi and asset quality s:The simple functional form widely used for

a macroeconomic model with heterogenous �rms is usually given by h(bj; s) = bjs; which

can be seen as the productivity. Furthermore, we assume that there is complementarity

in the matching function.

Assumption 3: hs(bh; s)� hs(bl; s) > 0
Obviously, if �(bh) < �(bl); sellers then always obtain higher value if trading with the

higher type buyer and one can easily show that, facing resulting (p; �); lower type buyer

will not enter the market. In that case, the environment can be trivially solved just like

as with homogenous buyers. The following analysis focus on the relevant environment in

10This assumption is made to simplify the analysis. One can interpret this as a partial equilibrium

where we take the level of buyers�utilites as given.
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which both type of buyers are active in the market when there is no adverse selection.

One can establish the benchmark similar as before. It is well known that the equilibrium

outcome can be thought of as a competitive market maker who promises traders the price,

the market tightness, as well as the trading pattern. The equilibrium will then consist of

a price function pFB(s), a market tightness function �FB(s);trading pattern jFB(s) and

the corresponding sellers�utility function V FB(s); which solve following the optimization

problem:

V FB(s) = max
j;p;�

fu(s) +m(�)p
r +m(�)

: Ub(p; �; �; b
j) = �(bj)g

The algebra detail is left in the appendix. In words, given buyer type bi, one can solve

the optimization problem as before. Similarly, the �rst best market tightness should be

a function of the ratio of the gain from trade over the searching cost, which are type

dependent and is denoted as R(j; s) � g(j;s)
k+r�(bj)

. Let the function V FB(s; bj) represent

seller�s utilities if traded with type bj under perfect information. The �rst best utilities

V FB(s) can be seen as a upper envelope of V FB(s; bh) and V FB(s; bl): That is, V FB(s) =

maxjfV FB(j; s)g: As it will become clear later, the interesting case is when there exists a
marginal type sFB 2 S who is indi¤erent to trading with high type and low type buyers
and for a seller with assets s < sFB; he will only trade with a lower type buyer and vice

versa for sellers with assets s > sFB11: The following section therefore focuses on such an

environment and discusses how other cases can be solved accordingly.

As sellers do not care about buyers�types, sellers�expected value in each market is

the same as before. On the other hand, type-j buyers�expected payo¤ can be expressed

as follows:

rUb(p; �; �(p); b
j) = �k + m(�(p))

�(p)
(

Z
h(bj; ~s)

r
�(~sjp)d~s� p� Ub)

De�nition 2 An equilibrium consists of a set of o¤ered price P �, a function of seller�s

expected utilities V �(s), a market tightness function in each market p, �(�) : P ! [0;1];
the conditional distribution of sellers in each submarket � : S�P � ! [0; 1] and the trading

pattern j� : P ! fh; lg; such that the following conditions hold:
11It is clear from (??) that R(h; sFB) < R(l; sFB), given �h > �l: Therefore, �(h; sFB) < �(l; sFB) and

p(h; sFB) < p(l; sFB): Namely, there will be two separating markets for the asset sFB : These two markets

are di¤erent from the trading price and the liquidity, between which the seller sFB is indiscriminate.

High type buyers will pay more for the good with shorter waiting time in one market and, vice versa for

the low type buyers in the other market.
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E1 (optimality for sellers): let

V �(s) = maxfs� c
r
;max
p02P �

V (p0; �(p0); s)g

and for any p 2 P � and s 2 S; �(sjp) > 0 implies p 2 argmaxp02P �[? V (p0; �(p0); s)
E2 (optimality for buyers and free-entry): for any p 2 P � and j 2 fh; lg

Ub(p; �p; �(p); b
j) � �j

with equality if p 2 P � and j = j�(p); and there does not exist any p0 2 P such that
Ub(p

0; �(p0); �p0 ; b
j) > �j, where �(p0) and �(sjp0) satis�es (2) and (3)

Clearly, IC constraints for sellers are the same as before, that is, Proposition 1 still

holds. The only di¤erence is that we need to make sure the buyers�optimality condition

will hold for both types. In particular, facing the price and market tightness recommended

by the market maker, a buyer will bene�t neither from going to the markets which belong

to the other buyers, nor from opening a market which has not been open. The mecha-

nism can be interpreted as follows: given (p(s); �(s));a seller reports his type ŝ optimally;

meanwhile, j�(s) denotes the sorting pattern recommended by the market maker, who

recommends buyers j�(s) post the price p(s), that is, entering the market (p(s); �(s)):

The sets of types who trade with the lower type buyer, 
L = fs : j�(s) = lg, and of
those who trade with the high type, 
H = fs : j�(s) = hg; are disjointed and satisfy

L [ 
H � S. Then, de�ne s� as the marginal type j�(s�) = fl; hg: Obviously, some
lessons learned from the basic model are still applied: there is no submarket involving

pooling under assumption 1b) and, hence, we can focus on the full separation on the

sellers�sides. From buyers�view points, each market can therefore be characterized as

a pair of (p; �; s). Given (p; �; s);buyers will choose to go to the preferred markets and

expect to trade with seller s:

Moreover, once we identify the set of sellers who trade with buyers j, 
 j, the market

tightness can be solved as in the case in which there is only one type of buyer j: Given


j; the solution of �(s; j) needs to the following di¤erential equation, which is similar to

(7) but taking into account that buyers�heterogeneity

[(h(bj; s)�u(s)�r�(bj))+ k + r�(b
j)

�
((��1)�� r�

m(�)
)]
d�

ds
= �(r+m(�))� �

�

hs(b
j; s)

r
(10)

As before, the corresponding price schedule p(j; s) is then pinned down with the free

entry condition:

p(s; j) =
h(aj; s)

r
� (k + r�

j)�(s; j)

m(�(s; j))
� �j (11)
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Notice that solutions can be easily characterized once we have the initial condition for

�(s; j): Therefore, the key remaining task is essentially �nding out the set 
j, that is, the

marginal type s� and identifying the initial condition f�0L; �0Hg, which gives �(sL; j) = �0L
and �(s�; j) = �0H : For notation convenience, let p

j(s); �j(s) denote the price and the

market tightness in the market with buyer type j. In equilibrium, it must be the case

that the buyer j will not enter the market where j�(s) 6= j: Hence, following constraints
must be satis�ed:

Ub(p
h; �h; s; bl) < �l for j�(s) = h

Ub(p
l; �l; s; bh) < �h for j�(s) = l

To facilitate the analysis, de�ne ~�(s) to solve the following:

�l = Ub(p
h; �; s; bl)

= Ub(p
h; �; s; bh)� q(�)

r + q(�)
(
h(bh; s)� h

�
bl; s

�
r

)

= �h � q(�)

r + q(�)
(
h(bh; s)� h

�
bl; s

�
r

) (12)

where q(�) = m(�)
�
: Given that h(bh; s)� h

�
bl; s

�
increases with s, ~�(s) increases with

s: This function then plays an important role in determining buyers�incentive constraint.

Entering the high-type buyers�markets, the di¤erence in utilities gain is characterized by

the second term, q(�)
r+q(�)

(
h(bh;s)�h(bl;s)

r
); which captures low types�disadvantage. The impact

of this disadvantage is higher when the expected waiting time for buyers is shorter, that

is, for the higher q(�) and hence the lower �: As a result, for any � < ~�(s); the low

type will not mimic high type to enter the market. Similarly, when a high-type buyer

contemplates entering a low-type market, he will only enter when � < ~�(s) so that his

advantage is high enough to compensate12. Hence, we can conclude the following claim:

Claim 4 In equilibrium, the market (p; �; s) attracts high-type buyers but not low-type
buyers if � < ~�(s); similarly, the market (p; �; s) attracts low-type buyers but not high-type

buyers if � > ~�(s):

Denote the function �FBj (s); V FBj (s) as the market tightness and sellers�utility, re-

spectively, when trading with buyer j with complete information. We next prove that the

equilibrium can be characterized by following proposition.

12One can show that the utility of a high-type buyer entering a low-type market is:Ub(pl; �; s; ah) =

�l + q(�)
r+q(�)

h(ah;s)�h(al;s)
r ;which is bigger that �h i¤ � < ~�(s):
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Proposition 2 The unique solution to the mechanism is a market tightness function

� : S ! R+; a price schedule P : S ! R+ , a marginal type s�; a pair of initial condition

f�0L ; �0Hg; where:

��(s) =

�
�(s; l; �0L); for s � s�
�(s; h; �0H); for s � s�

�
; p�(s) =

�
p(s; l); for s � s�
p(s; h); for s � s�

�
V �(s) = V FBL (sL) +

Z s

sL

u0(~s)

r +m(��(~s))
d~s

where �(s; j; �0j) is the solution to (10) with the initial condition: �(sL; l) = �
0
L; �(s

�; h) =

�0H ; and corresponding p(j; s) is de�ned in (11).

a) The initial condition �0l :

�0l = �
FB
l (sL)

b) The marginal types:

s� =

�
sA; if ~�(sA) � �FBH (s)

sB; if ~�(sA) < �FBH (s)

�
where (sA; sB) is the unique13 solution to the following equation:

sA : V (l; s) = V FBL (sL) +

Z s

sL

u0(~s)

r +m(��(~s; l; �0L))
d~s = V FBH (s)

sB : ~�(s) = �(s; l; �0L)

c) The initial conditions �0H :

�0H =

�
�FBH (s�); if s� = sA

~�(s�); if s� = sB

�
Proof. See Appendix.
As explained earlier, once we can separate the buyers from di¤erent markets, we can

apply the method for homogenous buyers separately. Therefore, the equilibrium solution

is expected to be a combination of two. However, it has to be combined in a particular way

so that traders�optimality conditions hold. In appendix, we prove that the constructed

solution above is the unique solution.

13Observe that (sA; sB) is unique (and all smaller than sFB). Notice that, V (l; s); V FBH (s); ~�(s); �FBH (s)

are all well de�ned and monotonically increases in s and �(s; l; �0L) is strictly decreasing in s:Given that
~�(sL) � �FBL (sL) under the assumption V FBL (sL) > V

FB
H (sL:) =) sB always exists and is unique.
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3.2 Extension: Resale

The basic model assumes that once a buyer buys the asset, he keeps it forever. If a buyer

hits by liquidity shock in the future, he has motives to sell his asset to exchange for cash

and will then re-enter the market as sellers. Clearly, taking this into account, buyers�

expected pro�t will also depends on the resale value. To capture preference for asset

ownership possibly switch overtime and the impact of liquidity shock on the equilibrium

price and market liquidity, this section extends our model to allow for resale. To be

precise, the �ow value of owning the asset decreases, dropping from h(s) to u(s), when

the owner hit by the liquidity shock which arrives at the Poisson arrival rate �: In our

basic model, this simply means that the owner now needs to pay the holding cost and

hence he naturally becomes the seller in the market. In the example of the capital market,

one can interpret this as a �rm receives a negative shock of his technology, he will then

need to disinvestment. The contingent value of the ownership can now be rewritten as:

rJ(s) = h(s) + �(V (s)� J(s))

where V (s) is the expected value of a type-s seller . Obviously, the expression of

a buyers� expected value searching in the market is the same as before. All methods

developed in our main model remain valid and the key di¤erence is that the value of

holding the asset, which is a function of the resale value V (s); will then be determined in

the equilibrium. Nevertheless, one can see that the monotonic condition still holds given

that h(s) + �V (s) strictly increases with s14. Hence, one should expect a full-separated

equilibrium is the unique outcome as shown in our previous discussion and our previous

approach remain the same. From the free entry condition, the price schedule then has to

satisfy the following constraint:

p(s) = J(s)� k�

m(�)
=
h(s) + �V (s)

r + �
� k�(s)

m(�(s))
(13)

The equilibrium outcome can then be solved as before. The only di¤erence is that we

now have a di¤erent di¤erential equation and, of course, di¤erent �rst best solution, i.e,

di¤erent initial condition. The di¤erential equation can be derived by substituting the

above price schedule into (ICFOC) and di¤erentiate respect to s in both sides, which

yields:

[(h(s)�u(s)+ k
�
((�� 1)�� (r + �)�

m(�)
)]
d�

ds
= �(r + � +m(�)

r + �
) � �
�
(hs(s)+

�u0(s)

r +m(�)
) (14)

14This is true as V �(s) is necessarily increasing in s according to Proposition 1.
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One can easily check that the basic version, ie, equation (7) ;is simply the case when

� = 0: The initial condition is then given by the �rst best solution �FB� (s) in such an

environment, which is de�ned as follows:

V FB� (s) = max
�

r + �

r
(
u(s)

r + �
+
m(�)(h(s)�u(s)

r+�
)� k�

r + � +m(�)
)

�FB� (s) = argmaxV FB(s)

Notice that the �rst best solution can be solved as before, given by (9) but with the

discount factor r + � instead of r: Note that �FB� (s) is decreasing in �: The intuition is

clear since no buyers would want to enter the market if they need to sell it again soon.

Since the trading surplus is decreasing in �; the higher �, the less entry and hence the

lower equilibrium market tightness. Given the solution (p�(s); �� (s)); one can solve for

the steady state in such an environment. In particular, for any type of asset, the steady

state ratio of the holders to the sellers is pinned down by m(��(s))
�

: That is, due to the

downward distortion of ��(s); the better the asset, the larger portion of which stays in

the bad hands.

3.3 Non-monotonicity in the Matching value

The previous analysis shows that no pooling submarkets can exist in such an environment.

This is a key feature of the model. It is important to note that it relies on the assumption,

hs(�) > 0: The intuition is that if a buyer strictly prefers a higher type s, he will bene�t
from posting a price which is slightly higher than the original pooling price so that no

pooling can exist. Obviously, if this assumption is violated, a pooling equilibrium can

then be sustained. Furthermore, as shown in the Proposition 1, any IC allocation ��(s)

has to satisfy the condition (M). Observing from (10) ; if hs < 0;the solution ��(s) can

then be increasing, which means that the allocation is no longer incentive compatible.

Intuitively, the screening mechanism is a combination of a downward distorted liquidity

and a upward price scheme. By the nature of the matching, the market marker needs to

make sure buyers are willing to pay for the price, which relies on the fact that buyers also

prefer a higher s: In other words, the screening mechanism works when buyers�willingness

to pay aligns with sellers�willingness to wait. When these two values do not match, the

screening is not implementable In fact, as we will show in the next section, this setting

has an interesting implication when sellers�motives for sale are their private information.

The goal for now is to �rst establish how our previous analysis can be adjusted in a more

general environment when the monotonicity condition is violated. Mainly, I show how a
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semi-pooling equilibrium can be constructed in a more general and abstract setting. In

the later section, we apply this result to analyze the environment when sellers�motives

for sale are their private information.

For simplicity, assume the case with homogenous buyers. The pooling outcome will

obviously depend on the distribution and in general will not be unique. In fact, from

our previous discussion, we know that any mechanism � = (p�; ��; V �) that promises a

subset of sellers S 0 = [s1; s2] � S the same price schedule and market tightness (ie, semi-
pooling) has to satisfy Proposition 1. Note that Proposition 1 remains intact regardless

of the assumption on h(�): I now consider two approaches to establish a semi-pooling

equilibrium, which mainly can be understood in the graphs below respectively. Notice

that, depending on the distribution, in general the equilibrium is not unique and the

condition for its existence is also identi�ed below for each construction.

3.3.1 Pooling Types

The �rst approach can be constructed as follows: The �rst step is to "�atten" buyers�

valuations by pooling types. Intuitively, if we can �atten buyer�s valuation over s by

bunching certain types together in a way that buyers�valuation is (weakly) monotonic

in s, our previous analysis still applies (conditionally). However, �attening h(�) directly
is convenient to work with but does not necessarily guarantee a non-increasing on ��(s):

Therefore, the su¢ cient condition for which ��(s) is non-increasing is also identi�ed as

below.

Consider a continuously di¤erentiable function h(s); assuming that h(sL) < h(sH) and

the curve has a �nite number of interior peaks on [sL; sH ]: Pick a single interior peak ŝ0,

then there is also a single interior trough ŝ1: As shown in the �gure below, the inverse

image of the interval [h(ŝ1); h(ŝ0); ] is composed of two intervals, [s0; ŝ0] and [ŝ1; s1]; over

which h(�) is increasing, and one interval, [ŝ0; ŝ1] over which h(�) is decreasing. Let �0(h)
and �1(h) denote the inverse functions of h over the intervals [s0; ŝ0] and [ŝ1; s1]: Last, let

ĥ 2 [h(ŝ1); h(ŝ0)] solve:

H(h) � h�
Z �1(h)

�0(h)

h(~s)dG(~s) = 0
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(A) Reconstructing h(~s) by bunching types (B) Fire Sale Equilibrium

Given ĥ15; a non-decreasing function ~h(�) can then be reconstructed as follows: let
~h(s) = ĥ for s 2 [�0(ĥ); �1(ĥ)] and ~h(s) = h(s) otherwise: Suppose that there are more
than one interior peak and we could independently di¤erent bunching levels where ĥ1 � ĥ2,
a non-decreasing function ~h(�) can be constructed in a similar way. If treating the two
bunching regions separately yields ĥ1 > ĥ2;we must then merge the two into a single

bunching level. No matter what, if a non-decreasing function ~h(�) can be obtained: let
��(s) solves (10) with the initial condition ��(sL) = �

FB(sL) at the interval ~h(s) = h(s) for

8s � �0(ĥ) and, at the pooling interval, set ��(s) = ��(�0(ĥ)) for 8s 2 [�0(ĥ); �1(ĥ)]: Next,
we should let ��(s) solves (10) and set ��(�1(ĥ)) = �

�(�0(ĥ)) for the interval [�1(ĥ); sH ]:

However, the initial condition for �(�1(ĥ)) has to satisfy the following condition so that

the solution for the last interval is non-increasing:

��(s0) < �
FB(�1(ĥ))

Therefore, a semi-pooling equilibrium exists and is characterized by the constructed

��(s) and the corresponding price, p�(s) =
~h(s)
r
� k��(s)
m(��(s)) . With the above construction, one

can easily see that free-entry condition is satis�ed. In particular, in the pooling market,

E[h(s)js 2 [s0; s1]] = ĥ by construction. Although ~h(�) is not di¤erentiable at the kink,
ie. at the boundary point s0 and s1; the left and the right limit exists so (10) still applies.

In other words, our method applies to any monotonically increasing ~h(�), even when ~h(�)
has discontinuities of the �rst kind.
15 ĥ might not be unqiue and its existence is garanteed as long as h(s1) > h(sL)
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3.3.2 Equilibrium with Fire Sales

We now focus on a particular type of semi-pooling equilibrium, which has distinct features

from the previous analysis. Consider a continuously di¤erentiable function h(s) on the

interval [sL; sH ] and that is strictly increasing in s after some point ŝ 2 [sL; sH ] and let
�1(h) denote the inverse function of h mapping to s � ŝ; which is illustrated in the �gure
above.

Proposition 3 A semi-pooling equilibrium ĥ with �re sales exists if following conditions

hold:

�̂(ĥ) �
Z �1(ĥ)

sL

h(~s)dG(~s) � ĥ and

V (sL; �p; p�) � V FB(sL)

The marginal type is s� = �1(ĥ) and the pooling market with the market tightness �p is

given by:

�p = max
�
f�jV (s�; p�;�) = V FB(s�) and p� =

�̂(ĥ)

r
� k�p
m(�p)

g

��(s) =

(
�p 8s 2 [sL; �1(ĥ)]

�(s; �0(ŝ)) 8s � �1(ĥ) = s�

)
where, ��(s) denotes the solution of (10) with the initial condition �0(ŝ) = �FB(ŝ); and

the equilibrium price follows:

p(s) =

(
p� =

�̂
r
� k�p

m(�p)
8s 2 [sL; �1(ĥ)]

h(s)
r
� k��(s)

m(��(s)) 8s � �1(ĥ) = s�

)
In words, there exists an marginal type s� = �1(ĥ) such that he is indi¤erent between

trading in the pooling market and the market (pFB(s�); �FB(s�)) by construction. In

particular tightness �p is set to make sure this marginal type indi¤erent and furthermore,

it is upward distorted, that is, �p � �FB(s�): For any sellers s < s�, they enter the pooling
market (p�; �p); and for any s > s�; they enter a separated market denoted by (p(s); �(s))

as in our basic model. The proof is straightforward from our previous discussion, so it

is omitted. Notice that in such an equilibrium, there is a jump on the equilibrium price

whenever �̂(ĥ) > ĥ: However, one can easily see that buyers will not deviate by posting

any price p =2 rangeP as long as the stated conditions are satis�ed. These two conditions
guarantee that a buyer will not bene�t from raising the price (p0 = p� + ") to attract

�1(ĥ) = ŝ nor lowering the price (p
0 = p� � ") to attract sL as he obviously can not do

better given V (sL; �p; p�) � V FB(sL) and V (ŝ) = V FB(ŝ).
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4 Obscure Motives for Sale

In our baseline model, market liquidity essentially acts as a screening mechanism, similar

to Guerrieri et al. (2010). As holding di¤erent quality assets results in di¤erent liquidity

preferences, an agent�s type is revealed by his choice of market. The crucial assumption in

such an environment, however, is that agents�liquidity positions (i.e. the holding cost in

our basic model) are observed. In an environment in which sellers�exact liquidity positions

are not known by the market. For example, as pointed out by Tirole (2010), this situation

is relevant when there are di¢ culties involved in apprehending banks�liquidity positions.

Any incentive compatible mechanism must then accommodate this e¤ect. Otherwise,

sellers would bene�t from appearing fragile in order to get a better price. In order to

understand how market liquidity might be a¤ected not only by adverse selection and by

the market�s perceived motives for selling, this section considers an extension when sellers�

holding cost is not known to the market. In other words, there are two dimensions of

sellers�types: the asset quality (common value) and the liquidity position (private value).

The goal of this section is to understand how market liquidity and price are determined in

such an environment. We �rst show how this setup can be nested in our general model and

then discuss conditions that are crucial in order to determine whether the least distorted

separation is the unique equilibrium outcome.

The setup is similar to our basic model but with the extension that a seller type now

has two components: zi = (si; ci) 2 Z � S � C: The support of si is the real interval
S � [sL; sH ] � R+ as before, but the support of ci is some arbitrary set C which can

assume discrete or continuous values. A seller�s payo¤of holding the asset is then governed

by both the cash �ow s and his liquidity position c: De�ne type x = s� c 2 X � fs� cj
s 2 S and c 2 Cg; representing an agent�s value of holding the asset. Clearly, the

mechanism discriminates only on the basis of sellers�payo¤s of owning the asset. In other

words, two agents with the same type ~s must enter the the same market, irrespective of

any other unobservable characteristics that might di¤erentiate the two agents in terms of

their attractiveness to buyers. Therefore, one can understand this setup in our general

model by following two reinterpretations. First of all, x is now the relevant sellers�type.

The utility of seller x, who reports his type x̂, entering the market with (�(x̂); p(x̂)) can

then be expressed as follows:

rV (x̂; x) = max
x̂2X

x+m(�(x̂)) � p(x̂)
r +m(�(x̂))
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Second, as buyers care only about the asset quality (i.e the common value), a buyer�s

expected value of buying the asset from type x can then be seen as h(x) = E[sjs � c =
x];where h : X ! R+: With the above interpretation, we can now apply our previ-

ous analysis. Obviously, what matters is h(�): Depending on the distribution, if h(�) is
monotonically increasing, the equilibrium can be solved easily as before. In that case,

sellers�private information on their liquidity positions essentially generates some noise,

but the main result still hold. That is, a fully-separated equilibrium will be the unique

equilibrium outcome. For a simple illustration, suppose ci~U(cL; cH) and si~U(sL; sH),

one can show that h(�) monotonically increases on the interval [sL�cH ; sH�cL]16. Hence,
��(�) can be solved as before, and the corresponding price is given by p(x) = h(x)

r
� k��(x)

m(�(x))
:

We now consider a more interesting case when h(�) is not monotonically increasing.
Suppose there are two possible liquidity positions for sellers C � fcH ; cLg, where cH >
cL > 0: Let � denote the probability of a seller who owns the asset s su¤ers a worse

liquidity position cH . For simplicity, assume this probability is the same across asset

quality si and si~U(sL; sH) : The value of h(�) can then be understood in the left �gure
below:

Buyers�value: h : X ! R+ Constructing a Fire Sale EQ

As shown in the previous discussion, multiple semi-pooling equilibriums can exist.

More importantly, a �re sale equilibrium can exist. Interestingly and probably counterin-

tuitively, overall equilibriummarket liquidity in fact can increase when sellers�holding cost

are unobserved. Note that, however, an increase in market liquidity does not necessarily

mean welfare improvement, which we will analyze in the later discussion. To illustrate

this point, a �re sale equilibrium is now characterized as below and the condition for its

16The function h(~s) has two kinks at (~s1; ~s2); which, depending on the parameters, is given

by:

8><>:
4c < 4s 4c � 4s

~s1 = sL +4c ~s1 = sL +4s
~s2 = sL +4s ~s2 = sL +4c

9>=>;
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existence is also established.

Buyers�value function h(�) is strictly increasing after x1 = sH � cH : According to the
Proposition 5, a �re sale equilibrium ĥ can be found whenever there exists ĥ such that

the following conditions are satis�ed: �̂(ĥ) �
R �1(ĥ)
sL

h(x)d ~G(x) � ĥ and V (sL; �p; p�) �
V FB(sL); which is illustrated in the right �gure above. Notice that the setX is the domain

of both function h(�) and ~G(�). We start with the case when sH � sL > cH � cL so that
both h(�) and ~G(�) have full support, as it will become clear that a �re sale equilibrium
always exists when sH � sL < cH � cL. Therefore the following characterization can be
directly applied.

Proposition 4 Given �; there exists �4(�) > 0 and �k > 0 such that, a �re sale equilibrium
always exists when the dispersion of underlying liquidity position 4c � cH � cL > �4(�)
and k > �k

For illustration purpose, an example of a �re sale equilibrium is characterized as fol-

lows:

We now give an example when assumed parameters satisfy the conditions, ie, 9x� >
sH � cH ; such that a �re sale equilibrium can be constructed as shown in the Proposition
5. The above �gures shows the equilibrium price and market tightness p : X ! R+ and

� : X ! R+ in each submarket. There exists a submarket which behaves like a �re sale, in

which the price is heavily discount while market is liquid. This market attract all sellers

x < �1(ĥ) = x
�: In this market, the price is given by:

pp =
�(ĥ)

r
� k�p

m(�p)
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That is, buyers pay the average value among the pool of sellers, �(ĥ)
r
; minus the expected

searching cost in this market. Hence, as in the standard pooling equilibrium, sellers with

better assets sell their asset with a high price discount. Furthermore, there is another

factor driving down the price�the upward distorted market tightness �p: Sellers�utilities

in such an equilibrium is shown below. Notice that in the pooling submarket, sellers with

a worse asset are better o¤ compared to benchmark as they e¤ectively receive subsidies

from sellers with a better asset. In the rest of submarkets, sellers with a better asset are

worse o¤ for the same reason in our basic model�downward distortion market liquidity.

s L ­ c H s H ­ c L
2

2 .5

3

3 .5

4

4 .5

5
Se lle r s ' Eq  u tilite s :V( S')

S'= s ­ c

V( s ,p ,m t)  Po o lin g  m a r k e t

VFB( s ,c L )

VFB( s ,c H )

V*( s ,c L )

h^

Sellers�Utilites

Notice that if in an environment where traders� liquidity positions are unobserved

while resale is allowed, the original screening mechanism will also break down even though

sellers are all homogenous. The reason is the same as above. In this case, a full pooling

equilibrium might arise, which will then share similar features with the standard lemon

problem.

Remark There are two ways to understand why our result is di¤erent from Guerrieri
et al. (2010), where the least-cost separating equilibrium is the unique outcome. There

are two main assumptions in Guerrieri et al. (2010): monotonicity and sorting. If types

are ranked by their asset quality s, then monotonicity condition holds but the sorting

condition does not. As in our trading environment (with limited contract space), the

only way to screen agents is through their waiting preference, and there is no hope to

separate agents who have better asset quality but with high holding cost from those who

have a low-quality asset but low holding cost given that the net value of the holding asset
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hence the liquidity preference is the same between them. On the other hand, if agents

are ranked by the value of holding the asset ~s as in our previous analysis, then agents

can be screened by the combination of (p; �): However, monotonicity condition is then not

satis�ed.

5 Implications

5.1 The Dispersion of Asset Quality

As shown in the previous analysis, the equilibrium solution does not depend on the as-

sumed distribution. In particular, given that the equilibrium market tightness is pinned

down by the initial condition� which must equal the �rst best market tightness of the

lowest quality asset� the dispersion, more precisely, the possible range of underlying as-

set quality plays an important role in determining the market liquidity. This implication

can be understood from the basic model, even when the gain from trade is constant across

assets. The impact of asset range on the market liquidity is summarized by the following

proposition.

Proposition 5 Given any submarket with asset quality s; its resulting equilibrium liquidity; ��(s);
increases with the quality of the worst asset of the whole market sL: Formally, let �(s; �0(sL))

be the solution of (5) satisfying the initial condition �(sL) = �0: For any s0L < sL; then

�(s; �(s0L)) < �(s; �(sL)) for 8s

Proof. Denote �00 = �(sL; �0(s
0
L)); representing the equilibrium liquidity of market sL

when the worst asset quality is s0L:Given that �
0
0 < �FB(sL) = �0(sL); the proposition is

then simply a result of the Comparison Theorem.

It is important to note that this e¤ect only exists in an environment with adverse

selection, as we have shown that, with complete information, market liquidity is only a

function of its own gain from trade. However, with adverse selection, the market liquidity

of all submarkets are connected in the sense that the liquidity in each serves as a screening

device to separate assets so that buyers can make sure the asset is worth the paying price.

This result then links the impact of underlying asset distribution and market liquidity.

Another interpretation of this result is the impact of transparency. To this end, we

now allow assets to be subject to varying severities of the adverse selection problem.
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Formally, there are two di¤erent asset markets i 2 fa; bg and the payo¤ of each asset can
be expressed as:

di = yi + �is

where (yi ; �i) are publicly observed and s is the owners�private information, where

s 2 [sL; sH ] with some distribution G(s): Since (yi ; �i) are publicly observed, we can

imagine there are two separate markets for each asset, and buyers can choose to go to

one of them. Each market can now be characterized as (pi; �i); where i 2 fa; bg:We can
use similar methods to solve for pi(s;�i) and �i(s;�i). Clearly, a higher �i has an similar

e¤ect to that resulting from a higher dispersion. It can be shown easily that the more

transparent asset is more liquid. That is, for any �b < �a; �
�(s;�b) > �

�(s;�a) 8s:
As the key element in our model is endogeny of market liquidity, the result also sheds

light on the patterns in cross market liquidity. One important question which has been

asked in the literature is, why assets paying similar cash �ow can have signi�cant di¤er-

ences in their liquidity. We can answer this question from the comparative static exercise

above. Loosely speaking, an uncertainty of underlying asset quality has a signi�cant ef-

fect on the overall market liquidity, even when the expected value remains unchanged. It

therefore implies that assets paying identical cash �ows can di¤er signi�cantly from their

liquidity, transaction cost, and price. All of above are endogenously determined in the

equilibrium and can be understood as follows:

pi(s) =
di
r|{z}

present
value

� k�i(s;�i)

m(�i(s;�i))| {z }
transaction

cost

+
�

r
(
c+ k�i(s;�i)

r + � +m(�i;�i)
)| {z }

resale
value

For any two asset paying the same cash �ows, that is, the same d
r
; their transaction

costs as well as resale values, which are both functions of their own liquidity �i(s;�i); are

pinned down by each asset�s own underlying dispersion. They can therefore result in a

completely di¤erent liquidity pattern.

5.2 Policy Implication: Buyback

This section focuses on the buyback policy, as we know that cleaning up the toxic asset

will show a signi�cant improvement in overall market liquidity. The idea of cleaning

up the toxic asset in the market is not new. In particular, Tirole (2011) shows that

the intervention needs to take into account traders� participation constraints and the

government always strictly overpays for the worst asset. In our framework, since traders
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can choose either to trade their assets in the over-the-counter market speci�ed earlier or to

join the government�s scheme, traders only join the scheme if and only if they are leaving

the market. Hence, though we do know that cleaning up the toxic asset would improve the

market liquidity, what is important is to understand what price has to be paid in order to

clean the market. Suppose now the government o¤ers the price pg to whomever shows up

in the discount windows. Anticipating that traders�utilities would increase in the future

after government intervention, the original price and market tightness is then no longer

incentive-compatible. Intuitively, a seller can now choose to hold on to the asset and

claim a higher type in the future. Therefore, to solve for the equilibrium, a mechanism

designer needs to take into account that sellers participate in the scheme only if they get

at least as much as what they would have obtained in the decentralized market.

In the equilibrium, the sets of types who join in government intervention, 
g, and of

those who stay in the decentralized market, 
d; are disjointed and satisfy 
g [ 
d � S:
Agents�utilities can be expressed as:

V (s) = maxfs� c
r
;max

p0
U(p0; �(p0); s); pgg

One can therefore pin down the condition for the marginal participant type s� :

V (s�) = pg

That is, the marginal type has to be indi¤erent between trading in the OTC market and

obtaining the transfer from the government right away. Let (p�; ��) denote the price and

the market tightness that the marginal participant type will be facing if he goes to the

market. Obviously,

Ug(s) = pg > max
p0
U(p0; �(p0); 
d) for 8s < s�

Ug(s) = pg < max
p0
U(p0; �(p0); 
d) for 8s > s�

Also, from the previous discussion, we know how to solve the equilibrium outcome

p(�); �(�); given 
d: The key task is to pin down the marginal type, which is characterized
as follows:

Proposition 6 A competitive search equilibrium with government buyback price pg; is a

marginal participant type s� which solves

V (s�) = pg = V
FB(s�)
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and a pair of (p(s; 
d); � (s; 
d)) that satis�es (4) ; (5),(6) ; as a solution to the market

maker�s constrained incentive-e¢ cient problem.

The �gure below shows traders�utilities with the buyback policy pg; represented by

the red line. Given any price o¤ered by the government, the marginal types s has to solve

V FB(s�) = pg; represented by the intersection of pg and the green line, which in turn is

represented by V FB(s):
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Equilibrium with Buyback Policy Pg

5.3 Reallocation and Macroeconomic Performance

As the massive ongoing microeconomics restructuring and factor reallocation is crucial to

aggregate performance, there is clearly a strong link between how the economy is doing

and how well factors markets are functioning. To this end, this section focuses on the

reallocation of �rms�corporate assets, given that capital is one of the important factors

determining aggregate productivity. As documented in the empirical literature, changes in

ownerships of �rms�corporate assets� for example, product lines, plants, machines, and

other business units� a¤ect productivity. More precisely, capital typically �ows from less

to more productive �rms, and the productivity of acquired capital increases. Furthermore,

as suggested by the empirical �ndings, market thinness generates frictions that are a large

impediment to the e¢ cient reallocation of capital, even within a well-de�ned asset class,

in which capital is moderately specialized. We then provide a possible explanation as to

why the market for used capitals is relatively thin. Severe trading delays would result in

resource mismatch and have a negative impact on aggregate performance. This paper then
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elucidates the underlying source of market frictions and its link to economic �uctuation

To illustrate our result, we now specify the function governing traders�payo¤, nested

in our general framework. The �ow value of the capital is simply the product of the

capital quality s and its use of technology aj; that is, h(aj; s) = ajs. More productive

�rms will be the natural buyers. In the economy, there are two pro�table technologies

j 2 fH;Lg;where aH > aL; and the owner of the technology j has the outside option

�j; where �H > �L: Firms who receive a negative shock, at the arrival rate of �; become

unproductive and only produce a �ow payo¤ao s; where ao < aL < aH ; that is, u(s) = aos:

Let Hj
t (s) represent the measure of capital s owned by the �rm with technology j and let

�t(s) denote the measure of sellers who own capital s:The aggregate productivity of the

capital can then be de�ned as follows:

�At =

Z
faos�t(s) + alsH l

t(s) + ahsH
h
t (s)gds (15)

Therefore, both the aggregate TFP and the cross-sectional distribution of active �rms

are endogenously determined in our model, crucially depending on how well the economy

can allocate its resource to better hands. Interestingly, probably counter-intuitively, at the

macro level, Eisfeldt and Rampini (2006) have documented that the capital reallocation

is procyclical while the cross-sectional dispersion of the productivity is countercyclical.

Concluding from this funding, they suggest that the reallocation friction is countercyclical

and we need a better foundation for that. Contrary to most macro models assuming

exogenous adjustment costs, one advantage of our framework is allowing for a richer

analysis of how this market friction responds to varied economic shocks and a better

understanding of its aggregate implication.

First of all, we consider the shock to the underlying dispersion. From the previous

analysis, it is clear that an increase in dispersion would increase the market frictions.

Hence, the resulting resource mismatch would generate a drop in TFP and further increase

the cross-sectional dispersion of productivity. It therefore provides an explanation for the

coexistence of the countercyclical dispersion and procyclical reallocation, as documented

in the empirical literature. It is de�nitely an interesting extension to endogenousize the

underlying dispersion and worth further exploration.

In line with the growing literature on uncertainty, the shock to the downward un-

certainty is also analyzed. Intuitively, a higher �; that is a higher level of instability

of business condition would decrease investors�willingness to enter. Hence, the market

liquidity also decreases with �, resulting in worse aggregate performance and a higher

level of dispersion across �rms. The story here, however, is di¤erent from Bloom (2009).
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Bloom (2009) shows that, with existence of capital adjustment costs, higher uncertainty

(measured as a shock to the second moment) expands �rms�inactive regions because it

increases the real-option value of waiting. This concern then slows down the reallocations

from low to high productivity �rms. Instead of relying on an exogenous adjustment cost,

�rms who receive a negative shock, do want to exit but have a hard time �nding an in-

vestor who is willing to buy their capital in our model. This idea also explains why few

�rms exit in bad time, as documented in Lee and Mukoyama (2008)

It is important to note that, however, an increase in the downward uncertainty, also

results in a higher demand for the reallocation. Hence, the net e¤ect on capital realloca-

tion is ambiguous. As emphasized by Bachmann and Bayer (2009), a large countercycli-

cal second moment shock would be incompatible with procyclical investment dispersion.

Though, the shock on the downward uncertainty considered here is di¤erent from the sec-

ond moment shock, it is important to understand that it also has two driving forces17 and

that its net e¤ect depends on assuming parameters. As a full calibration is beyond the

scope of this paper, the main purpose of this exercise is to understand how uncertainty

a¤ects market frictions, as it can generate signi�cant �uctuations in an environment with

adverse selection.

6 Discussion

6.1 On E¢ ciency

Does this decentralized equilibrium outcome necessarily solve the centralized planner�s

problem? The answer is obvious from our solution method. As explained earlier, among

the set of feasible mechanisms A de�ned from Proposition 1, the decentralized outcome is

the one satisfying the buyers�optimality constraint, E2: Namely, given that buyers have

the freedom to post new prices in the decentralized market, E2 is the additional constraint

compared to the social planner�s problem. This logic clearly implies that a social planner

can always (weakly) do better than the market. In fact, in our basic model, a full pooling

equilibrium always achieves the �rst best welfare level as long as it is sustainable. The

main reason is that the �rst best solution of market tightness is independent of types. A

17To see this, the total amount of reallocation at the steady state can be expressed as:

�

� +m(��(s; �))
�m(��(s; �))
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pooling equilibrium, simply subsidizing some at the expense of others, therefore does not

incur any distortions as long as participating constraints of the highest types are satis�ed.

To be precise, a full pooling equilibrium maximizes social welfare as in the environment

under complete information if and only if 1) the gain from trade is independent of types

and 2) the IR constraint of the highest type is satis�ed.

The above point then leads us to the next question: is the decentralized equilibrium

outcome Pareto e¢ cient? The answer can also be understood from our basic model. First

of all, notice that the outcome of separating equilibrium does not depend on the distribu-

tion of types. On the other hand, traders�utilities in any kind of pooling equilibrium will

obviously depend on the distribution. Intuitively, the highest type in a pooling equilib-

rium su¤ers a lower price because the market is only willing to pay the expected value of

the asset. Nevertheless, in a separating equilibrium, he enjoys a much higher trading price

but must su¤er a long waiting time, decreasing his expected utilities. One extreme case

would be that a full pooling equilibrium drives the highest type out of the market, which

can happen when there are too many bad assets; therefore, the highest type is obviously

better o¤ in the separating equilibrium. In this particular case, the separating equilibrium

is not Pareto ranked by the full pooling equilibrium18. Another extreme case would be

that average quality is high enough so that even the highest type is better o¤ in a full

pooling equilibrium. The separating equilibrium then is Pareto ranked by the full pooling

equilibrium. Hence, the answer to the e¢ ciency properties of equilibrium will depend on

the distribution assumed, which is actually a straightforward task once some particular

distribution is given. This point then explains why the competitive search equilibrium is

Pareto ine¢ cient for some parameter values, as shown in Guerrieri et al. (2010). The

important lesson is that the equilibrium outcome is not necessarily constrained Pareto

e¢ cient and the main reason is that pooling cannot be sustained even it is desirable due

to the competitive nature of markets. And the distortions in market tightness resulting

from separating equilibrium are rather costly.

6.2 On Sorting Behavior

Shi (2001) and Eeckhout and Kircher (2010) have shown that the complementarity in

production is not enough to guarantee positive assortative matching (PAM) in an envi-

ronment with complete information. The intuition is that, given that the social surplus

increases with types, it could be optimal to match high-type seller with a low-type buyer

18However, depending on distribution, it could be ranked by a semi-pooling equlibrium.
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by promising him a tight market, that is, a higher utilization. The above intuition still

holds in our framework with complete information. However, with adverse selection, we

prove that the supermodularity of the matching value necessarily induces PAM in the

equilibrium.

Proposition 7 In the competitive search equilibrium with adverse selection, the equilib-

rium trading pattern j�(s) satis�es PAM, that is, for s0 > s; j�(s) = h =) j�(s0) = h

under the assumption hs(a
h; s)� hs(al; s) > 0;

Proof. Suppose Not. There exists s0 > s such that j�(s) = h and j�(s) = l: According to
Claim 1, the equilibrium market tightness must satisfy: ��(s) � ~�(s) and ��(s0) � ~�(s0):
Moreover, from the monotonic condition, (M), ��(s) � ��(s0): The above relation then

implies ~�(s) � ~�(s0): This is a contradiction to the fact that ~�(s) is strictly increasing

with s under the assumption hs(ah; s) � hs(al; s) > 0: (Recall ~�(s) solves �l = �h �
q(�)
r+q(�)

(
h(ah;s)�h(al;s)

r
))

To understand this result, recall that the reason as to why a higher type can be better

o¤ when trading a low-type buyer is that he can be compensated by a higher utilization.

That is, given that a lower type buyer is more willing to wait, it could be optimal for a

high type seller to choose to trade with a lower type buyer, enjoying a lower gain from

trade but a tighter market compared to trading with a high type buyer. Hence, contingent

on negative assortative matching (NAM), a high type seller must be compensated with a

higher market tightness compared to low type sellers. This situation, however, can not be

sustained in an environment with adverse selection, as it violates the monotonic condition.

Namely, it is not incentive compatible for the sellers. Notice that in an environment with

complete information, a high type seller prefer to trader faster as his gain from trade is

higher. Nevertheless, with adverse selection, when all sellers are facing the same market

price schedule and market tightness, a high type seller becomes the one who is more

patient in the sense that he will prefer the combination of a higher price and a lower

market tightness as contrary to a low type seller. This implies that it would be optimal

to match a high type seller with a buyer who is more willing to o¤er a higher price and

less willing to wait. Obviously, a high type buyer is more willing to do this. Hence, a

lower type buyer no longer has his advantage to trade with a high type seller as in the

case with complete information.

Our solution developed earlier starts with the environment with PAM and V FB(l; sL) >

V FB(h; sL): However, according to the above Proposition, one should expect that those

conditions can be relaxed. First of all, suppose V FB(h; sL) > V FB(l; sL), so it is clear
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that j�(sL) = h from Lemma 3 and, clearly, from the above Proposition, j�(s) = h

for 8s 2 S: Hence, we can simply solve the model as if there are only high-type buy-
ers in the market, regardless of positive or negative assortative matching under com-

plete information. Suppose that we are now in the environment with NAM, that is, for

s0 > s; V FB(l; s)�V FB(h; s) > 0 =) V FB(l; s0)�V FB(h; s0) > 0 and V (l; sL) > V (h; sL);
implying that only low type buyers are active in the case with complete information.

Although we do not provide the formal solution for this case, our conjecture tells us that

the solution should take similar pattern as the developed method. And, depending on

the range of S; it could be the case that j�(s) = h for some s0 > s: The above argument

shows that adverse selection essentially makes a higher type buyer more likely to stay the

market compared to the case with complete information. Notice that this phenomenon

can be understood for our main results as well, given that the marginal type decreases in

the case of adverse selection, that is, s� < sFB: Hence, more sellers end up trading with

high-type buyers with adverse selection.

This result might seem at �rst counter-intutive but, in fact, it is simply the �ip side

of market illiquidity. Adverse selection creates a downward distortion of market liquidity,

that is, a low ratio of buyers over sellers in the market. This distortion makes it hard

for a seller to �nd a buyer; on the other hand, it also makes it easier for a buyer to �nd

a seller, shortening a buyer�s wait time and expected search cost. Given that high-type

buyers like to secure trade with high probability and they are willing to pay for this, the

environment e¤ectively makes a high type buyer more competitive, compared to low-type

buyers.

6.3 Search Frictions and Rationing

One key feature of our results is that market liquidity acts as a screening mechanism in

the setup of a competitive search equilibrium. Search friction has a natural interpreta-

tion in decentralized assets market and over-the-counter market, where traders�matching

rate depends on how tight the market is. Interestingly, Guerrieri and Shimer (2011) in-

dependently obtained similar results in an environment without search frictions, where

illiquidity results from the rationing in each submarket. In the limiting behavior of their

economy as the period length shortens, they show that the sale rate per unit of time

can be seen as convergence to a Poisson arrival rate. Therefore, although with di¤erent

interpretations, the trade-o¤ faced by sellers in both our models are driven by di¤erent

trading/matching rates and prices across markets. This then raises the question, what is

41



the role of search friction and, economically, how and to what extent, is it di¤erent from

rationing?

Notice that the approach of considering the limit economy as trading becomes more

frequent does not shed light on the relation between search friction and rationing. In

order to address this issue, one can understand the rationing as one special matching

technology in the sense that the short side of the markets gets matched with certainty.

This point has �rst made by Eeckhout and Kircher (2010), which considers a convergent

sequence of search technologies in a static economy. Therefore, one way to show how

search frictions vanish is to apply their approach in a discrete time version of our model

and shows how the distortion varies as search friction vanishes. Here, we propose another

way to see how search friction vanishes directly in our original continuos time setup. As

show in Guerrieri and Shimer (2011), as an equilibrium outcome, buyers always match

with probability one as they�re the short side of the market. What is similar is that

buyers in our model can trade relatively fast when facing a downward distorted market

tightness. The key di¤erence, however, lies on the fact that buyers in their model do not

care about the market tightness conditional on they�re at the short side of the market.

E¤ectively, at the equilibrium, there is no congestion e¤ect on the buyers� side. This

e¤ect is governed by the elasticity of the matching function with respect to measure of

buyers in the standard codd-douglas matching function, that is, the parameter � in our

model. Therefore, one can understand the result in Guerrieri and Shimer (2011) as the

limit economy in our model when � ! 1: Notice that the �rst best market tightness

increases with � as buyers care less about the market tightness. Hence the �rst best

market tightness should increase. At the limit, the arrival rate for the lowest type goes to

in�nity when c
k
> 1, which corresponds to the standard discrete setup where the trading

probability equals one (no rationing) given the gain from trade is larger than the entry

cost.

7 Conclusion

(To be added)
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8 Appendix

8.1 Omitted Proof

(A) Proof of Proposition 1:
Proof. One can observe that U(�; s) satis�es following properties: that 1) U2(�; s) exists;
2) has an integrable bound:sups2S jU2(�; s)j � M

r
for all s, whereM = u0(sL) for; 3) U(�; �)

is absolutely continuos (as a function of s) for all �;4) ��(s) is nonempty. Following the

mechanism literature, (see Milgrom and Segal (2002)), let

V (s) = max
ŝ
U(�(ŝ); s) = max

u(s) + p(�(ŝ))m(�(ŝ))

r +m(�(ŝ))

then any selection �(s) from ��(s) 2 argmax�0 U(�0; s);

V (s) = V (sl) +

Z s

sl

Us(�
�(~s); ~s)d~s

Namely, (ICFOC) is the necessary condition for any IC contract. To prove the

su¢ ciency, de�ne function: x = q(�) = 1
r+m(�)

and q�1(x) = �: Also, since � > 0,

0 < x 6 1
r
: One can then easily see U(x; s) satis�es the strict single crossing di¤erence

property under the assumption u0(s) > 0. For any x0 > x and s0 > s:

U(x0; s0)� U(x0; s) + U(x; s)� U(x; s0) = x0(u(s0)� u(s))� x(u(s0)� u(s)) > 0

Therefore, U(x0; s0)� U(x; s0) > U(x0; s)� U(x; s): Given that U(x; s) satis�es SSCD
condition, then any non-decreasing x(s) combined with (ICFOC) are also su¢ cient con-

ditions for the achievable outcome. Hence, x(s) = 1
r+m(��(s)) has to solve subject to the

non-decreasing constraint. Namely, the market tightness function ��(�) has to be non-
increasing.

B) Proof of Claim 1: No pooling
Proof. Suppose Not: There exists a subset of sellers s 2 S 0 = [s1; s2] � S are in the same
market (p�; ��):From the free entry condition,

p� =
E[sjs 2 S 0]

r
� k��
m(�a)

and denote V �(s2) = V (p�; ��; s2) as the utilities of the highest type seller in the

market, and de�ne the pair (p2; �2) solves:�
p2 =

s2
r
� k(�2)

m(�2)

V (p2; �2; s2) = V �(s2)

�
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Given (p2; �2) solves above relations and
E[sjs2S0]

r
< s2

r
, there exists p0 = p2 + " such

that p� < p0 < p2 and �
0 which solve V (p0; �0; s2) = V �(s2): From lemma 1, T (p0) = s2:

Namely, if a buyer deviates to posting p0 , only the highest type in the original pooling

market will come. And, as explained, the expected market tightness is de�ned from (2) ;

that is, �0 = �(p0):Obviously, Ub(p0; �
0; s2) > Ub(p2; �2; s2) = 0: Contradiction.

C) Proof of Claim 2: the lowest type always receives his �rst best utility.
Proof. Suppose not, pick any initial condition �00 2 (0; �FB(sL)) and denote its corre-
sponding market tightness as �0(s; �00) and price schedule p

0(s): One can easily show that

there exists ~p = p0(sL) � " and, from Lemma 1, T (~p) = sL: That is, a buyer can open a

new market with lower price and expect the lowest type to come. Due to the violation of

the tangent condition at (p0(sL); �
0(sL)) when �

0(sL) 6= �FB(sL) and V 0(sL) < V FB(sL);
buyers�utility can be improved, U(~p; �(~p); sL) > �

L: Contradiction.

D) Proof of Heterogenous buyers
Before proving the constructed solution is indeed the solution, we �rst prove that the

following claim holds:

Claim 5 8�0 < �; if V (s0; p; �) � V (s0; p0; �0) � 0 then V (s; p; �) � V (s; p0; �0) > 0 for

8s0 > s

Proof. V (s; p; �) � V (s; p0; �0) = fV (s0; p; �) + u(s)�u(s0)
r+m(�)

g � fV (s0; p0; �0) + u(s)�u(s0)
r+m(�0) g �

(u(s0)� u(s))( 1
r+m(�0) �

1
r+m(�)

) > 0

Proof. a) Sellers� optimality: NTS: Given (p(s); �(s)); s = argmaxŝ V (s; p(ŝ); �(ŝ)).

First of all, we need to show that monotonic condition holds. The solution �(s) is es-

sentially the combination of �(s; l) and �(s;h), which are both non-increasing as long as

the initial condition �0j is smaller than �
FB
j (s0):Therefore, �(s) is also non-increasing as

long as �0H � �(s�; l); which holds by construction. From proposition 1, it is clear that

facing (p(s; l); �(s; l)); IC holds for sellers s < s�; and, similarly, given (p(s; h); �(s; h)); IC

holds for sellers s � s�: What is left to prove is that those sellers will not bene�t from

entering the markets fp(s0); �(s0)g for 8s0 � s�: Clearly, given that V (s�; p(s�; l); �(s�; l) =
V (s�; p(s�; h); �(s�; h)) > V (s�; p(s

0
; h); �(s0; h)) and �(s

0
) < �(s�) for all s0 � s�, from

claim 2:

V (s; p(s); �(s)) > V (s; p(s0); �(s0)) for 8s0 > s

Similarly, one can use the fact that V (s�; p(s�; h); �(s�; h) � V (s�; p(s); �(s)) and

�(s) < �(s0) for all s � s� to prove V (s0; p(s0); �(s0)) > V (s0; p(s); �(s)) for 8s < s�
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b) Buyers� optimality: In order to make sure there is no pro�table deviation for

buyers, following two conditions much hold: b-1) Ub(p(s); �(s); s; aj) < �j if j�(s) 6=
j:Namely, given the markets which are already open, buyers will not enter the market

to trade with seller s; if j�(s) 6= j. Note that this is an additional condition we need

to prove with heterogenous buyers; b-2) There does not exist p0 =2support P; such that
Ub(p

0; �(p
0
); s0; aj) < �j; where �(p0) is de�ned as (2) and s0 2 Ts is the type of a seller who

is most likely to come. That is, the buyer will not bene�t from posting a price p0 which

is not recommended by the market maker.

b-1) First of all, we show that low type of buyers will not enter the market with sellers

s;where j�(s) = h:Observe that by construction, �(s;h; �0H)< ~�(s) for 8s > s�: This is true
as long as �0H � ~�(s�); given that �(s;h; �0H) decreases with s and ~�(s) increases with s. The
condition is satis�ed since, by construction, if ~�(sA) � �FBH (sA), �0H = �

FB
H (sA) � ~�(sA);

otherwise, �0H = ~�(s
B): Hence, from claim 1, low type will not enter the market with the

pair f p�(s); ��(s)g for 8s > s�: Similarly, by construction, �(s; l; �0L) � �(s) for8s � s�:

Hence, high-type buyers will not enter the the market with the pair fp�(s); ��(s)g for
8s < s�

b-2) Let f�p;p
¯
gas the upper bound and the lower bound of the support constructed

price schedule P . Apply Lemma 1, for any new posting p0 > �p; Ts(p
0) = sH and p0 < p

¯
,

Ts(p
0) = sL: Obviously, the lower type will not bene�t from opening p0 < p

¯
since (p�; ��)

is the �rst-best solution. The higher type obviously will not bene�t from attracting the

lowest type seller, given V FB(s; h) < V FB(s; l) and, therefore, Ub(p0; �
0; sL;V

FB(sL; l)) <

�h: Similarly, as before, neither the high type will bene�t from posting p0 > �p to attract

the highest type with a even higher distortion of market liquidity, nor the lower type

buyer. Notice that p(�) has a jump discontinuity at s� when s� = sA: In particular, there
are two markets opened for the seller s�; and, among two of them, sellers are indi¤erent.

Given any p0 2 (p(s�; l); p(s�; h)), T (p0) = s� according to Lemma 1. Given that the

type who is most likely come is s�; it is clear that low type buyer will not raise the price

p0 > p(s�; l) to attract the same seller. Nor the high type will bene�t from posting p0 <

p(s�; h) since the pair of p(s�; h) and �(s�; l) = �FBH (s) has already maximized the joint

surplus (�rst best).

Proof. Uniqueness: From Claim 2, we know that �0L = �FBL (s). Hence, to prove the

uniqueness, we essentially need to show that marginal types s� constructed above and its

corresponding �0H is unique. First of all, by construction, V
FB
H (s) < V (s; l) for 8s < sA;

it is clear that a high-type buyer will not enter the market for s < sA, given that the

highest utilities he can o¤er to the seller is lower than the one o¤ered by a low type buyer.
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Also, from Claim 1, s� can not be larger that sB in the equilibrium otherwise there exists

s < s� such that �(s; l) < ~�(s), which implies that it is pro�table for a higher type to

enter this market. Hence, the only possible range is [sA; sB]:Given that there are two

di¤erent cases, depending on the relation between ~�(sA) and �
FB
H (sA); we will prove the

uniqueness separately for each case. Before that, we �rst prove formally that sA is unique.

Notice that sA is the intersection of V FBH (s) and V (s; l): Therefore, the unique of sA is

obtained as long as V FBH (s) �V (s; l) satis�es single crossing condition. As a result of the
following inequalities, we can conclude that V FBH (h; s0) � V (l; s0) > V FBH (h; s) � V (l; s)
for any s0 > s

V FBH (s0)� (V FBL (s)� V (l; s))� V (l; s0)
> V FBH (s0)� (V FBL (s0)� V (l; s0))� V (l; s0)
> V FBH (s)� (V FBL (s)� V (l; s))� V (l; s)

The �rst inequality follows from the fact that V FBL (s0)� V (l; s0) > V FBL (s)� V (l; s); that
is, the utility of a high type seller decreases more than the one of a low type, resulting

from a higher distortion19. The second inequality follows from the condition of PAM,

that�s, V FBH (s0) � V FBL (s0) > V FBH (s) � V FBL (s): Moreover, from the discussion of b-2),

we can conclude the following claim: (Claim 3) If there is a discontinuity in ��(�) at s�;
which necessarily induces a discontinuity in p(�); it has to be the case that �0H = �FBH (s�):

Namely, �0H must equal its �rst best value �
FB
H (s�) when �0H 6= �(s�; l); otherwise, there

is a pro�table deviation for a high type buyer, who will deviate by posting a new price

p0 = p(�0H)� " =2 range of P to attract s�.
(CASE 1) s� = sA when ~�(sA) � �FBH (sA) : ~�(sA) � �FBH (sA) immediately implies

that �(sA; l) � ~�(sA) � �FBH (sA)20 and the equality holds i¤ ~�(sA) = �FBH (sA): Pick sm 2
(sA; sB] as the marginal type. By de�nition, the marginal type must be indi¤erent among

two markets, that is, indi¤erent between (�(sm; l); p(sm; l)) and (�
0
H ; p(sm; h)):Given that

sm > s
A =) V FBH (sm) > V (sm; l); It has to be case that �

0
H < �

FH
H (sm), that is, there must

be a downward distortion21 in market tightness otherwise sm is strictly better o¤ going

19One can show that �FBL (s)� ��(s; l) increases with s; given that �FBL (s) increases with s while ��(s; l)

decreases with s.
20Note that �(sA; l) is the intersection of a low-type buyer�s utility at �l and the utility of a seller

sA with the level of V FBH (sA): Given that ~�(sA) � �FBH (sA) and the tangent condition of V FBH (sA) and

the utility of a high-type buyer is satis�ed, �(sA; l) must be larger than ~�(sA):This is because that, by

construction, the utility curve of Ub(s; p; �) = �
l lies below Ub(s; p; �) = �

h for any � < ~�(s) and above

Ub(s; p; �) = �
h for any � > ~�(s):

21Clearly, it has to be downward distortion instead of upward one since the monotonic condition from
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to the market with a high type buyer. According to Claim 3, this can not be sustained

in equilibrium if there is a discontinuous in ��(�): Namely, the only possible case is that
�0H = �(sm; l) < �FBH (sm): However, given that �(sA; l) � �FBH (sA), �(sm; l) decreases

with s and �FBH (s) increases with s, �(sm; l) < �FBH (sm) =) 9s0 2 (sA; sm) such that

�(s0; l) = �FBH (s0) > ~�(s0): The above relation implies that V (pl(s0); �(s0; l)) > V FBH (s0);

which contradicts with the fact that V FBH (h; s0)� V (l; s0) > 0 for 8s0 > sA: Therefore, we
show that s� = sA is the unique solution when ~�(sA) � �FBH (sA):

(CASE 2) s� = sB when ~�(sA) < �FBH (sA): First of all, ~�(sA) < �FBH (sA) implies that

�FBH (sA) > �(sA; l) > ~�(sA):Same as before, the only possible range for sm is [sA; sB):

Given that ~�(s) and �FBH (s) increase with s, while �(s; l) decreases with s and �FBH (sA) >

�(sA; l) > ~�(sA), it has to be the case that �FBH (sm) > �(sm; l) > ~�(sm) for 8sm 2 [sA; sB):
Moreover, according to Claim 1, the initial condition �0H has to smaller ~�(sm): Therefore,

�(sm; l) > ~�(sm) � �0H ; which necessarily results in a discontinuity of �
�(�) at sm: The

resulting discontinuity and �0H < �
FB
H (sm) violates Claim 3. Contradictions. The above

argument also con�rms why only sB and �0H = �(s
B; l) = ~�(sB) is the unique solution in

this case, guaranteeing the continuity of ��(s):

E) Proof of Claim 3: From the FOC of the �rst best solution, one can solve d�
FB(s)
ds

=
h0(s)�u0(s)

k( 1��
�
)(1+���)

� f2(�; s): Observe from the di¤erential equation, d�
�(s)
ds

= f(�; s) ! � /

at f(�FB(s); s) given hs > 0. Hence, we know that ��(s) � �FB(s) for some s1 > sL:

Suppose now ��(s) > �FB(s) for some s; which implies that these two function must

cross at some point (ŝ; �FB(ŝ)) and the slope of the crossing point must be the case that

f2(�
FB(ŝ); ŝ) < f(�FB(ŝ); ŝ) = � /. Contradiction.
F) Proof of Proposition 6 (to be added)
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