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COOPERATION IN STRATEGIC GAMES REVISITED

ADAM KALAI AND EHUD KALAI

Abstract. For two-person complete-information strategic games with transferable utility,
all major variable-threat bargaining and arbitration solutions coincide. This con�uence
of solutions by luminaries such as Nash, Harsanyi, Rai¤a, and Selten, is more than mere
coincidence.
Staying in the class of two-person games with transferable unility, the present paper

presents a more complete theory that expands their solution. Speci�cally, it presents: (1)
a decomposition of a game into cooperative and competitive components, (2) an intuitive
and computable closed-form formula for the solution, (3) an axiomatic justi�cation of the
solution, and (4) a generalization of the solution to games with private signals, along with an
arbitration scheme that implements it. The objective is to restart research on cooperative
solutions to strategic games and their applications.
JEL Codes: C71 - Cooperative Games, C72 - Noncooperative Games and C78 - Bargaining
Theory

1. Introduction

1.1. Background. Cooperation in strategic environments is a crucial component in much of
social interaction. Yet game theory devotes little e¤ort developing general solutions that deal
with it: existing general strategic (noncooperative) solutions of games ignore the possibility
of cooperation and existing general cooperative solutions ignore strategic considerations.
Solutions to strategic games in which the players may cooperate, referred to in this paper as
semi-cooperative games (whose solutions are called semi-cooperative solutions), receive little
attention.
Motivated by the importance of cooperation in social interaction, researchers in the im-

plementation and experimentation literatures study such cooperation on an ad hoc basis in
speci�c families of games, such as cooperation in voluntary-contributions games, cooperation
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2 ADAM KALAI AND EHUD KALAI

in coordination games, and cooperation in trust games. However, little attention is given to
semi-cooperative solutions for general strategic games.
This was not always the case. Early in the development of game theory, several important

papers presented preliminary solutions for semi-cooperative games. In particular, the "vari-
able threat" papers of Nash (1953),1 Rai¤a (1953), and the later one of Kalai and Rosenthal
(1978), henceforth referred to as NRKR, o¤er solutions to the general class of �nite complete-
information two-person strategic games in which the players may cooperate through the use
of an arbitrator. Still, the subject has seen few applications over the years due to di¢ culties
discussed below.
More speci�cally, the NRKR solutions were not constructed directly as solutions for strate-

gic games; they came about as modi�cations of solutions to the cooperative Nash (1950b)
bargaining problem,2 by replacing the exogenously-given �xed threat points with equilibria
of noncooperative games that endogenously determine them (hence the name variable-threat
bargaining). Nevertheless, viewed as semi-cooperative solutions, the NRKR solutions are
subject to the following di¢ culties:
D1. Multiple solutions: The three papers o¤er three di¤erent solutions.
D2. No direct de�nitions: The solutions do not admit closed-form descriptions; rather,

they are de�ned to be the equilibria of speci�c noncooperative arbitration games.
D3. No direct axiomatic justi�cation: NRKR use axiomatic solutions of the coop-

erative Nash bargaining problem to construct their arbitration games. But they have no
axioms that relate the solution to the strategic game being arbitrated.3

D4. Restriction to complete information: Only the paper of Kalai and Rosenthal
addresses incomplete information, and their discussion of this topic is restricted to highly
specialized environments.
In addition to NRKR, Selten�s (1960) Ph.D. dissertation de�nes and axiomatizes a semi-

cooperative value for the class of two-person transferable-utility (see de�nition below) complete-
information games in extensive-form.4 However, Selten�s work did not receive much follow-
up, since dealing with the class of extensive-form games requires de�nitions and axioms that
are complex and abstruse.
As we elaborate later in the introduction, a generalization of the cooperative �xed-threat

bargaining solution of Nash (1950b) to the case of incomplete information was studied by
Harsanyi and Selten (1972), and Myerson (1984). Myerson (1984a) o¤ers a substantial
generalization of their approach to the case of n � 2 players in which the �xed-threat
assumption is relaxed.

1Harsanyi (1963) o¤ers an alternative characterization of Nash�s solution, as well as a generalization to n
players; see the concluding section of the current paper for more detail.

2These are the Nash (1950b) solution, the egalitarian solution in Kalai (1977), and the Kalai-Smorodinsky
(1975) solutions. See Thomson and Lensberg (1989) for additional discussion and references.

3In the three NRKR papers, the authors �rst use axioms that identify a cooperative solution (the Nash,
the egalitarian or the Kalai-Smorodinsky, respectively) to serve as a function that assigns a feasible pair
of payo¤s to any pair of noncooperative threats. Then, they de�ne threir semi-cooperative solution by a
two-step process: step 1, have the players play the noncooperative game to be arbitrated, and step 2, use
the outcome of step 1 as the threats to which they apply the axiomatically-selected cooperative solution.
In other words, their axioms describe properties of an intermediary step in the arbitration process, rather

than properties of the entire process.
4See Selten (1964) for a more accessible partial description of his solution.
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1.2. The objective, approach, and contribution. Building on the literature above, this
paper takes an initial step to restart the study of cooperation in strategic games. For a
restricted, but important class of games, we o¤er a more complete theory of such cooperation.
The theory is centered around a semi-cooperative solution, referred to as the cooperative-
competitive value, or coco value for short, that signi�cantly overcomes some of the di¢ culties
cited above. The presentation also leads to well-de�ned questions for further research. To
make this paper self-contained, we assume no prior knowledge of the early literature. Further
connections to the papers cited above and to additional important literature are deferred to
later in this introduction and to remarks throughout the body of the paper.

The paper is restricted to �nite two-person incomplete-information strategic games with
side payments, which are alternatively referred to as transferable-utility (TU).5 While this
restriction rules out many important applications (see elaboration at the concluding section
of the paper), it still covers other important ones; and following a traditional approach in
cooperative game theory, it may be used as a �rst step towards the construction of a more
general and complete theory. In particular, the restriction to TU games allows us to make
the following advances:
A1. Uni�cation and generalization: On TU games with complete information, the

di¤erent NRKR values and the Selten value all coincide. The coco value studied here is a
formal generalization of their common TU value from complete to incomplete information.
A2. Closed-form de�nition: For TU games, we are able to de�ne the coco value by

an easy-to-interpret and easy-to-compute closed-form expression that generalizes naturally
to games of incomplete information.
A3. Decomposing cooperation and competition: The closed-form expression and

the generalization to incomplete information are made possible by a general decomposition
of a game into cooperative and competitive components.
A4. Axiomatization: The solution (and decomposition) are justi�ed by a simple and

intuitive set of axioms based on principles of e¢ ciency, fairness, and stability.
A5. Noncooperative Implementation: We consider scenarios where the players have

private signals regarding the state of nature, and we assume that the realized state of nature
is observed after game play. In this case, the �rst-best outcome determined by the coco value
can be implemented in the interim sense.
A6. Other generalizations: The coco value generalizes the minmax value of von

Neumann (1928) from zero sum to non-zero-sum games; and its axiomatization, when re-
stricted to the class of zero-sum games, is a formal axiomatization of the minmax value. It
also generalizes the maxmax value from team games (games with identical payo¤s) to
general games.

Much of the discussion of the coco value in this paper is directed at an arbitrator, whose
role is to bring about an e¢ cient and fair outcome to a strategic game. But since the
formula and computation of the value are straightforward, players may bypass the arbitrator
and follow the formula and procedures on their own. For example, in the 2 � 1 Sacri�ce
game below, an arbitrator who follows the coco theory would prescribe that the row player
play sacri�ce in exchange for a $2 transfer from the column player, netting each player a $1

5Stated di¤erently, the players have quasi-linear utility functions in monetary payo¤s. A simple way to
view this is that players assign monetary values, say, in dollars, to outcomes, and without loss of generality
utilities have been normalized so that the utility for $x is x.
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payo¤. But once they understand the rationale of this solution, the two players may shake
hands, or sign a contract to execute this solution on their own. Indeed, statements in this
paper that refer to arbitration may be reinterpreted as statements about self-arbitration.

Sacri�ce game:
decline $0,0
sacri�ce -1,3

This paper does not attempt to provide a descriptive interpretation of the coco value.
Nonetheless, the coco value may shed light on the tension between competitive and coop-
erative factors present in many real-world negotiations that possess both cooperative and
strategic elements.

Readers who are used to working entirely in noncooperative game theory may wonder
why we do not simply model the problem as a strategic contract-signing game that allows
for commitments and monetary transfers. However, we know from more recent folk theorems
that games with contracts and voluntary commitments possess large sets of Nash equilib-
ria.6 Thus, it is important for game theory to go further and select one equilibrium as a
recommended focal point. Indeed, as discussed in this paper, the coco value may be viewed
as the "natural" equilibrium payo¤ of a noncooperative arbitration game that allows for
commitments. The axioms of e¢ ciency, fairness and stability that lead to the coco value,
are formal conditions that one may wish to impose on a "natural" equilibrium.

The noncooperative arbitration game discussed in the paper addresses standard imple-
mentation questions: Would strategic players come to an agreement leading to the coco
value (or agree to use an arbitrator who implements the coco value)? Would they provide
the information needed for its implementation?
These questions are addressed under additional requirements of interest. First, unlike

earlier literature on arbitration, we discuss voluntary as opposed to obligatory arbitration.
Moreover, we address the questions above in the interim sense: Would the players choose to
use the arbitrator when they already possess their private signals?
Readers familiar with the implementation literature are aware of the impossibility results

of Myerson and Satterthwaite (1983), showing that a general implementation of a �rst-best
outcome in the interim sense may be impossible. Thus implementing the coco value, a �rst-
best outcome that satis�es additional properties, must be subject to signi�cant restrictions.
More speci�cally, we restrict ourselves to private signals relating to states that can be

collectively assessed after the play of the game, and do not deal with individuals�internal
states that may remain private forever. For example, di¤erential forecasts about weather and
market conditions may be in the domain of our analysis, while an individual�s satisfaction
from owning an object of art falls outside of its scope.7

As we elaborate in the concluding section of the paper, this is a sever restriction on the
applicability of the coco value at its current state. Natural next step for future research is
to extend the theory to second-best solutions of semi-cooperative games in which �rst-best
outcomes cannot be made incentive-compatible. But this may be quite challenging, as one

6See, for example, Fershtman et al. (1991), Tennenholtz (2004), Jackson and Wilkie (2005), A. Kalai et
al. (2010) and references therein; and see the recent manuscript of Forges (2011) for extensions to games
with incomplete information.

7See Mezzetti (2004) for an earlier use of such assumptions in other implementation problems.
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would like to simultaneously extend all aspects of the theory: general unrestricted private
information with second-best implementation; a weaker e¢ ciency axiom, with full axiomatic
justi�cation of the implemented second-best outcome; and a closed-form expression that
de�nes the selected second-best outcome.

1.3. Decomposing cooperation and competition. The de�nition, axiomatization, and
implementation of the coco value all rely on a natural decomposition of two-person strategic
TU games to cooperative and competitive components. The natural interpretation of this
decomposition is critical for the generalization to incomplete information and to the other
aspects of the coco theory.
As an easy illustration of the decomposition, consider a complete information game, where

the payo¤s of the two players are described by payo¤ matrices A and B. The game has a
natural cooperative/competitive decomposition, or coco decomposition8, described by:

(A;B) =

�
A+B

2
;
A+B

2

�
+

�
A� A+B

2
; B � A+B

2

�
=

�
A+B

2
;
A+B

2

�
+

�
A�B
2

;
B � A
2

�
.

Notice that the �rst term of the right-hand side is a cooperative team component in which
the interests of the players are fully aligned. The second term is a fully competitive zero-
sum game in which the player�s interests are in direct con�ict. Game theory has appealing
solutions to these two types of games: the maxmax for cooperative team games and the
minmax for zero-sum games. Restricted to the case of complete information, the coco value
is de�ned by:

coco-value(A;B) = maxmax-value
�
A+B

2
;
A+B

2

�
+minmax-value

�
A�B
2

;
B � A
2

�
:

This de�nition has a natural interpretation in terms of cooperation and one-upmanship.
The players play the maxmax strategies of the cooperative component to yield equal (maxi-
mal) payo¤s, which are e¢ cient in the game (A;B). But then the equal payo¤s are adjusted
by a zero-sum compensating transfer from the strategically weaker player to the stronger
one. To determine the relative strategic strength, one considers a hypothetical relative ad-
vantage game in which each player�s goal is to exhibit how much better he could have done,
or equivalently, by how much he could have �outplay�his opponent.9 The body of the paper
builds upon such a decomposition in de�ning the coco value for general Bayesian games.
The decomposition also plays an important role in facilitating a strategic implementation of
the coco value.
It is easy to see from the above de�nition that when starting with a cooperative strategic

game (X;X), the coco value is the cooperative maxmax value, and when starting with a
zero-sum game (Y;�Y ), the coco value is the minmax value.

8Even though some people seem to have earlier awarness of this decomposition for complete information
games, we are not aware of any published version of it.

9This is reminiscent of the "di¤erence game" used in Nash (1953), and the alternative formulation provided
in Harsanyi (1963).
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It is also clear from this de�nition why the restriction to two-person games is important.
While the decomposition above holds for any number of players, the minmax solution is
de�ned only for two-person games. Thus, a value for n-person games would most likely
constitute a generalization of the minmax value to n-person zero-sum games.

1.4. Elaboration on related literature.

1.4.1. Incomplete information in strictly cooperative games. As mentioned above, most gen-
eral studies of cooperation were done in the strictly cooperative model of game theory.
This is especially the case for studies of cooperation under incomplete information. In the
two-players case, the di¤erence between the strictly cooperative and the semi-cooperative
approach is expressed in the choice of the "threat point," as explained by Harsanyi and
Selten (1972) in their pioneering paper on the subject:

Bargaining situations, whether they involve complete or incomplete informa-
tion, may be divided into those with variable threats and those with �xed
threats. A bargaining situation is said to allow variable threats if each player
can choose any one of several retaliatory strategies available to him, and can
commit himself to use this strategy - called his threat strategy - against the
other player if they cannot reach an agreement. Therefore, the payo¤s the
players would receive in such a con�ict situation could depend on the threat
strategies to which they had chosen to commit themselves.
On the other hand, we say that a given bargaining situation shows only

�xed threats if the payo¤s which the players would receive in the absence of
an agreement are determined by the nature of the bargaining situation itself,
instead of being determined by the players�choice of threats strategies or by
any other actions that the players may take.

Harsanyi and Selten (1972) and Myerson (1984) deal with the case of �xed threats or
strictly-cooperative approach.10 The current paper may be viewed as taking a parallel
approach for the case of variable-threats or semi-cooperative games. From the conceptual
and technical view point, dealing with incomplete information in the case of variable threats
is signi�cantly more demanding. Indeed the Harsanyi-Selten and Myerson papers present
a more general analysis, not restricted by the assumptions of transferable utility and payo¤
observability made in the current paper.
Studying an intricate more general model of cooperation for n � 2 person games with

incomplete information, Myerson [1984a] exhibits the existence of "solutions that are e¢ cient
and equitable when interpersonal comparisons are made in terms of certain virtual utility
scales." In his model, threats are rational (not �xed) and are based on incentives of payo¤
maximization, similar to ones used in the earlier literature on the Shapley value. Indeed, his
solutions may be viewed as generalizations of the Shapley value, as de�ned by Harsanyi, and
of the Nash bargaining problem with incomplete information, as de�ned earlier by himself.
In addition to not assuming transferable utility, Myerson�s model di¤ers from the current

paper in that the players bargain, in the interim stage, over mechanisms and not directly over

10This is not to be confused with the paper of Harsanyi (1963). Staying with games of complete informa-
tion, Harsanyi revisits the variable threat model of Nash and extends it to n > 2 players. See our concluding
section.
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payo¤s. However, there might be a close relationship between the Myerson values and the
coco value in the case of two players, trasferable utility and ex-post veri�able information.11

For a survey of this literature we refer the reader to Forges and Serrano (2011).

1.4.2. Additional directions. Semi-cooperative solutions can also be found in Aumann (1961),
Forges et al. (2002), de Clippel and Minelli (2004), Ichiishi and Yamazaki (2006), Hart and
Mas-Colell (2010), Biran and Forges (2011), and related references.
Carpente et al. (2006) present an earlier axiomatization of a semi-cooperative value de�ned

for the class of TU complete-information strategic games. It turns out that their value
describes a "bridge" solution that has been repeatedly used on an ad hoc basis by many
authors, including some of those mentioned in the previous paragraph. As discussed in the
body of this paper, the Carpente et al./bridge solution is di¤erent from the coco value (and
from the NRKR values), even on the restricted class of complete-information TU games: it
does not account for important strategic externalities and credibility of threats.
Additional related literature is experimental game theory, where it shown that players

tend towards �playing fair,�sometimes even against their sel�sh material interest.12 Being
fair and compatible with individuals�material incentives, the coco value is an attractive focal
point for the selection of equilibrium in arbitration games.

1.4.3. On the generality of solutions. The many papers written on cooperation in game
theory deal with di¤erent models and di¤erent assumptions on the class of games being
studied: strictly cooperative versus strategic; with or without side payments; with full, with
partial information that is ex-post observable, or with partial information that is not ex-post
observable, etc. For this reason it is hard to rank solutions by generality. As stated earlier,
this paper presents a "more complete" theory, which comes at the price of making restrictive
assumptions on the class of games we study. In this regard, it is important to note that while
this theory is "more complete," at the same time it is more restricted in important respects
when compared to earlier papers on the subject. For example, it is more complete than
the NRKR solutions, as discussed earlier. But the NRKR solutions, which are restricted to
complete information, are not restricted to games with transferable utility.
Throughout this paper we attempt to keep these di¤erences clear, and careful reading of

our statements should help a reader in identifying most of the important di¤erences.

1.5. Organization. Section 2 contains the formal model and the de�nition of the coco
value. An axiomatic characterization is given in Section 3, while Section 4 is devoted to
implementation. Section 5 contains an analysis of a joint venture game between a producer
and a distributor that shows how the coco value is related to the impossibility results of
Myerson and Satterthwaite (1983). Section 6 o¤ers further elaboration on the possibility of
implementation of the coco value. Section 7 elaborates on the axioms discussed in Section
3 and on the computability and robustness of the coco value. Section 8 includes a brief
concluding summary and suggests directions for future research.

11We thank an anonymous referee of this journal for pointing this possible connection.
12This literature is too large to survey here. See Roth (1979), Rabin (1993), Binmore (1994), Fehr and

Schmidt (1999), Camerer (2003), Chaudhuri (2008), and follow-up references.
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2. Definition of the coco value

2.1. Complete information. Before turning to the general de�nition, we �rst illustrate the
coco value for a complete-information game, based on the decomposition and the formula
discussed in the introduction.

Example 1. Vendors with complete information. Simultaneously, each of two hot-dog
sellers, P1 and P2, has to choose one of two locations, the airport, A, or the beach, B. The
daily demand at A is for 40 dogs, while the demand at B is for 100 dogs. If they choose
di¤erent locations, they each sell the quantity demanded at their respective location; and if
they choose the same location, they split the local demand equally. P1 nets a pro�t of $1/dog
sold, while P2 nets a pro�ts of $2/dog sold.
Below is the representation of this game, followed by its coco decomposition.

A B
A 20,40 40,200
B 100,80 50,100

=
A B

A 30,30 120,120
B 90,90 75,75

+
A B

A -10,10 -80,80
B 10,-10 -25,25

The cooperative component, or team game, has a maxmax value of (120; 120), while the
competitive component, or the zero-sum game, has a minmax value of (�25; 25). Hence, the
coco value is (95; 145) = (120; 120) + (�25; 25).
The coco value achieves the maximum total of 240, which the players obtain by play-

ing (A,B). The play (A,B) is followed by a $55 side payment from P2 to P1: (40; 200) +
(55;�55) = (95; 145). The (55;�55) transfer represents the sum of the two transfers
(80;�80) + (�25; 25); the �rst is needed to equate the payo¤s at (A;B), and the second
is the correction factor needed to compensate P2 for agreeing to take equal payo¤s.
Indeed, since this is a game of complete information, the values proposed by NRKR and by

Selten all agree on this solution, even if they do not describe it through the simple closed-form
expression above.
We now use the same idea for the a more general case of incomplete information.

2.2. The general case, with incomplete information. Unless otherwise speci�ed, there
is a set of two players, N = f1; 2g.13 A Bayesian game G is de�ned by: G = (A =
�i2NAi; Y = �i2NYi; U = �i2NUi; �) where for each player i, Ai denotes the set of actions,
Yi denotes the set of signals, and Ui � RA denotes the set of payo¤ functions (utilities),
ui : A! R. All these sets are assumed to be �nite and � is the prior probability distribution
over Y �U . To increase readability, we sometimes write (y; u) � � to indicate that the pair
(y; u) is drawn from the distribution �.
As in much of the literature on Bayesian games, we assume that the game and the prior

distribution are commonly known to the players. Game play is as follows. First, the state
of the world, (y; u) 2 Y � U , is drawn from �. Each player i then observes her own signal
yi, on the basis of which she chooses (simultaneously with her opponent) an action ai 2 Ai.
The payo¤ to player i is ui(a), where a = (a1; a2) is the selected action pro�le.
As is standard, a mixed action for player i is a probability distribution �i 2 �(Ai) over

her set of actions. We also extend the domain of payo¤ functions, ui, to mixed actions by
the use of expected values. A (pure) strategy for player i, si : Yi ! Ai, is a function that
speci�es the action that player i would choose if her signal were yi 2 Yi; and a (behavioral)

13Our generic player is a female, and to ease the reading in the case of two players, player 1 is a female
and player 2 is a male.
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mixed strategy for player i, �i : Yi ! �(Ai), similarly speci�es a mixed action to play based
upon her knowledge of her own signal. We may also refer to yi as the private information
of player i.
A game is zero-sum if, with probability 1, u1 = �u2, and it is a team game if, with

probability 1, u1 = u2. Finally, we use the standard convention that a�i and u�i represent,
respectively, the actions and payo¤s of player i�s opponent. A coordinated strategy is a
function c : Y ! A from signal pro�les to action pro�les.
As mentioned, we assume that the players have additive transferable utility (TU) for

money, i.e., each player can make arbitrary monetary side payments (or their equivalent) to
the other at a one-to-one rate.

We next describe the coco decomposition for Bayesian games.

De�nition 1. For any u : A! RN , de�ne ueq; uad : A! RN as follows:

(1) The equal, or average, payo¤ is ueq1 (a) = u
eq
2 (a) �

u1(a)+u2(a)
2

.
(2) The payo¤ advantage of player i is uadi (a) � ui(a)� u

eq
i (a) =

ui(a)�u�i(a)
2

.

Although ueq(a) 2 R2, we sometimes use ueq(a) to denote the single equal payo¤ that it
allocates to the players, and thus write ueq(a) = ueq1 (a) = u

eq
2 (a).

The cooperative-competitive decomposition presented above for complete information ex-
tends naturally to incomplete information:

u = ueq + uad:

But unlike the complete-information case, now the players may also improve the sum (or
average) of their expected payo¤s by sharing information. To this end, we de�ne the following
notions.

De�nition 2. For a game G = (A; Y; U; �), the team optimum of G is de�ned by:

team-opt(G) = max
c:Y!A

E [u1(c(y)) + u2(c(y))] :

A coordinated (pure) strategy c : Y ! A is called optimal if E [u1(c(y)) + u2(c(y))] =
team-opt(G).

In words, an optimal coordinated strategy is a rule c that the players may use to select,
for every pair of realized signals y, a pair of actions c(y) that maximizes the sum of their
expected payo¤s in G. In most situations this selection is unique, but if there is more than
one optimal pair of actions, the coordinated strategy selects one. The team optimum is the
maximal sum of expected payo¤s that may be generated by such a rule. Notice that this
de�nition assumes that they truthfully share all their information and then coordinate their
actions.

De�nition 3. The relative advantage of player i is de�ned to be her minmax value in the
zero-sum game Gad = (A; Y; V; �ad), where V consists of all payo¤ functions v = (v1; v2) with
each v = uad for some payo¤ pair of function u of G, and �ad(y; v) = �(f(y; u) : v = uadg).

The game Gad is a zero-sum modi�cation of G, which preserves the di¤erences between
the two players�payo¤s. Each player is simply trying to maximize the di¤erence between her
payo¤ and that of her opponent. Since the advantage game is a zero-sum Bayesian game, it
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has a unique minmax expected value, which we denote by minmaxi(Gad). We refer to this
value as player i�s competitive advantage, relative advantage, or just advantage.14

De�nition 4. The coco value of a game G to player i, denoted by �i(G), is de�ned by,

�i(G) =
1

2
team-opt(G) +minmaxi(Gad):

In parallel to the complete-information case above, one may de�ne a cooperative compo-
nent of G, Geq, in which the players share both the information they have when they come
to the game and the payo¤s resulting from any play.15 The team-opt(G) equals the highest
possible (common) expected payo¤ that may result from any pure strategy of Geq, which
may be thought of as the team-value(Geq). Thus, in parallel to the complete-information
case, one may think of the coco value of a private-information game as the sum �(G) = 1

2

team-value(Geq)+ minmax-value(Gad).
Note that the coco value is feasible and Pareto optimal for every y (in conditional expec-

tations over Y ), i.e., the sum of the payo¤s is the maximum (expected) sum that the players
can achieve with coordination and sharing of information.

Example 2. Vendors with incomplete information. This is the same game as in the
(complete-information) vendor example above, except that the demand at B depends on the
weather: if sunny, which happens with probability 1=2, the demand is for 200 dogs; and if
cloudy, which happens with probability 1=2, there are no customers at the beach. Furthermore,
suppose that player 1 is perfectly informed, a priori, of the weather and player 2 has no
information.
The resulting Bayesian game G is described by the payo¤ tables below:

Sunny:
prob 1/2

A B
A 20,40 40,400
B 200,80 100,200

Cloudy:
prob 1/2

A B
A 20,40 40,0
B 0,80 0,0

The team-opt(G) = 1
2
(40+ 400)+ 1

2
(0+ 80) = 260 is the greatest sum of expected payo¤s

they can generate under honest sharing of all the available information. The advantage
game, Gad, is the following:

Sunny:
prob 1/2

A B
A -10,10 -180,180
B 60,-60 -50,50

Cloudy:
prob 1/2

A B
A -10,10 20,-20
B -40,40 0,0

14The game de�ned here is the ex ante game, in which the players choose complete strataegies before
they know their private information. This is important, because this game has a well de�ned minmax
value. An alternative approach, in which one analyses the minmax values of the interim zero-sum games, in
which the players already know their private information, may create confusion, since the vector of minmax
values of these intermediary games is not unique. See our discussion of "Interim individual rationality and
conditional values" following the interim implementation theorem.

15Geq = (A; Ŷ1 � Ŷ2; V; �̂) de�ned by Ŷ1 = Ŷ2 = Y1 � Y2, V = fv : v = ueq for some u 2 Ug; and
�̂((y; y); v) = �(f(y; u) : ueq = vg).
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This is a zero-sum game with complete information for P1 and no information for P2. To
compute its minmax value, notice that by domination, P1 will play B in the left-hand side
game, and play A in the right-hand side game. P2�s best response is to play B, yielding the
minmax(Gad) = 1

2
(�50; 50)+ 1

2
(20;�20) = (�15; 15). So the coco value �(G) = 1

2
(260; 260)+

(�15; 15) = (115; 145).
Notice that the team optimum is computed under the assumption of full cooperation. The

information is fully and truthfully shared before the players choose the optimal action in each
state of information. The advantage game is played noncooperatively, which re�ects the
relative advantage of P2 when both his payo¤ advantage and his information (dis)advantage
are taken into account.

3. Axiomatic characterization of the coco value

Discussed below are simple properties that one may impose on arbitration schemes.16 Un-
like the properties of noncooperative play of a strategic game, exhibited for example by Nash
equilibrium, these properties capture the goals of arbitrators who arbitrate strategic games.
Their goals are to select outcomes that are e¢ cient, fair, stable and easy to compute.17

Also, since we assume that the use of arbitration is voluntary, the outcome of the arbitration
should be compatible with the incentives of the individuals who contemplate its use.18

All the properties of the coco value are adopted from the minmax value, and from the
NRKR values on the restricted class of complete information games. Further elaborations
on these properties are discussed throughout the rest of this paper. However, the six selected
properties below are su¢ cient to identify the coco value as a unique semi-cooperative solution
for the class of two-person TU Bayesian games.19

A value is a function from the set of all �nite two-person Bayesian games G to R2, i.e.,
v(G) 2 R2 where vi(G) is the value to player i. We focus on values that satisfy the following
properties, or axioms:
(1) Pareto e¢ ciency. Players achieve the maximum (�rst-best) total expected payo¤

possible with shared information: v1(G) + v2(G) = maxc:Y!AE [u1(c(y)) + u2(c(y))],
i.e., team-opt(G).

(2) Shift invariance. The shifting of payo¤s in all cells by any pair of constants leads
to a corresponding shift in the value. Formally, �x any c = (c1; c2) 2 R2. For any
u, let u0(a) = u(a) + c. Then v(G0) = v(G) + c where G0 = (A; Y; U 0; �0), with
U 0 = fu0 : u 2 Ug and �0(y; u0) = �(y; u).

(3) Monotonicity in actions. Removing an action of a player cannot increase her
value. Formally, for player 1, let A01 � A1 and u0 be the restriction of any u to
A01�A2. Then v1(G0) � v1(G) where G0 = (A01�A2; Y; U 0; �0), in which U 0 consists of

16As mentioned earlier, Selten (1960, 1964) gives a more involved axiomatization of the analogous value for
extensive-form games with complete information. Extended to games of incomplete information, the Selten
value does not coincide with the coco value. We are grateful to Moshe Tennenholtz and Dov Monderer for
pointing us to Selten�s work.

17The axioms re�ect similar properties studied in the cooperative bargaining literature (see for example
Thomson 1994), adopted to the domain of strategic games.

18The noncooperative properties of the coco process are addressed in the next section, which deals with
implementation.

19The proof of the theorem that follows may be carried out entirely within the class of two-person TU
complete-information games, and within the class of two-person zero-sum Bayesian games. Thus, it provides
an axiomatization of the NRKR value and of the von Neuman minmax value.
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the restricted payo¤ functions from G, and �0 is the induced distribution over (y; u0)
(i.e., �0(y; u0) = �(f(y; u) : ujA1 = u0g)). The symmetric condition holds for player 2.

(4) Payo¤ dominance. If, under any coordinated pure strategy, a player�s expected
payo¤ is strictly larger than her opponent�s, then her value should be at least as large
as the opponent�s. In particular, for player 1, if minc:Y!AE[u1(c(y))� u2(c(y))] > 0,
then v1(G) � v2(G). The symmetric condition holds for player 2.

(5) Invariance to redundant strategies. For player 1, let a1 2 A1 and A01 = A1nfa1g.
We say that a1 is redundant (in expectation) if there exists �1 : Y1 ! �(A01) with the
property that for every y 2 Y; and for every a2 2 A2 a1 and �1 yield both players the
same expected payo¤s, i.e., E�

�
u(a1; a2) j y

�
= E�

�
u(�1(y1); a2) j y

�
. Then removing

such a redundant action a1 does not change the value of the game for either player.
The symmetric condition holds for player 2.

(6) Monotonicity in information. Giving player i strictly less information cannot
increase her value. In particular, for player 1, v1(G0) � v1(G), wheneverG0 is obtained
from G by reducing player 1�s information through any function f : Y1 ! Y1 as
follows: G0 = (A; Y; U; �0) with �0((y01; y2); u) = �(f((y1; y2); u) : f(y1) = y01g). The
symmetric condition holds for player 2.

Theorem 1. The coco value is the only value that satis�es axioms 1-6 above.

Before turning to the proof of the theorem, we �rst o¤er some intuition through a sketch of
the proof for complete information games. Speci�cally, for any value v that satis�es Axioms
1-5 above, v(G) = �(G) for any complete information gameG. Shift invariance implies that it
su¢ ces to consider the special case of games G with �(G) = (0; 0). Moreover, to complete the
proof of this special case, it su¢ ces to show that v1(G) � 0 (because a similar argument would
show that v2(G) � 0, and Pareto e¢ ciency would imply that v(G) = (0; 0)) . Now, when
�(G) = (0; 0), the minmax value of Gad must also be zero. Let ��1 be any minmax strategy of
player 1 in Gad. By the coco decomposition, in the game G this strategy guarantees player 1
an expected payo¤ at least as large as that of player 2. Now consider the game H in which
player 1 is forced to play ��1 (i.e., she has only one pure action that corresponds to �

�
1 in G).

By axioms 3 and 5, v1(G) � v1(H). By payo¤ dominance v1(H) � v2(H) (see the proof of
Theorem 1 for how to address the weak vs. strong inequality),. If the team optimum of H
were the same as G, (i.e., if v1(H) + v2(H) = 0), then these three facts would imply that
v1(G) � 0, and we would be done.
However, forcing player 1 to play �1 may decrease the team optimum. To overcome this

di¢ culty in this complete-information case, before we force player 1 to play ��1, we augment
the game G as follows: we add to player 2 a new simple action that yields the constant
payo¤s (0; 0), no matter what player 1 plays. This does not change the coco value, and
axioms 1 and 3 imply that this new strategy cannot increase player 1�s value (in particular,
player 2 is no worse o¤ while the team optimum remains zero). Furthermore, when player 1
is now forced to play �1, player 2�s new action guarantees that the team optimum remains
zero, and hence the argument in the previous paragraph goes through.
In the case of incomplete information, the approach of the proof above fails for two reasons.

First, the addition of a constant (0; 0) action for player 2 could very well change the team
optimum and the value of the advantage game, because this action may be taken based upon
the player�s information. Second, in order to apply the payo¤-dominance axiom, we remove
all of player 1�s information, which might decrease the team optimum. We now show how
to address these subtleties.
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Lemma 1. Let G be a �nite two-person Bayesian game such that �(G) = (0; 0). Then
axioms 1-6 above imply that v1(G) � 0.

Proof. We will construct a sequence of games and argue that v1(G) � v1(G
0) � v1(G

00) �
v1(H) � 0:
To construct G0, we add a new action b2 (62 A2) to player 2�s set of actions, so that the sets

of actions of G0 are A01 = A1 and A
0
2 = A2[fb2g. Next we de�ne the possible payo¤ functions

U 0 of G0. We �x any action a�2 2 A2 for player 2, we �x some team-optimal coordinated
strategy c : Y ! A in G (see De�nition 2), and we de�ne the gain from cooperation at
(a1; a

�
2) and y to be g = u1(c(y)) + u2(c(y)) � u1(a1; a�2) � u2(a1; a�2). Every payo¤ function

of G is extended in up to jY j payo¤ functions in G0 so that when player 2 selects the new
action b2, their payo¤s are those of G at (a1; a�2) plus the gain g divided equally between the
two players.
Formally, for any y 2 Y and u : A! R2, de�ne f tu : A0 ! R2 by

f tu(a) =

(
u(a) if a2 6= b2,
u(a1; a

�
2) +

�
g
2
; g
2

�
if a2 = b2,

with g = u1(c(y)) + u2(c(y))� u1(a1; a�2)� u2(a1; a�2):

Now the prior probability distribution of G0 is the one induced by �, i.e., �0(y; u0) =
�(f(y; u) : f tu = u0g).
It is easy to see that the team optimum of G0 is still zero, because the total achieved

by any coordinated strategy in G0 can also be achieved in G, so v1(G0) + v2(G0) = 0. By
monotonicity in actions, v2(G0) � v2(G). Hence, v1(G0) � v1(G).
Next, because �(G) = (0; 0), the value of the advantage game Gad must be (0; 0). Hence,

there must exist a mixed strategy for player 1, ��1, which guarantees player 1 at least as
much as player 2, in expectation, i.e., E�[u1(��1(y); �2(y))� u2(��1(y); �2(y))] � 0 for any �2.
In particular, �x any such ��1 which is a minmax optimal strategy for player 1 in G

ad. Note
that ��1 also guarantees player 1 at least as much as player 2 in G

0, because b2 is equivalent
to a�2 in terms of the di¤erence in the players�payo¤s.
Now, using ��1 as de�ned above, we de�ne a new action b1 62 A1; we then consider the game

G00, obtained from G0 by restricting the actions of player 1 to be A100 = fb1g, with payo¤s
u00(b1; a2) = u

0(��1; a2). Hence, in G
00 player 1 must play like ��1 in G

0 (in expectation). By
monotonicity in actions, this means that v1(G00) � v1(G0). (To see this formally, one must
�rst consider the game with actions (A1[fb1g)�A02, which has the same value as G0 because
b1 is redundant by axiom 5; then remove all remaining actions for player 1.) Finally, team-
opt(G00) = 0, since when player 2 plays b2, they achieve the same expected total as when
they play c in G.
Now, by design, b1 guarantees player 1 at least as much as player 2, in expectation.

However, to apply payo¤ dominance, we must argue that, even if the players coordinate,
player 1 gets strictly more than player 2, in expectation. Even though player 1 has only one
action in G00, she may have information that can help player 2 achieve an advantage.
To address this coordination problem, we remove all information from player 1. In partic-

ular, �x any y�1 2 Y1 and de�ne the game H by changing only the set of signals of G00 so as
to obtain Y H1 = fy�1g with �H((y�1; y2); u00) = �00(f(y1; y2); u00) : y1 2 Y1g).
By axiom 6, v1(H) � v1(G00). Also, the team optimum of H remains zero, because player

2 still has the option of playing the �xed action b2. Finally, notice that player 1 is guaranteed
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an expected amount at least as large as that of player 2, due to our choice of b1. Coordination
is impossible since player 1 has only one action and one possible signal.
We are almost ready to apply the payo¤dominance axiom. The remaining issue is that we

have a weak inequality rather than a strict one. To complete the proof, imagine translating
the payo¤s of player 1 up by any constant � > 0. By Axiom 2, this would only shift his
value up by �. However, once his payo¤ has been shifted, Axiom 4 does apply, in which
case player 1�s value is at least as large as that of player 2. Hence, v1(H) + � � v2(H).
Since this holds for every � > 0, it follows that v1(H) � v2(H). The combination of this
with v1(H) + v2(H) = 0 implies that v1(H) � 0, and we have already argued that v1(G) �
v1(G

0) � v1(G00) � v1(H). �
We now prove Theorem 1.

Proof of Theorem 1. First, we argue that the coco value satis�es axioms 1-6. Pareto ef-
�ciency is trivially guaranteed by the fact that the advantage game is zero-sum and the
team-game value maximizes the expected sum of payo¤s. Second, a payo¤ shift of (w1; w2)
corresponds to a shift of

�
w1�w2
2
; w2�w1

2

�
in the advantage game and to a shift of w1 + w2 in

the team optimum. Since the value of zero-sum Bayesian games satis�es shift invariance, this
corresponds to a shift of (w1; w2) in the coco value. Monotonicity in actions and information
clearly holds for zero-sum games and the team-opt value, and hence also for the coco value.
Similarly, removing a redundant action for i in G corresponds to removing the redundant
action in the zero-sum and team games, which does not change their value. Removing a
redundant state also does not change the value of a team game or a zero-sum game.
The proof of the converse, namely, that the only value v that satis�es the axioms is

v(G) = �(G), follows easily from Lemma 1. Speci�cally, translate the payo¤s of G by ��(G)
to get game G0 where �(G0) = (0; 0). Lemma 1 states that v1(G0) � 0. Since the axioms are
symmetric, the same reasoning implies that v2(G0) � 0. Pareto e¢ ciency then implies that
v(G0) = (0; 0): Finally, axiom 2 implies that v(G) = v(G0) + �(G) = �(G). �

4. Noncooperative implementations of the coco value

The discussion in this section is with regard to voluntary, not obligatory, arbitration.20

In other words, would unobligated individual players use an arbitrator who prescribes the
coco value? Would they be willing to do so before they know their private signal, (ex-ante
implementation), and would they be willing to do so after they know it (interim implemen-
tation)?21

As readers familiar with the interim implementation literature know, achieving �rst-best
e¢ ciency in general Bayesian games may be impossible, even if we do not insist on simultane-
ously achieving the other properties (such as fairness) of the coco value. Thus, a completely
general interim implementation of the coco value may not be achievable.
However, there are two special types of games in which private information is easy to

deal with (though in opposite ways): strictly cooperative and strictly competitive games.
In Bayesian team games (where the players� payo¤s are identical), the obvious incentive

20This is unlike the arbitration games considered by NRKR for the complete-information case.
21The voluntary decision of a player is whether or not to use the arbitrator. But once a player chooses

to use the arbitrator, then he is committed to follow the arbitrator�s instructions, even if his opponent did
not choose to use the arbitrator. This means that an arbitrator may be used as a commitment device by a
player.
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is to fully disclose all private information, enabling the choice of the mutually best pair of
actions. Conversely, in Bayesian zero-sum games (where one player�s gain is the other�s loss),
the obvious incentive is not to disclose any private information, keeping the opponent from
gaining any advantage. It follows that through the decomposition of a Bayesian game into
the sum of a team game and a zero-sum game, the coco value can also deal with private
information. What is required is that the incentives in playing each of the component games
(the cooperative and the competitive) be made independent of the incentives in playing the
other component.
This decomposition can be exploited in a variety of situations in di¤erent ways. In what

follows, we discuss general su¢ cient conditions under which implementations of the coco
value are possible, even in the interim sense. But the conditions are only su¢ cient, and
the following sections describe other games in which implementation of the coco value is
possible.
We use the term protocol to describe a two-person procedure that involves communication

and simple commitments, without the use of joint randomization devices. To capture the
idea of voluntary arbitration, the protocols below provide each player with the option of not
participating. We say that a protocol implements the coco value if it admits a Bayesian
Nash equilibrium with expected payo¤s that match the coco value.
The su¢ cient conditions for implementability are speci�ed by the following de�nition.

De�nition 5. A game satis�es the weak revealed-payo¤ assumption,22 if after the play of
the game, the realized payo¤s obtained at the (purely or randomly) selected action pro�le,
u(a), are observed by the arbitrator and the players.
A game satis�es the (unrestricted) revealed-payo¤ assumption, if after the play of the

game, the realized payo¤ functions u : A ! R2 become known to the arbitrator and the
players.

For example, "play as you wish and then share the realized pro�ts equally" is a protocol
that can be implemented under the weak revealed-payo¤ assumption. But the (unrestricted)
revealed-payo¤ assumption is needed for a protocol that allocates the �nal payo¤ based on
payo¤s of hypothetical actions that could have been used.
It turns out that the weak revealed-payo¤ assumption is su¢ cient for ex-ante implemen-

tation of the coco value, and the revealed-payo¤ assumption is su¢ cient for interim imple-
mentation of the coco value.

Remark 1. The revealed-payo¤ assumption is quite demanding, as it rules out moral hazard,
adverse selection, principal agent and related problems in which individual payo¤s cannot be
assessed and conditioned-on ex-post. Nevertheless, it holds in all games in which the payo¤
functions depend on states that are observed after the play of the game. These include games
in which the payo¤s depend on observable weather conditions, as in the vendor games with
incomplete information discussed earlier. Other important examples include games in which
the payo¤ functions depend on realized market prices that can be eventually veri�ed, such as
the prices of stocks and other commodities.

22Even though we state this as an assumption on the game, it is really an assumption on the environment
in which the game is played. We could have two games, G and G�, that have an identical description in the
formal model presented earlier. Yet G is played in an environment E, where the ex-post payo¤s are revealed,
and G�is played in an environment E�, where the ex-post payo¤s are not revealed.
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The above observation could be formalized by incorporating such states into the model of
the game, and assuming that these states are observable after the play of the game. But this
would involve additional notations, and since the revealed-payo¤ assumption is more general
and includes all these cases, we proceed formally with it alone.

The particular protocols below are reminiscent of the formation of some real-life partner-
ships. When two partners agree to share equally the total (net) realized pro�ts of a joint
venture, they create individually monotonic payo¤ functions: the payo¤ of each increases as
a function of total pro�t realized by the partnership.23 This monotonicity property gives each
partner the incentive to share information truthfully and to take actions that are optimal
for the success of the project.
But if the situation is not symmetric �for example, if there are di¤erences in information,

resources, and opportunity costs �the partners may agree up-front to make a compensating
payo¤ transfer to correct for such asymmetries. If the size of the transfer is independent
of their performance in the joint venture (for example, if they commit to the size of the
transfer before the actual play), then the partnership should still be able to achieve �rst-best
e¢ ciency in an incentive-compatible manner.
Throughout the remainder of this section, G = (A; Y; U; �) is assumed to be an arbitrary,

�xed, two-player �nite Bayesian game as discussed above.

4.1. Ex-ante implementation. In this subsection, we assume that the decision of whether
or not to use the arbitrator is made before the players observe their private signals, and
that the game is played in an environment with weakly revealed payo¤s. A simple protocol
can implement the coco value: the players form a partnership in which they split the total
payo¤s (positive or negative) equally. This can always be achieved by a side payment, and
the sharing of total payo¤ incentivizes them to coordinate by revealing information and
playing actions that maximize the total payo¤. However, to compensate for the imposed
equal division of payo¤s when the game is not symmetric, a second side payment is made
from the weaker player to the stronger one. When the two side payments are combined, the
coco value is achieved at equilibrium. A direct consequence of this implementability result
is that the coco value is ex-ante individually rational.

Ex-ante partnership protocols for an arbitrary, �nite, two-player Bayesian game G =
(A; Y; U; �).
Fix any optimal coordinated strategy c : Y ! A; also compute the ex ante relative advan-

tages of the two players, vali(Gad), obtained through minmax strategies of Gad.
(1) Players simultaneously choose whether to commit to participate or not.

� If either one does not agree to participate, then they play G unmodi�ed, they
collect their respective G-payo¤s, and the protocol ends.

� Otherwise, they have made a binding agreement to continue, as follows.
(2) A triple (y1; y2; u) is drawn by the prior distribution �, and each player i is informed

of her realized signal yi.
(3) Players i = 1; 2 simultaneously declare their supposed signals ~yi 2 Yi.
(4) The players are committed to play the pair of actions a = c(~y), after which the pair

of payo¤s u(a) is revealed.

23The use of such monotonicity conditions is common in cooperative game theory; see, for example, E.
Kalai (1977), Thomson and Myerson (1980) and Thomson and Lensberg (1989).
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(5) A side payment is made so that the net payo¤ to player i is ueq(a)+vali(Gad). In
other words, she is paid one-half of the total payo¤s obtained through the actual play
in stage 4, plus her minmax value (positive or negative) of the advantage component-
game of G, computed (ex-ante) without knowledge of the signals.

The expected payo¤s from playing the protocol above are
R
ueq(~y(y; u))d�+ vali(Gad), and

it is important to note that even though di¤erent optimal coordinated strategies c and c0

give rise to di¤erent protocols, the di¤erence is not essential. The induced protocols may
di¤er only in how they break ties, but they result in the same expected payo¤s.

Theorem 2. The coco value �(G) of any �nite two-player Bayesian game G = (A; Y; U; �)
is the expected payo¤ vector of a Nash equilibrium in any ex-ante partnership protocol of the
game.

Proof. Consider the following equilibrium strategy for each player i:
� Choose to participate.
� If mutual participation fails, play the (mixed) minmax strategy of Gad, i.e., play G
as if you were playing Gad.

� If mutual participation holds, truthfully reveal your realized signal, i.e., ~yi = yi.
Observe �rst that no player can bene�t by declaring a false signal ~yi 6= yi (given that

the other player is being honest), because ~y = y simultaneously maximizes each player�s
expected payo¤ (i.e., it maximizes u1(a)+u2(a)

2
and has no e¤ect on vali(Gad)).

Next, observe that player i cannot increase her payo¤ by not participating. Suppose she
does not participate, and instead plays a mixed strategy �0i, while her opponent plays his
minmax strategy of the game Gad, ��i. We can nonetheless compute her expected payo¤s
via the coco decomposition. In particular, her expected payo¤ is the sum of the expected
payo¤s in Gad and Geq. Her expected payo¤ in Gad is at most her (minmax) value of Gad,
and her expected payo¤ of � in Geq is at most the (team) value of Geq; hence, her total is at
most the coco value for i. �
In addition to its direct implementation message, the theorem above serves as an easy way

to establish the following:

Corollary 1. The coco value is individually rational (ex-ante).

Proof. Notice that a player may decline to participate, and choose to use her G minmax
strategy in the ex-ante protocol above, guaranteeing herself her minmax value of G as the
payo¤ in the protocol. Thus, the minmax values of the protocol are at least as high as the
minmax values of G. Moreover, as equilibrium payo¤s of the protocol game, the coco payo¤s
must be at least as large as the minmax values of the protocol. Thus, the coco payo¤s are
at least as large as the minmax payo¤s of G. �
In addition to not dealing with the interim stage, the mechanism above is not attractive for

an additional reason. Wilson (1987) advocates that mechanisms should be restricted to rules
and payo¤ functions that do not depend on the prior probability distribution of the game
being implemented. The mechanism above violates the Wilson doctrine in two respects.
First, in order to compute the optimal coordinated strategy c used in the de�nition of the
protocol, the arbitrator must know the prior distribution. Second, in order to compute the
value of Gad used in allocating the protocol�s payo¤s, the arbitrator must know the prior as
well.
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In the next section, we show how these de�ciencies may be overcome under the stronger
revealed-payo¤ assumption.

4.2. Interim implementation. In this section we make the (unrestricted) revealed-payo¤
assumption: the realized payo¤ function u : A ! R2 (equivalently, the state of nature, if it
is incorporated into the model) becomes known after the play of the game, and the players
can compute what the realized payo¤s u(a) would have been for every chosen pair of actions
a. In Section 6, we give examples where this assumption does not hold but the coco value
can be implemented nonetheless.
Note that the revealed payo¤ assumption does not require that the signals themselves

be revealed. To illustrate the distinction, think again of the vendors game with incomplete
information, discussed earlier, and assume that both sellers receive weather forecasts (their
signals) before deciding on a location. The payo¤s in this example depend on the weather and
not on the forecasts, and once the weather is observed, the pro�t in each location (whether
chosen or not) is known. In other words, the entire payo¤ table for the realized state of
nature becomes known, even if the signals (i.e., the weather forecasts, which could be quite
long with data, graphs and probabilistic assessments) remain unknown.
Under the above assumption, one can design e¤ective interim protocols to implement the

coco value.

Interim partnership protocol for an arbitrary, �nite, two-player Bayesian game G =
(A; Y; U; �).
(1) A triple (y1; y2; u) is drawn by the prior distribution �, and each player i is informed

of her realized signal yi (giving her only partial information about her ui).
(2) Simultaneously, based on knowledge of their individual signals, each player selects

one of the following two choices:
DO NOT PARTICIPATE: she declares NO and selects (commits to) an action

~ai 2 Ai, to serve as her non-cooperative action; or
PARTICIPATE: she declares YES and submits two sealed envelopes, one con-

taining a reported signal ~yi 2 Yi and one containing a selected action (that she is
committed to) ~ai 2 Ai, to serve as her noncooperative action.
The two YES/NO declarations are revealed to both players and then:
� If either player declares NO, then the noncooperative pair of actions (~a1; ~a2)
selected above are played, the protocol stops, and the players collect their realized
G-payo¤s, ui(~a).

� But if both declare YES, then the envelopes�contents (reported signals ~yi and
selected noncooperative actions ~ai) are revealed to both players, who are com-
mitted to continue as follows.

(3) Simultaneously, they choose �cooperative�actions ai 2 Ai and play G using a. Both
u(a) 2 R2 and the realized payo¤ function u : A ! R2 are then revealed (this is
possible under the strong ex post observability. assumption).

(4) Based upon (i) the noncooperative actions ~ai from stage 2 (observed from the open
envelopes) and (ii) the cooperative actions a and observed payo¤ functions u obtained
at stage 3, side payments are made so that the net payo¤ to each player i is ueqi (a)+
uadi (~a).
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Note that in the protocol above, the participation decision is voluntary in that each player
can force the play of the unmodi�ed game by choosing not to participate. However, this also
means that any Nash equilibrium of G can be converted to a nonparticipatory equilibrium
of the interim partnership protocol.
The validity of nonparticipatory equilibria varies with the game. For example, the reader

can check that in the Prisoner�s Dilemma game to participate and cooperate (i.e., declare
YES, submit ~ai = defect and select ai = cooperate) is a dominant strategy for each player.
While it is possible, in general, to employ re�nements and �implement away�nonparticipat-
ing equilibria,24 it seems more reasonable to model the possibility that players may choose
not to participate and to play noncooperatively, as shown by follow-up examples.
Before stating our theorem, we point out two practical considerations regarding the pro-

tocol.

(1) In stage 3 above, one might allow extra communication, in the form of cheap talk,
to aid the players in selecting the same coordinated optimal strategy c. However,
since Nash equilibrium allows for coordinated selection when multiple equilibria are
available, this is not necessary for the formal theorem below. Similarly, for many
games one might consider protocols with lower communication complexity (see, e.g.,
Kushilevitz and Nisan, 1996), which is de�ned as the number of bits transmitted in a
binary communication. In many games, an optimal c can be computed using signi�-
cantly less communication than when players reveal all of their private information.

(2) The de�nition of the protocol above is in no way dependent on the prior. Moreover,
the implementing strategies rely on very solid solution concepts: to determine the
pair ea, the players use the minmax solution (as opposed to just a Nash equilibrium);
and to determine the actual action pair a, they use simple (one-person) optimization.
Hence, the resulting solution inherits some appealing stability and polynomial-time
computability properties from these more robust solution concepts.25

In the equilibrium discussed in this theorem, players choose to truthfully share information
and to optimally coordinate, with threats de�ned through the relative-advantage game.

De�nition 6. Participatory, honest, and c-coordinated strategies.

(1) A strategy �i of the partnership protocol above is participatory, if it declares YES
(with probability one) for every yi; and it is honest, if ~yi = yi for every yi.

(2) For an optimal coordinated strategy (see De�nition 2) c : Y ! A of the game G, a
pro�le of strategies � in the partnership protocol is c-coordinated if:
A. In stage 2 each player declares YES, uses a minmax strategy of Gad to choose

~ai, and truthfully selects ~yi = yi.
B. In stage 3 each player selects ai = ci(~y), provided that she had reported truth-

fully (~yi = yi), as planned in stage 2. If she failed to report truthfully in stage 2

24One di¢ culty is evident even in a pure coordination game, such as
1,1 0,0
0,0 2,2

, where there is a

(1,1) equilibrium. However, a team-game re�nement, which is natural among cooperative players, could
rule out such equilibria. A suitable implementation may then have all equilibria yielding the coco value in
expectation.

25We thank Robert Wilson for pointing the gained stability.
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(~yi 6= yi, which is a probability zero event), then she selects an ai which maximizes
Eu
�
ueq
�
ai; c�i(~y)

�
j(yi; ~y�i)

�
.26

A c-coordinated strategy is clearly participatory, honest, and ex-post e¢ cient; moreover,
it enjoys the additional properties speci�ed in the following theorem:

Theorem 3. Consider the interim partnership protocol of a given �nite two-player Bayesian
game G = (A; Y; U; �):

(1) Any c-coordinated strategy pro�le is a sequential Nash equilibrium of the partnership
protocol with expected payo¤s that equal the coco value of G, �(G).

(2) For any participatory Nash equilibrium of the partnership protocol, the expected pay-
o¤s are �(G)� (x; x) for some x � 0. In other words, all participatory equilibria are
Pareto dominated by the coco payo¤s.

(3) However, the equilibria of G also remain equilibria of the partnership protocol: for
any mixed-strategy Nash equilibrium � = (�1; �2) of G, it is also a Nash equilibrium
of the partnership protocol for both players to declare NO and select ~ai according to
�i.

Proof of Theorem 3. For part 1 assume, for example, that player 2 uses his c-coordinated
strategy. Notice �rst that by de�nition, in every one of player 1�s stage-3 information sets,
player 1 acts optimally, since her opponent tells the truth and follows the c-optimal selection.
So, for part (1), it remains to be shown that player 1 acts optimally at her �rst information

set, namely, in stage 2. Suppose that instead of the above, she chooses not to participate,
and to play eb1. By the decomposition, her expected payo¤, conditioned on y, is:

Eu
�
uad1 (

eb1;ea2) + ueq1 (eb1;ea2) j y�:
But if player 1 switches her strategy to a c-coordinated one, her payo¤ may be written as:

Eu
�
uad1 (ea1;ea2) + ueq1 (c(y)) j y�;

where ea1 is chosen by her advantage-game minmax strategy against player 2�s ea2, chosen ac-
cording to his minmax strategy. Hence, it is easy to see that the switch to the c-coordinated
strategy can only increase both terms in the above two expectations. Using the same decom-
position argument above, we can also easily see that under participatory strategies, player 1
cannot obtain a higher payo¤ than she would by following any other c-coordinated strategy.
Thus, part (1) of the theorem holds.
For part (2) the decomposition implies that at any participatory equilibrium the players�

payo¤s from the advantage component must equal their corresponding payo¤s under the c-
coordinated equilibrium. On the other hand, their payo¤s from the equal-payo¤ component
can only be smaller than the corresponding payo¤s under the c-coordinated equilibrium, and
by the same amount.
Part 3 is obvious, since either player can declare NO, thereby forcing the game to be the

original game G. �

26It is necessary to specify how to act under such zero-probability events in order to argue, as we do
below, that we have a sequential equilibrium.
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4.3. Interim individual rationality and conditional values. Part (1) of Theorem 3
o¤ers a positive equilibrium answer to the question of whether the unobligated players would
choose to participate after they know their signals. For any pair of privately known signals,
if one player participates, it is a best response for the opponent to participate. For complete-
information games, this means in particular that the coco value is individually rational; as
we already discussed, the coco value is also individually rational ex-ante, before the players
know their signals.
One may ask whether the coco value is also individually rational interim, that is, after the

players have observed their signals. To answer this, one must ask what the conditional coco
values are, i.e., how much should the players expect, conditioned their signals, and what
payo¤s can they secure for themselves conditional on their signals? But as was illustrated in
earlier literature on this subject (see for example Hart (1985), Chapter 6 of Myerson (1991),
and Forges (2011)), these questions may not be well de�ned.
Consider, for example, the following zero-sum Bayesian game in which player 1 is com-

pletely informed (i.e., he knows the payo¤ table) and player 2 is completely uninformed.

wp .5
0, 0 1,-1
0, 0, 0, 0

wp .5
0, 0 -1, 1
0, 0 -1, 1

The (ex ante) minmax (and coco) value of the game, (0; 0), can be guaranteed in two
ways: (1) player 1 plays up in both games and player 2 plays left, or (2) player 1 plays up in
both games and player 2 plays right. However, when player 1 knows that the payo¤ table is
the one on the left, player 1 must play up but it is not clear what she should expect. Player
2 may be playing left, in which case player 1 should expect zero; or player 2 may be playing
right, in which case player 1 should expect one. And since both right and left are minmax
strategies for player 2, there are multiple conditional values for player 1.
In accordance with the papers cited above, answers to such questions must take the forms

of vectors, rather than single numbers. In the example above, depending on the strategy
of player 2, both (0,0) and (+1,-1) are conditional minmax (and conditional coco) payo¤s
for player 1. (0,0) are player 1�s conditional payo¤s (in the right and respectively the left
game) when player 2 plays left, and (+1,-1) are player 1�s conditional payo¤s (in the right
and respectively the left game) when player 2 plays right.
Notice also that player 1�s strategy of always playing down does meet the following tempt-

ing de�nition of conditional individual rationality: it guarantees him the most he can guar-
antee, given each signal. This is because player 1 can guarantee a payo¤ of only 0 in the
left payo¤ table. Similarly, in the right payo¤ table, player 1 can guarantee a payo¤ of only
-1. The strategy of playing down does guarantee player 1 these minimal values. However,
down is clearly an unsatisfactory strategy and does not even meet the de�nition of ex-ante
individual rationality. Hence, the natural criterion of guaranteeing the most, conditioned on
one�s signal, is a poor de�nition of individual rationality.

Remark 2. In certain cases the conditional value of a zero-sum Bayesian game is well-
de�ned. For example, this is clearly the case when there are unique minmax strategies. The
same is true for the coco value. In particular, when the advantage game admits unique
minmax strategies, the conditional coco values are also well de�ned.
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5. Joint venture example: efficiency in a Myerson-Satterthwaite game

A manufacturer M can produce a certain item at cost $C, and a distributor D can sell
this item with a return of $R. The pair of parameters (C;R) is generated by a known joint
probability distribution � on the integers in [0; 100]2; M knows the realized value of C, and
D knows the realized value of R. Under the simple monetary utility assumed in this paper,
if M manufactures the item, and sells it to D at a price P , who in turn sells with the return
R, then M nets the payo¤ P � C and D nets the payo¤R� P .
The well-known impossibility result of Myerson and Satterthwaite (1983) implies that, in

general, there is no mechanism that guarantees e¢ cient outcomes: under any negotiation
procedure M and D would fail to agree on a price P in some situation with C < R. However,
under the strong revealed-payo¤ assumption in this paper, the coco value o¤ers an e¢ cient
and fair solution that can be implemented in the interim sense discussed above.
For a strategic description of the situation above, we use a double-auction noncooperative

Bayesian game G de�ned as follows: M submits a demanded price P dem, and D simultane-
ously submits an o¤ered price P ofr. If P ofr < P dem, then there is no deal and each nets zero
payo¤. But if P ofr � P dem, then the item is manufactured by M and sold to D at the price
Pmid � (P ofr + P dem)=2; M�s payo¤ is then Pmid � C and D�s payo¤ is R� Pmid.
To compute the coco value of G, observe that when the signals are (C;R), the payo¤

ueq((P dem; P ofr)) is (R � C)=2 if P ofr � P dem, and it is zero otherwise. Thus, the team
optimum of the game is: team-opt(G) = E[maxfR� C; 0g].
As for the advantage component, consider the constant strategies P dem = 100 and P ofr = 0

played by M and D, respectively, regardless of their values of C and R. Under these strategies
in the game G, each player guarantees two things: (1) his own payo¤ is at least zero, and
(2) the opponent�s payo¤ is not greater than zero. This means that in the advantage game,
they guarantee themselves payo¤ advantages of zero, and (0; 0) is the minmax value of the
advantage component game.
Under the de�nition of the coco value, the two paragraphs above imply the following:

Proposition 1. The coco value of the joint venture game above is:�
1

2
E[maxfR� C; 0g] ; 1

2
E[maxfR� C; 0g]

�
:

To illustrate the interim implementation of the coco payo¤s above, consider the following
strategies in the partnership game. After learning their true respective parameters, C and
R, both players declare YES, submit the noncooperative strategies P dem = 100 and P ofr = 0,
and report their individual parameters truthfully: eC = C and eR = R. If the reported cost
is greater than the reported return, eC > eR, the item is not produced, and each nets a zero
payo¤. But if eC � eR, then M produces the item (at a cost C), D sells it (with a return of
R), and a transfer is made so that they each net (C �R)=2.
In general, it is di¢ cult to compute a Bayesian-Nash equilibrium of a bargaining game like

the one above, especially when it involves an asymmetric prior probability distribution over
correlated signals. In contrast, the computation and implementation of the coco solution
above is relatively simple.
Moreover, in this example one does not need to know ex-post the entire payo¤ functions,

as was assumed by the revealed-payo¤ assumption used in the previous section. Knowledge
of the realized production cost and realized net revenue is su¢ cient. Of course, obtaining
only this knowledge may still be di¢ cult. And indeed, as seen in real-life partnerships and
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C R
a

(R­C)/2

(R­C)

M’s payoff
D’s payoff

Coco payoffs when M has an outside option to sell at price a

slope=1

slope=1/2

slope= ­1/2
a­C

joint ventures, accountants on both sides, with the possible help of "neutral" accounting
�rms, often struggle to assess such parameters.
Additional understanding of the solution and its ease of computation can be gained from

the next example, where we now break the structural symmetry of the joint venture game
above.

5.1. One-sided outside options. Assume that M has an option to produce the item and
sell it to some outside buyer at an alternative price a. How does this a¤ect the coco values
of M and D? To keep the illustration simple, we assume complete information (i.e., C, R,
and a are common knowledge), and that trade is possible, i.e., C < R. Figure 1 describes
the coco payo¤s of M and D as we increase a.
When the outside option is useless, a < C, it has no e¤ect on the coco value. And when

the outside option is su¢ ciently high to make D useless, M collects all the bene�ts and D is
out. But in between, the coco value changes in a continuous (and piecewise linear) manner.
Every extra dollar above the cost adds 50 cents to M and takes 50 cents away from D.

6. Weakening the (unrestricted) revealed-payoff assumption

For the purpose of achieving a general result, the interim implementation theorem uses
su¢ cient conditions that are stronger than needed for many games. Moreover, the assessment
of the player�s relative advantage can sometimes be achieved in ways that di¤er from the
interim protocol above. The following examples illustrate such situations.

� Joint venture example: weak revealed payo¤s su¢ ce. In general, the revealed-
payo¤ assumption is only needed to assess the minmax value of the advantage game.
This means that in games in which the minmax values can be assessed by other
means, the weak revealed-payo¤ assumption su¢ ces. For example, in the joint ven-
ture example it is clear that the minmax value of the advantage game is zero, hence,
the two players can simply form a partnership and share their net pro�ts equally.
(As discussed there, they still need to verify M�s cost C and the revenue R collected
by D). Furthermore, the same holds where the players information consists only of
forecasts of their own cost and revenue: when trade occurs, it is su¢ cient that the
realized C and M (but not the forecasts) be revealed.
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� Vendors example with weak revealed payo¤s. Consider a version of the hot-
dog sellers example in which it is known that the per-hot-dog pro�t of one player is
ten times as much as the other�s. However, for any distribution over the number of
buyers at the beach and airport, and for any forecasts that these players have, the
weak revealed-payo¤ assumption su¢ ces. The unrestricted revealed-payo¤ assump-
tion requires that if both players go to the beach or airport, they would still know
how many buyers were at the other location, which may be unreasonable. However,
since in our implementation one player will be at either location, the revealed pair of
pro�ts will reveal the number of buyers at each location.

� Pro-wrestling game. Two professional wrestlers are about to participate in a match
for which $1000 will be awarded to the winner and nothing to the loser. Moreover,
an extra $500 bonus will be awarded to the two players, divided evenly, if the match
is �a good show.�We refer to this option as dancing since the sequence of moves to
earn the bonus must be carefully choreographed. A high-level approximate model of
this game is the following:

Fight Dance
Fight 1000p, 1000(1-p) 1000, 0
Dance 0, 1000 750, 750

Here p is the probability that player 1 would win if the two fought, and the ex-
pected payo¤s are shown in the table. It is clear that (�ght, �ght) is a dominant
strategy. A simple calculation shows that the coco value of the above game is
(1000p + 250; 1000(1 � p) + 250). In the case where p is common knowledge and
there is no relevant private information, the players might adopt one of two simple
agreements to yield the coco value. (For example, they might agree that p � 1=2, i.e.,
they have roughly equal chances of winning, and each agrees to dance.) While this
may not be a legally binding contract, such an agreement may be enforced through
reputation, repeated play, the use of a trustworthy third party, or other similar means.
However, in the case of private information, the players may not agree upon p. (For

example, each player may have slept well the previous night and woken up feeling
especially strong.) Instead, they could agree to engage in, say, a scrimmage wrestling
match behind the scenes, whose sole purpose would be to determine the side payment
in the real match. Presumably, the probabilities of winning in the scrimmage and
the real match would be the same. The agreement would be that they would both
dance in the actual match, but a side payment would be arranged so that the winner
of the scrimmage would get a payo¤ of 1250 and the loser would get a payo¤ of 250.
This has the property that it matches the coco value, in expectation. Note that
this equality holds for any signal space and any distribution over prior information.
Moreover, the protocol is simple enough to be understood by professional wrestlers.
Also note that they may choose any other means of determining a side payment,

as long as they both agree to it. For example, it may be a convention that the two
players merely arm wrestle rather have a full scrimmage match. Similar in spirit,
such proxies for determining the stronger player are exhibited by animals in nature
and in the Biblical story of David and Goliath.

An interesting feature of some of the examples above is that the protocols may make sense
even if the players do not have a common prior. For example, when two wrestlers �ght,
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the private information is in fact quite involved, including knowledge of what moves they
are themselves particularly good at, beliefs about the opponent, and higher-order beliefs.
The assumption that all of these probabilities are derived from a common prior is certainly
questionable in such situations. While we do not provide a solution for zero-sum games
without a common prior, in many real-world situations the protocols suggested by the coco
decomposition may still be appropriate. For example, it may be perfectly plausible to tell
two wrestlers to �go wrestle.�

7. Elaboration on the axioms and additional properties

This section elaborates on properties of the coco value as a function of the game G that
is being arbitrated, and on its relationships to the noncooperative arbitration protocols
discussed earlier. Much of this discussion applies to games of complete information and
hence to the NRKR values as well.

7.1. On dominant strategies, monotonicity, and commitments. Consider the follow-
ing 2� 1 up/down game.

0,0
1,5

coco value = (3,3)

At �rst look, it seems strange that P2 would be willing to settle for the coco payo¤ of
3, rather than the payo¤ of 5 that he can get by cutting out communication with P1 and
letting her play her dominant strategy. While this intuition is clear in purely strategic
environments, where commitments, communication, threats, and side payments are limited,
in certain arbitrated cooperative environments the outcome (3,3) may be more reasonable.
The following example illustrates this point.

Example 3. The sprinkler game.

Two neighbors, each having to decide whether or not to water a shared lawn, play the
following game:

not water
not 0,0 5,1
water 1,5 0,0
coco value = (3; 3)

In this payo¤ table, it seems fair and e¢ cient that one of them will water and the other
will compensate her with a transfer of 2, to obtain the coco value (3,3).
But what if P2�s sprinkler breaks, so that he cannot water? Then we are back in the one-

player up/down game above. And if the solution of the up/down game were (1,5), it would
present two problems. First, there is a fairness issue, where the player who cannot water the
lawn gets a higher bene�t than the one who can. Second, there is the issue of incentives,
where each of the two neighbors would have the incentive to break her sprinkler �rst, in
order to increase her payo¤. To avoid such di¢ culties, it is desirable that an arbitrated
cooperative solution satisfy the �monotonicity in actions� axiom discussed earlier. Under
this axiom no player can gain by eliminating options.
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The example above also relates to issues of commitment. As stated above, it seems that
in the up/down game, P2 should be able to walk away and expect a payo¤ of 5, instead of
the coco value of 3. But notice that there is a similar counter commitment for P1: walk
away �rst, after leaving a publicly-observed irrevocable instruction to her gardener to water
if and only if P2 pays $4. Now, under the same type of reasoning, P1 can expect a payo¤ of
$5, instead of $3.

pay $4 don�t pay
5,1 0,0

The point is that in semi-cooperative environments there are competing contradictory
commitments that must be balanced by an arbitrated value.

Remark 3. It is worth noting that the coco value may be unnatural in other contexts. For
example, the up/down game above also describes the situation in which P1 owns the lawn,
and P2 simply enjoys looking at it. Now it may seem unfair for P1 to demand a payment
for watering her own lawn, and the noncooperative solution, with the payo¤s (1,5), may be
more reasonable.
In this regard, we recall that the interim arbitration protocol discussed earlier has two

types of equilibria: the participatory one, in which the players agree to arbitration and re-
ceive their coco payo¤s; and the nonparticipatory one, in which arbitration is rejected and
a Nash equilibrium of the underlying unarbitrated game is played. Whether we end in one
type of equilibrium or the other may depend on focal point considerations. For example,
in the case of the jointly-owned lawn, fairness may lead to the selection of the arbitrated
equilibrium; whereas in the sole-ownership scenario, fairness may lead to the selection of the
noncooperative one.

Remark 4. It is important to note that in addition to the players choosing not to use
arbitration, there are additional di¢ culties that may prevent the use of the coco value. In
international relations, for example, the players may be countries that have to choose between
trades, monetary aid and military actions. In such situations it may be di¢ cult to �nd an
arbitrator who can monitor the implementation of the cooperative outcome, and force the
players to honor their commitments. See discussion in Harsanyi and Selten (1972).

7.2. On security levels, extortion, payo¤dominance, and a competing value. In a
variety of applications of strategic games, authors use a common indirect approach to obtain
cooperative payo¤s through a �bridge�that connects strategic games with cooperative games.
To every strategic game G, one associates a cooperative game V G, and adopts an appropriate
cooperative solution '(V G) to yield cooperative payo¤s for the players of G. While the coco
value o¤ers direct cooperative values for strategic games, without the need to construct such
a bridge, it can still be viewed as a special case of the bridge approach as done below.
In particular, we proceed to compare the coco bridge with a popular alternative bridge, used

early on by Aumann (1961) (see also Forges et al. (2002) for more references; see Carpente
et al. (2005, 2006) for an axiomatization of a value that emerges under the alternative bridge
solution).
Given a two-person TU bimatrix game G = (A;B), the associated cooperative game is

determined by three numbers: V12, describing the maximal total payo¤ that the two players
can generate if they cooperate; and V1 and V2, describing the respective maximal payo¤s that
the players can secure on their own. We use the Shapley (1953) value ' to associate to each
cooperative game V the individual values: 'i � Vi + 1

2
[V12 � (V1 + V2)] = 1

2
V12 +

1
2
(Vi � Vj).
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For both bridges one de�nes the maximal total payo¤ that the players may collectively
secure by V alt12 = V coco12 =team-opt(G). But the coco bridge and the alternative bridge
di¤er on the de�nition of the Vis, as follows: The maximal possible payo¤s that the play-
ers may secure under the alternative bridge are de�ned by: V alt1 = minmax(A;�A) and
V alt2 = minmax(BT ;�BT ). On the other hand, the maximal possible payo¤s that they
may secure under the coco bridge are de�ned by: V coco1 = minmax

�
A�B
2
; B�A

2

�
and V coco2 =

minmax
�
(B�A)T

2
; (A�B)

T

2

�
.

Substituting these individual values into the Shapley formula above, we obtain for player 1,
for example: 'alt1 = 1

2
V12+

1
2
(minmax(A)�minmax(BT )) and 'coco1 = 1

2
V12+

1
2
minmax(A�

B).
The di¤erence between the solutions is illustrated by the two 2 � 1 games below, which

di¤er only in the bottom left entries: 2 in the left-hand side (LHS) game, and a large negative
number, �m, in the right-hand side (RHS) game. In both games V12 = 4 is obtained when
P1 plays up. But P1�s ability to make credible threats, in order to extort side payments
from P2, is drastically di¤erent in the two games: in the LHS game, P1 can bring player
2�s payo¤ down from 2 to 0 at no cost to himself; whereas in the RHS game, bringing P2�s
payo¤ down to 0 is very costly to P1.

Credible threat
2,2
2, 0

coco value = (3,1)
alt. value = (3,1)

Noncredible threat
2,2
-m, 0

coco value = (2,2)
alt. value = (3,1)

Should such a di¤erence be re�ected in the solutions of the games? The coco value re�ects
this di¤erence: it assigns P1 a payo¤ of 3 in the LHS game and only 2 in the RHS game.
The alternative value, however, does not re�ect the di¤erence: it assigns P1 the payo¤ 3
in both games. The reason for the distinction is simple: the minmax(A�B

2
), used by the

coco value, compares the individual payo¤s cell by cell, while the minmax(A)�minmax(BT )
compares the two payo¤ tables separately, ignoring any externalities that depend on payo¤
relationships within cells.27

In the simple example above, the payo¤-dominance axiom, used in the characterization of
the coco value, plays an important role. It requires that for every value of �m below zero,
P1�s payo¤ should not exceed the payo¤of P2. In other words, when P1�s cost of punishment
exceeds the damage she can in�ict on P2, she cannot bene�t from a threat to punish.

7.3. The cooperative value of information. The coco value makes optimal use of infor-
mation and compensates players for providing it, as was illustrated in the vendors example
from Section 2.1.
The individual valuation of information has been well-studied in game theory. (See, for

example, Kamien, Tauman, and Zamir (1990), and the more recent references in De Meyer,
Lehrer, and Rosenberg (2009).) A measure of the cooperative value of information arises
naturally from the coco value, if one considers how the values of the players change, as one

27Again, readers familiar with the bargaining literature may associate the �xed-threat bargaining solution,
extended by Harsanyi and Selten (1972) and Myerson (1984), with V alt ; and the variable-threat bargaining
solutions, studied in this paper, with V coco .
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changes the information of one or both players. This measure is fairly sophisticated, since
it takes into account interactive aspects of the information: its provision, its use, and the
direct and indirect bene�ts to both players.
For example, in the vendors game of Section 2.1, consider the possibilities that each player

is either completely informed about the weather, or has no information about the weather.
This gives rise to four di¤erent games, with (rounded-o¤) coco values described by the
following table.

P2 uninformed P2 informed
P1 uninformed 95, 145 85,175
P1 informed 115,145 100,160

Starting from the case of no information at all, perfect weather information (PWI) acquired
by player 1 yields the two players the respective values (20,0) (= (115; 145) � (95; 145)),
whereas the respective values of PWI acquired by P2 are (-10,30) (= (85; 175)� (95; 145)).
In general, the e¢ ciency of the coco value guarantees that for any new information, the sum
of the individual values is nonnegative; and the monotonicity property guarantees that any
information obtained unilaterally by one player yields that player a nonnegative value.

7.4. Computational complexity. In the case of complete information, the coco value can
be computed in polynomial time, that is, time which is polynomial in the size of a natural
representation of the game. In the case of incomplete information, where each player has
at most m signals, the coco value can be computed in time (size)O(m). More formally,
suppose that a game is represented as follows. Let jSj denote the size of �nite set S. The
sets of signals and actions for each player are taken to be the set Ai = f1; 2; : : : ; jAijg and
Yi = f1; 2; : : : ; jYijg, respectively. The prior distribution � is represented by a list of triples,
y; u; �(y; u), where y is a signal pro�le, u is a matrix, and �(y; u) is in (0; 1]. As is standard,
we assume that all these numbers are rational numbers encoded as ratios of binary integers.
The size of the game, jGj, is simply the total number of bits used to describe the game. We
argue below that the coco value can be computed in time jGjO(m), but it is possible that
there are faster algorithms.

Lemma 2. The coco value can be computed in time jGjO(m).
Proof. Computing the decomposition is algorithmically trivial: constructing the two games
requires a few additions and divisions per payo¤ cell. Computing the value of the team game
is also easy, since E�[u(a)jy] is straightforward to evaluate, and the team optimum is:X

y2Y
Pr
�
[y] max

a2A
E�[u1(a) + u2(a)jy]:

Hence, both the decomposition and the team-game value can be computed in time polynomial
in the size of G. For the zero-sum Bayesian game Geq, one �rst does the standard expansion
into a complete-information game. Speci�cally, one constructs the jA1jjY1j�jA2jjY2j bimatrix
game in which each strategy (a function from signals to actions) in G is an action in the
new game, and the payo¤s of the actions in the new game are the expected values of the
payo¤s in G from using the respective strategies. Computing this expected value in any
particular cell can be done in time polynomial in jGj, but one must perform this computation
jA1jjY1j � jA2jjY2j times. Finally, once one has constructed such a game, the value of a zero-
sum bimatrix game is well-known to be computable by linear programming. Theoretical
algorithms for linear programming are known to take time polynomial in the size of the
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input (see, e.g., Grötschel et al., 1988). (Algorithms that work fast in practice are also
well-studied.) Hence, the total run-time of the algorithm is jA1jjY1j�jA2jjY2jpoly(jGj), which
implies the observation. �

7.5. Composability and robustness. Composability of protocols has become increasingly
recognized as an important topic in computer science and speci�cally within cryptography
games. While cryptographic protocols have typically been shown to be secure when run
in isolation (such as when encrypting a single message or signing a document), Canetti
(2001) proposes that cryptographic protocols should be universally secure when executed
concurrently in an environment with many other protocols running simultaneously. That is,
a secure program for encrypting messages and a secure program for signing documents are
of limited utility if the two of them are not secure when they are both used.
Similarly, an analysis of a single game is arguably of less value if it does not apply when

the game is played in a larger context (for example, the solution of a one-shot prisoners�
dilemma game does not predict the possible outcomes of the repeated prisoners�dilemma
game).
Two-person zero-sum games exhibit universal composability. First, optimal play in a

repeated zero-sum game is simply optimal play in each stage. Moreover, suppose two players
are to play m �xed zero-sum games G1; G2; : : : ; Gm, either in parallel or serially, or by some
combination thereof. This can be viewed as one large extensive-form game G, where moving
in G corresponds to moving in some subset of the constituent games, and the payo¤s in G
are the sums of the payo¤s achieved in the constituent games. The minmax value of G,
regardless of the particular order in which moves in Gi�s are played, is equal to the sum of
the minmax values of the constituent games. Put another way, suppose you were to play a
game of tic-tac-toe, a game of chess, and a game of poker, all against the same opponent.
If we ignore time constraints and concerns of bounded rationality, the order in which you
make your moves in the various games is irrelevant: optimal play is simply to play each game
optimally.
Similarly, optimal play in the composition of team games is simple. The coco value

inherits the appealing composability properties of both team and zero-sum games. Suppose
a Bayesian game G is played repeatedly, with signals drawn freshly each round. Then the
coco value of the in�nitely repeated game is equal to the value of G.

8. Conclusion and Remaining Issues

Much of human interaction is semi-cooperative in that strategic players cooperate in order
to improve their payo¤s. Laboratory experiments also suggest that in games with multiple of
equilibria, fairness often serves as a focal point that leads to �nal selection. For these reasons
it is important for game theory to o¤er a general solution that is (1) e¢ cient, (2) compatible
with individual incentives, (3) fair, and yet (4) still easy for real players to compute and
comprehend �quite an ambitious task.
The coco value is constructed to satisfy these goals, but its applicability is limited to two-

person Bayesian games with transferable utility. Moreover, its general ��rst-best� interim
implementability result is obtained under restrictive conditions such as ex-post observabil-
ity. The removal and relaxation of these restrictions present challenges for future research.
Ideally, under each relaxations, one would preserve all three aspects of the theory presented
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in this paper: the implementation, the axiomatic justi�cation, and the description of the
solution by a simple, computable, closed-form expression.
As a �rst step, it may be easiest to stay in the two-player case, and to relax the other

restrictions. Below are some preliminary observations.

8.1. Relax the information observability condition. The assumption of ex-post observ-
ability. rules out many of the most interesting applications of a cooperative- competitive
value. For example, ex-post observability. is not satis�ed in problems of moral hazard and
adverse selection in which gains from cheating or exerting no e¤ort may not be observed
ex-post, and thus cannot be conditioned on.
For the reasons above, it is important to rework the theory, de�nition, axiomatization

and implementation, to general environments in which partial or no information becomes
observable ex-post.
The literature on mechanism design should be helpful in the implementation part of such

theory. Also, from the axiomatic view point, it would be natural to weaken the Pareto
e¢ ciency condition, and restrict it to be "second best." Whether the notion of second
best that emerges out of the implementation part can be described as a simple "second
best" axiom is an interesting question. It seems also plausible that such a generalized coco
value would have a natural and easy to interpret closed-form expression, de�ned through an
appropriate modi�cation of the coco decomposition.

8.2. Relax the transferable utility assumption. Important applications of cooperative
analysis of strategic interaction involve players with di¤erent risk postures. Joint ventures,
insurance, and principal-agent interactions are examples of situations in which one of the
players is more risk averse than the other. Naturally, cooperative resolutions of such situa-
tions are likely to involve the trade of risk for other payo¤s. For this purpose, one needs to
remove the TU assumption made in the current paper.
Among other technical issues in the current paper, the TU assumption enabled us to

present a simple and clean axiomatic justi�cation for the value. As stated earlier, the coco
value uni�es the solutions of Nash, Rai¤a and Kalai-Rosenthal on TU games. However, these
NRKR values are de�ned for games with no transferable utility (with complete information),
and on this broader class of games their values do not coincide. Moreover, their values are
based on di¤erent solutions to the cooperative bargaining problem of Nash, each justi�ed by
a di¤erent set of axioms that are not compatible with the others.
In view of the above, de�ning a coco value for NTU games is likely to force one to take

controversial positions among competing axioms. This is an interesting challenge for future
research.

8.3. Relax the symmetry assumption. The coco value deals with asymmetries between
the two players: it divides the maximal possible total payo¤ equally, but then compensates
the strategically stronger player for agreeing to this equal division. Yet for additional
considerations, in certain situations arbitrators may want to go further, and divide the
maximal possible total payo¤ in some proportion (�; 1��).28 For example, one may de�ne
an asymmetric coco value for a complete information bimatrix game (A;B) by:
��(A;B) = maxmax[�(A+B); (1��)(A+B)]+minmax[A��(A+B); B�(1��)(A+B)].

28We thank an annonymous reviewer of this journal for making this suggestion.
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It is easy to see that the above de�nition works well for any � 2 (0; 1), as it does for the
symmetric coco value, �(A;B) = �1=2(A;B).

Consider, for example, the 2 � 1 game with payo¤s 1,1
0,0

. Its (symmetric) coco payo¤s

are (1,1), and the proposed weighted coco payo¤s are anywhere between (1,1) and (2,0),
depending on the weight �.
We can think of a variety of real-life stories that give rise to the game above, and a variety

of arguments in favor of di¤erent �nal payo¤s in the above range. The axiomatic approach
may be helpful in such discussions.
It is easy to see through the example above that axiom of payo¤ dominance is violated for

all ��, except for the symmetric one, �1=2. Thus, one may hope that the only values that
satisfy the remaining axioms are the asymmetric values de�ned above. This would have
been an elegant theorem.
However, there are other families of asymmetric solutions that satisfy the remaining set of

axioms. For example, the solutions that give the players their coco payo¤s but then transfers
$� from player 1 to player 2 (that is �(G) + (��; �)) satisfy the remaining axioms. But
also, the solutions which gives each player their own minmax value and then increases their
payo¤s at some �xed proportion (�; 1 � �) to the Pareto frontier satis�es all but payo¤
dominance; see the "alternative solution" discussed in section 7 for the case of � = 1=2.
A more complete theory of asymmetric coco value is an interesting challenge left for future

research.

8.4. More than two players. An extension to n > 2 players seems to be challenging.
While the coco decomposition holds trivially for this more general case, it is not clear how to
generalize the closed form formula of the coco value. A major di¢ culty is that the minmax
value, used in the de�nition of the two-person case, is not de�ned for n players; and it may
be that a general value would have to be de�ned recursively, making repeated use of the
two-person minmax value. Even a generalization to n = 3 may be an important break
through in this direction.
An important reference in this direction is Harsanyi (1963), who o¤ers an algorithm to

compute a solution for n-person NTU strategic game with complete information, based on
the Shapley Value of an associated cooperative game. Since the Harsanyi two-player solution
is the same as the coco value in these games, it may turn out to be a good starting point for
a more complete n-person theory, even if �rst restricted to the TU case.
It may be helpful to note that the interim implementation theorem that was presented

in this paper generalizes to the case of n > 2 players.29 The same implementation game,
with a modi�ed coordination strategy, should preserve the theorem, absent the parts about
uniqueness. In particular, in addition to the coordinated part of the strategy used in the
proof, the role played there by minmax strategies would have to be replaced by a coordinated
non-cooperative pro�le of strategies of the underlying game.
As already mentioned in the introduction, the possible relationship of the coco value to

the solutions presented in Myerson [1984a] is important, and may also help in �nding an
n-person generalization of the coco value.

29We thank an annonymous referee for suggesting this possibility.
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8.5. Experimental work. It would be useful to experimentally test the solution across a
number of two-player games, as well as to try to identify experimentally which axioms are
most violated in real-world or experimental play.

We refer the reader to the recent survey of Forges and Serrano (2011) for additional
questions for future research.
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