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Section 1: Introduction

In this paper we develop some results on the global asymptotic stability,
G.A.S., of optimal control and show how these results may be used in dynamic
economic theory.

In dynamic economic theory the distinction between: short-run, long-run,
flow equilibrium, and stock equilibrium is made precise. 1In a lot of such
theorizing, optimal control models are posited to describe the objectives of
agents in the economy. The theories of optimal economic growth, optimal accumu-
lation of capital by a profit maximizing firm, optimal accumulation of financial
assets and education or skills (called '"human' capital) by a utility maximizing
individual over his life cycle, optimal holding of money, capital and bonds by
a consumer over his life time are just a few examples of optimal control models
in modern economics, both neo-classical and anti-neo-classical.

In all of these models, from models of economics optimally controlled by
central planning boards to models populated by neo-classical consumers who act
as if they are well versed in Pontriagin's Maximal Principle, the following
question turns up: If the model is infinite horizon, does the optimal solution
converge to a steady state as time tends to infinity. And if the model is finite
horizon, does the associated infinite horizon model display the convergence pro-
perty so that this information may be used to generate information about the
solution of the finite horizon problem.

The convergence question is as important for dynamic economics as the Stability
analysis is for static economics: A question which has occupied some of the best
minds in economic theory for a number of years.

Results on the convergence question are virtually non-existent for problems

with more than one state variable except for the case where future utilities or



payoffs are not discounted. In this paper we develop a new set of results on
the convergence question, relate them to recent work in this area, and demon-
strate their usefulness for dynamic economic theory by applying them to models
of optimal accumulation of capital by profit maximizing firms in the face of

adjustment cost.



Section 2: Basic Stability Results: Lyapounov Functions of Type QTW"R
17
Consider the problem

W(k,) = Max S, e Pt Uk, x)dt
s.t. k=x, k(0) = k, (1)
Let
q) = )
0 3k “F0
Then
| q = pq - Hy(q(k),k) (2)
k = Hl(q(k),k), k(0) = kO (3)

where H = max {U(k,x) + qx} is called the present value Hamiltonian and
X

S

1 553 H2 = % - Standard" (viz. Lee and Markus [13, p. 396] methods

of optimal control stability analysis examine the "reduced form"

k= ) (a00),1) = F,(), kO0) = k; 4)

and look at Lyapounov functions of the form V = kTGk or V = kTGi where G is
some n x n symmetric matrix (usually positive definite); Assumptions are made
on (4) and on G so trajectory derivative of V is negative. See Lee and Markus
[13, p.396] for example.

The recent work (Cass-Shell, Rockafellar, Brock-Scheinkman) looks at

Lyapounov functions

(q - a)TG(k -k), G =1, Cass-Shell, and Rockafellar, Brock-Scheinkman
(5)

dTGR, Brock-Scheinkman, Rockafellar (6)

In the recent work sufficient conditions are placed on the system (2), (3) so

that the trajectory derivative of one of the above Lyapounov functions is negative.



Brock and Scheinkman [3] extend Hartman and Olech [9] type methods (using

very complicated arguments) to the case (2), (3).

In this section,we show that there is a correspondence between the standard
methods embodied in the reduced form (4) and the new methods. As we shall see
this will make the new results intuitively clear and wili simplify proofs. All
this comes at a price, however. OUTr rendition of standard methods requires the
value function W(:) be C2 for some results and C3 for others, Anyone who has -
tried to verify that the value is 02 knows that that particular task is a royal
pain in the rear. But we follow here a well established tradition in optimal control

theory and avoid this issue. Let us get into the results.

First, we must state a basic result of Hartman and review the standard
Lyapunov stability amnalysis that is needed for our purposes. Since, in most
economic problems, the state variable k will be bounded (diminishing returns,
depreciation of capital goods, etc. prevent the accumulation of an infinite amount

of capital goods by an optimizing system), therefore, we will assume that optimum

k is bounded independently of time in all that follows.

Hartman's Lemma ([ 8, p.539]). Let F(z) be continuous on an open set E < Rm, and

such that the solutions of
z = F(2) , (*)
are uniquely determined by initial conditions. Let V(z) be a real valued function
on E with the following properties:
(a) V is continuously differentiable on E.
(b) V(z) < 0 on E (where V(z) is the trajectory derivative of V(z)
for any z in E).
Let z(t) be a solution of (*) for t > 0. Then the limit points of z(t) for t > 0,

in E, if any, are contained in the set EO = {Z|V(z) = 0}.



The proof of this is in [8 , p.539]. We point out here that if the tra-
jectory z(t) is bounded independently of time, then z(t) possesses limit points.

We also remind the reader that
. _ oV
V(z) = e (z) F(2).

Also, Hartman's restriction, V(z) > 0, in his statement ([8, p.539]) is not
needed for our purposes since we will be assuming that trajectories are bounded
independently of time.

The standard way that limiting behavior of z(t) is studied is to find a V
such that ﬁ(z) < 0 for all z. Then we know by Hartman's Lemma that all limit
points are in the set EO = {le(z) = 0}. The structure of E. is then studied to

0
see what kind of limiting behavior is possible. In our problems, EO will be
assumed to be a set contaiﬁﬁng a finite number of points. Since for any initial
condition, zys the set of limit points of the trajectory z(t’zo) starting from

z

o 1s connected, therefore, z(tlzo) must converge to an element of E See

0
Hartman's [ 8 ] chapter on "Miscellany on Monotony" for the basic methods outlined

above. Let us continue.

Look at the Lyapounov function (5) written in terms of the value function for

J -— T -
Ve (- k-0 = BE @ - o ®] & - . (7)

If W is concave (it will be if U is), then obviously

V <0 fork#k (8)
Inequality (8) follows because

| . |
oW oW = -
[ () - 5 @] -k <0 ©)

for any concave function W, for any k, k. Now if W is strictly concave (9) will
hold with strict inequality for k # k, and thus the absolute value of (9) forms

a natural measure of "distance" of k from k. Therefore, it is natural to require



directly that the absolute value of (9) decreases along trajectories as do Cass
and Shell or place sufficient conditions on the Jacobian matrix of H(q,k) that
imply the absolute value of (9) decreases along trajectories as do Brock and

Scheinkman.

Look at the Lyapunov function (6) for G = I in terms of the value. We get

2 2 .
('1= 21'<sc.lT1-<=kT ‘——awl.iio (10)

ok ‘ ok
if W is concave. Thus, QTR is a type of distance of k from zero. Let us now turn
to derive an identity that will be useful to show a relationship between different

sufficient conditions for negative trajectory derivative of Lyapounov functions for

(4).
First, we need
- 3w 2y -
. = . = ' = K 1" - 2 1"
Lemma 1: Let 2 k, 2 JF Vo5 W' (k) " ° W' (k) 5 W (k)ij
2 ok
_ oy 0 Wi L op D 3% .
ok ok, ok, T ok ok, ok, q
r i i r r i R r

Then

W'(k) JFZ(k) = [p W'(k) - H2l W'(k) - H22 - W"]

1" = " 1" 111

W' (k) JFz(k) W Hll W'+ W le (11)
for all k.
Proof: Since

q = WO, § = Wk, k= B '),k = Fy(k) (12)
and

(.1 = bq - H2, (13)
therefore,

W(OH, = 0 q = H, = p W (K) - Hy(W' (K),k) (14)



Now totally differentiate equation (14) w.r.t. to k to obtain .

W+ W - no_ wo_
F, T PN T Hp -y (15)

which is the first part of (11). The second part just follows by definition of

I .
F, Q.E.D.

Remark 1:Notice that the equation

n = '-—
W'H, = pW H, \ (16)

is the total derivative w.r.t. to k of the equation
p W(k) = H(W'(k),k) . (17)

which is,as we shall see in more detail later the Hamilton Jacobi equation for

the optimal control problem

W(k0)= maximum fO e Pt U(k,x)dt

s.t. k=%, k(0) = kO ’ (18)

We now move on to use identity (11) to show a useful identity between the

quadratic forms of the trajectory derivatives of two apparently unrelated Lyapounov

functions.

It is easy to see that

(19)



But

4 ,.T, d T ity d T,

O % SR LIPSl S 110 W (20)

Let Q denote the matrix of the quadratic form of R.H.S. (19). ©Notice that we

have discovered two different ways of looking at the same Lyapunov function:

.T' T " 1]
Way 1: EE—(q k) (Fl’Fz) Q(Fl’Fz) ~ a "new" way,

Way 2: %; (QTR) = %E-[VZT W' (k) v2] -~ an "0ld" way

for the latter is just a Hartman [ 8, p. 542] type of Lyapounov function with

variable matrix G(k) = - W'(k) for the "reduced form"

ko= F, ().

Two theorems will state identities that will be useful in the sequel.

Theorem 1:

11] T 1"
(Fl,Fz)T Q(Fl’FZ) w" F2,F2)T Q (W" F2,F2) = (W V2,v2) Q (W V2’Y2)

T 1" " .Il
+ 21
) ¥, W+ W JF2 W }v2 (21)

Proof: Follows by definitions and by Lemma 1.

Q.E.D.

Theorem 2: Assume that for each k (11) holds, then V k, ¥x

W x, T Q (" x, x) > 0 (22)

iff V k, Vx

xT__[JF Pwrew g, +wx oz 0 (23)

2 2



Proof: Obvious by the identity (11) of Lemma 1. Compute as follows

1 2 w"
(W" X X)T Hll p/ * 1" T " T
bl = —_—
(W'x) Hll(w x) + x ( H22)x
2 -H
p/ 99 X
- - " T — T " 1"
+ o0 (Wx) x=x" W Hllw X
+ % (<Hy)x + X (OH)x, (24)
By (11}, we have
1" T 1" = 1 - " - - .ll
WOH W W H = 0 WY - Hy W - Hy, - W (25)
Therefore reshuffling (25), we get
" o_ = " " il " ]}
W' = Hyy = W' Hp W'+ W' H o+ Hy W+ W (26)
Now substitute (26) into the matrix of (24)
W'H, W' - H, + W' = 2 W' H, W'+ W' H 4+ H W+ W 2D
11 22 11 12 21
But, now calculate the matrix of (23) using
J. =H W' +H (28)
FZ 11 . 12°
we get
Jg T+ wm N W
2 2
T LY
- 11 1" 11 it 1]
[Hll W'+ le] W' + W [Hllw + le] + W
= W' H, W' + H. W'+ W'H, W'+ W'H (29)

11 21 11 12

which is exactly R.H.S. (27).
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Record (11) for convenience.

W"(ko)JFz(kO) = P W'(kg) = Hy W'k - Hy, = W(k). (30)
This identity is relevant to the Brock and Scheinkman [ 3] adaptation of Hartman
and Olech [ 9] to the case of optimal control. As we shall see if (30) holds,
then an alternative proof'of tﬂe Brock—Scheinkman Theorem [ 3, p. 16 ] is
available. And the proof has considerable intuitive appeal. Some preliminary

results are needed.

Theorem 3: V (q,k) # (q,k),V (Wl’ W2) # 0

T T . . T
W) F2 + W, F1 =0=> w Q(g,k)w > 0 (31)

implies 3 G(k) such that

VO#o0eRY, Vk#K

ol GF, = 0 => ol [GI. +(GJ )T + Gla > 0 (32)
2 F F
_ 2 2
Proof: Put
w, = W' w _ (33)

1 2

in (31). We get by realizing that since

F, = W'F,,
therefore,
T 1 T 1A} — ' —_ " T 1"
v, 1% _F2 + v, W F2 =0=> W w2,w2) Q (W w2,w2) >0

But the above boils down to

wg W' F

— " T "
9 0= (W w2,w2) QW w2,w2)

" ML T >
F W'+ W JF + W ]W2 0
2 2 .

where the last follows from Theorem 2. Put G = W".

Q.E.D.
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Remark 2: Note that the condition

T T 5 T
a .S F2 =0 =>0 [S+ (S JF ) + (S JF ) Ja <0 (34)

2 2
where

S = -W" = positive semi-definite (35)

for W concave is a standard, GAS assumption of Hartman-Olech type, Hartman

[8, p. 548] for the system
k = F,, (k) A (36)

Hence (34) implies GAS by the Hartman-Olech theorem.

At this point, for the record, it is worthwhile to insert an alternative
proof of (30) by use of the Hamilton Jacobi equation. We will rewrite (30) in
an equivalent form that is useful to have down. |
Theorem 4: The following holds

T + D.J” = W'H W+ -H + QW”. (37)

1" . 1}
Wt Jp o+ (W g ) 11 22

F 2

2/
Proof: Consider the Hamilton Jacobi equation

Differentiate both sides of this w.r.t. k twice to obtain

Py = T Wy 69
] ] 1 .
oH
oW 9

W, = T 9 w..+ I H i + T H 94

P Mis j ok 3t 3 qj ok - i kl qJ ok

S S S
i,s = 1,2, ..., n (40)

Now -

Jp = Hy W'+ le (41)



12

Therefore,L.H.5.(37) =

T .
" 1 1 7" 11 "
W Hllw + W le + (W (Hllw + le)) + W
Thus to show (37), we need only prove
T . "
‘I' " " 1" " = 1"
W le + W Hllw, + le W'+ W H22 + oW (42)
We will use (40) to establish (42). Calculate
oH ’
q. dg 2
—L = I H ~% +H ., =1IH SH_ iy (43)
Bks r qur Bks q ks . 4.9 Bkraks q,kS
Thus
2 2 2
B 3°W "W W
pWwe= ZI2H o o) meak, T OBk SRk,
i r “j'r r s i g j's i
3 2 2
"W 9°H W
*OIE Sk T sk, v Mk g, 3%k, (44)
j i 7§ s i s 3 ity i g
Now examine the (i,s) term of (42)
~3%H
ok, ok
is
5°H
cancels against % 5k I L.H.S. (42).
i s
Now
' . oW 3
" R - is - "W
[w ]is dt wis 2 ok Hq > ok .ok 3k Hq (45)
r r r r is r

and this cancels out the expression
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33

L H 3K 3K, oK
J 1 3 s

in the RHS (44). Thus to prove (42), we need only check

2
1] " 1] T " - aw
W' Hy g+ W0 H Wi o+ B, W00 = 28 0 S0 ok,
i i3 T
2 2 2

"W 3°W "W

*IH o e P OEUEHE O Seai] Rk,

] ] s 1 ] r j'r r ] i ]

To check it write out the formulas for the (i,s)th element

2
5w
120is = % 3%k, Hqx
] i ] ]

[W" H

T _ 3 W _ W
(B, Wilig= Z H k9% - ° Bq k. 3.k
I ayk, is ] ji T is
2 2
" " . ?L oW
W H W ie = 202 S Boq Kok
i r i ] j°r r s

Obviously (47), (48), (49) imply (46).

Q.E.D.

(46)

(47)

(48)

(49)
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At this point in time it is appropriate to take stock of what we have
accomplished, and relate it to the sufficient conditions for the global asymptotic
stability of optimal control derived by Cass-Shell, Rockafellar, and Brock-
Scheinkman.

3/

We have shown that there is an equivalence between negative trajectory

derivative of the Lyapounov function

vV = VT(—W"(k))v (50)
2 2
and positive definiteness in the directions (Fl,Fz) of the matrix

Hy g p/2 I

p/2 In -H,, ' 51)

which plays a central role in the Brock-Scheinkman analysis. Now the trajectory

derivative of (50) is given by

Ve —vi . Twt e I+ (52)
2 My F 2
2 2
But by (37)
T 1" 1" o
Jp W AW T, 4 W
2 2
=W'H . W' -H,, + pW" (53)

11 22

Thus, the analyst has the option of checking positive definiteness of the

matrix (53) in the direction

or checking positive definiteness of Q in the direction (Fl,Fz) in order to test

for GAS. Two tests are better than one since the Q test shows the analyst that
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GAS holds for small p, but the L.H.S. of equation (53) does not reveal this
although the R.H.S. suggests 1it.
The Q test is useful for uncovering the result: If the smallest eigenvalue,

A, of the matrices H H,, is greater than p/2, then GAS holds. For A > p/2
4/

11° 22
is sufficient for Q to be positive definite._ Equation (53) offers no guide to
such a result.

Equation (53), however, opens up a new line of research viz. the generali-
zations reported in Hartman's book [ 8, p. 549] e.g., may now be carried out for
the case of optimal control.

Let us now look at the Brock-Scheinkman generalization of the Hartman-Olech
in Hartman's book [ 8, p. 549] to the case of optimal control. An important

special case of the Brock-Scheinkman result is: Assume that there is just one

steady state, k, and it is L.A.S. for the "reduced form"
k = F2(k)

Also assume that for all (q,k), for all w = (Wl’w2) £ 0
vl [H,(q,K)] + v, [pq - Hy(q,k)] =0 (54)
1 1 q, “72 p q 2 q, -

=> (wl,wz)T Q(q,k) (wl,wz) > 0

But we saw from (37) and Theorem 3 that (54) implies: For all k, for all o # 0

al(S(k)) H. (W' (k),k)) = 0 => o [(S(K)J. ) + (ST DT + K)o < 0
1 F, F,
(55)
where

S(k) = -W"(k) (56)

and the (i,j)th element of S is defined by
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[Sa1y, =

[ s =

H (W' (k) ,k)
1 akr qr 7)

And (55) together with the L.A.S. of k is just a special case of the Hartman-Olech

sufficient condition for G.A.S. of k. (Hartman [8, p.549]).

The Brock-Scheinkman [3a] theorem does not follow immediately, however,
because W" is not necessarily negative semi definite for them. In [3b] the
Hartman-Olech method is extended to cases where'G is not positive definite, and
that allows the methods of this paper to be applied to prove the Brock-Scheinkman
([3a]) theorem.

Thus, we have succeeded in building a bridge between both methods for
obtaining G.A.S. results for control systems: (1) Methods that rely on analysis
of the "reduced form"

ko= H) (W (K), k)
and (2) Methods that rely on analysis of the system

q=0pq- Hy(agk

k

Hl(q,k)

This bridge that we have established will aid in generalizing recieved results
and will aid the analyst in finding useful sufficient conditions for the GAS of
optimal control.

We turn now to section three where we establish another class of G.A.S. results

derived from the reduced form and based on the Lyapounov function
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Section 3:- Basic Stability Results: Lyapounov Functions of The Type RT HIl k

Consider
[o¢)

Max fo e Pt U(k,x)dt

W(ko)

s.t. k= x, k(0) = kO

Necessary conditions of Pontriagin are:

q=QQ'Hk
k = Hq’ k(0) = ko
Let
V= Tyl v, =k

Vo Hip Voo Yy

calculate the trajectory derivative of V along the "reduced form"

k = H (q(k), k) = F,(k)

where the Jacobian matrix of Fz(k) is given by

- n
JFZ Hll W'+ le.

Doing this calculation, we get

. T -1 T -1 - T /-1
V(k) 2 Hll v, + 2 Hll v, + v, <%11‘>v2

T -1 T -1
T" + 113
[, W'+ Hyp)vy " By vy + vy Byp [E W+ H v, ]

T ,. -1
+ v, (Hll) 2

T I S R | -1
= v, [2W" 4+, B +H ] H, + WD,

This calculation suggests
Theorem 5: Assume

Too-1 . -1 11
Hy, Hyp #Hyy Hyp + H)

is negative definite in the direction
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v, = Fz(k)

for each k. Then given any ko, the optimum solution k(tIkO) converges to

B, = {k|V(k) = 0}
as t > «,
Proof: Since U(k,x) is concave in (k,x), therefore, the matrix W" is negative
semi definite everywhere.
Thus,
V) < 0

and the conclusion follows by Hartman's Lemma.

Remark 3: 1If the objective U(k,x) is quadratic in (k,x), then Hll is independent

. -1 ] .
of time. Thus, (H11 ) = 0 and a useful sufficient condition for global asymptotic

stabiltiy is immediate from Theorem 5:

- T -
1 H,,) + (H ! H,.)

(Hyy Hy 11 M2

is negative definite. The proof of this assertion follows trivially from

Hartman's Lemma because the reduced form

k = Fz(k)
is linear for U(k,x) quadratic.
Remark 4: The same argument as that used in Remark 3 allows us to prove that

1

T
1 B2

-1

11 9127 (58)

(H] 1) + (H

_negative definite at a steady state k is sufficient for k to be LAS. The proof
is carried out by linearizing the necessary conditions of optimality around k,

and noticing that (Hli) = 0 at a steady state.

Notice also that the sufficient condition for stability (58) is independent

of the discount rate p in contrast to the Cass-Shell, Brock-Scheinkman, Rockafellar

conditions.
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Later on we will show how (58) leads to a powerful sufficient condition for
stability of a large class of adjustment cost models. Before we move into that, let
us sketch an argument that LAS of all steady states implies there is only one steady
state.

A rigorous uniqueness argument would take us far afield, but we can give

heuristics here. Look at the reduced form

k = B @),k = F,() (59)

Linearize (59) around any rest point k to get

22 = _JFZ(E)ZZ, z,(0) =k, - k (60)

Since each k iva.A.S. the determinant of the matrix

JFZ(k)
does not change sign across the set of rest points {k}. It will be nonzero
except for "hairline" cases. Therefore, we follow the tradition of modern
global analysis (see Dierker [7 ] for a discussion of modern global analysis
and applications of it to economics), and assume away the hairline cases. Thus,
the topological index theory reported in Milnor [15, p. 36] may be applied. To
do this assume that a large enough homeomorph of an n dimensional solid ball
can be found so that the vecto? field described by (59) "points inward' on the
surface of this ball and all rest points of (59) are céntained within it. Then
it follows directly from a theorem in differentiél topology (Milnor [15, p. 361)
that if the determinant of JFgﬁ) is nonzero and does not change sign across the
set of rest points k (which by hypothesis are all L.A.S.), then there is only one

rest point'i. The reader is referred to Dierker for the detailed development

of this type of argument.
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We might add that for the optimal growth problem the "inward pointing" condition
amounts to little more than the economics that if a capital good, ki’ is near enough
to zero then the optimizing system sets ii > 0, and if ki is very large then ii < 0.
The actual checking of the inward pointing hypothesis is a nontrivial task however.
It is most useful as a guide of what to expect: viz. if all rest points are L.A.S.
the analyst should not expect to find multiple rest points.

We have built up enough abstract technique. Now it is time to turn to appli-~
cations. Our methods 1ead us to a very strong set of G.A.S. results for the
important subclass of models where there are only two state variables. This case

is important for (a) trade models, (b) human capital theory, (c) population models,

and many more. Two goods models are the simplest models that allow for substi-
tution possibilities in economics, and therefore, they play an important role

in the theoretical literature.

Section 4: The Two State Case

Consider the system

q; = P q; - Hki(q,k)
k, = Hq.(q,k) i=1,2
1
k(0) = kg \ (61)
Let
(o]

W(k,) = max J, e Pt Uk, kdte

s.t. k(0) = ko

Lemma 2: If U is concave in (k,k), then W(:) is concave.
Proof: Easy exercise in the definition of concavity. Let (a,ﬁ) be a steady
state of (61). Assume it is unique. Brock [2] provides sufficient conditions

for unique steady state. It's finding sufficient conditions for stability that's

hard. To that task we now turn.
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Lemma 3: The shadow price q can be written as q(k) and the matrix

99
ok

is negative semi-definite and symmetric at each k where it exists. It exists
almost everywhere; (i.e., except for a set of k of Lebesque measure zero).

Proof: By Arrow and Kurz [ 1, Chapter 2], q(k) = %%, therefore,

and W is concave so negative semi-definiteness and symmetry. follows. Existence

of W' almost everywhere follows by Karlin [12, p. 4057.

Consider the system of ordinary differential equations in the plane:

bl
]

= H k
. = Fz(k)
k., = H (q,k)
2 q
2
k(0) = kO (62)
The Jacobian matrix of F2 is
2 ‘
0 W :
J, =H — + H (63)
F2 11 Bkz 12

We state

Lemma 4: Hsu and Meyer's Bendixon Theorem [11, p. 164]. If Trace JF (k) doesn't
2
change sign for all k, then there are no limit cycles for (62).

Proof: See Hsu and Meyer [11, p. 164] for the argument which follows immediately

from Green's Theorem in the plane.
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5/

Lemma 5: Let A, B be two 2 x 2 real matrices that are symmetric; A positive

definite and B negative definite, then
(1) Trace (AB) < 0.
If only semi-positive definiteness and semi-negative definiteness holds, then
(ii) Trace (AB) < 0.
If neither A nor B is 0 and
Trace AB = 0,

then

(iii) A and B are both singular.

— =

Proof:

a b + a_ b
a 5 5 11 11 12 122
a
N B! 12 11 12
ao a9 b12 b2
N i - a b + a b
? 12 12 22 22
- J
So Trace (AB) = aq bll + a,, 522 + 2 a12 b12' Suppose Trace (AB) > 0O
then
0>ay, by + a5y by, 2 -2 ay, by,
(=) (-
therefore,
ap 1byg |+ ag, byl 2 2 fag,| [Py, (64)
Now positive definiteness of A implies
2
Y1 %2 7 9o (65)
()
and negative definiteness of B implies
2
b b > b (66)

+)
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Using (65), (66) to get an upper bound for the R.H.S. of (64), we get

i 1/2 1/2
b 67

R R N I C PR (P17 P5p) (67)
Put

o= la, byl B = (e, Dyl
(67) is

wig < 2 oM? pl/2 (68)
Therefore

az + 82 + 2 0B < 4oB
I.e.,

az + 82 ~ 20 <0
So

(a - 8)2 <0
Immediate contradiction. This proves (i). (ii) follows by a similar argument.

In order to prove (iii), we notice first that Tr (AB) = 0 implies that
A or B is singular. This is so because letting Xi denote the eigenvalues of AB,

we have

Thus,

and because lA, 20, IBI > 0 by positive semi definiteness of A and negative semi

definiteness of B, therefore,

|aB| = A, A, = -2 = |a] |B]
12 +) @)
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gives an immediate contradiction if both A, B non-singular. Thus, one of them,
say A, is singular.

Suppose B is not singular. To get a coptradiction follow through the
implications of the hypothesis Tr (AB) = 0 in inequalities (64) - (68). If

(67) is a strong inequality, we have the contradiction

(- 8)7% <0
as before. Well, (67) is an equality when a1y = 0 because B is assumed non-singular.
But

0=-|Al =a,. a & =a. a

11 722 12 11 722

implies one of

%11° “22
is zero. Suppose W.L.0.G. aj = 0. Then

0 = Tr (AB) = aq bll + Ay, b22 + 2a12 b12 = a,, b22'
But

2

0 < |B] = byy byy - b7y
implies

bzz#O
so that

Ay = 0
Thus,

A=0

contradiction to
A # 0.
A similar argument works if B is singular and A is assumed non-singular.

This ends the proof.
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Remark 5: If W' # 0 and if Trace qu < 0 and Hll is positive definite, then no
limit cycles exist for (62). This follows directly from Lemma 5 because

Tr (Hli W") < 0. Notice that W"(k) # 0 means that the stock demand "curve" for

capital is not "perfectly elastic" at k.

Theorem 6: Assume that there is a bound M(ko) such that

Hk(elk )] < MGy

for all t > 0. Also assume W'(k) # 0, H . positive definite, and

11

(k) £0

'Tr H12
then

k(tlko) +k, t >
when k is a rest point of (62).

Proof: By Lemma 5

2
Trace (Hl1 é—%) <0
ok

therefore, no limit cycle exists. By the Poincaré Bendixon Theorem (see section
5.8 of Hsu and Meyer [11]) k(t,ko) must become unbounded or converge to a limit
cycle, or converge to a point. Limit cycles are ruled out by the Trace conditions

and boundedness is assumed. Therefore,

k(t|ky) >k, t >
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Section 5: Applications

Application 1: Accumulation of two capital goods in the face of adjustment
cost: Treadway's model [24]. Consider the problem of a firm maximizing profit in

the face of adjustment costs

[ee]

Max fO e Pt

"

w(ko) m(t)dt

s.t. k=1-nk
K(0) = kg

Define.

Ho(q,k) = max {7T + q (I - nk)} = max H(q,I,k) = max H
: I I I

1)

n = , T = max (F(kl,kz,L) - wlL) - c(Il, 9

L

2 2
Here k € R+, I R, Ny >0, L >0, m F, ¢, q, P, W denote capital stocks,

investment flow, depreciation factor for capital good i, labor, profits, production
function for the one good that is sold at unit price, adjustment cost function,
shadow price of capital, rate of interest, wage rate.
Solving

oH ac

5T T 0, yields 9= 37

Invert to solve for I as a function of ¢

I = 2(q)

Let it be understood from this point on that we are talking about the maximized

Hamiltonian, and drop the superscript "0".



27

0
H™ becomes

H= Fky,ky,L(k)) -~ wL(k) - c[2(q)] + q[2(q) - nk]

Therefore,

I S 1 0

H = H, = 31 9% 3g T 9 3 T @ -nk= 2(q) - nk.
Hence,

H,, = -n

Consider the "reduced form"
k = H, (q(k), )

k(0) = ko

Since it can be shown that the optimal solution starting from ko denoted by
k(tlko) is bounded (diminishing returns and depreciation bound capital stock),
and

by =

therefore by our negative Trace theorem (Theorem 6), we have
k(tlko) >k, t >

This shows that a large class of two goods adjustment cost models converge.

The Treadway model shows that Theorem 6 yields‘a very strong stability
theorem for the case of two capital goods. Theorem 6 may be useful in obtaining
stability results for growth models with past consumption levels in the utility
function (Ryder and Heal [21]), growth models with population (Pitchford [171]),
human capital models (Heckman [10]), and any other case where the problem with
two state variables has economic content.

We suspect that Theorem 6 will be useful in the main for problems where
the trace of H is non-positive. For problems where this trace restriction is

qk

unnatural, it may be better to use stability conditions like the O condition, or
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to invert

q = W' (k)
to obtain
k = K(q)
and write
q = pq - H,(q,k)

as a reduced form, but we have not done this.

Application 2:  Treadway's model with n capital goods.

Use the same notation as in Application 1 and introduce n capital goods.

Note that
k= Hy = U(q(k)) - nk (69)
and that |
le = - 7 (70)
Hyp 7 'gg 1)

Write down the critical quantity to test for GAS from Theorem 5:

-1

- . I

. | ]
11 By P U,y ) (72)

wn
1t

We know that S negative definite implies GAS via Theorem 5. When is S negative

definite? Well, let's look first at the case

(1)
. . oL . i . c
convex and quadratic. In this case, Sa- is a constant positive semi definite

matrix. Assume away the "hair line'" case of

3

2

s c
317

singular. Thus,

_ o2
11 - 3q

jaei
|
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. - A . ok . .
is positive definite. Also since —+— 1s independent of q, therefore,

9q
-1

(Hll ) = 0.
Thus,

s= - ta e @ty (73)

11 " i o
Since Hlll is positive definite and n is a positive diagonal matrix, therefore,
6/

S "looks" negative definite. The trouble is, though, that if the diagonal elements

of n vary wildly enough in size, then S may not be negative definite. However,
it certainly is if all elements of N are identical. Thus, we see from (73) that
a very large class of adjustment cost models with quadratic adjustment costs are
GAS. Notice that GAS is not lost when more variable factors L are introduced.
Also, the production function may be any concave function of (k,L).

Furthermore, the same arguments above give LAS of all steady states for all

adjustment cost models provided that the derivative of the cost function

¢
o1

does not depend on (k,L).
Note that S does not involve the interest rate, whereas the other stability
tests in this paper are critically dependent upon the interest rate, and are likely

to hold only when it is small.

Application 3: The Burmeister-Graham model.

Burmeister—-Graham formulate a one consumption good n capital goods model of
optimal economic growth, where it turns out that W" = 0 on the set of paths that

they test for stability. Let us apply our methods to their problem. Write

P
I

Hl(W'(k) k) (74)

. - . _
(Hll W'+ le) k = le k (75)

=
I
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We get a large class of Burmeister-Graham type stability results immediately from

(75). For they study cases where H is independent of time along optimal paths

12

(that lie in their '"nonspecialization region"). Our methods expose the assumption
needed to get stability for them. Viz. le has all eigenvalues with negative

" real parts. We refer the reader to [26] for the economic interpretation of this

assumption,

Economic Interpretations of the Stability Condition

Rough economic interpretations of the stability conditions contained in this
paper are easy to come by. For
q = stock demand price vector for capital goods,
q(k) = stock demand "curve" for capital goods,
H, = H = flow demand price vector for capital goods services
2 k g b4

Hk(q(k), k) = flow demand "curve" for capital goods services,

H1 = Hq = internal supply curve of investment goods,

H22 = Hkk = "gslope of flow demand curve,"

Hll = aq = "glope of internal supply curve,"

%% = W' = "slope of stock demand curve,”

le = qu = "ghift in internal supply of investment goods when capital

stock increases.”

Thus, positive definiteness of

Hig p/2 T

p/2 1 Hy
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is more likely to hold when the product of the slope of the internal supply curve
and the slope of the flow supply curve is large relative to the interest rate 0.

In order to interpret the stability test arising from the Lyapunov function

T ~1
V=% H11 k
look at
_ no_ g =Ly _ gl T -1
T=[2W - @ - G+ A
for the case '
"1 .
(H11 )y = 0.

Stability holds when T is negative definite. Now W'" is negative semi definite.
We see that T will be negative semi definite when
n = 0.

It will be negative semi definite when H_ . is diagonal or when all diagonal elements

11
of N are equal. We also see that the "larger" is the "slope" of the stock demand
curve for capital; i.e., the more negative definite W' is the more likely is T

to be negative definite.

It might be worth while to close this section with a few remarks by way of
comparison with independently derived results of Swapan Dasgupta [28 ] and
Araujo-Scheinkman [27 ]. Equation (73) indicates that S is more likely to be
negative definite the faster capital depreciates. Dasgupta finds that large
depreciation rates are stabilizing in the Treadway model. He formulates a notion
of dominant diagonal for control systems aqd shows that it will be satisfied if
depreciation rates are large enough. He also finds that high elasticities of
substitution between inputs in the production function and insensitivity of
optimal investment to the price of capital goods is stabilizing.

Araujo-Scheinkman use calculus-in-Banach-space techniques to show that a domina:

diagonal assumption of I.V. Pearce type (that is independent of the discount rate)

leads to stability in a discrete time model. They are then able to show in a discret
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time version of our "Treadway' model that LAS holds under hypotheses closely related tc
our assumption that S is negative definite. It is beyond the scope of this paper
to explore this relationship in detail here. We refer the reader to Araujo-

Scheinkman for details.

Application 4: The Ryder-Heal [21] model.

The Ryder-Heal model is given by

[o0]
maximize fo e__6t u(c,kl)dt (76)
s.t kl = p(ec ~ kl) (77)
k2 = f(k2) - sz - C (78)
k(0) = kO given
The differential equation
k, = pc - k) (79)

1 1

is the derivative w.r.t. t of the integral equation

kl(t) = 0 o Pt gt eP® c(s)ds (80)

—00

Equation (80) defines the stock of consumption experience as an integral of past

consumptions with exponentially declining weights put on consumption flows further
back in time.
Equation (78) is the usual feasibility constraint in the Cass-Koopmans one

good model of economic growth: consumption, c, plus investment, k plus deprecia-

2’
tion, sz, equals flow output f(kz).
We shall show how the methods developed in this paper are useful in analysing

the stability properties of optimal paths in this model. Basically, we shall show

that if
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§ -p <0 (81)
then the rest point is likely to be LAS, and limit cycles will be less likely
the more negative is § - p. We remark parenthetically that this steady state
iszénique in the Ryder—-Heal model. This will be obvious upon inspection of

the necessary conditions of optimality. The LAS will follow very quickly without

computing any eigenvalues of the linearized system. Of course, our methods will

not yield the complete characterization of the eigenvalues as do Ryder-Heal.

Ryder-Heal compute the eigenvalues of the linearized system explicitly and draw

up the restrictions necessary for half of the eigenvalues to have negative real
parts, and half of the eigenvalues to have positive real parts. But the formulas for
the roots of a fourth order polynomial as functions of the coefficients are so
complicated that it is difficult to obtain "clean" results. The fact that

§ - p < 0 implies LAS of the steady state is likely seems to have escaped Ryder-
Heal's notice. Thué, our methods contribute to the understanding of the stabilityv
properties of this well known model. Let us get into the analysis.

The Hamiltonian for the Ryder-Heal model is

!

H(q,k) = maximum {u(c,kl) + 9, [o(c - k)]

c

1

+q, (f(kz) - Akz - c)} (82)
where (ql, 495 kl, k2) is determined by the differential equations

q = 6q -y *poq

1 1

|
o)
£Q
'—I
|
i
1

4 =89, - H =064, +Aq, - q, £(k,))

.
[}
jus
I

pc - kl)

e
'“

fus]
|

= f(kz) -~ xkz - c (83)
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where subscripts ki’ qj on a variable denote the obvious partial differentiation.

Now the''reduced form"

k = Hy (a0, &) (84)

has Jacobian matrix

J(kk) =H W'+ H ' ) 85
(k) qq gk . (85)

Let us use information on the Trace of J to get restrictions on the eigenvalues

of the linearization of (84) at the steady state E. By Lemma 5 of Section 4
Tr J(k) = Tr(HW") + Tr(d ,) < Tr(H ) 86
(k) qq gk’ < ( qk) (86)

since qu and W' are positive semi definite and negative semi definite, respectively.

Compute qu.

qu = (87)

To complete the computation, we must compute

. Now,
uc(c, kl) +tPq -q, = 0 (88)
Using (88) we have

¢ = 0, ¢ = 7u LR (89)

At the steady state

f'(ié) = A+ 6

so that (at the steady state)
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-1 -1
= - -0 + + - = — —
Tr qu pu. u,y P A+38-XA=06~p+ p( ucc)uck

1 1

(90)

We are now ready for the main theorem of this section. One of the hypotheses
will need clarification, but first let us state and prove

Theorem If (a):at the steady state k

Tr H

_ ~1
PR p(-ucc)uck1< 0 (91)

and (b):there is a closed curve I' containing the steady state such that

k = H (qg(k), k)
q
"points inward" on I'. Then, the steady state is LAS (except for hairline cases).

Proof: The sum of the eigenvalues of J is Tr J < 0. If the eigenvalues are
complex their real parts must, therefore, be negative. Thus, we need check real
eigenvalues only. There is only one possibility that must be ruled out (one
eigenvalue could be zero, of course, but this is a hairline case), and that is,

letting kl, AZ denote the eigenvalues of J, the following:

Al <0, AZ > 0, Al + AZ < 0. (92)
| 8/
We will now exploit topological index theory (Milnor [15, p. 36-37]). The

fact that the rest point is unique and condition (b) holds is enough to rule out

(92). Condition (b) means that the phase diagram of (84) looks like Figure 1

bel T TTT—
elow kZ l/ -
’d
+
T
oy
0 Ky

FIGURE 1



36

along T. All condition (bj is saying is that ki > 0 if ki is small enough
and Ei < 0 1if ki is large enough - a rather mild restric¢tion to place on a
capital accumulation problem under the usual economic hypotheses.

Topological index theory (Milnor [15]) says that the index of I which is
+ 1 by the inward pointing condition equals the sum of the indices across steady
states 'inside'" I'. But by hypothesis there is only one steady state inside I.
Thus, its index is + 1. But the index of a saddle point (e.g., (92)) is - 1.
Therefore, saddle points are impossible. The theorem is proved.

A few remarks are in order.
Remark 1: A condition such as (b) while intuitively obvious and economically
reasonable is not all that easy to verify.
Remark 2: Topological index theory fails to give such a nice result if zero
eigenvalues are allowed. Ryder and Heal's formulae may be checked directly for
the conditions that yield a zero eigenvalue. Notice that if one of them is zero
the trace condition assumes that the other is negative so we have a 'weak' form
of LAS anyway.

Let us exgmine (91) for economic content. It says that LAS is more likely

to hold when (a) & — p decreases, (b) u < 0, () (—u;i) increases (provided

ckl
' U < 0 ). Now (a) says that LAS is likely to hold when the discount or future
1

utility is small and when the effects of past consumption decay rapidly. This is
reasonable. Assertion (b) states that the marginal utility of current consumption
flow declines as the stock of past consumption experience increases - a presumption
that most economists would agree upon. Statement {(c) asserts that under the most

likely presumption on the sign of u ., , a decrease in the '"concavity" of u in ¢

] ck1

'(—ucc increases) is stabilizing. This last result is the only one that is counter-

intuitive. At any rate the trace analysis allows economically meaningful stability
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conditions to be derived rapidly for the Ryde£~Heal model. This is important
because the positive definiteness of the Q matrix (recall equation (19))is not
a "matural" hypothesis to place upon the Ryder-Heal model. We close with a few
remarks on limit cycles.

From (90)

Tr H = -p u_1 u

— 1 —-—
gk cc Yek, P +f (kZ) A

1

1t follows immediately from Lemma 4 of Section 4 that Tr qu must change sign on
a limit cycle. The value of k2 must oscillate above and below EZ along a limit
cycle. Furthermore, roughly writing, the more negative is § - p, then the

variation of k2 about k., must increase along the cycle as p increases. To see this

2
just note that k2 is independent of p, and note that k2 must be made close to zero

in order that f'(kz) be made large enough to swamp the p-effect in order that

Tr qu

change sign along the cycle.
This exercise shows how the methods developed here give insights into the

determinants of size of 1limit cycles and necessary conditions for their existence.
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Section 6: A Suggestion for Further Development: The Comparative Dynamics of

Optimal Paths

Here we are concerned with the impact of a shift in a parameter, o, of a
problem upon its optimal solution. As in static economics, in many cases, the
hypothesis of L.A.S. of a steady state, k, gives sign information on %%-{ the
"correspondence' principle of Samuelson. More importantly for dynamic analysis,
the G.A.S. hypothesis tells us that the entire optimal path will be "pulled" in
the direction of the steady state k(o). TI.e., G.A.S. of kK for each o allows us
to make 'comparative dynamics'" inferences from "static" shifts in k(a). This
rather vague inchoate observation also holds for finite horizon problems. For
a long finite horizon problem's optimal path spends a large amount of time near

the unique G.A.S. steady state of the corresponding infinite horizon problem, the
well-known "'turnpike' theorem of optimal economic growth (Takayama [23]). Therefore,
a shift in the infinite ho;izon problem’'s G.A.S. steady state w.r.t. O exerts a
corresponding "pull" on the solution of the corresponding finite horizon problem.

In the two state variable case G.A.S. should be useful to develop results on
the shift of an optimal path when the initial conditions are changed. For here,
one can use the policy function approach of dynamic programming to replace the

four dimensional system

q Oq—HZ

k=X K(0) = k

1’ 0

by the two dimensional

which is the familiar reduced form that we have been working with.
One can now exploit the fact that solutions of a pair of differential equations

in the plane cannot ''cross" together with G.A.S. to obtain results on the shift
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of the optimum path k<t,k0) when k., is changed.

0
The precise development of '"comparative dynamics' and the role of G.A.S.
in generating dynamic correspondence principles seems to me to be critically

important for dynamic economics.

The G.A.S. results reported here should help in this task.
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FOOTNOTES

1/

More general problems where
R = T(k,x)

may be treated easily with the methods exposited in this paper. We have chosen
to exposit the ideas contained in this paper for the case

k =x
in order to minimize motatiomal burden. Since the theorems to be presented have

their hypotheses placed directly upon the Hamiltonian, therefore, no generality
is lost by restricting our attention to the special case treated here.

2/

See Arrow and Kurz [ 1, p. 35] for an intuitive derivation of the Hamilton
Jacobi equation and a list of references. We will say a few words about it
here for the purpose of self containment.

Define the return function R(ko,t) by

o0
R(ko,t) = maximum ft e Pt U(k,x)dt

Put

H= e_pt U(k,x) + p x,

HO = maximum H.

X

Then Arrow and Kurz [l , p. 35] derive and define respectively

9R 0
3 = 2 (k) (a)
_ R
In our case,
= -pt
R(ko,t) = e R(kO,O) (c)

Put
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and

t
qa= e p

H= et 4,0 = 6,k

Then it follows immediately from (a), (b),(c) that

ow(ko) = G(q,k)

and

q (k)

W' (k)
from (b), (c).

Hence for all ko

P (k) = G (k) k)

must hold.

3/ .
"The Lyapunov function (50) is used in the study of the optimal linear regulator -
problem [29, Chapter 3]. At this point, we would like to thank M. Magill for
stressing to us the close relation between (50) and (51).

Magill [30] has obtained stability results for optimal growth under uncertainty
using methods stimulated by developments on the stochastic optimal linear regulator
problem ([29, Chapter 3]). His paper was an important source of stimulation to us
in generalizing the methods of [29, Chapter 3] to the discounted optimal growth
problem in order to obtain new global asymptotic stability results.

4/

The following i1s true. Let the minimum eigenvalue of Hll(q,k) be a(q,k) and the
minimum eigenvalue of —H22(q,k) be B(q,k). Then if

then

ALK = 'Hll(q,k), p/2 I

p/2 I, - H22(q,k)

is positive definite.
To prove this, examine
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T T T,
x Qx = xp Hyy oxp + 30 Hypdx, + 0 %) x)
2 0 X{,Xl + B.X§ X, +p X %y
T
2 a X) % + B xg X, = P |xl x2|
2 2
> e 112+ 8 1112 = o [lx,[] |]x,]]
where I|ZI| = (sz)l/2 for any vector z.
Now
2 2
o [y 112+ 8 g 12 = 0 1y 1] syl
2 2 1/2
> a x| 12+ 8 1yl 12 = e ™2 (1, 1] 11,1
So our problem reduces to showing that
2 2 1/2
o w117+ 8 [lxy )12 = o ™? |11 1x,l] 2 0.

But this last quantity is just
1/2 1/2 2
@ [1xg ] = 8% [1x, 1)

which is non-negative. This ends the proof.

The importance of this observation is that it gives a nice geometric inter-
pretation of the positive definiteness of Q. The hypothesis af > p2/4 is an
important sufficient condition for L.A.S. and G.A.S. in Rockafellar's analysis
[20, p. 8] e.g. We have shown that it is sufficient for positive definiteness
of Q, and hence, for stability by our analysis. Equation (53) is useless for
discovering such a result. Therefore, the usefulness of Q is demonstrated once
again.

5/
I thank Mr. Rau of the University of Rochester for correcting the original statement
of this lemma and simplifying the proof.

6/ | |
"The reader should not be lulled into thinking that if A is positive definite,
symmetric, and n 1s diagonal and positlve definite that

E = An + (An)©
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is positive definite. Tt is easy to construct counterexamples in the 2 x 2 case.

It would be worthwhile to explore sufficient conditions on positive definite
symmetric matrices A, and diagonal matrices N so that E is positive definite.
Perhaps the methods of Arrow [25] will be useful in this regard. It is beyond
the scope of this paper, however, to carry out this investigation.

7/ .
" We are detailing with the Ryder-Heal nonsatiated case. They show that multiple
steady states may exist if utility is satiated.

8/
" Milnor has his phase diagram pointing "outward" along ' rather than inward along
I'. By reversing the flow of time in our case, we are back to Milnor's case.
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