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REPUTATION WITH LONG RUN PLAYERS AND IMPERFECT
OBSERVATION

ALP E. ATAKAN AND MEHMET EKMEKCI

Abstract.

Previous work shows that reputation results may fail in repeated games between
two long-run players with equal discount factors. We restrict attention to an infin-
itely repeated game where two players with equal discount factors play a simultane-
ous move stage game where actions of player 2 are imperfectly observed. The set of
commitment types for player 1 is taken as any (countable) set of finite automata. In
this context, for a restricted class of stage games, we provide a one sided reputation
result. If player 1 is a particular commitment type with positive probability and
player 2’s actions are imperfectly observed, then player 1 receives his highest pay-
off, compatible with individual rationality, in any Bayes-Nash equilibria, as agents
become patient.

Keywords: Repeated Games, Reputation, Equal Discount Factor, Long-run Players,
Imperfect Observation, Complicated Types, Finite Automaton
JEL Classification Numbers: C73, D83.

1. Introduction and Related Literature

We consider an infinitely repeated game where two equally patient agents play a

simultaneous move stage game. Player 1’s stage game actions are perfectly observed

by player 2 (she) while player 2’s stage game actions are imperfectly observed by

player 1 (he). We present two reputation results. For our first reputation result we

restrict attention to stage games where player 1 has an action (a Stackelberg action)

such that any best response to this action gives player 1 his highest payoff compatible

with the individual rationality of player 2. Player 1’s type is private information and

he can be one of many commitment types. Each commitment type is committed

Date: First draft July, 2008. This draft, August, 2009.
We would like to thank Martin Cripps, Eddie Dekel, Christoph Kuzmics and Larry Samuelson

for useful discussions.
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to playing a certain repeated game strategy and is a finite automaton. We further

assume that there is a commitment type that plays the Stackelberg action in every

period of the repeated game (the Stackelberg type). We show that a patient player

1 can guarantee his highest payoff, that is consistent with the individual rationality

of player 2, in any Bayes-Nash equilibrium of the repeated game. In other words,

player 1 guarantees, in any equilibrium, the payoff that he can secure by publicly

pre-committing to a repeated game strategy that plays the Stackelberg action in each

period.

Our second reputation result covers an expanded set of stage games. In addition

to those covered by our first reputation result, we allow for any stage game in which

player 2 receives a payoff that strictly exceeds her minimax value in the profile where

player 1 receives his highest payoff (i.e., any locally non-conflicting interest game).

For this result, we construct a novel repeated game strategy for player 1 (an infinitely

accurate review strategy) such that any best response to this strategy gives player 1

a payoff arbitrarily close to his highest payoff if he is sufficiently patient.1 We assume

that there is a commitment type (a review type) that plays such an infinitely accurate

review strategy and all the other commitment types are finite automata. We show

that player 1 guarantees his highest possible payoff, in any Bayes-Nash equilibrium

of the repeated game, if he is sufficiently patient. As in our first reputation result,

player 1 guarantees in any equilibrium, the payoff that he can secure by publicly pre-

committing to his most preferred repeated game strategy. In contrast, however, to

our first reputation result, the commitment type that player 1 mimics to secure a high

payoff, i.e., the review type, plays a complex repeated game strategy with an infinite

number of states. In particular, the review type plays a repeated game strategy that

is significantly more complicated than the other commitment types that we allow for.

A reputation result was first established for infinitely repeated games by Fudenberg

and Levine (1989, 1992). They showed that if a patient player 1 plays a stage game

against a myopic opponent and if there is positive probability that player 1 is a type

committed to playing the Stackelberg action in every period, then in any equilibrium

1Our development of review strategies builds on previous work by Celantani et al. (1996). For
another reference on review strategies see Radner (1981, 1985).
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of the repeated game player 1 gets at least his static Stackelberg payoff.2 However, in

a game with a non-myopic opponent, player 1 may achieve a payoff that exceeds his

static Stackelberg payoff by using a dynamic strategy that rewards or punishes player

2 (see Celantani et al. (1996)). Conversely, fear of future punishment or expectation

of future rewards can induce player 2 to not best respond to a Stackelberg action and

thereby force player 1 below his static Stackelberg payoff. The non-myopic player

2 may fear punishment either from another commitment type (Schmidt (1993) or

Celantani et al. (1996)) or from player 1’s normal type following the revelation

of rationality (Celantani et al. (1996) section 5 or Cripps and Thomas (1997)).3

Nevertheless, reputation results have also been established for repeated games where

player 1 faces a non-myopic opponent, but one who is sufficiently less patient than

player 1, by applying the techniques of Fudenberg and Levine (1989, 1992) (Schmidt

(1993), Celantani et al. (1996), Aoyagi (1996), or Evans and Thomas (1997)).

Reputation results are fragile in repeated games in which a simultaneous-move

stage game is played by equally patient agents and actions are perfectly observed.

In particular, one-sided reputation results obtain only if the stage game is a game

of strictly conflicting interest (Cripps et al. (2005)), or the Stackelberg action is a

dominant action in the stage game (Chan (2000)).4 For other simultaneous-move

games, Cripps and Thomas (1997) show that any individually rational and feasible

payoff can be sustained in perfect equilibria of the infinitely repeated game, if the

players are sufficiently patient.

This paper also focuses on simultaneous-move stage games however our results

sharply contrast with previous literature. We prove, if player 2’s actions are imper-

fectly observed with full support (the full support assumption), then player 1 can

guarantee a high payoff, whereas, with perfect observability, Cripps and Thomas

(1997) and Chan (2000) demonstrated a folk theorem for a subset of the class of

stage-games that we consider. In particular, we show that imposing the full support

2The static Stackelberg payoff for player 1 is the highest payoff he can guarantee in the stage game
through public pre-commitment to a stage game action (a Stackelberg action). See Fudenberg and
Levine (1989) or Mailath and Samuelson (2006), page 465, for a formal definition.
3Player 1 reveals rationality if he chooses a move that would not be chosen by any commitment
type.
4A game has strictly conflicting interests (Chan (2000)) if a best reply to the Stackelberg action of
player 1 yields the best feasible and individually rational payoff for player 1 and the minimax for
player 2.
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assumption allows us to expand the set of stage games covered by a reputation re-

sult from only strictly conflicting interest games and dominant action games to also

include any locally non-conflicting interest game. Also, the result presented here

improves upon the previous reputation result for strictly conflicting interest games

(Cripps et al. (2005)) since our result allows for a rich set of commitment types.

The role of imperfectly observed actions in our reputation result is analogous to

the role that imperfectly observed actions play in Celentani et al. (1996) or the role

that trembles play in Aoyagi (1996). It ensures that a wide range of information sets

in the repeated game are sampled. In particular, the information sets that are crucial

for player 1 to build a reputation, for being the commitment type that he is trying

to mimic, are sampled sufficiently often, irrespective of the strategy player 2 plays.

Also, imperfectly observed actions ensures that, irrespective of the strategy player 2

plays, if player 1 is mimicking a particular commitment type, then player 2 will, with

arbitrary precision, learn that player 1 is either this commitment type or a normal

type.

This paper is closely related to Atakan and Ekmekci (2008) which proves a one-

sided reputation result, for perfect Bayesian equilibria, under the assumption that

the stage-game is a extensive form game of perfect information (i.e., all information

sets are singletons). This paper shows that one can dispense with the perfect infor-

mation assumption and can allow for Bayes-Nash equilibria, if player 2’s actions are

imperfectly observed. Also, the imperfect observation of player 2’s actions enables

us to take any countable set of finite automata as the set of possible commitment

types whereas the set of commitment types in Atakan and Ekmekci (2008) is more

restricted. The two papers are contrasted in detail in section 5.

The paper proceeds as follows: section 2 describes the repeated game; section 3

and 4 present our two main reputation results; and section 5 compares this paper

with Atakan and Ekmekci (2008).

2. The Model

We consider a repeated game Γ∞(δ) in which a simultaneous move stage game Γ is

played by players 1 and 2 in periods t ∈ {0, 1, 2, ...} and the players discount payoffs

using a common discount factor δ ∈ [0, 1).
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The set of pure actions for player i in the stage game is Ai and the set of mixed stage-

game actions is ∆(Ai). After each period player 2’s stage game action is not observed

by player 1 while player 1’s action is perfectly observed by player 2. Y is the set of

publicly observed outcomes of player 2’s actions. After each period player 1 observes

an element of Y which depends on the action player 2 played in the period. Each

action profile a2 ∈ A2 induces a probability distribution over the publicly observed

outcomes Y . Let πy(a2) denote the probability of outcome y ∈ Y if action a2 ∈ A2 is

used by player 2 and for any α2 ∈ ∆(Ai) let πy(α2) =
∑

a2∈A2
α2(a2)πy(a2).

Assumption 1 (Full support). For any a2 and a′2 ∈ A2, supp(π(a2)) = supp(π(a′2)).

Assumption 1 implies that player 1 is never exactly sure about player 2’s action.

The assumption, however, does not put any limits on the degree of imperfect observ-

ability. In fact, player 1’s information can be arbitrarily close to perfect information.

In the repeated game Γ∞ players have perfect recall and can observe past outcomes.

H t = At1×Y t is the set of period t ≥ 0 public histories and {a0
1, y

0, a1
1, y

1, ..., at−1
1 , yt−1}

is a typical element. H t
2 = At1×At2×Y t is the set of period t ≥ 0 private histories for

player 2 and {a0
1, a

0
2, y

0, ..., at−1
1 , at−1

2 , yt−1} is a typical element. For player 1 H t
1 = H t.

Types and Strategies. Before time 0 nature selects player 1 as a type ω from a

countable set of types Ω according to common-knowledge prior µ. Player 2 is known

with certainty to be a normal type that maximizes expected discounted utility. Ω

contains a normal type for player 1 that we denote N . We let ∆(Ω) denote the set of

probability measures over Ω and interior(∆(Ω)) = {µ ∈ ∆(Ω) : µ(ω) > 0, ∀ω ∈ Ω}.
Player 2’s belief over player 1’s types, µ :

⋃∞
t=0 H

t → ∆(Ω), is a probability measure

over Ω after each period t public history.

A behavior strategy for player i is a function σi :
⋃∞
t=0H

t
i → Ai and Σi is the set of

all behavior strategies. A behavior strategy chooses a mixed stage game action given

any period t public history. Each type ω ∈ Ω \ {N} is committed to playing a partic-

ular repeated game behavior strategy σ1(ω). A strategy profile σ = ({σ1(ω)}ω∈Ω, σ2)

lists the behavior strategies of all the types of player 1 and player 2. For any period

t public history ht and σi ∈ Σi, σi|ht is the continuation strategy induced by ht. For

σ1 ∈ Σ1 and σ2 ∈ Σ2, Pr(σ1,σ2) is the probability measure over the set of (infinite)

public histories induced by (σ1, σ2).

Payoffs. Stage game payoffs for any player i, ri : A1 × Y → R, depend only

on publicly observed outcomes a1 and y. A player’s repeated game payoff is the
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normalized discounted sum of the stage game payoffs. For any infinite public history

h, ui(h, δ) = (1− δ)
∑∞

k=0 δ
kri(a

k
1, y

k), and ui(h
−t, δ) = (1− δ)

∑∞
k=t δ

k−tri(a
k
1, y

k)

where h−t = {at1, yt, at+1
1 , yt+1, ...}. Player 1 and player 2’s expected continuation

payoff, following a period t public history, under strategy profile σ, U1(σ, δ|ht) =

U1(σ1(N), σ2, δ|ht) and

U2(σ, δ|ht) =
∑
ω∈Ω

µ(ω|ht)U2(σ1(ω), σ2, δ|ht),

where Ui(σ1(ω), σ2, δ|ht) = E(σ1(ω),σ2)[ui(h
−t, δ)|ht] is the expectation over continua-

tion histories h−t with respect to Pr(σ1(ω)|ht ,σ2|ht ). Let Ui(σ, δ) = Ui(σ, δ|h0). Also,

let

Ui(σ, δ|ht, a1, α2) =
∑
y∈Y

πy(α2)Ui(σ, δ|ht, a1, y).

The Stage Game. Let

gi(a1, a2) =
∑
y∈Y

ri(a1, y)πy(a2).

The stage game Γ with action sets Ai and payoff function gi : A1 × A2 → R
is a standard normal form game. The mixed minimax payoff for player i, ĝi =

minαj maxαi gi(αi, αj) and the pure minimax payoff for player i, ĝpi = minaj maxai gi(ai, aj)

. Define ap1 ∈ A1 such that g2(ap1, a2) ≤ ĝp2 for all a2 ∈ A2. The set of feasible

payoffs F = co{g1(a1, a2), g2(a1, a2) : (a1, a2) ∈ A1 × A2}; and the set of feasi-

ble and individually rational payoffs G = F ∩ {(g1, g2) : g1 ≥ ĝ1, g2 ≥ ĝ2}. Let

ḡ1 = max{g1 : (g1, g2) ∈ G}, and M = max{max{|g1|, |g2|} : (g1, g2) ∈ F}.

Assumption 2. There exists as1 ∈ A1 such that any best response to as1 yields payoffs

(ḡ1, g2(as1, a
b
2)), where ab2 ∈ A2 is a best response to as1. Also, g2 = g2(as1, a

b
2) for all

(ḡ1, g2) ∈ G.

Assumption 3 (Locally non-conflicting interest stage game). For any g ∈ G and

g′ ∈ G, if g1 = g′1 = ḡ1, then g2 = g′2 > ĝp2.

Both Assumption 2 and Assumption 3 require that the payoff profile where player

1 receives ḡ1, i.e., his highest payoff compatible with the individual rationality of

player 2, is unique. This requirement is satisfied generically. Assumption 2 further

requires that there exists a pure stage game action for player 1 (as1) such that any best

response to this action yields player 1 a payoff equal to ḡ1. Assumption 3 requires
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that player 2 receives a payoff strictly higher than her pure strategy minimax payoff

in the payoff profile where player 1 receives a payoff equal to ḡ1.5 A game Γ satisfies

Assumption 2, but not Assumption 3, only if g2(as1, a
b
2) = ĝ2, that is, if Γ is a strictly

conflicting interest game.

If Γ satisfies Assumption 2, then there exists ρ ≥ 0 such that

(1) g2 − g2(as1, a
b
2) ≤ ρ(ḡ1 − g1), for any (g1, g2) ∈ F.

Assumption 3 implies that there exists an action profile (as1, a
b
2) ∈ A1 × A2 such

that g1(as1, a
b
2) = ḡ1. However, ab2 need not be a best response to as1. If Γ satisfies

Assumption 2 or Assumption 3 and g2(as1, a
b
2) > ĝ2, then there exists ρ ≥ 0 such that

(2)

∣∣∣∣g2 − g2(as1, a
b
2)

ḡ1 − g1

∣∣∣∣ ≤ ρ, for any (g1, g2) ∈ F.

We normalize payoffs, without loss of generality, such that

(3) ḡ1 = 1; g1(a1, a2) ≥ 0 for all a ∈ A; and g2(as1, a
b
2) = 0.

The repeated game where the initial probability over Ω is µ and the discount factor

is δ is denoted Γ∞(µ, δ). The analysis in the paper focuses on Bayes-Nash equilibria

(NE) of the game of incomplete information Γ∞(µ, δ). In equilibrium, beliefs are

obtained, where possible, using Bayes’ rule given µ(·|h0) = µ(·) and conditioning on

players’ equilibrium strategies.

The dynamic Stackelberg payoff, strategy and type. Let

U s
1 (δ) = sup

σ1∈Σ1

inf
σ2∈BR(σ1,δ)

U1(σ1, σ2, δ),

where BR(σ1, δ) denotes the set of best responses of player 2 to the repeated game

strategy σ1 of player 1 in game Γ∞(δ). Let σs1(δ) denote a strategy that satisfies

inf
σ2∈BR(σs1(δ),δ)

U1(σs1(δ), σ2, δ) = U s
1 (δ),

if such a strategy exists. We call U s
1 (δ) the dynamic Stackelberg payoff and σs1(δ)

a dynamic Stackelberg strategy for player 1.6 In words, the dynamic Stackelberg

5In Atakan and Ekmekci (2008) we define locally non-conflicing interest games using the mixed
minimax of player 2 instead of the pure minimax as we do here. We are able to do with the less
stringent formulation in Atakan and Ekmekci (2008) because the pure and mixed minimax for player
2 coincide in extensive form games of perfect information.
6The terminology follows Aoyagi (1996) and Evans and Thomas (1997).
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payoff for player 1 is the highest payoff that he can guarantee in the repeated game

through public pre-commitment to a repeated game strategy (a dynamic Stackelberg

strategy). The static Stackelberg payoff for player 1 is the highest payoff that he can

guarantee in the stage game through public pre-commitment to a stage game action

(see Fudenberg or Levine (1989, 1992) or Mailath and Samuelson (2006) for a precise

definition). If Assumption 2 or Assumption 3 is satisfied by Γ, then limδ→1 U
s
1 (δ) = 1.

Also, if Γ satisfies Assumption 2, then the repeated game strategy for player 1 that

plays as1 in each period is a dynamic Stackelberg strategy. We let S denote the

commitment type that plays as1 in each period, i.e, S is the Stackelberg type. If Γ

satisfies Assumption 2, then the static and dynamic Stackelberg payoffs for player 1

coincide. However, if Γ satisfies Assumption 3, but does not satisfy Assumption 2,

then the dynamic Stackelberg payoff for player 1 exceeds his static Stackelberg payoff

(see the discussion centered around Example 1 in section 4).

3. A Reputation Result with Finite Automata

A finite automaton (Θ, θ0, f, τ) consists of a finite set of states Θ, an initial state

θ0 ∈ Θ, an output function f : Θ→ ∆(A1) that assigns a (possibly mixed) stage game

action to each state, and a transition function τ : Y ×A1×Θ→ Θ that assigns a state

to each outcome of the stage game. Specifically, the action chosen by an automaton

in period t is determined by the output function f given the period t state θt of the

automaton. The evolution of states for the automaton is determined by the transition

function τ . The Stackelberg type S, defined previously, is a particularly simple finite

automaton with a single state.

In this section we assume that the set of commitment types Ω \ {N} is any set of

finite automata that includes the Stackelberg type S. Also, we maintain Assumption

1 and Assumption 2. The main result of this section, Theorem 2, shows that Player 1

can guarantee a payoff arbitrarily close to one, in any NE of the repeated game, if he

is sufficiently patient. Theorem 2 holds for any measure µ over the set of commitment

types with µ(S) > 0. Under Assumption 2 the dynamic Stackelberg payoff and static

Stackelberg payoff of player 1 coincide and are equal to one. Consequently, Theorem

2 shows that a sufficiently patient player 1 guarantees his dynamic Stackelberg payoff

by playing as1 in each period.
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First we state two intermediate results, Theorem 1 and Lemma 1, that are essential

for our main result. Let Ω− = Ω \ {S,N} denote the set of commitment types other

than the Stackelberg type. Theorem 1 bounds player 1’s equilibrium payoff as a

function of the discount factor, µ(S), and µ(Ω−). In particular, the theorem implies

that if µ(S) > 0, and µ(Ω−) is sufficiently close to zero, and the discount factor is

sufficiently close to one, then player 1’s payoff is close to one in any NE of the repeated

game. The proof of Theorem 1 is presented in this section following the statement of

Theorem 2.

Theorem 1. Assume that S ∈ Ω. Posit Assumption 1 and Assumption 2. For any

µ∗ ∈ interior(∆(Ω)) and any NE profile σ of Γ∞(µ∗, δ),

U1(σ, δ) > 1−K(µ∗)n̄ max

{
1− δ, µ

∗(Ω−)

µ∗(S)

}
.

where K(µ∗) = 4ρ(1+(4+π)M)
lπµ∗(S)

and n̄ = 1 + ln(µ∗(S))

ln(1− lπµ
∗(S)
4ρ

)
.

Lemma 1, our uniform learning result, shows that player 2’s posterior belief that

player 1 is a type in Ω− becomes arbitrarily small, as player 1 repeatedly plays the

Stackelberg action. The intuition for the result is straightforward: the full support

assumption implies that each state of a finite automata will be visited repeatedly

as player 1 plays as1. This implies that player 2 can reject the hypothesis that the

sequence of play is generated by any finite automata that plays any action other than

as1 in any of its states with arbitrarily high probability, regardless of which strategy

player 2 uses. The proof of the lemma is given in the appendix.

Lemma 1 (Uniform Learning). Assume that Ω \ {N} is any set of finite automata

that contains S and posit Assumption 1. Suppose player 1 has played only as1 in

history ht, and let S(ht) ⊃ {S} denote the set of types that behave identical to the

Stackelberg type given ht and let Ω−(ht) ⊂ Ω− denote the set of commitment types

not in S(ht). For any µ ∈ interior(∆(Ω)) and any φ > 0, there exists a T such that,

Pr(σ1(S),σ2){h : µ(Ω−(hT )|hT )
µ(S(hT )|hT )

< φ} > 1− φ, for any strategy σ2 of player 2.

Our main result, Theorem 2, puts together our findings presented as Theorem 1 and

Lemma 1: player 1 can ensure a payoff arbitrarily close to one by first manipulating

player 2’s beliefs so that the posterior belief of Ω− is sufficiently low and then obtaining

the high payoff outlined in Theorem 1.
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Theorem 2. Assume that Ω \ {N} is any set of finite automata that contains S.

Posit Assumption 1 and Assumption 2. For any µ∗ ∈ interior(∆(Ω)) and any γ > 0,

there exists a δ ∈ [0, 1) such that if δ > δ, then in any NE profile σ of Γ∞(µ∗, δ),

U1(σ, δ) > 1− γ.

Proof. Pick δ1 such that K n̄(1− δ1) < γ/2. By Lemma 1 there exists period T such

that µ∗(Ω−(hT )|hT )
µ∗(S(hT )|hT )

< 1− δ1 if player 1 plays as1 in each period until period T . The fact

that µ∗(S(hT )|hT ) ≥ µ∗(S) and Theorem 1 implies that player 1’s payoff following

history hT is at least 1−K n̄ max
{

1− δ, µ
∗(Ω−(hT )|hT )
µ∗(S(hT )|hT )

}
. Consequently, if δ > δ1, then

U1(σ, δ) ≥ δT (1−K n̄(1− δ1)) > δT (1− γ/2). Consequently, we can pick δ > δ1 such

that if δ > δ, then δT (1− γ/2) > 1− γ. �

The remainder of the development in this section outlines the argument for The-

orem 1. We begin by introducing some definitions. Let the resistance of strategy

σ2

r(σ2, δ) = 1− U1(σ1(S), σ2, δ).

Below we define the maximal resistance function, R(µ, δ), which is an upper-bound

on how much player 2 can resist (or hurt) type S in any NE of Γ∞(µ, δ).

Definition 1 (Maximal resistance function). For any measure µ ∈ ∆(Ω) and δ ∈
[0, 1) let

R(µ, δ) = sup{r(σ2, δ) : σ2 is part of a NE profile σ of Γ∞(µ, δ)}.

In the following lemma we bound both player 1’s and player 2’s equilibrium payoff

as a function of the maximal resistance function. We say that player 1 deviated from

σ1(S) in the tth period of infinite public history h if at1 is not the same as σ1(S, ht).

We use the fact that at any period player 1 deviates from σ1(S) he can instead play

according to σ1(S) and ensure a payoff of 1−R(µ, δ). The bound on player 1’s payoff

in conjunction with equation (1) or (2) then implies a similar on bound player 2’s

payoff.

Lemma 2. Posit Assumption 1 and Assumption 2. Pick any NE profile σ of Γ∞(µ, δ)

and period t public history ht. Let µ′(·) = µ(·|ht, as1, y) for any y. Suppose that

a1 ∈ supp(σ1(N, ht)) and a1 6= σ1(S), i.e., player 1 deviates from σ1(S) with positive
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probability. Then,

U1(σ, δ|ht, a1, σ2(ht)) ≥ 1−R(µ′, δ)− 2M(1− δ).

Consequently,

|U2(σ1(N), σ2|ht, a1, a2)| ≤ ρ

π
(R(µ′, δ) + 2M(1− δ)), for any a2 ∈ A2, if g2(as1, a

b
2) > ĝ2,

U2(σ1(N), σ2|ht, a1, σ2(ht)) ≤ ρ(R(µ′, δ) + 2M(1− δ)), otherwise.

Proof. Player 1’s payoff from playing any a1 6= as1 is at most

(1− δ)M + U1(σ|ht, a1, σ2(ht)) = (1− δ)M +
∑
y∈Y

πy(σ2(ht))U1(σ|ht, a1, y).

If player 1 instead plays as1 in period t, then he receives at least zero for the period

and beliefs are updated to µ′(·). This implies that his continuation payoff is at least

1−R(µ′, δ). Consequently, for any a1 ∈ supp(σ1(ht)),

(1− δ)M + U1(σ|ht, a1, σ2(ht)) ≥ δ(1−R(µ′, δ)) ≥ 1−R(µ′, δ)−M(1− δ)

U1(σ|ht, a1, σ2(ht)) ≥ 1−R(µ′, δ)− 2M(1− δ).

For any y ∈ Y , (U1(σ|ht, a1, y), U2(σ1(N), σ2|ht, a1, y)) ∈ F . If Γ satisfies Assumption

2, then equations (1) and (2), imply that

U2(σ1(N), σ2|ht, a1, y) ≤ ρ(1− U1(σ|ht, a1, y))∑
y∈Y

πy(σ2(ht))U2(σ1(N), σ2|ht, a1, y) ≤
∑
y∈Y

πy(σ2(ht))ρ(1− U1(σ|ht, a1, y))

U2(σ1(N), σ2|ht, a1, σ2(ht)) ≤ ρ(1− U1(σ|ht, a1, σ2(ht)))

U2(σ1(N), σ2|ht, a1, σ2(ht)) ≤ ρ(R(µ′, δ) + 2M(1− δ))

If Γ satisfies Assumption 2 and g2(as1, a
b
2) > ĝ2, then equation (2) implies that

|U2(σ1(N), σ2|ht, a1, y)| ≤ ρ(1− U1(σ|ht, a1, y))∑
y∈Y

πy(a2)|U2(σ1(N), σ2|ht, a1, y)| ≤
∑
y∈Y

πy(a2)ρ(1− U1(σ|ht, a1, y))

If Γ satisfies Assumption 2 and g2(as1, a
b
2) > ĝ2, then 1 − U1(σ|ht, a1, y) ≥ 0. This if

because ḡ1 = 1 is also the highest payoff for player 1 in F . Assumption 1 implies that
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πy(a2) ≤ πy(σ2(ht))

π
<∞, for any a2 ∈ A2. Consequently, for any a2 ∈ A2,∑

y∈Y

πy(a2)|U2(σ1(N), σ2|ht, a1, y)| ≤
∑
y∈Y

πy(σ2(ht))

π
ρ(1− U1(σ|ht, a1, y))

∑
y∈Y

πy(a2)|U2(σ1(N), σ2|ht, a1, y)| ≤ ρ

π
(R(µ′, δ) + 2M(1− δ))∣∣∣∣∣∑

y∈Y

πy(a2)U2(σ1(N), σ2|ht, a1, y)

∣∣∣∣∣ ≤ ρ

π
(R(µ′, δ) + 2M(1− δ))

|U2(σ1(N), σ2|ht, a1, a2)| ≤ ρ

π
(R(µ′, δ) + 2M(1− δ))

�

The following definition introduces reputation thresholds. In particular, zn(δ, φ)

is the highest reputation level, such that µ(S) = zn(δ, φ) and the resistance R(µ, δ)

exceeds K(µ)n, given an upper bound φ on the relative likelihood of any other com-

mitment type, i.e., µ(Ω−)/µ(S) is less than φ.

Definition 2 (Reputation Thresholds). For each n ≥ 0, let

zn(δ, φ) = sup{z : ∃µ ∈ ∆(Ω) s.t. R(µ, δ) ≥ K(µ)nε, µ(S) = z,
µ(Ω−)

µ(S)
≤ φ},

where ε = max{1− δ, φ} and K(µ) is the defined in Theorem 1.

The following definition introduces the maximal resistance in a ξ neighborhood of a

given reputation level z and a given upper bound on the relative likelihood of another

commitment type.

Definition 3. For any ξ > 0 and z ∈ (0, 1) let

R̄(ξ, z, δ, φ) = sup{r : ∃µ ∈ ∆(Ω) s.t. R(µ, δ) ≥ r, µ(S) = z′ ∈ [z − ξ, z],
µ(Ω−)

µ(S)
≤ φ}.

We will use Definition 2 and Definition 3 in conjunction with Lemma 2 to calcu-

late upper and lower bounds for player 2’s equilibrium payoffs. By definition, there

exists µ such that µ(S) = z ∈ [zn(δ, φ) − ξ, zn(δ, φ)] and µ(Ω−)
µ(S)

≤ φ, and NE σ of

Γ∞(µ, δ) such that σ2 has resistance of at least R̄(ξ, zn, δ, φ)− ξ. Also, by definition,

R̄(ξ, zn, δ, φ) ≥ Knε. The definition of zn(δ, φ) and R̄(ξ, zn, δ, φ) ≥ Knε implies that
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if µ(S) ∈ [zn(δ, φ) − ξ, zn−1(δ, φ)] and µ(Ω−)
µ(S)

≤ φ, then R(µ, δ) ≤ R̄(ξ, zn, δ, φ) in any

NE profile σ of Γ∞(µ, δ).

For a given µ such that µ(S) = z ∈ [zn(δ, φ) − ξ, zn(δ, φ)] and µ(Ω−)
µ(S)

≤ φ in what

follows we focus on an equilibrium of Γ∞(µ, δ) where player 2 resists the Stackelberg

type by approximately R̄(ξ, zn, δ, φ). We compare player 2’s payoff in this equilibrium

with her payoff if she uses an alternative strategy that best responds to the Stackelberg

strategy until player 1 reveals rationality. Resisting is costly for player 2 since there

is a positive probability that she actually faces the Stackelberg type. The alternative

strategy allows player 2 to avoid this cost. However, player 2 may be resisting the

Stackelberg type because she expects a reward in the event that she sticks with

equilibrium play and player 1 reveals rationality; or because she fears punishment

in the event that she best responds to the Stackelberg strategy and player 1 reveals

rationality. Lemma 4 gives an upper-bound on player 2’s payoff if she sticks to the

equilibrium strategy. The lemma ties player 2’s expected reward to R̄(ξ, zn, δ, φ) and

Kn−1(µ) by using Lemma 2. Also, the lemma takes into account that player 2 bears a

cost against the Stackelberg type. Lemma 5 gives a lower-bound on player 2’s payoff

if she uses the alternative strategy. Similarly this lemma ties player 2’s expected

punishment to R̄(ξ, zn, δ, φ) and Kn−1(µ) by using Lemma 2.

First we define a stopping time and prove a technical lemma related to the stopping

time. These are needed for the upper and lower bound calculations. In particular, we

use the stopping time to define the random time player 1’s reputation exceeds zn−1

if he starts from an initial reputation level of zn.

Definition 4 (Stopping time). For any µ ∈ ∆(Ω), z′ ∈ (µ(S), 1], infinite public

history h, and strategy profile σ, let T (σ, µ, z′, h) denote the first period such that

µ(S|ht) ≥ z′, where ht is a period t public history that coincides with the first t

periods of h.

Suppose that T : H → Z is a stopping time, then E[0,T ) denotes the set of infinite

public histories h where player 1 deviates from σ1(S) for the first time in some period

t ∈ [0, T (h)) in history h. That is E[0,T ) is the event that player 1 deviates from the

Stackelberg strategy before random time T .
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Lemma 3. For any µ ∈ ∆(Ω), z′ ∈ (µ(S), 1], and any strategy profile σ,

Pr(σ1(N),σ2)[E[0,T (σ,µ,z′)−1)] < 1− µ(S)

z′
.

Proof. See the Appendix. �

Below we use Lemma 2, Definition 2, Definition 3, Definition 4 and Lemma 3 to

calculate the upper and lower bound for player 2’s payoffs.

Lemma 4 (Upper-bound). Posit Assumption 1 and Assumption 2. Pick µ ∈ ∆(Ω)

such that µ(S) = z ∈ [zn(δ, φ) − ξ, zn(δ, φ)] and µ(Ω−)
µ(S)

≤ φ, and pick NE profile σ of

Γ∞(µ, δ) such that r(δ, σ2) ≥ R̄(ξ, zn, δ, φ)− ξ. For the chosen σ,

U2(σ, δ) ≤ ρ(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ) + εK(µ)n−1 + 4Mε) +Mε− (R̄(ξ, zn, δ, φ)− ξ)(zn(δ, φ)− ξ)l,
(4)

where q(δ, φ, n, ξ) = 1− (zn(δ, φ)− ξ)/zn−1(δ, φ) and l > 0 is a positive constant such

that g2(as1, a2) < −l for any a2 that is not a best response to as1.

Proof. By Assumption 2 and normalization (3) there is a constant l > 0. Choose

equilibrium σ such that r(σ2, δ) ≥ R̄(ξ, zn, δ, φ) − ξ. Let T (h) = T (σ, µ, zn−1, h).

Recall that E[0,T−1) denotes the event that player 1 reveals rationality before ran-

dom time T (h) − 1, in other words, player 1 reveals rationality before the posterior

probability that he is type S exceeds zn−1. We bound player 2’s payoff in the events

player 1 is the normal type and E[0,T−1) occurs, the event that player 1 is the nor-

mal type and the event E[T−1,∞) occures, the event that player 1 is the Stackelberg

type, and the event that player 1 is any other type. Player 2’s payoff until player 1

deviates from σ1(S) is at most zero by normalization (3). If µ(S) = z, µ(Ω−)
µ(S)

≤ φ and

player 1 has not deviated from σ1(S) in ht, then Bayes’ rule implies that µ(Ω−|ht)
µ(S|ht) ≤ φ

and µ(S|ht) ≥ z. So, player 2’s continuation payoff after player 1 deviates from

σ1(S) is at most ρ(R̄(ξ, zn, δ, φ) + 2M(1 − δ)) if the deviation occurs at t < T − 1;

and is at most ρ(Kn−1ε + 2M(1 − δ)) if the deviation occurs at t ≥ T − 1, by

Lemma 2. Consequently, U2(σ1(N), σ2, δ|E[0,T−1)) ≤ ρ(R̄(ξ, zn, δ, φ) + 2M(1 − δ))

and U2(σ1(N), σ2, δ|E[T−1,∞)) ≤ ρ(Kn−1ε + 2M(1 − δ)). Also, U2(σ1(S), σ2, δ) ≤
−l(R̄(ξ, zn, δ, φ) − ξ). Player 2 can get at most M against any other type ω. The

probability of event E[0,T−1) is at most q(δ, φ, n, ξ), by Lemma 3, probability of event

E[T−1,∞) is at most one, the probability of S is equal to µ(S), the probability of
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ω ∈ Ω− is φ. So,

U2(σ, δ) ≤ ρ(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ)+εKn−1+4Mε)+Mε−(R̄(ξ, zn, δ, φ)−ξ)(zn(δ, φ)−ξ)l.

�

Lemma 5 (Lower-bound). Posit Assumption 1 and Assumption 2. Suppose that

µ(S) = z ∈ [zn(δ, φ)− ξ, zn(δ, φ)] and µ(Ω−)
µ(S)

≤ φ. In any NE σ of Γ∞(µ, δ),

(5) U2(σ, δ) ≥ −ρ
π

(
R̄(ξ, zn, δ, φ)q(δ, φ, n, ξ) +K(µ)n−1ε+ 4Mε

)
−Mε,

where q(δ, φ, n, ξ) = 1− (zn(δ, φ)− ξ)/zn−1(δ, φ).

Proof. Pick any NE σ of Γ∞(z, δ) and suppose that g2(as1, a
b
2) > ĝ2. The strategy

σ∗2 plays ab2 after any period k public history hk, if there is no deviation from σ1(S)

in hk, and coincides with NE strategy σ2 if player 1 has deviated from σ1(S) in

hk. Strategy profile σ∗ = ({σ1(ω)}ω∈Ω, σ
∗
2) and let T (h) = T (σ∗, µ, µ′(S), h). We

again look at the events E[0,T−1), E[T−1,∞), the event that player 1 is type S and

the event ω ∈ Ω−. Player 2’s payoff until player 1 deviates from σ1(S) is zero by

normalization (3). Consequently, U2(σ∗, δ|E[0,T−1)) ≥ − ρ
π
(R̄(ξ, zn, δ, φ) + 2M(1− δ))

and U2(σ∗, δ|E[T−1,∞)) ≥ − ρ
π
(Kn−1ε+ 2M(1− δ)). U2(σ1(ω), σ∗2) ≤M for any ω ∈ Ω.

Also, U2(σ1(S), σ∗) = 0 by the definition of σ∗2. So,

U2(σ, δ) ≥ U2(σ∗, δ) ≥ −ρ
π

(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ) +Kn−1ε+ 4Mε)− εM.

If g2(as1, a
b
2) = ĝ2, then U2(σ, δ) ≥ ĝ2 = 0 ≥ − ρ

π
(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ) + Kn−1ε +

4Mε)− εM . �

Below we use the fact that the upper-bound provided in Lemma 4 must exceed the

lower-bound given in Lemma 5 to complete our proof.

Proof of Theorem 1. Combining the upper and lower bounds for U2(σ, δ), given by

equations (4) and (5), and simplifying by canceling ε delivers

(zn(δ, φ)−ξ)l R̄(ξ, zn, δ, φ)− ξ
ε

≤ 2
ρ

π

(
q(δ, φ, ξ)R̄(ξ, zn, δ, φ)

ε
+K(µ)n−1 + 4M

)
+2M.

Let qn(δ, φ) = 1 − zn(δ, φ)/zn−1(δ, φ). R̄(ξ, zn, δ, φ) ∈ [0, 1] for each ξ, we pick any

convergent subsequence and let limξ→0 R̄(ξ, zn, δ, φ) = R̄(zn, δ, φ). Taking ξ → 0
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implies that q(δ, φ, n, ξ)→ qn(δ, φ) and

zn(δ, φ)lR̄(zn, δ, φ)/ε ≤ 2
ρ

π
(qn(δ, φ)R̄(zn, δ, φ)/ε+K(µ)n−1 + 4M) + 2M.

Rearranging,

qn(δ, φ) ≥ zn(δ, φ)lπ

2ρ
− K(µ)n−1ε

R̄(zn, δ, φ)
− 4Mε

R̄(zn, δ, φ)
− Mεπ

ρR̄(zn, δ, φ)
.

Also, R̄(ξ, zn, δ, φ) ≥ K(µ)nε for each ξ implies that R̄(zn, δ, φ) ≥ K(µ)nε. Conse-

quently,

qn(δ, φ) ≥ zn(δ, φ)lπ

2ρ
− K(µ)n−1

K(µ)n
− 4M

K(µ)n
− Mπ

ρK(µ)n
.

Substituting in our initial choice of K(µ) implies that qn(δ, φ) ≥ µ∗(S)lπ
4ρ
≡ q > 0, for

any zn(δ, φ) ≥ µ∗(S). So, zn(δ, φ) ≥ µ∗(S) implies that 1−zn(δ, φ)/zn−1(δ, φ) ≥ q > 0

for all δ < 1, φ > 0 and n = 0, 1, ...,∞. Then, for each δ < 1 and φ > 0, we have

zn(q)(δ, φ) < µ∗(S), where n(q) is the smallest integer j such that (1 − q)j < µ∗(S).

By definition n(q) ≤ n̄. Consequently, if µ(S) ≥ zn̄(q)(δ, φ) and µ(Ω−)
µ(S)

≤ φ, then

R(µ, δ) ≤ K(µ)n̄ε. So, R(µ∗, δ) ≤ K(µ∗)n̄{1− δ, µ
∗(Ω−)
µ∗(S)

}. �

4. A reputation result with review strategies

In this section we extend our reputation result to any stage game that satisfies

Assumption 3. If Γ satisfies Assumption 3, but does not satisfy Assumption 2, then

the dynamic Stackelberg payoff of player 1 exceeds his static Stackelberg payoff.

Consider the following example.

Example 1. A game that satisfies Assumption 3, but not Assumption 2.

1\2 L R

U 3, 1 0, 2

D 0, 0 0, 0

In this game player 1’s static Stackelberg payoff is equal to zero whereas his dynamic

Stackelberg payoff is equal to three. If player 2’s actions were observed without noise,

then player 1 could obtain a payoff of three by using the following repeated game

strategy: player 1 starts the game by playing U ; in any period if player 2 does not play

L when player 1 plays U , then player 1 punishes player 2 for two periods by playing D;
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after the two periods of punishment player 1 again plays U . The unique best response

for a sufficiently patient player 2 to this repeated game strategy of player 1 involves

playing L in each period. However, if player 2’s action are observed imperfectly, i.e.,

if Assumption 1 holds, then a pre-commitment to the strategy described before does

not guarantee player 1 a high payoff. This is because player 1 cannot observe whether

player 2 has played L or R when he plays U but can observe only a imperfect signal.

Consequently, in certain periods player 1 may mistakenly punish player 2, even if she

played L against U ; or mistakenly fail to punish player 2, even if she played R against

U .

Under Assumption 1 player 1 can achieve his dynamic Stackelberg payoff by using

review strategies (see Radner (1981, 1985) and Celantani et al. (1996)) which statis-

tically test whether player 2 is playing L frequently over a sufficiently long sequence

of periods where player 1 plays U . In the next subsection we discuss review strategies

that can be represented as finite automata. In Lemma 6 we show that, for any accu-

racy level ε > 0, there is a finite review strategy such that any best response to this

review strategy gives player 1 a payoff of at least 3 − ε, if the agents are sufficiently

patient.

In Theorem 3 we bound the payoff player 1 can achieve by mimicking a commitment

type that is a finite automaton who plays a review strategy. However, we show that

a tight reputation bound cannot be established by mimicking commitment types

that are finite automata. So, our main reputation result in this section, Theorem

4, considers a commitment type with infinitely many states. Theorem 4 maintains

Assumption 1 and Assumption 3 and assumes that the there are finitely many other

commitment types that are each finite automata. The theorem uses the reputation

bound established in Theorem 3 and shows that there exists a review type (with

infinitely many states) such that player 1 can achieve a payoff arbitrarily close to his

dynamic Stackelberg payoff by mimicking this review type, if he is sufficiently patient.

4.1. Review strategies. We begin by describing a repeated game review strategy

with accuracy ε denoted σ1(Dε). Assumption 3 and normalization (3) implies that

there exists a positive integer P and a positive constant l > 0 such that

(6) g2(as1, a2) + Pg2(ap1, a
′
2)) < −l(P + 1)

for any a2 ∈ A2 such that g1(as1, a2) < 1 and a′2 ∈ A2.
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In order to describe strategy σ1(Dε), we follow Celentani et al. (1996) and first

consider a KJ-fold finitely repeated game ΓKJ(δ). We partition ΓKJ into blocks of

length J , ΓJ,k, k = 1, ..., K. Let uki denote player i’s time average payoff in block ΓJ,k

and let uKJi (δ) denote player i’s discounted payoff in the KJ-fold finitely repeated

game ΓKJ(δ). Let σ∗1 be the following strategy: in block ΓJ,1 player 1 plays as1 in each

period. We call a block where player 1 chooses to play as1 in each period a review

phase. In the beginning of block ΓJ,2, player 1 reviews play in the previous block. If

1− u1
1 < η, then player 1 again chooses to play as1 in each period of block ΓJ,2 and so

on. If for any k, 1− uk1 ≥ η, then player 1 plays action ap1, for the next P repetitions

of ΓJ,k and then plays as1 in ΓJ,k+P+1. We call the blocks where player 1 chooses to

play ap1 in each period a “punishment phase”.

Lemma 6. Given ε > 0 there are numbers η, K and J with P/K < ε and discount

factor δ∗ such that for any δ > δ∗ and for any best response σ∗2 to σ∗1 in ΓKJ(δ), the

following is satisfied:

(i) If player 1 chooses as1 in each period of block ΓJ,k, k = 1, ., ., K − P , then

Pr(1− uk1 < ε) > 1− ε.
(ii) The fraction of stages k in which player 1 uses his punishment strategy is

smaller than ε with probability 1− ε.
(iii) In the game ΓKJ(δ) player 1’s discounted payoff uKJ1 (σ∗1, σ

∗
2, δ) > 1− ε.

Proof. This construction is directly from Celentani et al. (1996) Lemma 4 and a proof

can be found there. �

4.2. A reputation bound for review strategies with accuracy ε. The infinitely

repeated game review strategy with accuracy ε, σ1(Dε), plays as1 in each period in

the Jε period review phase. If the time average payoff of player 1 for the Jε period

review phase is at least 1−ηε then σ1(Dε) remains in the review phase for the next Jε

periods. Otherwise, σ1(Dε) moves to the punishment phase and plays ap1, for the next

PJε periods. At the end of the punishment phase, the strategy again returns to the

review phase. The strategy starts the game in the review phase. The commitment

type that plays strategy σ1(Dε) is denoted Dε. The commitment type Dε is a finite

automaton. Also, we can define such a finite automaton review type for any given

level of accuracy.
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Lemma 7. Posit Assumption 3. For each ε > 0, there exists ηε > 0, Jε and δε ∈ [0, 1)

that satisfies (1− δε)Jε < ε such that for all δ > δε

(i) If σ2 ∈ BR(σ1(Dε), δ), then U1(σ1(Dε), σ2, δ) > 1− ε and |U2(σ1(Dε), σ2, δ)| <
ρε,

(ii) If U1(σ1(Dε), σ2, δ) = 1− ε− r and r > 0, then U2(σ1(Dε), σ2, δ) ≤ ρε− lr.

Proof. The choice of Jε and ηε and the bound of player 1’s payoff in item (i) follows

from Lemma 6. The bound on player 2’s payoff follows from Assumption 3 and

equation (2). Proof of item (ii) is in the appendix. �

The previous lemma implies that for all discount factors that exceed the cutoff δε,

player 1’s payoff is at least 1− ε, if player 1 uses strategy σ1(Dε) and player 2 plays

a best response to σ1(Dε). Also, this is true for each ε. Consequently, player 1’s

dynamic Stackelberg payoff converges to one as δ → 1.

The resistance of strategy σ2 is given by r(σ2, δ) = max{1−ε−U1(σ1(Dε), σ2, δ), 0}
and let R(µ, δ) denote the maximal resistance in game Γ∞(µ, δ) as outlined in Defi-

nition 1. The following theorem gives a reputation bound for player 1’s payoff. The

theorem is similar to Theorem 1, but player 1 builds a reputation by mimicking re-

view type Dε instead of type S. The proof of the theorem follows the argument for

Theorem 1 very closely.

Theorem 3 (Payoff Bound for Player 1). Posit Assumption 1 and Assumption 3.

For any ε > 0, if Dε ∈ Ω and µ∗ ∈ interior(∆(Ω)), then for any NE profile σ of

Γ∞(µ∗, δ),

U1(σ, δ) > 1− ε−K(µ∗(Dε)) max{Jε(1− δ), µ∗(Ω−), ε}.

where Ω− = Ω \ {N,Dε} and K(µ∗(Dε)) = P
µ∗(Dε)

(
4ρ(1+(4+π)M)

lπµ∗(Dε)

) 1+
ln(µ∗(Dε))

ln(1− lπµ
∗(Dε)
4ρ )

!
.

Proof. See the appendix. �

4.3. A reputation result with review strategies. A uniform learning argument,

similar to Lemma 1, in conjunction with Theorem 3, implies, for any game that

satisfies Assumption 1 and Assumption 3, that

lim
δ→1

U1(σ(δ, µ∗), δ) ≥ 1− 3ε/2−K(µ∗(Dε))ε,



20 ATAKAN AND EKMEKCI

where σ(δ, µ∗) is any NE profile of Γ∞(δ, µ∗). However, as µ(Dε)→ 0, K(µ(Dε))ε→
∞ and this bound becomes vacuous. This is in stark contrast to games that satisfy

Assumption 1 and Assumption 2 for which Theorem 2 implies that

lim
µ(S)→0

lim
δ→1

U1(σ(δ, µ), δ) = 1,

where σ(δ, µ) is any NE profile of Γ∞(δ, µ). Consequently, Theorem 3, unlike Theorem

2, provides only a weak reputation bound for player 1’s payoffs. Also, mimicking more

and more accurate review types will not help to strengthen Theorem 3. This is because

the probability mass that µ∗ places on more and more accurate commitment types

may converge to zero relatively fast. This again implies a non binding reputation

bound, i.e, for a fixed measure µ∗, it is possible that limε→0K(µ∗(Dε))ε > 1. In

order to provide a tight reputation bound in what follows we construct an infinitely

accurate review type that we denote by D∞. Our reputation result for stage games

that satisfy Assumption 3, Theorem 4, shows that a patient player 1 can guarantee

a payoff arbitrarily close to one by mimicking type D∞.

Type D∞ plays a review strategy with accuracy ε for the first T1 periods, then

plays a review strategy with accuracy ε/2 for T2 periods, plays a review strategy

with accuracy ε/n for Tn periods, and so on. As the review strategy that D∞ plays

increases in accuracy (i.e., ε/n becomes small), so does the number of periods that

the commitment type plays the particular review strategy, i.e, Tn−1 < Tn. For any

finite T periods, there is a cutoff δ(T ) such that, for all discount factors that exceed

this cutoff, the payoff in the first T periods is negligible for player 1. So, a sufficiently

patient player 1 can mimic type D∞, for a long but finite period of time, without

impacting his payoff, weakly increase his reputation, and also obtain any required

accuracy in the continuation game. In the following theorem we make this line of

reasoning argument exact.

Theorem 4. Posit Assumption 1 and Assumption 3 and assume that Ω is a finite

set. There exists a strategy σ1(D∞) such that for any γ > 0 there exists δ ∈ [0, 1)

such that if δ ∈ [δ, 1), µ∗ ∈ interior(∆(Ω ∪ {D∞})), then

U1(σ, δ) > 1− γ,

in any NE profile σ of Γ∞(µ∗, δ).

Proof. See the Appendix. �
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In order to provide some intuition for Theorem 4, we first describe a commit-

ment type Dε/2: the type plays a strategy that coincides with Dε up to time T1,

then plays a review strategy with accuracy ε/2 forever. Theorem 3 implies that

player 1’s continuation payoff after time T1 from mimicking Dε/2 is at least 1− ε/2−
K(µ(Dε/2)) max{ε/2, Jε/2(1−δ), µ(Ω−)}. We pick the number of periods T1 such that

for all δ greater than a cutoff δ1 player 1’s payoff

U1(σ, δ) > 1− 2ε−K(µ(Dε/2)) max{µ(Ω−), ε}

in any NE profile σ of Γ∞(µ, δ). We show that T1 can indeed be chosen in this way in

Lemma 9 given in the appendix. Lemma 9 applies a limit theorem of Fudenberg and

Levine (1983, 1986) to show that player 1’s ε NE payoff in the finite repeated game

ΓT1(µ, δ) can be approximated by player 1’s payoff, from mimicking Dε, in the infinite

repeated game Γ∞(µ, δ), then uses Theorem 3 to establish the above bound. Also,

because player 1 can guarantee a continuation accuracy of ε/2 after T1 by mimicking

Dε/2, there exists a cutoff δ2 > δ1 such that for all δ > δ2

U1(σ, δ) > 1− ε−K(µ(Dε/2)) max{µ(Ω−), ε/2}.

Similarly, we can define Dε/n inductively as the type that plays a strategy that coin-

cides with Dε/(n−1) up to time Tn−1 and then plays a review strategy with accuracy

ε/n. Tn−1 is chosen to ensure that, for all δ > δn−1

U1(σ, δ) > 1− 2ε/(n− 1)−K(µ(Dε/n)) max{µ(Ω−), ε/(n− 1)};

and for all δ that exceed cutoff δn > δn−1,

U1(σ, δ) ≥ 1− 2ε/n−K(µ(Dε/n)) max{ε/n, µ(Ω−)},

for any NE profile σ of(Γ∞(δ, µ)). The infinitely accurate review type D∞ that Theo-

rem 4 considers plays according to Dε up to time T1, plays according to Dε/2 up to time

T2, plays according to Dε/n up to time Tn and so on. The theorem shows that by mim-

icking D∞ player 1 can ensure that U1(σ, δ) ≥ 1− ε/n−K(µ(D∞)) max{µ(Ω−), ε/n}
for any n, if he is sufficiently patient. Also, a learning argument similar to Lemma

1 implies that as the number of period T that player 1 mimics type D∞ gets large

µ(Ω−|hT ) becomes arbitrarily small. Consequently, for any NE profile σ(δ, µ) of
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Γ∞(δ, µ),

lim
δ→1

U1(σ(δ, µ), δ) = 1, and, lim
µ(D∞)→0

lim
δ→1

U1(σ(δ, µ), δ) = 1,

thus providing us with a tight reputation bound as in Theorem 2.

5. Relation to One-Sided Reputation Results for Repeated Games

with Perfect Information

In this section we compare the findings in this paper with our closely related one-

sided reputation result presented in Atakan and Ekmekci (2008). Both papers focus

on two-player repeated games with equal discount factors. Atakan and Ekmekci

(2008) proves a one-sided reputation result, for subgame perfect equilibria, under the

assumption that the stage-game is a extensive form game of perfect information (i.e.,

all information sets are singletons). In this paper we assume imperfect observation

with full support (Assumption 1) instead of perfect information. Under Assumption

1 we prove a reputation result (Theorem 2) in which we are able to

(1) Deal with stage-games in normal form;

(2) Weaken the equilibrium concept from subgame perfect equilibrium to Bayes-

Nash;

(3) Significantly expand the set of possible commitment types.

Theorem 2 allows for a richer set of commitment types. In fact, the set of commit-

ment types is taken as any (countable) set of finite automata.7 In contrast, Atakan

and Ekmekci (2008) allows only for uniformly learnable types. A type is uniformly

learnable, if that type reveals itself as different from the Stackelberg type with prob-

ability uniformly bounded away from zero, over a sufficiently long history of play,

independent of the strategy used by player 2. In the current paper, Lemma 1 uses

the properties of finite automata and the learning result of Fudenberg and Levine

(1992) to show that, under the full support assumption, any finite automaton is uni-

formly learnable. In Atakan and Ekmekci (2008), in contrast, some finite automata

are not uniformly learnable, and the set of commitment types allowed is more re-

stricted. For example, consider a finite automaton (a “perverse type”) that always

play the Stackelberg action as long as player 2 plays a non-best response to the Stack-

elberg action, and minimaxes player 2 forever, if player 2 ever best responds to the

7We restrict attention only to countable subsets in order to avoid dealing with issues of measurability.
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Stackelberg action. If the probability of such a type is sufficiently large, then this

will induce player 2 to never play a best response to the Stackelberg action and so

a reputation result is precluded in Atakan and Ekmekci (2008). This type however

is not uniformly learnable in the setting of Atakan and Ekmekci (2008) and conse-

quently ruled out. This is because this perverse type always plays the same action

as the Stackelberg strategy if player 2 chooses a strategy that never best responds

to the Stackelberg action. In contrast, with the full support assumption, any finite

automata type will be learned with probability close to one by player 2. Consider

a perverse type that minmaxes player 2 after some (finite) sequence of outcomes.

The full support assumption implies that the sequence of outcomes that leads to the

perverse type to start minimaxing player 2 will occur almost surely, regardless of the

strategy chosen by player 2. Consequently, the perverse type will reveal itself to be

different than the Stackelberg type with probability close to one.

Replacing the perfect information assumption with the full support assumption to

obtain Theorem 2, however, comes at a cost. The reputation result in Atakan and

Ekmekci (2008) covers all stage games that satisfy Assumption 2 and Assumption 3

whereas Theorem 2 only covers those games that satisfy Assumption 2. We do extend

our reputation result to games that satisfy Assumption 3 in Theorem 4. But for the

reputation result in Theorem 4 we need to introduce a infinitely complex review type.

In contrast in Atakan and Ekmekci (2008) the Stackelberg type needed to establish

the reputation result is always a finite automaton.8 Also, we can no longer claim, as

we do in Theorem 2, that we can cover a richer set of commitment types in Theorem

4 as compared to Atakan and Ekmekci (2008). This is because type D∞ that player 1

mimics to obtain a high payoff is not a finite automata while the other commitment

types we assume to be finite automata.

Appendix A. A reputation result with finite automata: omitted

proofs

Proof of Lemma 1. Step 1. The set of histories is viewed as a stochastic process

and Pr(σ1(s),σ2) as the probability measure over the set of histories H generated by

(σ1(S), σ2). We show that for each finite subset W ⊂ Ω− and any ε > 0, there exists

8The finite autamata used to establish the reputation result in Atakan and Ekmekci (2008) are
similar to the strategy that obtains player 1’s dynamic Stackelberg payoff under perfect observation
of actions following Example 1.
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a T such that, Pr(σ1(S),σ2){h : µ1(W ∩ Ω−(hT )|hT ) < ε} > 1 − ε, for any strategy σ2

of player 2. Proving this is sufficient for the result since W can be picked such that

µ1(W ) is arbitrarily close to µ(Ω−) and µ(S(hT )|hT ) ≥ µ(S|hT ) > µ(S).

Step 2. Each ω is a finite automaton. Consider the stochastic process over states

generated by σs. Since (a1)t = as1 for all t, the transitions between states depend only

on the realizations of y2. In particular, probability to transition from θ1 to θ2 after

history ht is as follows:

p(θ1, θ2, σ2(ht)) =
∑

{y2∈Y2:τ(y2,as1,θ1)=θ2}

πy2(σ2(ht)) ≥
∑

{y2∈Y2:τ(y2,as1,θ1)=θ2}

π

Observe p(θ1, θ2, σ2(ht)) > 0 if and only if
∑
{y2∈Y2:τ(y2,as1,θ1)=θ2} π > 0. Consequently,

if p(θ1, θ2, σ2(ht)) > 0 for some σ2 and ht pair, then p(θ1, θ2, σ
′
2(hk)) ≥ π for all σ′2

and hk. This implies that the state space Θω of any ω can be (uniquely) partitioned

into transitory states (Θ0
ω) and a collection of disjoint ergodic sets (Θj

ω) such that

Θω = ∪Mi=0Θi
ω.(see Billingsley (1995), Chapter 1, Section 8, or Stokey, Lucas, and

Prescott (1989), Chapter 11.1.) This partition is independent of σ′2 and hk because

if p(θ1, θ2, σ2(ht)) > 0 for some σ2(ht), then p(θ1, θ2, σ
′
2(hk)) ≥ π for all σ′2 and hk.

Step 3. Let E(T,K, ε) denote the set of histories such that for any h ∈ E(T,K, ε),

after initial history hl, all ω ∈ W have entered an ergodic subset of states Θi
ω ⊂ Θω

and all states θ ∈ Θi
ω have been visited at leastK times by period l+T . Since there are

only a finite number of sets that must be considered for ω ∈ W (i.e, |W |maxω∈W |Θω|
in total), for each K and each ε > 0 there exists a finite time T such that the set

E(T,K, ε) has measure at least 1 − ε under σ1(S), i.e., Prσ1(S){E(T,K, ε)} > 1 − ε.
As a consequence of the above step this time T can be picked independently from

player 2’s strategy σ2. That is Prσ1(S){E(T,K, ε)} > 1− ε for any σ2.

Step 4. Let pωt (h) denote the probability that as1 is played in period t after history

ht, conditional on being type ω. Also, let Lωt (h) =
pωt (h)

pSt (h)
Lωt−1(h) and Lω0 (h) = µ0(ω)

µ0(S)
.

By Fudenberg and Levine (1992) Lemma 4.1, Lωt (h) = µ(ω|ht)
µ(S|ht) and (Lωt , Ht) is a super-

martingale, under σ1(S). Observe pSt (h) = 1 for σ1(S) − a.e. history. Let Lω(K, ε)

denote the set of histories such that either LωT (h) < ε or |pωt (h) − 1| < ε in all but

K periods for any T > K. Fudenberg and Levine (1992) Theorem 4.1 implies that

there exists a Kω independent of σ2 such that Prσ1(S){Lω(Kω, ε)} > 1− ε.
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Step 5. Let ξ = minθ∈{θ∈∪ω∈W θw:fω
as1

(θ)6=1}(1−fωas1(θ)). That is, fωas1(θ) is the probabil-

ity that type ω plays as1 in state θ and ξ is the minimum of the set of numbers 1−fωas1(θ)
over the set θ such that fωas1(θ) is different than 1. The minimum is well defined since

each ω is a finite automaton, W is a finite set and {θ ∈ ∪ω∈WΘw : fωas1(q) 6= 1} 6= ∅
because W ⊂ Ω−.

Step 6. Pick ε
2|W | < ξ. Pick K such that K > Kω and Prσ1(S){Lω(Kω,

ε
2|W |)} >

1− ε
2|W | for all ω ∈ W . Pick T such that Prσ1(S){E(T,K, ε

2
)} > 1− ε

2
. Consequently,

Prσ1(S){E(T,K,
ε

2
) ∩ (∩ω∈WLω(Kω,

ε

2|W |
))} > 1− ε.

By Step 3, for any h ∈ E(T,K, ε
2
) ∩ (∩ω∈WLω(Kω,

ε
2|W |)) all ω are in an ergodic set

Θ∗ω(h) = Θ
i(ω)
ω (h) and all ergodic states θ ∈ ∪ωΘ∗ω have been visited more than K

times by time T . By Step 4, either LωT (h) < ε
2|W | or |pωt (h)− 1| < ε

2|W | < ξ all but K

times. However, by the definition of ξ in Step 5, either LωT (h) < ε
2|W | or for any ω with

LωT (h) > ε
2|W | for all θ ∈ Θ∗ω(h), fas1(q) = 1. That is, either LωT (h) < ε

2|W | or ω ∈ S(hT ).

So all ω ∈ W with µ(ω|hT ) > ε
2|W | are in S(hT ). Hence µ(W ∩ Ω−(hT )|hT ) < ε

2
for

any h ∈ E(T,K, ε
2
) ∩ (∩ω∈WLω(Kω,

ε
2|W |)) delivering the result. �

Proof of Lemma 3. Let Ē[0,T (σ,µ,z′)−1) denote the complement of event E[0,T (σ,µ,z′)−1).

Player 1 has not deviated from the Stackelberg strategy in any period t < T (σ, µ, z′, h)

in history h if and only if h ∈ Ē[0,T (σ,µ,z′)−1) and

µ(S|hT (σ,µ,z′,h)−1) =
µ(S) Pr(σ1(S),σ2) Ē[0,T (σ,µ,z′)−1)∑
ω∈Ω µ(ω) Pr(σ1(ω),σ2) Ē[0,T (σ,µ,z′)−1)

µ(S|hT (σ,µ,z′,h)−1) < z′, and Pr(σ1(S),σ2) Ē[0,T (σ,µ,z′)−1) = 1, by definition. Consequently,∑
ω∈Ω

µ(ω) Pr(σ1(ω),σ2) Ē[0,T (σ,µ,z′)−1) >
µ(S)

z′
.

Which implies that

µ(N) Pr(σ1(N),σ2) E[0,T (σ,µ,z′)−1) ≤
∑
ω∈Ω

µ(ω) Pr(σ1(ω),σ2)E[0,T (σ,µ,z′)−1) < 1− µ(S)

z′
.

�
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Appendix B. A reputation result with review strategies: omitted

proofs.

Proof of Lemma 7. There exists a δ∗ < 1 such that

(7)
Jε−1∑
t=0

δtg2(as1, a2) +
Jε+JP−1∑
t=Jε

δtg2(ap1, a
′
2) < −lJε(P + 1)

for all δ > δ∗ For public history ht+Jε−1 = {a0
1, y

0, a1
1, y

1, ..., at+Jε−1
1 , yt+Jε−1}, let

i(t+Jε−1) = 1, if
∑t+Jε−1

j=t δj−tg1(aj1, y
j) < 1 − η and period t is the start of a review

stage; and i(ht) = 0, otherwise. If i(t+Jε−1) = 1, then player 1 receives at least

zero in period t through period t + Jε + JεP − 1. Consequently, U1(σ1(Dε), σ2, δ) ≥
1 − η − Jε(1 + P )(1 − δ)E(σ1(Dε),σ2) [

∑∞
t=0 δ

ti(ht)]. By construction η < ε and so

(1 − δ)E(σ1(Dε),σ2) [
∑∞

t=0 δ
ti(ht)] ≥ r/Jε(1 + P ). If i(ht+Jε−1) = 1, then player 2

receives a total discounted payoff of at most −Jε(P + 1)l(1− δ) for periods t through

t + Jε(P + 1) − 1, if δ > δ∗ by equation (7). In any block where player 1 receives

at least 1 − η, player 2 receives at most ρη < ρε. Consequently, U2(σ1(Dε), σ2) ≤
ερ− Jε(1 + P )l(1− δ)E(σ1(Dε),σ2) [

∑∞
t=0 δ

ti(ht)] ≤ ερ− lr, if δ > δ∗. �

B.1. Proof of Theorem 3.

Lemma 8. Posit Assumption 1 and Assumption 3. Pick any NE σ of Γ∞(µ, δ) and

period t public history ht. Let µ′(·) = µ(·|ht, σ1(Dε, h
t), y) for any y. Suppose that

a1 ∈ supp(σ1(N, ht)) and a1 6= σ1(Dε), i.e., player 1 deviates from σ1(Dε) with positive

probability. Then U1(σ, δ|ht, a1, σ2(ht)) ≥ 1− ε−R(µ′, δ)− (1 + Jε(1 + P ))M(1− δ).

Consequently,

|U2(σ1(N), σ2|ht, a1, a2)| ≤ ρ

π
(R(µ′, δ) + ε+ (1 + Jε(1 + P ))M(1− δ))

Proof. Player 1’s payoff from playing any a1 6= as1 is at most

(1− δ)M + U1(σ|ht, a1, σ2(ht)) = (1− δ)M +
∑
y∈Y

πy(σ2(ht))U1(σ|ht, a1, y).

Player 1 can instead play according to σ1(Dε). This may include finishing a Jε period

review phase and then playing a PJε period punishment phase. If player 1 instead

plays σ1(Dε) during the Jε + PJε periods, then he receives at least zero in these

periods and beliefs are updated to µ′(·). His continuation payoff, afterwards is at
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least 1− ε−R(µ′, δ). Consequently, for any a1 ∈ supp(σ1(ht)),

(1− δ)M + U1(σ|ht, a1, σ2(ht)) ≥ 1− ε−R(µ′, δ)− Jε(P + 1)M(1− δ)

U1(σ|ht, a1, σ2(ht)) ≥ 1− ε−R(µ′, δ)− (1 + Jε(P + 1))M(1− δ).

The bound on player 2’s payoff follows from an identical argument as in Lemma 2. �

Proof of Theorem 3. Choose equilibrium σ such that r(σ2, δ) ≥ R̄(ξ, zn, δ, φ)− ξ. Let

T (h) = T (σ, µ, zn−1, h). We look at the event that player 1 is the normal type and

deviates from σ1(Dε) for the first time at t < T − 1 (event E[0,T−1)), the event that

player 1 is the normal type and deviates from σ1(Dε) for the first time at t ≥ T − 1

(event E[T−1,∞)), the event that player 1 is type Dε, and the event that player 1 is any

other type. Player 2 can receive at most ρε + (1 − δ)MJε until the time that player

1 deviates from σ1(Dε). Using Lemma 7 and 8 and applying an argument similar to

Lemma 4 implies that

U2(σ, δ) ≤ ρ

π
(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ) + εKn−1 + 2ε+ 2(1− δ)M(1 + Jε(1 + P ))

+2ρε+ (1− δ)MJε + (zn(δ, φ)− ξ)(ρε− l(R̄(ξ, zn, δ, φ)− ξ)) +Mφ

(8)

where q(δ, φ, n, ξ) = 1− (zn(δ, φ)− ξ)/zn−1(δ, φ).

Pick any NE σ of Γ∞(µ, δ). Let σ∗2 denote a strategy that plays ab1 after any

period k public history hk, if there is no deviation from σ1(Dε) in hk, and coincides

with NE strategy σ2 if player 1 has deviated from σ1(Dε) in hk. Let strategy profile

σ∗ = ({σ1(ω)}ω∈Ω, σ
∗
2). Let T (h) = T (σ, µ, zn−1, h). We again look at the event that

player 1 is the normal type and deviates from σ1(Dε) for the first time at t < T − 1

(event E[0,T−1)), the event that player 1 is the normal type and deviates from σ1(Dε)

for the first time at t ≥ T − 1 (event E[T−1,∞)), the event that player 1 is type Dε,

and the event that player 1 is any other type. Player 2’s payoff until player 1 deviates

from σ1(Dε) is at least −2ρε. Consequently, an argument along the lines of Lemma 5

implies that

U2(σ∗, δ) ≥ −ρ
π

(q(δ, φ, n, ξ)R̄(ξ, zn, δ, φ) +Kn−1ε+ 2ε+ 2(1− δ)M(1 + Jε(1 + P ))

−2ρε− zn(δ, φ)ρε−Mφ
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�

B.2. Proof of Theorem 4. A commitment type ω ∈ Ω plays according to strategy

σT1 (ω) in the finitely repeated game ΓT (δ, µ). The strategy σT1 (ω) is the projection of

the infinitely repeated game strategy σ1(ω). For ξ > 0, let NEξ(Γ
T (µ, δ)) denote the

set of ξ Bayes-Nash equilibria of the finitely repeated game ΓT (µ, δ).

Recall that Dε/n is defined recursively and is the type that plays a strategy that

coincides with Dε/(n−1) up to time Tn−1 and then plays a review strategy with accuracy

ε/n. Theorem 3 implies that if µ ∈ interior∆(Ω ∪ {Dε/n}), then there exists δ(Dε/n)

such that U1(σ, δ) > 1−3ε/2n−max{ε/n, µ(Ω−)}K(µ(Dε/n)) for any δ ≥ δ(Dε/n) and

any σ ∈ NE(Γ∞(µ, δ)). We choose δ(Dε/n) > max{ε/n, δε/n}, where δε/n is defined

as in Lemma 7, and large enough to ensure that the first Tn−1 periods have payoff

consequence of at most ε/2n.

Lemma 9. Suppose that [δ, δ̄] ⊂ [δ(Dε/n), 1). For every ξ > 0 there exists a T ∗(ξ, [δ, δ̄])

such that for all µ ∈ interior∆(Ω∪{Dε/n}), all δ ∈ [δ, δ̄], all T ≥ T ∗(ξ, [δ, δ̄]) and all

σT ∈ NEξ(ΓT (µ, δ)), U1(σT , δ) ≥ 1− 3ε/2n−max{ε/n, µ(Ω−)}K(µ(Dε/n))− ξ.

Proof. Fudenberg and Levine (1983, 1986) prove the following theorem: suppose

that σT ∈ NEξ(T )(Γ
T (µ, δ)), limT→∞ ξ(T ) = 0 and limT→∞ σ

T = σ, then σ ∈
NE(Γ∞(µ, δ)). The lemma is an immediate consequence of this theorem. If the

lemma was not true then we could pick a ξ > 0 and, for each T , we could pick

a δT ∈ [δ, δ̄], µT ∈ interior∆(Ω ∪ {Dε/n}), and a σT ∈ NEξ(Γ
T (µT , δT )) such

that U1(σT , δT ) < 1 − 3ε/2n − max{ε/n, µ(Ω−)}K(µ(Dε/n)) − ξ. Taking the lim-

its δT → δ ∈ [δ, δ̄], µT → µ ∈ ∆(Ω ∪ {Dε/n}), and σT → σ ∈ NE(Γ∞(δ, µ)). If

limT µ
T (Dε/n) = µ(Dε/n) = 0, then limT U1(σT , δT ) = U1(σ, δ) = −∞ which is a con-

tradiction. If µ(Dε/n) > 0, then U1(σ, δ) ≤ 1−3ε/2n−max{ε/n, µ(Ω−)}K(µ(Dε/n))−ξ
contradicting Theorem 3. �

Type D∞ first plays a review strategy with accuracy ε for T1 periods, then plays

a review strategy with accuracy ε/2 for T2 periods, and then plays a review strategy

with accuracy ε/n for Tn periods, and so on. The development below uses Lemma 9

to show that T1, T2, ..., Tn, ... can be picked appropriately.

Given a precision level ε pick interval [δ1, δ̄1] such that δε < δ1 and δε/2 < δ̄1 where

δε and δε/2 are as defined in Lemma 7. Lemma 9 implies that there exists an integer
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T ∗ such that for all δ ∈ [δ1, δ̄1], all T ≥ T ∗, all µ ∈ interior∆(Ω ∪ {Dε}) and any

σ ∈ NEε/2(ΓT (µ, δ))

U1(σT1 , σ
T
2 , δ) > 1− ε−K(µ(Dε)) max{ε, µ(Ω−)} − 1/2ε.

We pick T1 so that T1 ≥ T ∗ and δ̄T1
1 < ε/2. Consequently, for all δ ∈ [δ1, δ̄1] , all

µ ∈ interior∆(Ω ∪ {D∞}) and any σ that is a NE profile of Γ∞(µ, δ)

U1(σ, δ) > 1− ε−K(µ(D∞)) max{ε, µ(Ω−)} − 1/2ε− 1/2ε

U1(σ, δ) > 1− 2ε−K(µ(D∞)) max{ε, µ(Ω−)}.

Notice, these statements hold regardless of what type D∞ plays after period T1.

Let Dε/2 be the type that first play a review strategy with accuracy ε for T1 periods

and then plays a review strategy with accuracy ε/2. Pick δ2 such that δ2 > δ̄1 and

1− δT1
2 < (ε/2)1/3, i.e., the payoff impact of the first T1 periods is less than (ε/2)1/3

for discount factors that exceed δ2. Also, pick δ̄2 > δ2 and δ̄2 > δε/3. Lemma 9 implies

that there exists an integer T ∗∗ such that:

(i) For all δ ∈ [δ1, δ̄2], all T ≥ T ∗∗ + T1, all µ ∈ interior∆(Ω ∪ {Dε/2}) and any

σT ∈ NEε/2(ΓT (µ, δ))

U1(σT , δ) > 1− ε−K(µ(Dε/2)) max{ε, µ(Ω−)} − ε/2;

(ii) For all δ ∈ [δ2, δ̄2], all T ≥ T ∗∗ + T1, all µ ∈ interior∆(Ω ∪ {Dε/2}) and all

σT ∈ NEε/6(ΓT (µ, δ))

U1(σT , δ) > 1− ε/2−K(µ(Dε/2)) max{ε/2, µ(Ω−)} − 2ε/6.

We pick T2 so that T2 ≥ T ∗∗ and δ̄T2
2 < ε/6. Consequently, for all δ ∈ [δ1, δ̄2], all

µ ∈ interior∆(Ω ∪ {D∞}) and all σT2 that is part of a NE profile of Γ∞(µ, δ)

U1(σ, δ) > 1− 2ε−K(µ(D∞)) max{ε, µ(Ω−)}.

Also, for all δ ∈ [δ2, δ̄2], all µ ∈ interior∆(Ω∪{D∞}) and all σ that is a NE profile

of Γ∞(µ, δ)

U1(σ, δ) > 1− ε−K(µ(D∞)) max{ε/2, µ(Ω−)}.
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We can precede exactly as we did for T1 and T2 to pick the remaining T3, ..., Tn, ... to

ensure that for all δ ∈ [δn−1, δ̄n], all µ ∈ interior∆(Ω ∪ {D∞}) and all NE profiles σ

of Γ∞(µ, δ)

U1(σ, δ) > 1− 2ε

n− 1
−K(µ(D∞)) max{ ε

n− 1
, µ(Ω−)}.

Also, for all δ ∈ [δn, δ̄n], all µ ∈ interior∆(Ω ∪ {D∞}) and all NE profiles σ of

Γ∞(µ, δ)

U1(σ, δ) > 1− 2ε

n
−K(µ(D∞)) max{ε/n, µ(Ω−)}.

.

This implies that for any µ ∈ interior∆(Ω ∪ {D∞}) and any NE profile σ of

Γ∞(µ, δ)

limδ→ U1(σ, δ) ≥ 1−K(µ(D∞))µ(Ω−).

This implies that U1(σ, δ) can be made arbitrarily close to one if δ is large and

µ(Ω−). Suppose that type D∞ plays each pure action of player 1 at the start of each

review stage before playing as1 for the required number of periods. This play will not

affect any of the construction so far. However, a learning result analogous to Lemma

1 implies that for any φ there exists a T such that Pr(σ1(D∞),σ2){h : µ(Ω−|hT )
µ(D∞|hT )

< φ} >
1 − φ, for any strategy σ2 of player 2. In particular, if player 1 plays according to

D∞ we can reject the hypothesis, with any required level of accuracy φ, by some time

T (φ), that the strategy player 1 is playing has fewer states than the most complicated

finite automaton in the finite set Ω−. Consequently, we can get arbitrarily close to

one by first manipulating player 2’s beliefs and then using the payoff bound.
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