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The estlwation of prebobiiinies has bloa @ cential problem to wmache-
atical ctrigstice i Vicd yv iy thoory sing thie time of
Yool e toyos, and Deveonltd Suwong the wosl pomilay rmethods in uvse for
Covinat Lo o e Coore miatinan Tikelitoe J!, method of l.:u‘.‘f‘uti, untsj -
ased cinib o vaoriooss (oot i . sian methods . The mothod
drzesibuod an U 16 an gy iization of o result in osto-

chastic lincor systoems theory, vhose generality permifs the estimation of

probabilitics that way be varying in space or tiwe, perxhaps avccozding to a

stochactic proccees.  Sanples (of possibly different size,) taken at differ-

erio noincs in tTime oy gpoce, are cembined to obtain a linear miniwonm vari-
ence cstimiute. ‘the woithod is Bayesien,but because of the ructure imposed,

- bl . ~ . ' PR o v A . . L2 . Nt [ P 1 — ) .
Ooly (e Diasl (W0 woeenis of the & privii diserjilution need Le ARSUrEu

. 1is fect and ithe seqoen-

end comruiod For the 2 posteviori distribution.

tial wature of the woihod make it ideal for cuwputer implimentatica.  Also

Ly

duz to a boundigpp tircowem which we ehall quete below, it is possille to
assume the jeast favoreble a priovi variance and obtain a bound on the a
posteriori variance.

The poper does nel consjider the cost of sampling and is most applica-
ble thercfore in cases where this cost is cither negligible or the data is
provided regulavly by governnoent statistics,census data, stock market quo-
tations, cte. 'Tne emsphasis is on applicatious where a probability may not
only be expected to change from one obscrvation time to the next, but
wihere there is some relationship between the probabilities at diffcerent

observation times. Some typilcal applications in which this is true are:

(i) Medical labs arc often interested in cstimating the proportion of

cboorviol biesd cells in o Lleod sample, on a scries of days in

inn of a paticnt may b expected te slovly juprove
l J - f

virich e ¢



GvoasLorievate.

(ii Roeiail wic.vs, Tnterested dn estinaling the oflllects of their adver-
ticivg end cuctower satisfaction pslicies mdy wish to estimate the
time depond wat propoviicns of nov and repeat custemors,

(113) Ao arulyst try to criinate the prehedility of wailting longer
tnonoo D movonn of tioo duoa non-rtabionsny gueus,

(iv sre ofton iuterested in the evolving propercltion of g
probieniar scrontype, and health wovkere may wish to estimate the
proevartion of the papulation that bas contacted, is immune to, or
carvies @ particular discose
We will so ozawne thot the observations arc obtained from simple random

sawplisig. Tor {inite popularion the wnethod will thus be applicable 1if sampling

ocours w if the pooulation is so large that the finite
multiplicr ie insignificant.
TE. 0 Oeend presdinior PeosAiagg e
-
Suprose (73,A,p) is a probability space, and {Xt,tG'T} is an n-dimen-
sional stochestic process such thet for cvery €T, X, is A-measureable.
% < 3 t

T is cnd may

line R. ‘The process Xt

n .,
where B is the g-algebra

1

given a set of ecvents {Bt:

ft':

statl

tion times

may thien be ed gi

ag:

si< t's 5 t'¢c 1T'} of the
N

teT, i=1, Without 1

induces a faril

c T Ty,

he either countable or an intervel of the real
iy n_n
v of prebability spaces (R ,B ,Pt)

of n-dimensional Borel sets. Suppose we are

i n .
B eB; teT; i=1,..,k}, and a set of observa-
witere T' is a ceuntable index sct. The problem

ven an arbitrary sequence of observations {Xt,:
) i e i
process Xt, estimate the probabilities Pt(Bt)’

oss of generality we can let s 0. If t>s

1 2

the problem is usually known as predictiou [17,[2], if t = s, as filtering
and if t « 92 as cmeothing. 1In this paper we will cstimate T b» {P (B ),
WA N o L .
Pt(b‘),.. "L\br)s sequentially, filtering at each observation and predict-
[

ing boiveen obsorvations,



T the ot jat criinmeticn ol prebabiliiics problom i1 i: assumed that
Wos X o, oavad BB,V vLasT; thove ig thus no nedd for the ionden set T.
{ ¢ L 8’ ’

ITn this coves (heve are wuuy estimzbion weitho's available, scue of which are

westionad dn ihe intiofoction. Vo will allow o wore pgoreral relationship

betweeoen he vandom variables X0 avd X, &nd Lhe aveuts Bl and B . We will
. . : s

i oitiror deterministic, a Markov

casure Yl BTOtens lJ(A' ) "(ll}
pracLns, v sanr s Tyt oy progoss, or g wly thiet wmay be modaelied

(L) P(bt) = F(S,t)P(RS) + u(s,t) + w(s,t) s, tir , s < t

viere Flo,t), u{s,t) zad ufls,t) are such that 0 g P(Br) <1%¥0<DP(B ) <1;
. s
0 ard 1 ore o bo interpyetaed as the G and 1 K vectovs., F{s,t) and u(s,t)

are iwovn functions of ¢ and t, and w(s,t) is a stochastic process with

(2) Iiw{s,tYe{t', )] = 0 s < t'< t

(5) FL"""(S,L)P ) (BS)] -

Trivial examples c¢f a wmodel such as (1) would be

or P(Bt) = .5 P(RS) + .2 4 v, vhere w is uniformly distributed on [-.1,.1].
IL£ T is countable it may be more convenicnt to represent (1) as a

stochastic difference cquaticn

PR = f( B - u(t ;
(6) L(btj) f\ti)P(Dti_l) 4 u\Li) + w(ti),

or if T is continuous, as an Ito stochastic differential cquation
(7) dP(Bt) = f(t)P(Bt) + u(t) 4 dz(t)
where z(t) is a Brownian process. (1) wmay be viewed as a solution of
either (6) ov (7).
IL the nrecess T(Pt) wust be wocelled by @ nonlincar cquation

(&) 1@ ) = F(P(Bq),s,t) + ous,t) + wis,t)
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then Uhie seeulte of Tt riven below estimating ]"(_P.t) a1TC 1in o
sractical NS0V A Bl alihons!, the calenlated P N B
pralulce [REC RSN UsSeIuL, (xA‘_l.\‘JvﬁA tne caronlatae Q pO;.l.L.L,..D).l COvaYy -
ence of the ostimete ic only an cpproxinmation [see Nehi [37 for a discus-
sion of g linzarxjzotion approdinziion’.
- . . .= - N - o ’
ihe ciilevien woe will wuze te ovaluate (he cstimate P”(Pt) of P(B ) is
the trace of the vneonditionzl a posteriori covariance mabrix
CY PV Y - (s YR - D (7
v} L Pt ) 1 ] FCno) L R}
(9 AP ~;kt)/K(t T\t))j
.
aud we Will constrain P (Bt) to be & linecar function of a sufficieant sta-
-
tistic of ¥ , s¢T', 0 -z ¢ « 7. 'The main results of the theory necessary
2

for obtaiuing the optimal P”(Bt) are summar
1

ized in the next section.

11T, Main Roesults of Sequential lincar Minimum Variance Estimation
Curennnnm 7 ta o oelrmlact A wrimansnnn Alvecmaathl o oAan T 4l ceninly Flha s latrad
wupnpUEo ut 4o d LSLOlHiascal pPpeOllSL UOLRIDY A8 Ohidy i lCugt onl ITi:ac8d
process Yt' Zt may be @ continucus ov discrete time process with t¢ T, ~
where T is an interval or countable index seot. Yt is a discrete time pro-

cess with t€ T'c T. Let Hz be the Hilbert

ned by the process Zt, te T [sce Parzen [4]

The inner product on I, is defined by

= Iy
(21’22) L{_él

22]

which induces the norm

“z“z = 1T ¥ z

z'z]]

Let H.,
it

space of random variables span-

or Cramer and Leadbetter [5]].

¢ ”z

be Hilbert space spanned by the process YS, O<s < t, seT'.

Given the observations y(s), O <« s < t, s€T' of the process Yt we would

like to find the lincar function of y(s), 0 < s

minimun varvjance estimator of Zt.

mation theory is due to the well known proj

spaces [sce for example [6] 7.

«
py

t, s&T' that is the

>

The majin result of optimal linear esti-

ection theoream in Hilbert
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ig winiwized. A woceseary and svificient condition fer zT(t) is

klj\l 3 (_’h, \:)'5_1 = G 3+ vk ”Y__
t t
11 the storhinstio pve £, ks darkov process or mavtingnle described
h_‘)' (1’/'\ A= S 1')’,‘ - U(C ['\ - \J(S (_)
Ay A Es, s e uls, ) b (s,

where w(s,t) is a stochnsiic process with properties given in (2)-(4) and

Lie w'(s,t}] = 0, zad if the obscrvation process Yt is lincarly related to
7 by
(13) Yt: U(t):L -+ ovE)

vhere
(14) E[v(t)] =0
(15) Eiv(t)zsj =0 ¥oroew

(16) Elv(e)v'(e) | = 0 Vot #

1

T

w

(17) Efv(t)v'(t)] = r{t)
then the Projection Theoren iuplies the following theorcm, obtaincd in the

recursive form by Kalman [1].

Sequential Optimal FEstimation Theorem

V
1

Sunpose that z, and Yt are stochastic processes defined by (12) and

(13) and thaot at time s, (11) is satisfied for all yE:HY'r by ET(S)'with

(18) E[(z~ £ (s (- 2 ()] =S

then for t > s

(19) z_(t) F(s,t)éT(s) + u(s,t)

Y

(20) 'f;t(r.) :ZT(t:) +HG,E) [ v(L) - ¢(b) -ZT(t)]

waere
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L would

ai these covariances, would the cowputoed value of

iance D slnc be possiwistic.  To wmahe this con-
t,t

essary o intreduco the following notation.

22) and (23) it is possible to calculate § | re-

Ts

cursively, houcver duc to possible erconeous assumpijons abont the covari-
ances Qg,t) or R(t) it way be that tiic caiculated covariance is not
cqual te the actual covariance. Nahi and Schacfer [97] discuss a method
,o P R O e PR | T N G a7, - 1 A ey TT~ ves 11 T -
L A S N ] Lv [ZY RN LU RN ER N SO GR VS l{, (O3 ¥ Iy W) L S U S T WS ) iy O 1L G Wy Vel AL LY LR W oY
ja) L
a < - eyt e
S5 =z actual coveriance

]

it

Qa(S,t)

Q%(s,t)

n

R%(t)

1

Rc(t)

The matrix inequality

computed covariance

actual covariance of w(s,t)

assumed covariance of w(s,t) used in calculations
actual covariance of v(t)

assumed covariance of v{(l) used in calculations

A > B implies that A-B is positive semi-definite.

The following bounding theorem was obtained partially by Nishimura [7] and

extended by Heffes [87.

Joundinge Thoorem

< a
t) and (L) = U (t) then S > S
0 and BU(0) = 1) thens ©ns %

>



1o the Jellooivng cooiion ve WILL spply the wooults of the above theo-

PR RS sidion of probebilirics problen.
V. ! —!71 L_*

) ) . e . 5 .o . r N . 1

Vo winl sssese thal probebilities to bo estisated ]?(bt, = (P(Bt)’

2. 1. . . .

r .1);...,F(!t)) oy Lo oweclolicd as o glechootic process s given by
equation (1) wiil

(24)  ETe(m ) = F (%)

- o - o c
25 ]‘!”(]’f‘-:, - P i \\/P{‘p Yy - I' (F: Ny ! — S
( ) [EERNESIAN ()) (O)/\ \)0 o' /)_’ 0,0

In the formmalation of tho obscrvarion process we will assume simple
rar.dom sampling.  Supposce that at each time t&é7T' , we have n(t) independent
obsovvntions (v (t) ¥ (£)) of the rapdom variahle X . A sufficient

Y AY > 2 ]"/’_) 7 ,.
n{t §

C e : . . , o i, . -
statistic [or cotimating the probability P(ﬂt) is the totai number of ob-
-
. . . P . i e 1 11 . - i -
servotions that are contlained within Bt’ wvhich wo shall denote by y (t).

1{ w¢ let

i 1 ? k
y(r) = (y (8),y (t),...,y (£)) and C(t) = n(t) ,

then the obscrvation process may be modelled as

(26) y(t) = C(t) P(};t) + v(t)

I1f we can verify that cguatious (14)-(16) arc true for this observa-
tion precess, then the model consisting of cquations (1) and (26) is in a
form in which the results of section III can be applied.

) i . . )
Since y (t) is the number of times the random variable Xt falls
‘v i i . . . . .

within Bt’ y (t) is a binomial random variable with

@7 Ey O] PBDT = n(0PED

and . . . .
.3, i i L
(28) Vﬂ?hft(L)i P(bE)J = H(L>y(hL)(1“P(bt>‘

thus from (26)
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Goy wiv (o BT e (Y] ) ] -
)
P I _ .
B I‘LEL\\'\' ~ \(L)}’(’:i\ L’(P]) I
= 0

1

Thue (14) Js vesified,  (10) wmay be veriiicd by noting that
(30) BT PR 0 Lo (v B ) ! ]"\"*3, ) ] !
' - L - £ I
) R S . LEWAR ~i R an 1
]:JA[v<t)I J\l»t>J l \ut)J
1f we dssume that the w(s,t) precess is unccrrelated vith YS, then {from (5) and (26)
(BLly Thals,ryv'(s) | = 0
Thus Trow (L), (30) and (31) it fellows that

(52) pfvioe @)l =0 Ve, tel

If P(BL) and P(B_) arc known, then y(t) and y(s) are independent, hence

(33 BIv (v )T = BRI {0V (s | 1B P ) )

= OR[v() | PGB IEv(s) | P(E)]]

=0

and therefore (16) is verificd. To compute R{t) given in equation (17)

we noto that

(34)  E[v(t)v' (1))

ELEfv(e)v' (t) ] P(B)]]

diag E[n(t)P(Bt)fl—P(Bt)]]

n(t) diag [E[P(R)] - B[P° (B 7]

i

R(t)

~ - - 3 i 4
vhere diag ELP(LL)J signifies that the terms E[P(Bt)j are on the diagonal
of the matrix and all off diagonal elemewnts are zero. To compute R(t)

recursively we obtain

[}

(35) E[P(Bt)] F(s,)E[P(B_)] -+ u(t,s)

rith S P )] = ()
Wil F[]\ \)-I lo()
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Sumwerising, wo ey any that 1F the procvess V{0 ) is wodelled by

equaltion (20), then the P (Tt} thaot winimizes (9) oy be compuiced sequen-

tially using (I0)-{?3) wiil the chvioun veplacercnt of !l(L) by P (B:).
in the DBounding Theerem of secction 111, it was required that

S 7 =5, Qc(s,t) ﬁ'Q'(s,t), R(1) » R (t). Often in practice it is

difficult to cusure that assuwmed covarviances have this property; however,

for the estimation of probabilities this preoperty is guaranteed if we let

- C .
68 s " =Q°(.0) = diag(y)
. C i ]

(39) X (t) = diag (2_"<L)>

The wert section will give several cxamples off the procedure described

in this and the previous two sections.

V. Ezamples

(i) Simple Probebility

In this cxample we will show thet in the conventional case of assumred
constant probability, with maximun a priori covariance, the above estimation
reduces to the sample nean.

Suppose we wish to estimate the probability of an event B given a
sequence of observations {yt: t=0,1,2,....] wvherc Y= 1 or O depending on

whether or not the event B occurred. We assume that
B =13 i=0,1,2,....
P = P(Bt_1>
y(6) = P(B) + v(t)
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DAL . i B
0O TS ! 0,4
Thus oo (PO {25Y rhe Tineny oiosinon vovisnee cstimate of P(BL) nay
e ebisin soaueniticlly Lres
Pogh oY o= R a VoL i ) P (n )]
t gt e Nt £-1p-17
S, l
. -1t
(L) o m e e e e e
oG NS
S IL‘\'i)”‘,l' (»'))"S
t-1, L1 o 0 0" O 0,0
S = (1-H(t)) §
e 1 - [ -
L,t ( () t-1,t-1
For this simple cose it i appezrent that the gequential procedure
may be reduced to a closad fora Suksiituting repcatedly for S
t-1,t-1
~ 8]
riclds Y (¢ ) - B ) - S S
y s _ ( 0( n? ( o) 0,0) 0,0
t,t P (R ) 7’12/1‘ Loyl [
-O(: ) - \dﬁ) 3 \“"*) el o
S -
c,0
and (L) = mem e e
P (B) ~P (B {(t-1) 5
0,0
Therefore

F(s,)
o,c
P(B)-P°B ) - S
O O (o)

0,0

1
, o )
(t-1) + 2 (5 ) - P°(B)
S

0,0

By
Lo
St

3

Thus a¢ t increases, the influcnce of PO(BO) decreases and the estimate

ey

approaches the wazimum likelihood estimate and the sample mecan. Also if we

chicose the maxiwum a priori covariance which occurs if

-~ = 1

= 0 =
Pr(r (5) = 0)
so that S = p (B ) -
0,0 o o’
~ ) _ l S\
then Pt(bt) =T

51

- (T 1
Pl(lo(uo)
9

~l
B ('Lf»o)

¥ (

D)
g/

= 1) =%



SRt sedon o of saudtinessal probabilicices i1s an obvievs cxienaion
of b Lo ewang s “hie oot ot s be pul o in the cannonical form

Suprose we wish to estiucic the probability of incurring a disabling

disease or accident, P ), the proebability of a birth with a congenital
[

dicabilits, TIN5, od the wotal wwabor of disabled perscus in the popula-
v
Cion, »(t), in tive vevicd t. -
Because of a laclt of move explicit information we assume that P(Dt)
and P(B ) are martingales

P | PO

I
~3
~
e}
-
-
e

- ~ 3] [ ! . -
and LLP(bt)l B(Bt_l)] = P(D

1
o]
~
+
N

with Var[P(Dt)l v, ]

Var[P(Bt)I P(Bt_l)]

|
O
ol
~
—

\]

We also assume that from census data and birth and death statistics we

are given

N(t) total pcpulation in time period t.
pep P

722 (t) = number of births in time period t.

P(DDI) probsoility of dying in time period t.

ihen the wodel describing the ovolution of the disabled population may be

postulated (o be
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A osample ol sire ie taken in cach time poricd € and the number

of disnbled poople y1(1)5 the noeboer whno wore disanled due to discase or

. : ) e, . . .3 N
accident duving iire poriod U, ¥

v7(t), and the nunber of dissbled births,

y3(t), srue noted.

"Then e
y = .]‘)i'.)_ . 1 v N
y(6) = 00 (L) vy (6

- N —
L A

|
jos
for
—

Lt

y3(t) = n(t)?ﬁht) -+ v3(t)
The covariance of v, (L) are obtained from (35)-(37). FEauations (19)-

A ~

(23) may thus be uscd to obtain nt(t), Pt(Dt>’ and Pt(Bt>'

Conclusicns

A sequential method of obtaining linecar minimum variance estimators
of time varying probabilities has been formulated. Soveral simple cxamples
are dzscribed, and ¢ method of obtaining an upper bound on the mean

square crror when the a priori covariances are unkncun is discussed.
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