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ABSTRACT

This paper investigates the problem of determining the optimal location
of plants and their respective production and distribution levels, in order
to meet demand at a finite number of centers. The possible locations of
plants are restricted to a finite set of sites and the demands are allowed
to be a random. The cost structure of operating a plant is dependent on its
location and is assumed to be a piecewise linear function of the production
level, though not necessarily concave or convex. The paper is organized
in three parts. 1In the first part a branch and bound procedure for the
general piecewise linear cost problem is presented assuming that the demand
is known. 1In the second part a solution proqedure is presented for the case
when the demand is random, assuming a linear cost of production. Finally,
in the third part, a solution procedure is presented for the general problem
utilizing the results of the earlier parts. Certain extensions, such as
capacity expansion or reduction at existing plants, and geo-political con-

figuration constraints can be easily incorporated within this framework.

1. 1Introduction

The facility location problem and related problems are of relevance ' in the
long range planning of a firm's operations. These problems involve the deter-
mination of the location of the facilities, their associated capacity, and
the distribution of the product from these facilities to the different demand
centers. Different aspects of this problem have been investigated by a

number of researchers under varied assumptions [2, 10, 14, 15, 17]. 1In our
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paper we consider a generalized version of the above problem. Specifi-
cally, we consider the case where the location of facilities and their
sizes are to be decided upon, in order to satisfy the demand from different
centers. The demand at these different centers is assumed to be random and
the cost associated with the production at any facility is assumed to be a
piece-wise linear function though not necessarily convex or conca&e. In

the next section we consider the problem formulation and its motivation.

2. Model Formulation

A firm manufactures a product which is required at n different demand
centers. The demand bj (j = 1,2,...,n), at each center, is assumed to be
a random variable whose marginal density f(bj) is assumed to be known.
The firm has the option of setting up facilities at different sites,
i (1 =1,2,...,m). The possible capacities of the facility at site i can
be any non-negative integer a,. from the ordered set Ai’ where
A, =f{a; lr=1,2,...m anda,_<a, . for r=1,2,...,m -1}. The first
element of each of the sets Ai (i =1,2,...,m) is assumed to be 0 and corres-
ponds to the decision of not locating a facility at site i and the last
element @inm. corresponds to the maximum possible production at site 1i. The

i

cost of producing v units at site 1 is fi(yi) where fi(-) is a piece-wise

linear function defined on the set of non-negative integers. Specifically,

0 if M 0
= + i < < = -y
fi(yi) L v, v, if a; . Vi S35 rh for r = 1,2, My g
® it Vi 7 g






Kir may be considered as the fixed component of the cost assoiiated with

setting up a plant of maximum capacity a; is the per unit

nd v,
,r+1° a ir

variable cost. The cost of distributing xij units from a facility at site

i to demand center j is tijxij where tij is a constant. These costs may
be considered as the discounted costs if a multi-period planning horizon

is considered. With the above notation the problem can be formulated:

m m 0
(2) Minimize Zz =% f,(y.) + T T t..x.,.
i=1 i3 i=1 j=1 3 1J
subject to
m
(3) r x,, =B, for j €3,
g 1] j
i=1
n
(&) .é Xij =y, < aim. for i €1,
j=1 i

where J = {1,2,...,n}, I-= {1,2,...,m} and Bj represents the realization of
the random variable bj.

The above formulation incorporates the problems posed by various authors.
For instance, capacitated plant location problem [10], the location-allocation
problem [14], and the warehouse location problem [2, 17], are all special
cases of the problem posed above. A discussion of the recent research work
done in this area has been presented by White and Francis [15], Soland [14]
and recently by Elshafei and Haley [6]. Our formulation is similar in some
respects to that of Soland [14]. Soland considers the case where the demand
is deterministic and the cost functions are concave. Since the demand

is generally not known with certainty as discussed in [7,-16], the consideration
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of this problem with probabilistic demand appears to be more realistic.
Francis and White [15] consider probabilistic demand for a different problem
viz. that of determining optimum warehouse sizes only. The problem that

they consider is different from ours, since they are not concerned with

either the location, or the distribution aspects. Essentially their problem
has no constraints of the type represented by equations (3) and (4). The
consideration of random demands increases the complexity of the problem. To
our knowledge, no computationally satisfactory solution of this entire problem
exists in the published literature.

Further, the cost structure that is generally considered is either a
fixed cost plus a variable cost such that the total cost of production is con-
cave, or a general concave cost as in Soland [14]. 1In the real world, because
of indivisibilities and economies/diseconomies of scale, the cost structure is
often different. Hadley and Whitin [9, Chapter 2, p. 621 discuss quantity
discounts where the cost function though piece-wise linear is neither concave
nor convex. Rech and Barton [1l} also consider nonconvex piece-wise linear cost
functions for solving the transportation and related network problems. As
discussed by them this cost structure arises frequently in the real world. The
location, capacity and distribution problem with such a cost structure has not
been discussed in the literature. In our framework such cost structures are
treated.

For ease of exposition we present the solution procedure of this problem
in three phases. Initiaglly we consider the case where the demand is deter-
ministic. We develop an algorithm treating the Bj's in (3) as known constraints.
This algorithm essentially solves a deterministic facility location, capacity,

and distribution problem with a general piece-wise linear cost structure. A
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branch and bound procedure wherein sub-problems are solved using operator
theory [12, 13] (an extension of parametric programming where simultaneous
changes in the parameters of a transportétion problem are investigated) is
presented in Section 3 for the solution of this deterministic problem. 1In
Section 4 we develop an algorithm to solve the probabilistic case when the cost
is assumed to be a linear function. The algorithm for this probabilistic
demand problem utilizes the operator theoretic approach and the Kuhn-Tucker
conditions. Finally, in Section 5, we integrate the algorithms in Sections 3
and 4 to develop a solution procedure for the entire problem. We show that the
branch and bound procedure of Section 3 for the entire problem results in
sub-problems of the type considered in Section 4. This three-phase approach
provides flexibility for a user to solve either the general problem or the

special cases considered in Sections 3 and 4.

3. The Deterministic Demand Model

In this section, we assume that the Bj's given in equation (3) are known

constants and in order to ensure a feasible solution to this deterministic prob-
m L

lem we assume that % a;, 2 X B,. Some of the different cost structures which
i=1 i i=1

arise in reality, and are permissible in our formulation are sketched in

Figures 1la - lc.
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To solve this problem we apply the branch and bound procedure. We first

approximate all the cost functions, fi(yi)’ by their best linear underestimates.

Definition l: A linear underestimate of the function fi(yi) over the

interval R, is a linear function ﬂo + ﬂiyi such that

ﬂo + ﬂiyi < fi(yi) for all v € Ri s

and
= < . . .
4.+ ﬂ_y, f.(y, ) where P € R, and vy, Vy. €R

(Note that Vi is discrete).

Definition 2: The best linear underestimate c0+ciyi of the function fi(yi) over
the interval Ri is a linear underestimate such that 1if 20 + 2iyi
is any linear underestimate of the function fi(yi) over Ri then

c. > 4, .
i="1

Illustratiown of the Best Linear Underestimates
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As illustrated in Figure 2, OE is best linear underestimate of the cost functions
sketched in the interval [0, 33]. The best linear underestimates of the cost
function in the intervals [0, 32] and [az, 331 are OB and CD respectively.

1
Substituting the best initial linear underestimates ci + cliyi for each

0

of the function fi(yi) over the intervals [ail’ a, ] we obtain the following
i
transportation problem after removing the constant term, if any, from the objective

function (corresponding to node 1l in Figure 3). Note that constant term is zero

at node 1.

n

m

(6) Minimize Z1 = ¥ T (ci + ti')xi'
i=1 j=1 14

subject to

m

(7 £Tx,, =B, forjeJ,
i=1 1] J
n+l

(8) L X,. = a for i €1,
j=1 *H i

') x,. >0 for i € I and j € J U {n+l} ,

where, Xi,n+1 (i = 1,2,...,m) are the slack variables. Let us denote by J' the
set J U {n+1}. Let the optimal solution to this approximate problem be
X1 = {xij} and its optimal cost be Zl(Xl).(In general at node s we let x° and
yi denote the optimal solution of the approximate transportation problem, and
the resultant production at plant i respectively. Note that ;1 = '2 xij). if
Z(Xl) is the value of the original objective function (2) for the igiution
vector X1 then we can easily prove the following result:

If X* is the optimal solution vector to the original problem

*
represented by equations (2) - (5) then the optimal value Z(X )

is bounded above by Z(Xl) and bounded below by Zl(Xl).
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(11)

(12)

(13)

(14)

(15)

—8—
If L and U denote the current lower and upper bounds, then after solving

the first approximate problem corresponding to node 1 (Figure 3), we have

1
L Zl(x )

and

zxh

U

After solving the first approximate problem we partition the domain of
definition of one of the functions fi(yi) s0 as to obtain better linear under-
estimates in each of the different segments of the partition. A number of
different rules could be used to determine the index i(i € I) on which to
partition. Further, there is also the option of determining the number of seg-
ments in the partition, which would equal the number of branches. 1In this paper
we provide one rule for obtaining two branches. This rule is similar to the one

proposed by Rech and Barton [11]. We determine the first index k, k € I such

that
1 11 1 1 11 1 .
fk(yk) - Yy - ﬂkO > fi(yi) T ﬁiO’ for V i € I,
and
1 11 1
fk(yk) aS A £k0 >0,
where
1 1
i T T %y
jeJ

The two branches that we obtain are

< a

Yk = %k,t ?
and
Y > ak,t ’
where
a < y1 < a
k,t k ~ “k,t+l



Thus at each stage of the branching process we generate two additional
sub-problems which can be represented by nodes in the branching tree. These
nodes are numbered sequentially as the sub-problems are generated. These sub~-
problems partition the domain of definition of fk(yk)' We substitute the best
linear approximation of fk(yk) in each of these partitions and add the relevant
constraint from the set (13)-(14) to each of the sub-problems. The resultant
problems are capicated transportation problems. 1In general, at a specific node
s, which is obtained as a branch from node p by partitioning an index

k(k € I) satisfying inequalities similar to (10)<(11) the following problem

results:
mo o .
6" Minimize z, = ¥ 2 (. +t,))x.,., +K
i=1 j=1 - Y H
subject to
m
7" ¥ x,, =B, for j € J,
i=1 1] J
n+1
(8") x, = Ui for i €1,
=1
9" {Xinﬂﬁui for i € I,
xij >0 fori€Iland jeJ',
where
(1) o = CE , U5 = UE , uf = u? for i # k,

(ii) and for i = k, if ng + Yi Vi is the best linear underestimate in the
relevant partitioned domain of v, at node s then

s _ S s _ P s _ P
C TVYg o K TKEF Yy Yo -

Further, if node s corresponds to the branch associated with inequality

. s _ s _ P
§1m11ar to (13) we have Uk 8L Yy u - If node s corresponds to the
branch associated with an inequality similar to (14), then Ui'= Ui,

s - ,P _
Y T %k T @
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Note: 1Initially at node 1, we have Kl =0, U, =a, , u, =a;
and ci have been defined earlier.

Thus the following changes occur in each of the branches:

(i) cost coefficients of all % 0 j=1,2,...,n differ by some

constant amount--k1 in one of the branches and k2 in the other
branch.
(ii) capacity of plant k is changed in one of the branches and

the upper bound of the slack variable (x ) corresponding

k,n+l
to plant k is changed in the second one.

We may remark here that the new solutions, taking into consideration the above
changes, can be generated (without resolving) by the operator theoretic approach
discussed in [12, 13].

In Figure 1, if X2 and X3 are the optimal solutions to the approximate prob-
lems generated by the branching process at nodes 2 and 3, then we can show that
the current lower bound, L, and upper bound, U, satisfy the following: (by an

argument similar to the one in Lemma 1).

L Minimum[zl(Xz), Zl(XB)] > zl(Xl),

Minimum[Z(X}), 2(x%), z(x°)],

U
and
%
L<z(X ) <U.
Remark: The strict inequality L > Zl(Xl) generally holds because the best
linear underestimates in at least one of the partitions has to be
strictly greater than the previous best linear underestimate since

(11) holds. In the case when there is an alternate optimal solution

and the revised best linear underestilmate corresponding to the branch
with this alternate optimal solution is unchanged, then the strict

inequality will not hold.
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2 . . 2
If L = Zl(X ) we branch on the node corresponding to the solution X~ to
4

obtain nodes 4 and 5 as shown in Figure 3. If X and X5 are the solutions at these

nodes then the new current lower and upper bounds are given by

. 4 5 3
L Mln[Zl(X ), zl(X ), zl(X )1,
and

= Min[Z(Xl), z(xz), z(x3), z(x4), z(x4)]

(e
!

Thus the current lower bound, L, at any stage equals the minimum of the lower
bounds at the open nodes (nodes from where there are no branches), whereas the
current upper bound, U, is the minimum of the upper bound over all the nodes.
The algorithm terminates when the current lower bound equals the current upper
bound at the same stage. This process terminates in a finite number of steps
since the number of sites is finite and since at each branch we partition the
domain of definition of the yi's into disjoint intervals. Further, since each
of the fi(yi) is a piece-wise linear function we cannot have more than m, parti-
tion on the variable v before we have the best linear underestimate equal the
function itself, and thereby not allowing further branching on the variable v
We therefore have the following algorithm.
Algorithm I:
Step 0: TFor each of the functions fi(yi) substitute c10+ ciyi, the best linear

.<a. . Solve the resultant trans-
1= im,

portation problem, and create an open node corresponding to the solution

Xl. The current lower bound is Zl(Xl) and the current upper bound is Z(Xl).

i <
underestimate of fi(yi) for a1 <y

Step 1: If the current lower bound equals the current upper bound and occur at
the same node then terminate. The optimal solution corresponds to the
solution at the node where these bounds are equal. Otherwise go to step 2.

Step 2: Determine the open node with the current lower bound and partition on
the index k that satisfies equations (11)-(13). Close this node and

generate two additional open nodes corresponding to equations (13) and (14).
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Figure 3
Branch and Bound Procedure

Xl

Let L=21(X2)
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on node k such that Zl(Xk) =1L.

Note at this stage that nodes 1, 2
arc closed and nodes 3, 4, S are open.

Solve the two resultant transportation problems using operator theory from

the solution of the old open node.
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problems has no feasible solution then close that node and drop it from

consideration for further branching.
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to Step 1.

Let the upper bound assoclated

Determine the current lower bound over all

Go
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Remark: If at a branch (node) some Yie < a = 0 (no plant at site k), then

k1l
in the resultant transportation problem the variables ij for

j € J' can be set to zero, or alternatively dropped.

4. The Probabilistic Model

In this section we investigate the problem in equations (6')-(9') with
special emphasis on the case when the demands bj’ j € J, are random and the
functions fi(yi) are linear. The demand is assumed to follow some known multi-
variate distribution, which allows interaction among the demands at the different
centers. Let f(bj) represent the marginal density function of bj' We therefore

have the following problem (after removing the superscripts for ease of exposition).

(16) Min ¥ % e¢.x,,+ & ¥ t,.x,
iel jeg T 13 qer jeg 1IEI
such that
@an T ox;,=b, VJeJ,
iez 4 J
(18) z ox,, + x. =U, Viel,
jed ij i,n+l i
(19) 13 >0 for Vieland j€J,
(20) 0< X§ <u for Viel,

where each bj is assumed to be random with known marginal density (or mass)
function f(bj). Though bj is a discrete random variable, for ease of theoretical
exposition, we consider only the continuous approximation of bj.

The solution procedure presented in this section is based on the theory
of "Two Stage Linear Programming Under Uncertainty'" also called as '"Stochastic
Programming with Recourse', as proposed by Dantzig and Madansky [5], and others,
[4, 7, 8, 16]. 1In order to solve this problem we make the following assumptions,

which are similar to the ones used by all the above mentioned authors.
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(Al) The marginal distribution f(bj) of each bj is known.

(A2) This distribution f(bj) is independent of the choice of Xij'

Charnes, Cooper and Thompson {4] have shown that the two stage linear pro-
gram is equivalent to a constrained generalized median problem whose objective
function has some absolute value terms. This objective function was shown to be
equivalent to a mathematically tractable function by Garstka {8]. In this sec-
tion we essentially follow the approach and notation given by Garstka [8].

Since each bj is random, all the constraints given by equation (17) need
not be exactly met. We therefore assume that the firm experiences an opportunity
cost of lost demand. This cost, pj > 0, is assumed to be linear and treated as
the per unit penalty cost of not satisfying demand at center j. Similarly, if we
have more supply than the demand, then there may be a penalty due to holding,
storing, and obsolescence. Let us assume that this per unit penalty, dj > 0,
due to overproduction is also linear at center j. Following Charnes, Cooper and

Thompson, the total penalty costs associated with demand exceeding production is:

(21) . {|b, - = x|+ ®, - = x .01
] J iel 1] ] i€l 1]

It can be verified easily that if the production exceeds demand, viz., if

z xij > bj’ then the above penalty is zero. Similarly, the total penalty cost
i

associated with excess production is

1 - -
(22) = “iil %y " byl * (" 7P

Following the approach of two stage linear programming under uncertainty [4, 5, 7]
we consider our objective function to equal the expected value of the total pro-
duction costs, distribution costs, and costs due to under and over production.

The problem (16)-(20) is therefore equivalent to
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(23) Minimize E[ & Z C X, + £ Zz LRI
icl je3 M i1 jegg MM
+ 3z d. {lz x..-b, ]+ x,, ~b)}
je3 3 qer M 11 3
1,

+ 3 = p. {lb. - Z xijl + (b, - in

3

subject to

(24) T ox,. tx, =y, for Vicel,
je ij i,n+l i

(25) xij >0 for Vie€land j€EJ,

(26) 0< Xi n+l Sy for Viel,

Let us denote iilxij by bjo’ and cy + tijby'Cij for 1 € T and j € J. It has been
shown by Garstka [8] that the objective function given in (23) can be transformed

into
27) Min F1 + F2,
where
(28) F, = © £ 3(cC., -p, +d.)x,,,
L. je ij hi 37743
P
(29) F,= £ (p, +4d.) (b, - T x,.)f(b.)db,
R S B M T R T A

jo
where bjm is the median of the random variable bj whose marginal density (mass)
function is f(bj).

It is seen that F1 is linear and it can be proved easily that F2 is convex
(see Garstka [8, page 11]). 1If Xi and W, are the dual variables corresponding
to constraints (17) and (20) respectively, then by the Kuhn-Tucker conditions

* * . %
the optimal solution X = {Xij}’ u;, and k; satisfy the following:

(30) A. are unconstrained for i € I

3L M, <0 forie€el

P P



(32)
(33)

(34)
(35)
(36)
37

(38)
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b,
Jm 2o . :
C.. - 2p. + . - T (p. + d. f(b,)db, - A. >0 for Vi €Iand j €J
T T MR G N I ICIL L jeq,
jeJ jo
S x..=U, forVicel,
jegv Y3 *
* <u, for Vierl
Xi,n+l =Yg tOT €L
*
Xij >0 forVigIand jeJ',
x;j . {left hand side of (32)} =0 for i € I and j € J.
o oAy =0 forier
Xi,n+1(ﬂ41 i or i ¢ 1,
* *20 foriel
(o = %5 My or i € I.

These conditions given by (30)-(38) provide a basis for solving the stochastic
capacitated transportation problem. Based on these conditions, the following
propositions Pl, P2, and P3 can be proved. The proofs are similar to those pro-
vided by Garstka [8].

Pl. For any i € T and j € J, if Cij > pj, then xij = 0.

P2. For any j € J and all i € I, if Ci'

]

z xij < bjm in the optimal solution. It may be noticed that
iel

2_(pj - dj)/2, then

if pj < dj’ the above inequality trivially holds since Cij > 0.

P3. For any i € I and all j € J, if Ci + dj < 0 then £ x.,=1U

. jeg 0t
In many situations the combined cost of production and transportation, Cij’
is greater than half of the difference (pj - dj)' Thus in the algorithm given

below we assume that Ci 2_(pj - dj)/2. Note, however, that if the per unit cost

3

of underproduction, pj, is less than that of overproduction, dj’ then the above

assumption is unnecessary. In order to solve (30)-(38) let us pose a new

deterministic transportation problem given below:
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(39) Minimize F, = ¥ 5 3(2C,, - p, +d.)x,.

1 il jeJ ij ] A

such that
(40) Y x,, =U, foriel
jerr t
(41) T x,, =b, for j €J
ier 3

(42) xij >0 for i €Iand je€J and
(43) 0 < X5 nHl <u for i €1

where bj* are the realizations of bj' If Xi’ Mo and vj are the dual variables

corresponding to constraint sets (40), (43), and (41) respectively, then by

the Kuhn-Tucker conditions the optimal primal and dual variables satisfy:

* % *
(44) Xi’ vj are unconstrained, and My <0, fori eI, j€J,
3 *
(45) cij - (pj + dj)/2 - A - vy >0, fori €1, j €7,
(46) = xij = U, for i € I,
jeJ’
47 b * =b,,, for j €3J
“n i€l *i3 i*’ 3 €,
x .
(48) xi,n+l < u;s for i € I,
(49) x:j >0, for i €I and j € J',
(50) xjj » (left hand side of (45)) = 0 for i € I and j € J,
* * * _ .
(51) xi,n+l(ﬂii - Ki) =0 for i € I,
* x .
(52) (ui - xi,n+1)ui =0 for i ¢ I.

It is easy to observe the similarity of the Kuhn-Tucker conditions given in

(44)(52) to those of the original problem. Comparing equations (32) and (45), we

see that a solution to (44)-(52) will satisfy the conditions of the original

problem (30)-(38) if
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b

* jm
53 Vv, = .+ d, f(b,)db,.
(53) 37 ey T [ ke,
jo
Since, by assumption Cij 2_(pj - dj)/2, by proposition P2 stated earlier

(54) b, = Z

x,., < b. Y
jo iEI 1] — Jm

and therefore the problem reduces to finding a set of bj*’ j € J, such that
b.
s, +a) | ™ (b )b
55 V. T . . . .
(53) ] pJ h| bj* iv)

If such bj* exist, then the optimal solutions to (16)-(20) will be obtained
by solving (39)~(43) with the bj* replacing bj in the constraint set (17). An
optimal solution can now be determined by the following algorithm, providing

> (p, -~ d.)/2.
Cij2 (py = dp)/

Alegorithm IT:

Step O: 1Initialization: Let k the number of iterations be 1. Find bjm the

median of the random variable bj for V j € J, and set the initial bj* = bjm
for j € J in equation (44). Find the optimal solution and optimal cost to
the deterministic transportation problem (39)-(43) and find the dual
variables Xi’ ui for i € I and Vj for j € J. (Though ui for i € I are
obtained they are not directly ngeded.) The duals ki and VJ are solved

from the relation AtV c!l. = Cij -(pj - dj)/2 for the (i,j) in the

h| ij

optimal basis. For k = 1 let the basis set be denoted by B1 = {(i,j)|xij > 0}
1

and Al = {kilthe optimal values of the dual variables for i € I} and

1
V1 = {v.lthe optimal value of the dual variables for j € J}. Let
J

1
bj* = bj* for jJ € J.
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+1
Step 1: Iteration Procedure: Find b?* from the following (newsboy type)

relationship: b

Jm
k
vy = (p, +d, £(b,)db,.
37 Py Fdy Ibkﬂ (by)db,
j‘k
k+1

0

k
Step 2: 1If b.* bj* for every j € J, then an optimal solution to the
J

stochastic transportation problem (16)-(20) is found and hence STOP,

otherwise go to Step 3.

Step 3: Area Rim Operator Application: Let B?

+1_ ket
1_ ke

[ for j € J and let

a, = 0 for i € I. Following the algorithm given by Srinivasan and

Thompson [12, page 215], apply the area operator 6RA with & = 1 and the

above computed oy and Bj to generate the new optimal solution for the

+
(k+1)th problem. Let the new duals set be Ak 1. Let k = k+l and go to

+
step (1). (Note that if Vk L and Vk are the same for every j, then
+
b?*l = b?* so that the iteration can be stopped.)

The convergence proof of this algorithm is based on the results derived by

Charnes and Cooper {3] and Charnes, Cooper, Thompson [4]. Garstka [8] has given

a proof based on [3, 4] and since the proof for our algorithm is similar to that

given by Garstka {8], we only provide an outline of the proof. It can be shown

. . + .
that F2(bj) is convex in bj so that F1 F2 in

+
can be shown that b?*l < b?*, and thus the b?*
+
b%* = b, . With the relationship between bkil
J Jm J¥

(27) is also convex. Further, it
are monotone and bounded by

k . .
and vj which is one to one, and

due to monotonicity and convexity, convergence is established.

5. The General Model and Extensions

In this section we provide a solution procedure for the problem formulated

in Section 2 given by equations (2)-(5). In Section 3 we provided Algorithm I

based on a branch and bound procedure, to solve the above problem with the bj's
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being deterministic. At every branch in this algorithm, we are faced with a
deterministic transportation problem, where the right hand sides in the con-
straint set (3) and (4) change from branch to branch and the cost coefficients

in (6) also change. However, due to the operator theory [12, 13], the optimal
solutions at each branch are obtained in a computationally efficient manner.

Let us represent for ease of exposition, the costs and the right hand sides

of a branch s as ci, Ui, and ui for i € I. Now, to consider the problem (2)-(5)
in its entirety it is enough, if we introduce the randomness in the bj's, jedJ.
This leads us directly into Section 4, where these appropriate costs and right
hand sides replace the corresponding ones in equations (16)-(20). Thus,
Algorithm II is directly applicable to this new stochastic transportation problem
provided Assumptions Al - A2 hold. It is to be noticed that tij’ pj's and dj's
do not change. Assumptions Al and A2 are unrestrictive and can be expected to

be true in most practical situations. We now present the following unified
Algorithm III to solve the original problem posed by equations (2)-(6) by utilizing

Algorithm I first and applying Algorithm II to each braanch of Algorithm I.

Algorithm III:

Step 0: For each of the functions fi(yi) substitute cio + ciyi, the best linear
underestimate of fi(yi) for asq < Yy < aimi° Solve the resultant stochastic
transportation problem (6)-(9) with the assumption that b? for j € J‘in €D
is random, utilizing Algorithm II. Create an open node corresponding to
this optimal solution Xl to the stochastic transportation problem. Denote
the current lower bound as Zl(Xl) and from the actual objective function Z
given in (2), get the upper bound Z(Xl).

Step 1: Same as Step 1 of Algorithm I.

Step 2: Determine that open node with the current lower bound and partition on

the index k that satisfies equations (10)-(1l3). Close this open node and
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generate two new open nodes as branches, corresponding to (13) and (14).
Note that the new problem at each of these branches is a stochastic
traﬁsportaﬁion problem which can be solved using Algorithm II. Determine
the current lower bound over all the open nodes, and the current upper
bound over all the nodes. Go to Step l.

Remark: Since Algorithm III above is the unification of Algorithms I and II,
the convergence follows due to the convergence of the earlier two
algorithms.

Our algorithms facilitate easy consideration of certain extensions to the
problem formulated in Section 2 such as
(1) 1Inclusion of constraints requiring mandatory operation of certain plants.
(2) Capacity expansion or reduction at existing plants.
(3) Geo-political consideration requiring the operation of plants at
mutually exclusive or mutually dependent plant sites.
Consideration of extension (1) and (2) follows from the fact that a;qs and

a; for each i € 1 are arbitrary, while extension 3 can be imposed when branching

occurs.
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