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ABSTRACT

Let F be a set of Borel function from X to Y, where X, Y
are copies of the unit interval. A probability distribution (mixed
strategy ) A over F is said to be admissible if it has the following
attribute: for any Borel probability measure y over X and any Borel
subéet E © Y, the probability of £(x) appearing in E when f ¢ F,
x € X are chosen at random is uniquely determined by A, y. We consider
the following question: Let & be a countablé Boolean algebra
of subsets of F, where each element in  1is definable by a formula
in the language of set theory. (We stipulate that F itself is also
definable in set theoretic language.) Let 57 be the smallest o -
ring over F containing 7. Given an arbitrary probability measure
A over 57, can A be extended to an admissible distribution? An

affirmative answer is shown to be consistent with the Zermelo -

Fraenkel axioms of set theory.
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1. We consider the case of a two-person game in which the players,
1 and 2, have an infinite number of pure strategies to choose £from.
Each of player 1's strategies consists of a function £ € F such that
f: X+ Y. Player 2 is free to select any point x € X. The outcome
of any such pair of strategies is then £(x) € Y.

In games with a finite number of pure strategies, the mixed strategies
are the various probability configuration over the set of pure strategies.
The question then arises as to how one should define mixed strategies
over F when F 1is infinite. This type of problem can be encountered
in control theory and in some situations in the theory of stochastic
processes. The typical optimization problem is often reducible to a
"game against nature' in which the player seeks to maximize his
minimum return, given a prescribed set of admissible control functions.

The problem of selecting a function f: X - Y at random for the
case where X, Y are copies of the unit interval and F 1is a set of
Borel functions from X to Y was investigated by R. J. Aumann
in [A-2}. 1In Aumann's approach, F is randomized in the following
manner: Let Q, X, Y be copies of the unit interval with the usual
Borel structure. Designate the Borel structures over (2, X, Y by
Q, X, Y. Each @ ¢ Q = [0,1] is associated with some fw e F. G 1is

a measurable subset of F provided that G 1is of the form
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{fw]w e B}, where B C( is Borel. 1In this manner, a measure F
over F 1is obtained. Let A and | be Borel probability distributionsl/
over (O and X and let X* be the induced probability distribution
defined over F. The mixed strategies over F are taken to be the
various induced probability distributions.

If K* and | are to be regarded as mixed strategies, a natural
requirement that they should fulfill is that the set Qoigf{(f,x) I
fEF, x €X, £(x) € E} be measurable with respect to X* X u for any
Borel subset E < Y. That is, K* and u should determine a probab-
ility value for the occurance of £(x) in E when f€ F, x € X
are chosen at random. However, if Q0 is measurable with respect to
x* X w, then {(w,x)]fw(x) € E} ¢ x X ought to be measurable with
respect to A x . Thus, if @: Q x X* Y is defined by @(w,x) =
ﬁn (x), then @—1(E) must be measurable with respect to A x u given
any Borel E c Y. If for each f € F there exists an ¢ € () such
that f 2 @(w,*), F is then called the range of @. The range
coincides with the set of functions which can actually occur. Since
players 1 and 2 are free to choose their mixed strategies x* and
at will, we would like @-1(E) to be measurable with respect to every
permissible A and u. One way to insure this is to stipulate (as in
[A-21) that ® be Borel. The class of F's that can be obtained when
this requirement is imposed is then limited even further.

Let us at first assume, as in [A-2]}, that F 1is the range of a
Borel measurable @. Given any Borel subset E of Y, we would then

Y

like to evaluate the probability of £(x) occuring in E when XA and

1/

—' Distributions which associate a probability measure for every Borel
subset of (O, X, respectively.



i, the mixed strategies over F and X, are prescribed. This probability
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should depend only on K% and y, and not on the A which induces X\,

If Kl and kz are two different Borel probability distributions

wts

defined over () and both induce the same distribution x“, then the
resulting probability measure for the set {(f,x) | £ € F, x € X, £(x) € E}
should in each case be the same. One possibility is that
{(£,%) l feF, x€X, £(x) € E}] mnight belong to the o-ring generated
by sets of the form C x D, where C & F and D € X. 1If this is the
case, then {(f,x) ‘ feF, x€X, £f(x) € E} 1is, loosely speaking,
measurable in the Borel sense; it then has a uniquely determined measure
under x* X w. This measure would coincide with the probability of
f(x) occurring in E. We refer to the conjecture that
{(£,x) | £€F, xe X, £(x) € E} 1is "Borel measurable" in E.k X for
every Borel subset E C Y and every Borel ® as the identification
space hypothesis. The truth or untruth of this hypothesis was left as
an open problem in [A-2].

As we will see, counter-examples exist in which
{(£,x) | £€F, x € X, £(x) ¢ B} fails to satisfy the identification
space hypothesis., An alternate method for assigning a probability value
to {(f,x) | £€ F, x € X, £(x) € E} will therefore be discussed. A
second difficulty is connected with the limitation imposed by restricting

ourselves to f's which are ranges of Borel @'s.
In defining a probability distribution (mixed strategy) u over
X = {0,1} the conventional approach would be to assign values to

initially over the rational closed sub-intervals. Under the assumption

that y 1is o-finite, p is then extendable in a unique manner to all
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Borel subsets. = We wish to obtain mixed strategies over function spaces

2
in analogous fashion. Suppose then that E is some definable 2/ set

(1

2 .
S ,,dé ),...} is a

of Borel functions from X to Y and that a5 = {a
countable set of definable subsets of F.Let E7 be the g-field on F,

o
generated by 74 and let A be a g-finite probability measure over

Ego- Given a Borel measure y over X and a Borel subset E of Y,
we are interested in determining a probability value under XA, py that
f(x) occur in E when f &€ F, x € X are chosen at random.

In order to adapt the methods of [A-2] to function spaces of this
generality, a more extensive family of @'s,®:Q XEX + Y, will have to be
introduced. We do this in TP 4. A function space which is the range of
a ® of the type described there will be referred to as a measurable
range.

If (FO, 27 ) 1is a measurable range thea in accordance with the
definition whic; will appear, therg‘exists a 0:0 X X + Y as described
in P4 of which F, is the range, i.e. for each £ ¢ FO, there is an
w € Q such that F = ®(,+). Moreover, a Borel probability measure,

N, over () exists which induces ). That is, if we let 6:0 - FO be
the function defined by 6 (w) = ®(w,+), then for each C ¢ ;70, e-l(C)
is measurable with respect to X, and A(C) = x(e'l(c)). The measure

A may also be extended to subsets not necessarily included in EO:
given any D C F_ such that e—l(D) is measurable with respect to

-1 .
A, let A(MD) = X(® (D)). It will be shown that A'x p then deter-

mines a unique probability value for {(f,x) \ Fec Fo’ x€eX, £(x) € E}.

1/ [#lm-21,p. 54.

2/

—' definable from a formula in the language of set theory. A precise
formulation of the notion of definability will appear in TP 2.3,



We are therefore interested in conditions under which (F

measurable range.

The question of whether every definable space of functions

(F,> 57 ) as described above is a measurable range cannot be resolved
ife)

within Zermelo-Fraenkel set theory. We show, however, that an affirm-

ative answer is consistent with the Zermelo-Fraenkel axioms.

In deriving the various results, we make considerable use of
concepts stemming from mathematical logic. A survey of the necessary
prerequisites is presented in the next sectiom.

We express deep appreciation to Jonathan Stavi for many illuminating
discussions on generic models. The proof of Lemma 4.7 is based upon an

approach indicated by Professor Benjamin Weiss. We are grateful for his

help.

2. We begin by introducing concepts, theorems, and notation which

will be called upon in subsequent sectioms.

2.1. The analytical hierarchy. Let g be the set of reals. An

analytic subset of R 1is the projection of a Borel subset of g xR
onto R. A co-analytic subset of g 1is the complement of an analytic
subset. Analytic and co-analytic subsets of p'ggg,lg X R XK, etc. are
defined analogously. It is known ([Hf], p. 210) that a set B Cp
B Cc R xR, etc.) 1is Borel if it is simultaneously analytic and co-
analytic.

Precise definitions of the notion of recursive relations may be

found in [Sh]. Heuristically, a relation R(xl, cee X o il’ cees in)

@



is recursive if a Turing machine can be programmed to decide within

a finite number of steps whether (Xl’ cees X, il, ...in> is in g for
any (Xqs «++» X il, ey in) belonging to R'. Here Xys eeoXEp are
either reals or sequences of natural numbers; il, ey in are natural

numbers. A relation Xy soey X 5, 1 ev.y 1) 1is recursive in a
1 m’ ~1° > "n

parameter € , where §o is a fixed infinite sequence of natural numbers,

if Q(Xl’ see Xm; il’ R in) = Ql(Xl’ cee Xm’ il’ R in) go) and

Q is recursive. A relation Ro(xl, ey Xy By, e 1n) is Zl if

Ro(xl’ REPIE SV SEREREY 1n) = d X 1 V1n+1 Rl(xl’ cees Eps XoLgs

115 «oes in, in+1)’ where R1 is recursive. ]Ro(xl, cees X il, veoy

. . 1 . . . . -

1n) is Zl in a parameter Eo if Ro(Xl’ seer Xpo iis eee, 1n) =

CE Y V1n+1 Rl(xl’ cees X5 Koo §o, 1o -ees i, 1n+1) where R 1 is
- ( ' i) is I, (0F in ¢

recursive. R, Xpp eees Xy iy wee, 1) I8 T 1 a parameter)

if it is the negation or complement of a Zi-relation (Zi relation in a
parameter).

The following facts are known:

(1) A relation R(Xl’ cens Xn) over n-ads of reals is recursive
in a parameter if the set {(yl, oo yn)l R(yl, cens yn)} is open.
1
(2) A relation R(Xl’ ceuy xn) is 2y 1in a parameter if the

set f(yl; cees yn)]R(yl’ ) yn)} is analytic.
3
3%

(where x4 is a real number, x

1
(2) There exist my relations \Aé(xl, XZ)’VAB(Xl’ xz)

, is an infinite sequence of natural

numbers) such that for every Borel set B C p there exists an infinite

3/ See [So]l, p. 26 for proof.



sequence & of natural numbers such that for all real X,
x € Be (%, §);
x¢ B @x43(x) g).
For any such &, B, we say that £ codes B. We denote the set coded

by € as B§;

1

(b) There exists a leelation Vql(x), where x 1is an infinite

sequence of natural numbers, such that ¢ql(x) & X codes a Borel set B.
(4) An analogy of (3) for Borel subsets of E . Every Borel

n .,
set BC E is coded by some sequence £ of natural numbers. The
coding may be carried out in a manner which would assure the existence
for each Borel set B < E' of a code €, where £ 1is an infinite

sequence of O0's and 1's. That is, there exist Hi relations

\A(n,z)(xl’ cees X Xn+1), ‘A(n,3)(x1’ cers X xn+1) such that for each

pal
Borel set B c E there is a real number (a sequence of 0's and 1's)
£ such that
(Xl) MR Xn) 6 B & ‘A(H,Z)(xl, ¢ 00 Xn, g);

(X,l’ ooy Xn) €8 o 'A-(n;?’)(xl’,”,‘,’v Xn) ).

There are, in fact, an uncountable number of sequences of O's and 1's

that code any Borel B = g

A Zi relation (H},recursive rélation) is a special case of a
relation that is Zi (ni ,recursive) in. a parameter. In all that
follows, we shall make no distinction between relations that require
a parameter and those that do not. Relations that are Z} (ni, recursive)
in a parameter will simply be referred to as Zi ( ni,recursive).

2.2, Models of Zermelo - Fraenkel Set Theory. Sets and classes

are generally regarded as the most fundamental objects in mathematics.
Real numbers, functions, limits, and other mathematical entities can all

be defined in terms of sets. When this redefinition is carried out,



theorems in the various branches of mathematics are transformed into
statements about sets.

The original 19th century approach to set theory was intuitive, or
"naive." A set was considered to be any collection of objects. This
unrestricted approach soon led to contradictions or antinomies, such as
the Russel paradox: if %y, the class of all sets, were itself a set,
then ', the class of all sets which do not belong to themselves
would also be a set; it is then easily seen that ' € %' implies
U' ¢ Yy' and Y' € ' implies ' € Y'. To avoid paradoxes of this type
rules had to be established for imposing greater limitation on the class
of objects that could be regarded as sets, Various systems of axioms
were proposed. Of these, the Zermelo-Fraenkel axioms received the
widest acceptance. A list of the Zermelo-Fraenkel axioms may be found
in {C]. We refer to these axioms (including the axiom of choice)
as ZFC. Most, if not all theorems in classical analysis, when translated
into statements about sets, can be proven entirely within ZFC. There

are, however, many true statements abouts sets which cannot be proven

within ZFC alone. This follows from Godel's incompleteness theorem.

in dé;iing with a particular system of axioms, one of the problems
of interest to logicians is the question of their independence. The
oldest example of this sort of problem occurs in classical plane geo-
metry. For many hundreds of years mathematicians were puzzled as to
whether Euclid's parallel line postulate couid or could not be proven
from the remaining postulates. Put another wa&, could there exist a
geometrical or mathematical universe in which Euclid's parallel line
postulate would be untrue? This question was finally settled in the
19th century by Lobachewsky and independently by Bolyai.

A mathematical model of geometry was shown to exist in
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which all Euclidean axioms except for the parallel line postulate

would be fulfilled. 1In recent years, mathematical models were constructed
which provide important comnsistency and independence results in set
theory. One of the most prominent of these was the proof by Paul

Cohen that the continum hypothesis is independent of ZFC. Precise
definitions of mathematical models and of their relation to formalized
languages and systems of axioms may be found in [C] or [R].

Let J be a non-empty subset of the axioms of ZFC and suppose
that 7 is a model of J, i.e. that 7 satisfies every axiom in J
when interpreted in 7. 7 1is an ¢&-model of J if the individual
elements in 7 are all sets and if the binary relation & denoted
by the predicate E_ in the language of J conicides with the relation
'""belongs to." 7 is a transitive ¢g-model if y g7 and x¢g y
implies =x ¢ 7.

Although there are valid reasons for supposing that transitive
¢-models of all of ZFC exist ({Cl, p. 78), their existence cannot be
proven by means of ZFC alone. On the other hand, the existence of
transitive ¢-models of any finite subset of ZFC may be proven entirely
within the framework of Z¥C ([Cl, p. 82).

The existence of a transitive ¢£-model of J implies the existence
of a minimal model of J, i.e. a transitive ¢£-model consisting of
those sets belonging to all transitive £-models of 7 (the intersection
of all transitive ¢-models of J). 1In view of the countability of J,
Ithe minimal model would necessarily be countable,

If 3 1is a sentence in the language of 7, where 7 1is a transitive

g-model, we write 7 |= ¢ if & 1is satisfied in 7.
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2.3. Definability. A set A C;?bk:p X eee X £ 1is said to be

definable from a set b if there exists a formula in the language of
set theory, Vo(yl’ ¥,), such that A= {z| zeRxRX ... xp and
wo(b,z) is true}. In particular, if A 1is definable from c¢ for some

c ¢ p, then A 1is said to be g - definable. 1If there exists a formula
$ (x) in the language of set theory such that A= {z ‘ z 6’?‘*3E,§4...
x £ and §(z) is true} then A 1is said to be definable. Definability
is clearly a special case of g - definability.

2.4, 1Inaccessible cardinals. We shall say that a set a 1is of

accessible cardinality if any one of the following three conditions is
observed:

(1) The cardinality of a (card a) is equal or .less than Ro

(2) There exists a set b such that card b < card a and card a
< card 2P (Example: if a is of cardinality 2 RN0);

(3) There exists a set I such that card I < card a and for each
set c& I, card ¢ < card a and a 1is equal to the union of the sets
belonging to I. (Example: if a 1is of cardinality RRO).

If 5 does not fulfill any of the conditions, then a is said to be
of inaccessible cardinality. If a is of accessible cardinality and
every subset bC a 1is also of accessible cardinality then a will be
referred to as '"small." Otherwise, (i.e. if there exists a subset
b C a such that b 1is of inaccessible cardinality) then a 1is said to
be "large."

The proposition, 'No inaccessible cardinals exist" is known to be
consistent with ZFC ([C], p. 80). Nevertheless, there are convincing

grounds for believing that inaccessible cardinals do exists. The
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reasoning is as follows: Let (2 be the class of all "small" ordinals.
‘We inquire as to whether /[ is a set. There are, of course, many instances
of classes which are not sets. If, for example, the class of all ord-
inals were a set, then it, too, would be an ordinal and would be included
in itself. We would then be led to the well known Russel paradox.
On the other hand, the hypothesis that /s is a set would apparently not
lead to this sort of contradiction - & would be much larger than any of
its members; it would therefore not be a small cardinal and would
consequently not be included in itself. Since the hypothesis that 2~
is a set cannot be proven within ZFC, it is tempting to accept this as
an additional postulate. Presumably this would be consistent with the
axioms of ZFC. If [ is a set, then /S 1is an ordinal. Its cardinality
would be inaccessible. By similar arguments one may adduce the existence
of 2, 3, or many distinct inaccessible cardinals.

There are numerous consistency theorems which cannot be obtained
by means of ZFC alone. The inaccessible cardinality axioms can some-
times be used to produce consistency results of this type.

If one postulates the existence of two distinct inaccessible

cardinals, one may then prove the following:

A countable transitive ¢-model m of ZFC exists

such that Wz[= there exists an inaccessible cardinal. 2.4.1)

Based upon (2.4.1), Solovay proved ([So]):

There exists a countable transitive ¢-model 77 of ZFC

such that 7] =" Every set of reals A cC, which is definable
R

by means of a countable sequence of ordinals is Lebesgue is measurable-

if, in addition A < R is uncountable, it includes a subset which is

a perfect set.

(2.4.0
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The assertion in (2.4.2) will be used further ahead in proving

the consistency result mentioned in P 1.

3. The present section deals with mixed strategies over function
spaces which are ranges of a Borel ®: (O X X Y. More general spaces
of functions will be treated later on. We begin by reviewing in detail
some of the definitions given in the introductory section, P 1.

3.1. Let Q=X =Y be copies of the unit interval and let
Q= X= Y be copies of the unit interval's Borel structure. We sti-
pulate that F be a subset of YX, i.e. that every f ¢ F be defined
on X and have values in Y. Suppose ® is a function whose domain
of definition is Q x X and whose values are all in Y. F 1is said to
be the range of @ if for each f € F there exists an w, €0 such
that fo = 0 (o, *) i.e. for some w, € 05 fo concides with the function
defined by @ on X, when Wo is fixed.

Given a function ®: (Q %X o Y of which F 1is the range, let
f: O F be defined as follows: e(m)dgf ® (>*). Denote by F the
og-field over F induced by 6: C¢ F iff,ﬁ-l (C) € 9. Every Borel
probability measure A over (3 then induces a probability measure
)? over F. The mixed strategies over F considered in [A-2] are
the various induced probability measures. The mixed strategies over X
are the Borel distribution over that set.

Let F ® X denote the o-field generated by sets of the form

Cx D, with C€ F, D& X. In accordance with Aumann's conjecture



~ 13 -

d

(the identification space hypothesis) the set G §f {(f,x){f € F,

E
x € X, £(x) € E} is included in the o-field EJ:) X for every Borel

subset E of Y. If the hypothesis were correct, G, would have a uniquely

E

determined measure with respect to X'x w. In what follows we give a

counter-example which refutes thiS;conjecture.

Lemma 3.1. Let (C, C, ml), ®, D, mz) be two o-finite measure
gpaces and let C 63]2 be the smallest o-ring over C x D containing

all sets of the form Cy fol, where C1 € C, Dy € D. ILet A1 CCxD

and let mo(Al) be the outer measure of A, in the space

1
(C * D, C®D, m1 3 mz). Then for every e.S 0 there exists a sequence of

rectangles {C; x' D;} such that C, € C, D, € D and UC, 'x D, D Ay

and m, X'mZGJCi X Di) < mo(Al) + e

Proof: m (A,) = inf m. x m,(A). Consequently there exists
—_— o1 et 1 2
A € o@D
A D A1
" . +
a set A, € C Q) D such that Ay DA, and m xm,(A)) < m (A)) g )

The existence of a sequence of rectangles {Ci % Di} such that
; : . s
Uci % DiID A2 and my e mZ(UCi X Di) < ni e mz(Az) + 3 < mo(Al) + e

may be proven by induction on the Borel rank of AZ‘

Counter-Example(A): Let Q & X & Y be copies of the unit interval

and let Q= X = Y be copies of the usual Borel structure defined

over ), X, and Y. We choose a 1 - 1 Borel function h which takes the

unit interval onto itself such that h is measure preserving and
ergodic, i.e., h: [0,1] » [0,1] and for every Lebesgue measurable

. -1
A {0;5 m@)=mnh@)) =mh "(A)) and m(h(A) NA) <m(A) whenever

0<m(A) < 1. (Examples of measure preserving ergodic transformations
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may be found in [HIm - 1].) For each fixed t) € (0,17, let ht =
1

{ (%, tl)]hn(tl) = x for some integer -» < n < «} (for positive n,
M) =B (CTR©) ), BTE) = hTTETTe e nT )

n ite;a,tions n iterations- —
ho(t) = t). ht is referred to as the orbitrof t. er define

®: Qx X » Y as follows:

1 if W) =x for = < n < w;
8w, x) = {
0 otherwise.

® 1is easily seen to be a Borel function (it is expressible in terms of
h by means of both Hi and Zi statements.) For each fixed wg €Q,
let fmls @(wl, ‘Y. For every ¢ €0 , let 8 (y) = fw. § associates
each @ € O with a function fw: X+ Y. Let F=0() and let F
be the family of subsets C c F such e-l(C) € Q. Denote by Fx X
the smallest o-ring generated by sets of the form C & F, D ¢ X.
Let A and g be copies of the usual Lebesgue measure over () and X
respectively and let >\.* be the measure induced by A over F. If
the identification space hypothesis were true in the strict sense,
then {(f,x)]f cF,xegX, f(x) =1} ¢ E@X. If it were true in the
weaker, Lebesgue sense, then there would have to exist Al’ A2 €
E® X such that A < {(f, %) | £eF, xeX, £(x) = 1} c A, and
K* X }.L(Al) = >\* X i (A2). We shall show that the hypothesis is violated
even in the Lebesgue sense.

We first observe that for C € F, either x*(c) =0 or >\*(C) = 1.

If this were not the case then for some D& F, 0< A (D) = x(e'l(D))< 1.
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Denote e-l(D) by D. Since 0 < k(ﬁ) <1, N (h(D) - D) > 0 because
of ergodicity. Thus h(D) - D is non-empty. Let y ¢ h(D) - D and let

wl = h_l(w). Then Wy €D and since @ = h(ml), both ®w and Wy have

the same orbit, i.e. hw =h . Consequently, & (w) =80 Qul) and thus g
W
1

must be in Q_l (D) =D, a contradiction.

For any Z1 cFy X, let mb(zl) denote the outer measure of Z1
under A" x M, i.e. mb(zl) = inf x?x-u(z). We shall see that
Z cF®X
Z>D 2z

1

mo({(f,x)\ fcF, x X, f(x) =1}) andtno({(f,x)lf cF, x ¢X, £(x) =0})

are both 1.
Suppose that m ({(£,x)|f ¢ F, x € X, £(x) =1}) =c < 1. Then by
Lemma 3.1 there exists a sequence of rectangles {Ci X Di} where

C. ¢ F, D, ¢X, (60 |fcF, xcX, f(x) =1} c{ fc, x D} and

% e def * def
Aox o u(U {Ci X Di}) =cp < 1. Let Q {i | » (ci) =1}, T UD,.
i=1 i€Q
If pu() =1, then AT x W Cu {Ci X Di}) =1, 1in contradiction to the
iR
assumption that K% x 8 {Ci X Di}) = C1 < 1. Thus H(Tcomp) = c2 > 0.
i=1l
£ *
lLet Uéi= uc, », V- ycomp, Then A (V) =1, and for every (fl’xl)’
iEQcémp '
comp [o]

if f1 cV and x cT

1 then (fl, xl) ¢ U {c

x D,}, Since
i

{(£,%) ‘ fE¢F, xeX, f(x) =1} c 4] {Ci % Di}, it follows that fl(x1)= 0
i=1
Let T'= U K" (T
- <o

comp comp)

for every f1 c Vv, X1 € T Since h 1is

ergodic, y (T') =1. Let V = G-l(V). Then A(V) = 1. Since A and g

are both copies of the Lebesgue measure over [0,1] and A(V)=p(T")=l,
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it follows that there exists a real number t such that for some

w

o € Vv, X € T', ® and x, are both identical to t. For any such

mp

Wy Xy @(wo,xo) =1, X, = hn(xl) for some Xy € T and some integer n.

- o< n< o, For any such Xqs &(wo,xl) is also 1, because like X s ¥y

is also on the orbit of W, Thus fu%)(xl) = @(wo,xl) = 1. However,

- comp

fwo €V, Xy €T so by what was shown previously fwo (x must be 0 ,

1
a contradiction. We thus see that mo({(f,x)‘f € F,x € X,£(x)=1}) = 1. In
the same fashion we can prove that mo({(f,x)]f € F,x € X,f(x) = 0}) =1,

We conclude that in the present case the hypothesis fails even in the Lebesgue

sense.

3.2. 1In view of the preceding counter-example, we seek

alternate means for determining a probability wvalue under k“,u for

{(f,x)lf € F,x € X,f(x) € E} where EcC Y is Borel, A" is an induced

distribution over F and y is a Borel probability measure over X.

Lemma 3.2.1., Let C be a Borel subset of O x X and let , be a

Borel probability measure over X. Then for any rational Tys Tos

<r;<r, <1, the set {w\rl < px|w,x) € c}) < r,} is Borel.

Proof: By induction on the Borel rank of C. In the case where C is

of the form Al'x A2 where A1 C:Q,A2 c X, and Al’AZ are both rational

intervals, the truth of the lemma is immediate. If C = C1U...UCn where

(1)

i . i i
1 X Aé ), with A{ ) C:Q,Aé ) < X, and

each C; is of the form A
A{l),Aél) are rational intervals, then the lemma follows by induction on n.

Given any particular Borel set D c Q x X, if the lemma is true for D then
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com . ]
it is true for D P, Finally, suppose Dl’DZ"" is any countable

sequence of subsets of Q0 x'X for which the lemma holds and assume that

DICDZC... . Let D=i

N8

Di' If wq € 1is such that r, <

1 1=

u({x]ﬁﬂl,x) €°D}) < r, then for every ¢ there is an n such that for all i >'n,

r;-e< M({X\(wl’x) € Di}) <T,. In other words, {w\rl < p (x| (w,x) ¢ D})fgrzE

o] o]

n u'n {w]rl - i < g({x\(w,x) IS Di}) ghrz}. For every natural m,
m=1 n=1i>n

1
{w1r1 - = < p (x| ,x) ¢ Di} g'rz} is Borel by hypothesis on D, ; consequently

the set: rl{w]rl - é-s w({x] (w,x) ¢ Di}) S.rz} is Borel for every natural m,
i>n

n ,since it is the intersection of a countable sequence of Borel sets. Similarly
o

1 .
the intersection N( U N {w|r, ~ < p (x| Ww,x) ¢ D,})< r,} involves a
. 1 m i 2

m=1 n=1 i>n

countable sequence of Borel sets and is therefore Borel. Thus
{w\rl S_u({x\(wyx) € D})S;rz} is Borel. The family of sets for which

the lemma holds is therefore closed under complements and countable unions

and consequently contains all Borel subsets of ( x X.

Lemma 3.2.2. Let ®:Q Xx X+ Y be a Borel function and let B be a Borel

subset of Y. Let rs T, be rational numbers, O <r £1,% 1, and let y be a
probability measure on X. Then the set’{w|r1¢gu(fx| (w,x) € B}) = rz} is

Borel measurable.
Proof: Since ® 1is a Borel function, ®-1(B) () 1is Borel. By the

preceeding lemma {w‘rl < p({x|,x) ¢ ®—1(B)})§_r2} is Borel. However,

U]

folry < p X @® €077 B < 1.} = {0)r, < udx]® %) & B}) <T,}, which

completes the proof.

Lemma 3.2.3. Using the foregoing lemmas we consider an alternate

method for evaluating the probability measure of {(f,x)\f(x) € EcCY,fF,xX}
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under 3 ,u, where F 1is the range of a Borel §:Q X X+ Y and where

1.

xn, the induced distribution over F, and , the Borel probability measure

over X, are prescribed.

Let r,s be arbitrary rational numbers, 0< r< s <1,
def
with Lemma 3.2.2, the set O

(r,s)

o =0(0 ). It is easily seen that e-l(%) y =0 ,
(r,8) (r,8) (r,s) (r,s)

i.e. for any ®w € Q, if o) € O(I,S) then o € O(r ) Thus, since
>

-1= _ . ~
9 (O(r,s)) = O(r,s) and O(r,s) is Borel measurable, O(r $) ¢

In accordance

in

{wlr < p{{x|®@Ww,x) € E}) < s} cq is

Borel. Let

E
therefore measurable with respect to A . Denote the measure of O(r 8)
with respect to x“ by n .
P (z,s)
Suppose, now, that £ € F and x ¢ X are chosen at random. The

probability of £ belonging to O(r,s) is then x"(r’s). For any £ selected

~

, the probability of £(x) belonging to E 1lies between r and s.

0
from (r’s)
Thus the probability of choosing £ and x so that f£ ¢ 0(.r &) and
>
f(x) € E would evidently lie between o er and A\ +s. Let
(r,s) (r,s)

TgTysesT be a sequence of rational numbers in [0,1] such that

<r,<..<r,r =0,r =1, r, -r L for all 0 < i < n-1.
- - - n 1 n - e

%o 1 n’ 0 +1 i

By the same mode of reasoning, the probability of choosing £,x so that

* ® *

f(x) ¢ E would evidently be between A er + A, ‘roti. LA T
(e 0 (FpTp) TLTTE LT el
% 1 * R *
and A r1 K<r1’r2) 2

. ee. N
(roy rl)

(rn-l’rn).rn . Using the Cauchy-

Schwartz inequality we evaluate the difference between these two bounds:
* * * *

(~ ‘'r, + A ‘r, + ... + A ‘r ) ~ (A . +

(rOJrl) 1 (rl)rz) 2 (rn_llrn) n (rO ;rl) rO

o~ [ ot

A S R N -
(x5t 5

RPN IS L R R T D

ala

* %
A (rl’rz) (r2 - rl) + ...+ A

(rn-l’rn)'(rn B rn-l)'S



* 2 * 2 * 2
Jo N o L N PN

M/v(rl - r'o)2 + (r2 - rl)2 + ... + (rn -r )2

L A/i(r1 - rggz + (r2 - rl)2 + ... + (rn - rn_l)2 = / 25 =
/L
n

Thus as n » &, the difference between the two quantities tends toward

zero. Hence the probability p of choosing £, x such that £(x)

cr, + ... + K* S
rb,rl) 0 (rn_l,rn) n

€ E would evidently be p = 1lim K*(
This value clearly depends on K* alone and does not depend on the
A through which x* is induced.

3.3. Despite its:zapparent plausibility, the method for evaluating
K* X u({(f,x)\ feF, xecX, £(x) € E} depicted above cannot be
applied to every possSible F C YX. Situations exist in which no reasonable
probability evaluation can be ascribed to {(f,x)\f € F, x€ X, £f(x) € E1.

We consider the following case.

4
Counter-Example (B)—/: Let al be the set of all countable ordinals

and assume the truth of the continuum hypothesis. Then there is a

one to one function hO from X = [0,1] onto « For each X, € %,

1
let AX = {yly € [0,1] such that the ordinal ho(y) is less than
1

ho(xl)}. Let : X+ Y be the characteristic function of

f

[x, ]
A (f (x) =1 if x e A and O otherwise.) Note that if
X" Ix] *1

x, ¥ %) then f £ f . Let F be the set of functions of the
1 (x,] 7 Fix,]

form f L ie. Fa={flfef

[xl for some x, € [0,1]}. We now

[x1]

define a measure structure, F, over F. For each £ ¢ F, let

A
&/ This example grew out of a private discussion with Shmuel Berger.
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W(f) be the unique x in X such that f= f . Given any rational

[x]

interval (a,b) where 0 <a<b<<l1, let G(a b) = {flw(f) € (a,b)}.
b

We let F be the smallest o-finite measure space generated by sets

il

(a,b) " For each set G(a,b) c F, let X(G

and for every rational x ¢ [0,1], let X({f

of the form G =b - a,

(a,b)’

[x]}) = 0. XN 1is then

extendable to a uniquely definable probability measure, X\, over all

~

~

of F ([HIm -2}, p.54). Clearly X\ is non-atomic, 1i.e., A ({f}) =0
for all f € F. Let |, be the usual Lebesgue measure over X = [0,1].
We seek to evaluate the probability that £f(x) =1, when f & F, x € X

are chosen at random under these conditions. For any fixed x., € X,

1
the set [f’f € F, f(xl) = 0} is countable. Thus the probability

that f(xl) =1 is 1. This is true for any x, € X. It should
then follow that the probability measure for {ﬁf,x)]f €EF, xeX, f(x) =1}
is 1. On the other hand for every fixed fo € F, fo(x) = 1 for only
a countable number of x's. Thus the probability that fo(x) =1
is 0 for any particular f0 € F. From this point of view, the
probability that £(x) =1 must be zero.

4. The foregoing section, P 3, dealt mainly with function spaces
which were ranges of Borel ®'s. Given a Borel function 8: Q x X Y,
we showed that if F= {f|f: X+ Y and f=20(w,") for some (€ 21

and if F 1is the family of subsets C of F such that e-l(C) is

a Borel subset of ( (where 8: (O~ F 1is defined by 8 (w)

kil

@(w:')),

then for any induced probability distribution A" over F and any
Borel probability measure  over X, A" and u determine a unique

probability value for {(f,x)]f € F, x € X, £f(x) € E} whenever

ECY is Borel. The methods for evaluating this measure were described
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in TP 3.2 . We seek to extend these methods to more general types of
function spaces.

Let F be a set of Borel functions from X to Y and let F
be a o-field of subsets of F. The space (F,F) will be referred
to as a measurable range if there exists a (not necessarily Borel)

function ®: O x X+ Y with the following properties:

]

(1) If 6: QO+ F 1is defined by 8(w) 268 (w,-), then 8() =F ;
(2) For any probability measure A defined over F, there

exists a measure X over ( (the Borel subset of () such that

(a) given any C ¢ F, e-l(C) is measurable with respect to };

ORI

i

A(C);

(c) for any Borel probability measure y over X; 8 : x X Y

is measurable with respect to A y w, i.e. for any Borel subset

B C'Y,(@-I(B) is measurable with respect to A y .

Function spaces which are measurable ranges will be treated in
much the same way as in the case where they are ranges of Borel @'s.
If (F,F) 1is a measurable range, the mixed strategies over F are
those distributions which are induced by Borel A's defined over (.
Greater generality is thereby achieved both in the class of function
spaces we can randomize as well as in the set of mixed strategies that
may be obtained.

In determining a probability measure (or mixed strategy) | over
X & [0,1], one usually starts by defining p over the rational sub-
intervals of X. y 1s assumed to be o-finite over the Boolean

algebra 7' consisting of finite unions and intersections of rational

closed intervals. The Caratheodory extension theorem (see [Hlm-2], p. 54)
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then asserts that y can be uniquely extended over the entire Borel
structure generated by '. Although there are many cther BoOlean
algebras of subsets over which | might initially be defined, the
algebra 7' 1is the most easily expressible in set theoretical language
and therefore a natural one with which to begin.

If we pursue the same approach in obtaining mixed strategies, A,
over a set of functions, Fl’ we would start by defining XA over a
countable family of subsets of Fl’ where each such subset is definable
from F, by means of a formula in the language of set theory. Suppose,

1

therefore, that (71 is a Boolean algebra of subsets of F1 and that

each element in 7 is definable from F1 by a set theoretic formula.

Assume in addition that F1 itself is definable from a real number

and that each f € F1 is a Borel function from X into Y. Let A

be a g-finite measure defined over (7,.A can then be extended to a

“ 1’
unique g-finite measure defined over F_, , where F is the og-field
! 7

generated by <71. We are then interested in the possibility of

determining a probability measure under A and |, for the set {(f,x)l
feF, x€X, £(x) € E}, where E is any Borel subset of Y.

) 1is a measurable range then there exists a @ QXX+ Y

F :
771 1

is the range ; also a Borel A over ( exists such that

If (Fy»

of which F1

-1
for each @€ ¢ 571, K(@l (€)) = N(C), where 91: O - F1 is given

by 6,) =@®.,(w,-). For any subset D c F, (not necessarily in F_ )

1 1 1 7,
such that e-l(D) is measurable with respect to A, let KA(D) =

-1 %
A® (D)). The induced measure X clearly coincides with X\ over
the measure structure E7 . It will be shown in P 4.9 that K%
71

and |, determine a unique probability measure for {(f,x)[f € F, x€X,

f(x) ¢ E} given any Borel subset E of Y. Thus, if (Fl, 57 ) is a
- B 74
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measurable range, A may be extended to a (not necessarily unique)

probability 'measure N for which Kdﬂxu d(E,x)|f€F, xeX, £(x) € E})
is uniquely defined.

The question of whether a function space (Fl’ 571) as described
above is in general a measurable range cannot be resolved within ZFC.
In fact, within the model L of ZFC constructed by Godel ([C ], pp. 87-88),
the propositioné/ "For any definable set, F, of Borel functions from
X to Y and any countable algebra (7 consisting of definable subsets

6/

of F, the space (F ) 1s a measurable range" is false.~ We

5
shall show, however, that in the countable model 7 of ZFC described
in [So]l/ the proposition is true. We remark that in order to construct
the model N, one assumes the existence of inaccessible cardinals.

In all that follows, the symbol 77 will denote the model 79 of

[Sol. The reader is referred to [So] for a full description of this

model,

5/

=" This proposition should be viewed as a meta-statement, not neces-

sarily expressible within the language of ZFC.

6
&/ The reason is a follows: 1In L, there exists a well ordering over the

reals which is definable by a set theoretical formula. The continuum
hypothesis is also true in this model. Consequently there exists within
L a definable set of Borel functions F, from X to Y and a countable

Boolean algebra o consisting of definable subsets of F2 such that

(Fps 57 ) has all of the properties depicted in Counter-example (B ).
2
It is easily seen that no function space bearing these properties can

be a measurable range.

7/ This model was originally introduced by Azriel Levy {Lel.
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4.1. Lemma ([So], Theorem 2 (2), p. 3). In 7, the following
statement is true:

Let A be any subset of O = [0,1] definable from a countable
sequence of ordinals; then A 1is measurable with respect to the
usual Lebesgue measure m, i.e. there exists Borel sets Al’ A2 N
such that A1 c A CZA2 and m(Al) = mCAz).

(In particular, since every real number ¢ 1is expressible as a
countable sequence of 0's and 1's, it follows that if A 1is any
K-definable set of reals belonging to 9 (i.e. a set of reals which is
definable from some real ¢ in 9) then A is definable from a
countable sequence of ordinals and thus 7] }= "A is Lebesgue measurable.')

4,2 Lemma. In 7, the following statement is true:

Let M be a Borel probability measure defined over (= [0,1]
and let A Dbe any subset of () = [0,1] which is definable from a
countable sequence of ordinals. Then A 1is measurable with respect
to A, i.e. there exists Borel subsets Al’ A2 of O such that

A, CAcCA

1 9 and KCAl) = chz).

Proof: With no loss in generality assume that A({w}) = 0 for
every ®w € Q. Let ' = [0,1] be another copy of the unit interval
and let m be the usual Lebesgue measure defined over (Q'. We define
a mapping g : Q- Q': go(w)dgf the unique t € Q'. such that ¢t =
A([0,w)), where A([0,p)) is the measure under )\ of the half open
interval [O,w) C Q. g6 is easily seen to be onto. The image under
g, of every open interval is a closed 6r open interval. By induction
on Borel ranks one proves that for any CcQ, C is Borel iff go(C )

is a Borel subset of Q'. For any open interval (w,a) in Q, 0<w< w < 1,
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mg, (@ »0))) = n((g, @, g,@) =5, @ - g @ = Mu»))-

Similarly, by induction on Borel ranks,
A(B) = m(g,(B))

for any Borel subset B < (. Suppose that A 1is any subset of Q
definable from a countable sequence of ordinals. Then gO(A) is likewise
definable from a countable sequence of ordinals; it is
therefore Lebesgue measurable with respect to m , in accordance with
Lemma 4.1. Hence there exist Borel subsets Al’ AZ’ of 0O' such that
A S g (&) C A, and m(A) =m(A,). Thus K(go_l(Al)) = K(go—l(Az)) and

1

go—l(Al) CAC go_ (A Therefore A 1is measurable with respect to

2)'
.

Corollary: In 7], the following statement in true:

Let m be a Borel probability measure defined over ) X X E
[0,1] x [0,1] and let A be any subset of Q X X definable from a
countable sequence of ordinals. Then A is measurable with respect to m.

4.3, Lemma ([So] Theorem 2 (4), p. 3). 1In .W, the following
statement is true:

For every uncountable set of reals A definable from a countable
sequence of ordinals, there is a perfect set A1 such that A1 C A.

4.4, Lemma. In 7, the following statement is true:

Let F be a non-empty set of Borel functions from X to Y such that F

is definable from a countable sequence of ordinals, and let F be the

, 8 . . . .
set of reals which code—/ functions in F. Then there exists a function,

8/

2/ Ve recall the definition of codes for Borel subsets of E" appearing in

P 2.1, (4). A Borel function from X to Y in a special instance of a

Borel subset of X x Y; consequently for any f &€ F, there is a real
parameter £ € £ which codes £f. There are, in fact, an uncountable number of

reals in R which code any given f ¢ F,
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~

g, g1 Q - F which takes (Q 2 [0,1] onto F, and where g 1is definable
from a countable sequence of ordinals.

Proof: Since every f € F is coded by an uncountable number of reals,

~ ~

F is thus uncountable. Moreover, F is definable from a countable sequence
of reals, since F has this property. Hence by Lemma 4.3, there

is a perfect set of reals C such that C C F. Let C1 C C bea

countable set of reals which is dense in C. C1 is clearly Rg-definable.

Let gy be a 1 - 1 order preserving mapping from the rationals in ( into

Cl' We define a 1 - 1 function g1 from Q into C: For rational x,
let gl(x) = gz(x), for irrational x, let gl(x) = Sup gz(x).

z rational

z < X

We then define g: Q-+ F as follows:

~

( gl(x) if for some vy ¢ F and for some
non-nﬁgative integer n,
x =g (¥) =88y -8 (¥);
n iterations
[ x otherwise

Using considerations of the Cantor-Bernstein theorem, we find that vy
takes Q = [0,1] one-to-one onto E. Clearly g is definable from a
countable sequence of ordinals.

4.5. Lemma ([Sol, Theorem 2 (5), p. 3). In %9, the following
statement is true:

Let A g,?z be a subset of R X £ definable from a countable
sequence of ordinals and such that for all x € £ there exists a
y € R such that <x,y> € A. Then there exists a Borel function

h: R -+ £ such that <x,h(x)> &€ A for almost all x in A& (almost all

with respect to the usual Lebesgue measure.)



- 27 -

4.6 Lemma. In 7, the following statement is true:

Let m, be a Borel probability measure over [0,1] and let A C
[0,11 x [0,1] be definable from a countable sequence of ordinals;
suppose that the projection of A onto the unit interval i§ of
measure 1 with respect to m Then there exists a Borel function
R: {0,11 » [0,1] such that <&,£(x)>~€ A for almost all x € [0,1]
(almost all, under the measure mo).

Proof: We assume, with no loss in generality, fhat mo({xl) = 0 for évery
x € [0,1]. Let m be the usual Lebesgue measure. We define hO: [0,1] = [0,1]
in the same way that g, was defined in the proof of Lemma 4.2: for any
t € {0,117, ho(t) = the unique t' in [0,1] such that t' = mo([O,t)).
hO then takes [0,1] onto [0,1]. Moreover, C C [0,1] is Borel iff
ho(C) is Borel; if C < [0,1] is Borel then mo(C) = m(ho(C)). This is
proven by transfinite induction on the Borel rank of C.
Let A = {&y)|x ¢ [0,11, yv¢ (0,11, and for some x; € 10,11,
h(xl) = x and (ho-l(x), y) € AY. R is clearly definable
from a countabie sequence of ordinals. Denote by AP and RP the
projection of A and ;, respectively, onto [O,1]. mb(Ap) =1, by
hypothesis. Since ; = ho(AP) and since ho carries Borel sets onto
Borel sets of the same measure, it follows that gp is measurable with respect to m.
In addition m(XP) = mo(hgl(gp)) = mO(AP) = 1. 1It then easily follows
from Lemma 4.5 that there is a Borel function h: [0,1] @ [0,1] such
that for almost every =x € [0,1] (under m), <X,h(x)> € ;. Define

~

h: [0,1] - [0,1] as follows: h(x)dgf h(ho(x)). h then possess all
of the asserted properties.

4,7. Lemma. In 7%, the following statement is true:

Let 7 = &71¢72,...} be a countable set of subsets of (Q, where
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each set (Yi is definable from a countable sequence of ordinals and
where ¢ 1is closed under complements, finite unions, and finite

intersections. Let X be the o¢-ring generated by ¢ and let A

a
be any o-finite probability measure over %7. Then A may be extended
to a o-finite probability measure A, over all subsets of () definable

1

from a countable sequence of ordinals.
Proof: The proof is based upon a method used in [Lb], where

, . 9
an analogous result is obtalned.—/

For (7, € 7, let dgl) =d., d.(e)'-“ Q - 7.. Note that for any
i i i’ Yi i
infinite sequence of O's and 1's, s = s, S_,, ..., the intersection
() (s) b2
(71 1 ﬂlﬂz n ... is in %7. Let S be the set of all infinite

sequences of O's and 1's. We refer to a subset U C S of the form

U

1

{s}s= (sl,sz,...) € S, s; = iy 8y =3y -e. s jn}, where

n

each ji =0 or 1, as an open interval in S. ILet S be the
o-field over S generated by the open intervals. We consider the

following probability measure m,, over §. Given any open interval

1

=i 1,

UcC S of the form U = {sls = (sl,sz,...) €S, sy = s, = j2""’sn n

(5D (%) e
let ml(U) = XQ71 ﬂ<7217”.ﬂ &h n’). my is clearly o-finite over
the algebra of finite unions and intersections of intervals, since

N is o¢-finite for the cprresponding sets in 27. Hence, by the

Caratheodory extension theorem, m, is uniquely extendable to all

1
sets in S. Applying Lemma 4.2 to (S,S, m1) we receive that every

subset of S definable from a countable sequence of ordinals is

measurable with respect to m, .

9/ We are grateful to Professor Benjamin Weiss for calling our attention

to this approach.
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We define a correspondence V¥ from the subsets of S to the
d
subsets of Q: for each C C S, let ¥(C) gf {m\There exists a sequence

i ) (59
s (sl,sz,...) € C such that y & <71 ﬂ<72 N ...1. It follows

by transfinite induction on Borel ranks that for any C € S, V¥(C) &€ %7

and ml(C) = A(¥(C)). Also, for every W E %7 there is a W in S such

that w(ﬁ) =W,

Dd(_;_f

s s
Let {s's = (51’32"") € S and 47( 1) n 47§ 2) n ... 1is

1
non-empty}, Edgf {(s,w)[s = (sl,sz,...) €S, wWEQ W €<7£sl)<:g7§s2)ﬂ...}.
Since D 1is definable from a countable sequence of ordinals, it is
measurable with respect to m, - We assert that ml(D) = 1. If not, then
there exist Borel sets Vl’ V2 € 8§ such that ml(V1 N V2) =0,

v, 20D, v,
ml(V2 - Vl) = x(y(Vz - Vl)), while X(W(VZ - Vl)) = 0 since \y(V2 -V

> S - D, and ml(VZ) > 0. Then ml(V2 - Vl) > 0. However,
P
C y( - D), which is empty, a contradiction.

Since ml(D) = 1, we may apply Lemma 4.6 and thereby derive the
existence of a Borel function h: S -+ Q such that for almost all
s € S (almost all with respect to the measure ml), (s,h(s)) ¢ E.
Thus there exists a Borel set G < S such that ml(G) = 1 and for all
s ¢ G, (s,h(s)) ¢ E. Let H={wlwen and o =h(s) for some s ¢ G}.
Since every Borel set is coded by means of a Hi formula and some real
parameter, G 1is p-definable. Consequently H, too, is pg-definable.
Note that for almost all s = (Sl,Sz,...) € S (under the measure ml)
B contains a single representative from/7fsl) n ﬁéSZ) N ...; that is,
my ({s‘s = (sl?sz,...) € S and Qj{sl) N _ﬁész) N ...)N H consists of
a single point}) = 1.

We now define xl. For every rational closed sub-interval [a,b] c Q,
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let Al([a,b]jdgf ml({sls = (sl,sz, ...) € S and Q?fsl) 017532) n...)
NHN [a,b] # @}). The set {s|s = (81585, -..) € S and

jSsl) N (7582) N ...)n HN [a,b] # ¢} is definable from a countable
sequence of ordinals and is therefore measurable with respect to m, -
Consequently g is well defined. Also xl is a g-finite probability
measure over the Boolean algebra consisting of complements, finite
intersections and finite unions of rational closed intervals. This
follows from the fact that my has this property for the corresponding
Boolean algebra of subsets of S. Thus Xl is extendable to a uniquely

defined probability measure over all Borel subsets of (. Using the fact
that 2y ([2,51) = m ({s]s = (5,5,,..0 € S and (@D 022 L)
N Hn [a,b] # #1] we obtain by transfinite induction that Kl(C) =
ml({sls = (sl,sz,...) € S and Q?fsl) n &ész) n...)nHEn C # @
for every Borel subset C c (. In accordance with Lemma 4.2, every
subset of () definable from a countable sequence of ordinals is measurable
with respect to xl.

To prove that g is an extension of A, it is sufficient to prove
that xlﬁﬂi) = XG?&) for every <7i in &. It would then follow by
transfinite induction that Kl(B) = A(B) for every B¢ %7.

By definition of my, A7) = ml(fs[s = (s15855...) € S and 5. = 11).

Clearly {s|s = (sl,SZ,---) €S and 8 = 1} = {s|s = (815895.+.) € S and

s. =1 and (&ésl) N &ész) N..)nH#0 Y {s|s-= (Sl’SZ"") € S and

1

5
s; = 1 and Q?ésl) N &é 2) N ...) N H= 0}, However for almost all

s = (51’52"") € S (under the measure ml) Q?{sl) ﬂ<7532) n...)ANH¥*GO,

(s
1

NH=@ =0 and thus xc7i) = ml({s\s = (sl,sz,...) € S and s. = 1

Therefore, m,({s]s = (s ,s )ESand s, =1 and (7 0»7(92)
» M 175270 i . 7, 2 nen)
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(
1

s s
1 0475 2) N ...)NH=# @ . Since 74 is by hypothesis definable

and (7
from a countable sequence of ordinals, it is measurable with respect

to xl. Hence there exist Borel subsets Al’ A such that A CM?i c A

2 1 2
and A (A = A (A). Thus A (A)) = m ({s]|s = (s1,855...) € S and
S .
@ naS? 0 Lo nEn A £ 0 = 0 @) = ds]s = (555,000

d (Sl) n /7(82) q A + 0 . - _
€ S and (77 7y N ...)nHN A ). Since {s|s = (31’32”")

S
€ S and Q?i 1)
5D (%)) -
and @, N 7, Nn...)NHENG,; # M c{sls = (51285,++.) € S and

S
Nai2n N En A £ B Cisls = (s,8,,..0 € S

s s
Q7{ 1) ﬂc7§ 2) n...)NHN A, # @] we receive ml({s's = (8158y5.+2)
€ S and «7{51) n<7§82) N..oONBENZ, # 8 =aG) =rGB) =NE).

However ml({s]s = (Sl,Sz,...) € S and (ﬂ](_sl) n 42(32) nN...)nHN ’ﬂi # Qj}):

my (fs]s = (s;,8,5...) € S and s, = 1 and Q7§Sl) N gésZ) nNe#+0) =
nyi). Thus XQ7i) = x107i), and the proof is complete.

4,8, Theorem. In 7, the following statement is true:

Let F be a set of Borel functions from X to Y, where F is
definable from a countable sequence of ordinals, and let (7 =ﬁ71,472,...}
be a countable set of subsets of F, where each (7, is definable from
a countable sequence of ordinals and where ¢ is closed under complements,
finite unions, and finite intersections. Let 57 be the s-field
generated by 7. Then (F,g%) is a measurable range.

Proof: Each £ ¢ F comprises a Borel subset of 52. Hence by
P 2.1 (4), the functions in F are each coded by parameters in p.

~

Let F Dbe the set of parameters in £ which code functions in F.

F is then definable from a countable sequence of ordinals. Hence,

by Lemma 4.4 there exists a function g: (Q -+ F definable from a countable
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sequence of ordinals which takes ( onto F. For each ¢, let fg(w)
be the function in F coded by g(py). Let ®: va X+ Y be defined
as follows. O (p,x) = ngD)(x). Then ® 1is definable from a countable
sequence of ordinals and F constitutes the range of 0.

Let 8: QO+ F be defined by 6(w) =0 (y,*). For each 7, €, let
;i = e~1Q7i)' Similarly, let <; be the set of subsets of (), @;1,; seesds

and let E; be the o¢-field generated by 7.

Given any probability measure A\ over 27, let A be the corresponding

~

probability measure over E;. In accordance with Lemma 4.7, X\ may
be extended to a probability measure, Xl, defined over all subsets of Q,
that are definable from a countable sequence of ordinals. Let y
be any Borel probability measure over X, and let E be an arbitrary
Borel subset of Y. Since E 1is coded by a real number and since
® is definable by a countable sequence of ordinals, ®_1(E) cQ x X
also has this property. Thus, by Corollary 4.2 @-1(E) is measurable
with respect to Kl % g.(F,§7), thus possesses all attributes of measurable
ranges, which completes the proof.

4.9, Given a function ®: Q X X+ Y, where @ is definable from
a countable sequence of ordinals and a Borel probability measure A over ()
(where ®, A\ are assumed to be in %), let F be the range of ® and let
8: Q-+ F be defined by 8 (y) =®(w, ). Let F Dbe the set of subsets
of F that are definable from a countable sequence of ordinals.lg
Since in 7, every subset of ( that is definable from a countable

-1
sequence of ordinals is measurable with respect to X, 6 ~(C) is

measurable under A for every C ¢ F. Thus A induces a uniquely

107

The notion of definability from a countable sequence of ordinals is

expressible by a set-theoretical formula (see [M-S]).
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defined measure A over F: A (C) = K(e_l(C)). For any Borel measure
W over X and any rational rl, r2, if EC Y is Borel then the set

{f[rl g.u({x‘f(x) € E}) < rz} is in F. Hence {f\rl g;;({x\f(x) e E})

S.rz} is measurable with respect to x“. We can therefore use the
methods of TP 3.2.3 to determine the probability under A X p that

f(x) ¢ Ewhen £ ¢ F, x ¢ X are chosen at random: n xEu({(f,x)|f € F,

m- 1

xeX, £ e ) T HE oy Wb M E BEE <uxie e s <3 -

m =~ 1
n

' Note that this expression depends only on x“; and not on
the Borel probability distribution, A, through which x* is induced.
That is, if two different Borel probability measures xl, KZ over ()
induce the same probability distribution x* over F, the probability
under x*, u of f(x) occurring in E does not depend upon which

-1
of these distributions is used. Since @ ~(E) is measurable with

respect to A Xy, it easily follows from Fubini's theorem ([Hlm-2],
pp. 147-148) that

PpUxfm e <y - (B -

tim 3 % AT B
Mo n=1 m=1 ' n
m-1 m-1., _
n )_

Lim & B M{w\w € O and
e n=1 m=1 '

< u{x[®wx) € B} < 79 (
A x @ TE).

The measurability of ®-1(E) with respect to A'Xxy implies that the
anemaly of Counter-example (B) (in which integration along the
(-axis produces a different result from that achieved when integrating
over the X-axis) cannot occur in the present case.

We conclude that in %, if (F,E7) satisfies the hypothesis of

Theorem 4.8 then for any probability measure )\ over 27, A can be
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extended to a probability measure A defined over all subsets of

F which are definable from a countable sequence of ordinals. Given

a Borel probability measure j over X and a Borel subset E of Y,

x* X W determines a unique probability value for the occurance of f(x) in E.
5. The validity in 7 of Theorem 4.8 and of the statements in

P 4.9 does not of course imply that these assertions are true in the

real world., Nevertheless the countable models in which these statements

are fulfilled are likely to provide accurate replicas of many competitive

situations that occur. In decision problems that take place in everyday

life the set of choices available to an individual is at most countably

infinite. The possible coalitions which an individual may join are

usually definable by some simple phrase in ordinary language,eg. oil

producing nations, Southerners, etc, The number of such phrases,

being countable, the set of coalitions open to an individual must

therefore be countable. The same holds true in most actual game

situations, including differentiable games. The strategies available

to a player are usually definable by a formal expression in mathematical

language; hence the number of available strategies would be countable.

Even if the player were to employ a random device to help him decide

on forthcoming moves, his set of options is countable; no more than

a countable number of these devices lie at his disposal. Although the

number of infinite sequences that could conceivably result through the

use of a random device is uncountable, the sequence of results that

actually occurs can be viewed as predetermined. Thus the countability of

a model such as 7 does not seriously restrict its applicability to

usual competitive situationms.
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