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Abstract

Affiliation has been a prominent assumption in the study of economic models with
statistical dependence. Despite its large number of applications, especially in auction the-
ory, affiliation has limitations that are important to be aware of. This paper shows that
affiliation is a restrictive condition and the intuition usually given for its adoption may be
misleading. Also, other usual justifications for affiliation are not compelling. Moreover,
some implications of affiliation do not generalize to other definitions of positive depen-
dence. These results show the need to consider alternatives to affiliation. The results of
this paper suggest new directions for the study of dependence in economics. The main
result classifies economic models of information and proves the existence of a minimally
informative random variable that makes types conditionally independent. If this variable
is known, then all results that are valid under independence are also valid for these models
with statistically dependent types. Complementing this result, we describe a method to
study general forms of dependence using grid distributions. Grid distributions are dis-
tributions whose densities are constant in squares and they are dense in the set of all
distributions. This method allows a comprehensive investigation on the revenue ranking
of auctions under general dependence.
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1 Introduction
Asymmetric information is a central theme in modern economics, not only in game theory, but
also in industrial organization, general equilibrium, group decision, finance and many other
subdisciplines. Most models assume that each agent privately knows a random variable, and
∗Earlier versions of some of the results in the first part of this paper appeared in a weaker form in de Castro
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these random variables are statistically independent. Although independence is convenient for
theoretical manipulations, it is considered a restrictive and unrealistic assumption. Indepen-
dence is regarded as restrictive because it is satisfied by a “knife-edge” set of distributions, and
unrealistic because there are many potential sources of correlation in the real world: media,
education, culture or even evolution. Perceiving these limitations early on, economists tried to
surpass the mathematical difficulties and include statistical dependence in their models.

The introduction of affiliation was a milestone in the study of dependence in economics.
This remarkable contribution was made by Milgrom and Weber (1982a), who borrowed a
statistical concept (multivariate total positivity of order 2, MTP2) and applied it to a general
model of symmetric auctions.1 Affiliation is a generalization of independence—see its defi-
nition in section 2—that was introduced through the appealing positive dependence intuition:
“Roughly, this [affiliation] means that a high value of one bidder’s estimate makes high values
of the others’ estimates more likely” (Milgrom and Weber (1982a, p.1096)). Among many im-
portant results, Milgrom and Weber (1982a), were able to show that positive dependence (in
the form of affiliation) does not create problem for pure strategy equilibrium existence,2 but
it affects in a clear way the revenue ranking of auctions, that is, under affiliation, the English
and the second-price auction give higher expected revenue than the first-price auction (in self-
explanatory symbols: RE > R2 > R1). These two results suggest an economic interpretation
in terms of comparative statics: when the assumption of independence is relaxed in the direc-
tion of positive dependence, equilibrium is not a problem and the revenue superiority of the
English auction (and second-price auction) increases.3 From an economic point of view this
comparative statics exercise is very interesting, since it clearly indicates what happens to the
conclusion of the revenue equivalence theorem (RET) when one of its assumptions is relaxed
(from independence to affiliation).4

For a quarter of a century, affiliation has been part of the foundations of auction theory and

1In two previous papers, Milgrom (1981b) and Milgrom (1981a) presented results that used a particular ver-
sion of the concept, under the name “monotone likelihood ratio property” (MLRP). It is also clear that Wilson
(1969) and Wilson (1977) influenced the development of the affiliation idea. Nevertheless, the concept was fully
developed and the term affiliation first appeared in Milgrom and Weber (1982a). See also Milgrom and Weber
(1982b). When there is a density function, the property had been previously studied by statisticians under differ-
ent names. Lehmann (1966)) calls it Positive Likelihood Ratio Dependence (PLRD), Karlin (1968) calls it Total
Positivity of order 2 (TP2) for the case of two variables or Multivariate Total Positivity of Order 2 (MTP2) for the
multivariate case.

2Although equilibria in mixed strategies always exist (Jackson and Swinkels (2005)), first-price auctions may
fail to possess a pure strategy equilibrium when types are dependent. However, Milgrom and Weber (1982a)
proved that affiliation ensures the existence of a symmetric monotonic (increasing) pure strategy equilibrium
(SMPSE) for symmetric first-price auctions. Milgrom and Weber (1982a) also proved the existence of equilibrium
for second-price auctions with interdependent values. In our setup (private values), the second-price auction
always has an equilibrium in weakly dominant pure strategies, which simply consists of bidding the private
value.

3For private value auctions, which is the focus of this paper, English and second-price auctions are equivalent,
which implies RE = R2. See Milgrom and Weber (1982a).

4Besides independence, the RET requires other restrictive conditions, such as symmetry and risk neutrality.
The revenue ranking of auctions is undetermined if all those assumptions are relaxed. Thus, the importance of
the result is akin to a comparative statistics exercise: holding everything else fixed, what changes if independence
is relaxed in the direction of positive dependence?
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almost synonymous with dependence in auctions. Affiliation’s monotonicity properties (see
Theorem 5 of Milgrom and Weber (1982a)) combine well with natural properties of auctions,
simplifying the analysis and allowing useful predictions. But the success of affiliation is not
restricted to auction theory. Whenever information is important, affiliation may potentially
be applied. In fact, researchers in many different areas of economics and finance used the
concept to obtain useful results.5 In sum, few theoretical tools achieved as broad an impact as
affiliation.

However, as with any scientific achievement, affiliation has limitations. The purpose of this
paper is twofold: to reveal some of affiliation’s limitations and to establish new facts that may
lead to different approaches in the study of dependence. The assessment of affiliation covers
sections 3 and 4 (section 2 introduces the model and gives basic definitions). The main result
of this first part is Theorem 4.2, which shows that the revenue ranking implied by affiliation
can be reversed, that is, R1 > R2, even under a strong form of positive dependence (first-order
stochastic dominance). In other words, affiliation’s and positive dependence’s implications
may differ. Section 5 collects the results that indicate new directions. The main result of this
part is Theorem 5.2, which allows a classification of dependence in cases where it does not
matter (independence can be used) and where it may matter. We argue that this classification
is fundamental for understanding if dependence is at all significant. Using the ideas described
in section 5, experimental or empirical economists can verify whether and to what extent
statistical dependence is important and independence is not already a good approximation of
the reality. If dependence is important, the results in section 5.2 develop a method for its
comprehensive study. In sum, the paper has three clear messages: 1) affiliation may give
misleading indications in the study of dependence; 2) independence may be more realistic
and useful than it is usually considered; 3) it is possible to study dependence using a general
method. Although this outline gives a good overview of this paper, we will describe its content
in more detail.

Section 3 discusses whether or not affiliation can be well justified as an assumption in eco-
nomic models.6 Section 3.1 shows that affiliation is an extremely narrow condition. Although
generality is usually considered as a criterion for judging an assumption (see Stigler (1950)),
many common assumptions in economics fail to satisfy this criterion. Thus, affiliation’s nar-
rowness may be considered only a (useful) observation. If we have a reasonable intuition for
affiliation, its restrictiveness may not be an issue. Section 3.2 reexamines the intuition used by
Milgrom and Weber (1982a) to introduce affiliation (the positive dependence intuition referred
to above). This intuition may be misleading, as there are many different (and weaker) defini-
tions of positive dependence. Even if we accept the intuition and “roughly identify” positive

5For instance, Bergin (2001) used affiliation to obtain a generalization of a theorem by Aumann (1976) for
the aggregation of information by a set of individuals; Persico (2000) proved a theorem about the usefulness of
information for a decision maker under affiliation; and Sobel (2006) also used affiliation to study aggregation of
information by groups. This list represents just a very small sample of papers; it would be almost impossible to
cite all applications.

6This paper uses the word “justification” many times and I want to clarify its intended meaning. Justification
is any coherent reason that an economist may have to adopt an assumption. It may be either an intuition for why
it should be typically true or just a pragmatic reason such as “it seems to explain reality.”
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dependence with affiliation, there are problems to reach the conclusion that types are affiliated,
as sections 3.3 and 3.4 discuss. Conditional independence is sometimes used as a justification
for affiliation, but this justification works only in special cases, as shown in section 3.5. Sec-
tion 3.6 explains the fact that English auctions are more common than first-price auctions by
using the revenue equivalence theorem (RET), instead of the linkage principle, thus showing
that the fact that open auctions are more common in the real world should not be considered
evidence for affiliation. The rest of section 3 examines a number of alternative justifications
for affiliation and show that very few, if any, can count as justifications for a generic use of
affiliation in economic models.

On the other hand, sometimes it is argued that even if there is no good reason for the adop-
tion of an assumption, it can be useful to economic theory if its implications are typically true.7

Therefore, it is useful to consider the robustness of some of the main implications of affiliation,
among which we choose equilibrium existence and the revenue ranking of auctions mentioned
above. Section 4 shows that some of the implications of affiliation (equilibrium existence and
the revenue ranking of auctions) are not preserved if we use other, only slightly less restrictive,
notions of positive dependence. This lack of robustness puts in doubt the usefulness of the
results that affiliation allow us to prove, since those results may not be typical.8,9

These negative results suggest that we may need to consider new approaches. Section 5
presents a series of results that may indicate new directions for the study of dependence in eco-
nomic models. These results are organized in two parts: a classification of statical dependence
using conditional independence (section 5.1) and a general approach that allows the study of
dependence in a set of distributions that is dense in the set of all possible distributions (section
5.2).

The main result of section 5.1 is Theorem 5.2, which shows that all economic models fall
into three cases: (1) types are independent; (2) types are dependent, but after receiving their
private information, players’ conditional beliefs about other player’s types are independent;
(3) types are truly statistically dependent, but there always exists a variable that makes types
conditionally independent. In this case, we say that such variable conditionally splits the types.
This last part of Theorem 5.2 does not come from de Finetti’s theorem. Theorem 5.2 also states
that there is a minimally informative random variable that makes the signals of all individuals

7This position was advocated by Friedman (1953).
8In section 5.2, we actually show that an important implication of affiliation, namely, the linkage principle, is

typically false for more general distributions. Thus, Friedman (1953)’s criterion—if the theory produces “good
approximation”—may not be satisfied for affiliation either. In a sense, by assuming affiliation economists take
the risk of reaching the wrong conclusions.

9An opposition that the first part of this paper may bring about is a dismissive attitude like: “we are already
know that affiliation is restrictive, as many other assumptions are. So why bother with this assessment?” It should
be noted that although the restrictiveness reported here is a new theorem, this result is only an introductory aspect
of the assessment made in sections 3 and 4. The assessment is more fundamental and boils down, at the end,
to: a) conceptual difficulties of the whole idea (section 3), and b) the potentially misleading implications of the
assumption (section 4). Both parts of this paper (the assessment and the proposal) could stand as separate papers,
but they complement each other. A negative assessment without a proposal may lead to a “so what?” position.
The proposal without the assessment may lead to the question: “Why bother with any new method if we already
have a much simpler way (affiliation) to address the question of dependence?” The attempt to avoid both positions
explains the current organization of the results.
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(conditionally) independent, that is, there is a minimally informative conditional splitter. In
general there is no “least” informative conditional splitter in the sense of inclusion by σ-fields,
but we introduce a new definition that establishes such an existence. Section 5.1 then discusses
how this result can illuminate the study of dependence in economic models. We show that any
result that holds under independence also holds true if the conditional splitter is known, even if
the types are statistically dependent. Since a conditional splitter always exits and dependence
is not an issue if the players know such conditional splitter, any approach to dependence has to
rule out first the possibility that this conditional splitter is known by the players. Interestingly,
this task may be very difficult to do in empirical works, but it can be done in laboratory settings
with a control of players’ knowledge. This empirical/experimental question is fundamental in
order to determine if (and in which circumstances) dependence is relevant in economic models.

For the cases in which dependence is important, section 5.2 describes a method based
in approximating any distribution by grid distributions, which are distributions whose density
functions are constant in squares. This set of distributions is dense in the set of all distributions
but is sufficiently simple to allow obtaining useful results. This method allows us to have a
very good idea of what happens in general in the set of all distributions. In particular, it allows
us to obtain an indication of the revenue ranking of auctions both under general dependence
and under positive dependence: although the ranking can go in either direction, the “typical”
revenue ranking (in a sense explained in section 5.2) is R1 > R2, exactly the opposite of the
ranking given by affiliation.

In many discussions, especially regarding affiliation’s implications, we focus primarily on
auctions. Because of that, we describe a basic auction setup in section 2. However, our results
are not restricted to auction theory and may be of interest to any discipline that uses statistical
dependence of signals to describe the private information of economic agents. Section 6 briefly
reviews the literature and section 7 discusses potential directions for future work, not only in
theory but also in econometrics and experimental economics.

2 Basic model and definitions
As emphasized above, our main results are not restricted to auctions. However, since affilia-
tion’s main implications discussed in section 4 refer to auctions, we will describe an auction
model below.

There are n bidders, i = 1, ..., n. Bidder i receives private information ti ∈
[
t, t
]

which
is the value of the object for himself. The usual notation t = (ti, t−i) = (t1, ..., tn) ∈

[
t, t
]n is

adopted. The (private) values are distributed according to a pdf f :
[
t, t
]n → R+ which is sym-

metric. That is, if π : {1, ..., n} → {1, ..., n} is a permutation, f (t1, ..., tn) = f
(
tπ(1), ..., tπ(n)

)
.

Let f (x) =
∫
f (x, t−i) dt−i be a marginal of f . Our main interest is the case where f is not

the product of its marginals, that is, the case where the types are dependent. We denote by
f (t−i | ti) the conditional density f (ti, t−i) /f (ti).

After knowing his value, bidder i places a bid bi ∈ R+. He receives the object if bi >
maxj 6=i bj . We consider both first and second-price auctions with private values. This means
that the private information of each bidder (type) is also that bidder’s value for the object. As
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Milgrom and Weber (1982a) show, second-price and English auctions are equivalent in the
case of private values, as we assume here. In a first-price auction, if bi > maxj 6=i bj , bidder
i’s utility is u (ti − bi) and is u (0) = 0 if bi < maxj 6=i bj . In a second-price auction, bidder
i’s utility is u (ti −maxj 6=i bj) if bi > maxj 6=i bj and u (0) = 0 if bi < maxj 6=i bj . For both
auctions, ties are randomly broken.

A pure strategy is a function b : [0, 1]→ R+, which specifies the bid b (ti) for each type ti.
The interim payoff of bidder i, who bids β when his opponent j 6= i follows b : [0, 1]→ R+ is
given by

Πi (ti, β, b (·)) = u (ti − β)F
(
b−1 (β) | ti

)
= u (ti − β)

∫ b−1(β)

t

f (tj | ti) dtj,

if it is a first-price auction and

Πi (ti, β, b (·)) =

∫ b−1(β)

t

u (ti − b (tj)) f (tj | ti) dtj,

if it is a second-price auction.
We focus attention on symmetric monotonic pure strategy equilibrium (SMPSE), which is

defined as b (·) such that Πi (ti, b (ti) , b (·)) > Πi (ti, β, b (·)) for all β and ti. The usual defi-
nition requires this inequality to be true only for almost all ti. This stronger definition creates
no problems and makes some statements simpler, such as those about the differentiability and
continuity of the equilibrium bidding function (otherwise, such properties should be qualified
by the expression “almost everywhere”). Finally, under our assumptions, the second price
auction always has a SMPSE in a weakly dominant strategy, which is b (ti) = ti.

By reparametrization, we may assume, without loss of generality,
[
t, t
]

= [0, 1]. It is also
useful to assume n = 2, but this is not necessary for most of the results. We also assume risk
neutrality, i.e., u (x) = x. Thus, unless otherwise stated, the results will be presented under
the following setup:

BASIC SETUP: There are n = 2 risk neutrals bidders (u (x) = x), with private values
distributed according to a symmetric density function f : [0, 1]2 → R+.

Affiliation is formally defined as follows.10

Definition 2.1 The density function f :
[
t, t
]n → R+ is affiliated if f (t) f (t′) 6 f (t ∧ t′) f (t ∨ t′),

where t ∧ t′ = (min {t1, t′1} , ...,min {tn, t′n}) and t ∨ t′ = (max{t1, t′1}, ..., max{tn, t′n}).

It is useful to introduce the following notation: D will denote the set of all densities:

D ≡ {f : [0, 1]n → R+ :

∫
[0,1]n

f(t)dt = 1}.

The set of all continuous densities will be denoted C and A will denote the set of affiliated
(continuous or not) densities.

10It is possible to define affiliation even if the joint distribution has no density function. See Milgrom and
Weber (1982a).
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3 Justifications for affiliation
This section evaluates many possible justifications for affiliation. The departure point is the
fact proven in subsection 3.1 that affiliation is restrictive. This result motivates the analysis
in subsection 3.2 of the positive independent intuition used to introduce affiliation in the first
place. In this subsection we also develop the concept of rough identification, which is the
practice of “roughly” identifying positive dependence and affiliation. We discuss the appropri-
ateness of such methodological shortcut with respect to other parts of the theory in subsections
3.3 and 3.4. Another common justification for affiliation is conditional independence, dis-
cussed in subsection 3.5. Subsection 3.6 discusses the “evidence” of affiliation through the
predominance of open auctions in the real world. In that subsection, we use the Revenue
Equivalence Theorem to explain exactly the same observation. The justifications for affiliation
in other sciences do not carry over to economics, as subsection 3.7 explains. Other justifi-
cations are considered in subsections 3.8 and 3.9. Subsection 3.10 puts the findings of this
section in perspective and prepares for the discussion in section 4.

3.1 Affiliation is restrictive
In this section, we show that affiliation is a restrictive assumption, i.e., the set of affiliated
densities is small in the set of all densities. There are two ways to characterize a set as small:
topological and measure-theoretic. Although it is possible to show that affiliation is restrictive
in the measure-theoretic sense (see de Castro (2007)), here we limit ourselves to the topological
result, which is simpler.

Recall that C denotes the set of continuous density functions f : [0, 1]n → R+ and A,
the set of affiliated densities (continuous or not). Endow C with the topology of the uniform
convergence, that is, the topology defined by the norm of the sup:

‖f‖ = sup
x∈[0,1]n

|f (x)| .

The following theorem shows that the set of continuous affiliated densities is small in the
topological sense.11 The proofs of this and of all other results are given in the appendix.

Theorem 3.1 The set of continuous affiliated density functions C ∩ A is meager.12 More pre-
cisely, the set C\A is open and dense in C.

Although the restrictiveness of affiliation seems to be a “folk theorem,” it was never stated
or formally proven. Thus, Theorem 3.1 (and the measure theoretical result proved in de Cas-
tro (2007)) fill this gap in the literature. From an economic point of view, however, the most
important aspect of this result may not be its technical contribution, but instead the fact that it

11Theorem 3.1 continues to hold if instead of C we use the set Ck of k-continuously differentiable functions,
with its standard topology. The proof of this fact is essentially the same.

12A meager set (or set of first category) is the union of countably many nowhere dense sets, while a set is
nowhere dense if its closure has an empty interior. Thus, the theorem says more than that C ∩A is meager: C ∩A
is itself a nowhere dense set, according to the second claim in the theorem.
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allows the discussion of a subtle point about the use of affiliation as an assumption of depen-
dence in economic models.

Generality is usually listed as a criterion for judging an assumption or theory—see, for
instance, Stigler (1950, Section VIII-A, p. 392) or Fudenberg (2006, p. 695). However, some
economists may disagree about the importance of such a criterion, since many economic the-
ories are based on narrow assumptions. Following this methodological position, an economist
may consider that the restrictiveness of affiliation established by Theorem 3.1 is not relevant
for an assessment of affiliation. Fortunately, Theorem 3.1 is not subjected to this philosophical
dismissal. If generality is important, then Theorem 3.1 implies that affiliation is not a good
assumption; on the other hand, if generality is not important, we could stick to the classic set-
ting and assume only independence, which is simpler. Thus, regardless of our methodological
position about the relevance of generality/restrictiveness, Theorem 3.1 suggests that affiliation
may not provide the best model for information economics.

Of course, this is still only a preliminary observation. The gap between independence and
affiliation, despite being small, may contain the economically relevant cases. This possibility
is actually suggested by the intuition given for affiliation. The next subsection revisits such an
intuition.

3.2 The intuition for affiliation may be misleading
Affiliation was introduced through the positive dependence intuition: “a high value of one
bidder’s estimate makes high values of the others’ estimates more likely” (Milgrom and Weber
(1982a, p. 1096)). This intuition is very appealing, because positive dependence describes a
circumstance likely to happen in the real world. In fact, many authors introduce affiliation
through this intuition or some of its variations.

Affiliation captures this intuition, as we illustrate in Figure 1, below. Affiliation requires
that the product of weights at points (x′, y′) and (x, y) (where both values are high or both are
low) be greater than the product of weights at (x, y′) and (x′, y) (where they are high and low,
alternatively). In other words, the distribution puts more weight on the points in the diagonal
than outside it.

x

f (x, y )
y

f (x′, y )

x′

f (x, y′)
y′

f (x′, y′)

Figure 1 — The pdf f is affiliated if x 6 x′ and y 6 y′

imply f (x, y′) f (x′, y) 6 f (x′, y′) f (x, y).

However, as long as we are interested in positive dependence, as this intuition suggests,
affiliation is not the only definition available. In the statistical literature many concepts have
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been proposed to correspond to the notion of positive dependence. For simplicity, let us con-
sider only the bivariate case and assume that the two real random variables X and Y have joint
distribution F and strictly positive density function f . The following concepts are formaliza-
tions of the notion of positive dependence for X and Y :13

Property I — X and Y are positively correlated (PC) if cov(X, Y ) > 0.

Property II — X and Y are said to be positively quadrant dependent (PQD) if for all
non-decreasing functions g and h, cov(g (X) , h (Y )) > 0.

Property III — The real random variables X and Y are said to be associated (As) if for
all non-decreasing functions g and h, cov(g (X, Y ) , h (X, Y )) > 0.

Property IV — Y is said to be left-tail decreasing in X (denoted LTD(Y |X)) if for all y,
the function x 7→ Pr[Y 6 y|X 6 x] is non-increasing in x. X and Y satisfy Property IV if
LTD(Y |X) and LTD(X|Y ).

Property V — Y is said to be positively regression dependent on X (denoted PRD(Y |X))
if Pr[Y 6 y|X = x] = F (y|x) is non-increasing in x for all y. X and Y satisfy Property V if
PRD(Y |X) and PRD(X|Y ).14

Property VI — Y is said to be Inverse Hazard Rate Decreasing inX (denoted IHRD(Y |X))
if F (y|x)

f(y|x)
is non-increasing in x for all y, where f (y|x) is the pdf of Y conditional to X . X and

Y satisfy Property VI if IHRD(Y |X) and IHRD(X|Y ).

Since there are many alternative definitions of positive dependence, a natural question
is: “How do such definitions compare with affiliation?” The following theorem provides the
answer.

Theorem 3.2 Let affiliation be Property VII. Then,

(V II)⇒ (V I)⇒ (V )⇒ (IV )⇒ (III)⇒ (II)⇒ (I),

and all implications are strict.

For this theorem, we used only seven concepts for simplicity. Yanagimoto (1972) defines
more than thirty concepts of positive dependence and, again, affiliation is the most restrictive
of all but one.

One can say that the main contribution of this section is not the mathematical result pre-
sented as Theorem 3.2, but the observations that: 1) positive dependence was our primary

13Most of the concepts can be properly generalized to multivariate distributions. See, for example, Lehmann
(1966) and Esary, Proschan, and Walkup (1967). The hypothesis of strictly positive density function is made only
for simplicity.

14This property is also known as monotonicity in the first-order stochastic dominance sense.
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target in the study of dependence in auctions; 2) affiliation is not positive dependence but just
one among many possible definitions—and it is, in fact, one of the most restrictive.

This observation is important for an assessment of the assumption. If we believe that
positive dependence corresponds to the set of economically relevant cases, then affiliation may
not be the correct assumption or, in other words, the received intuition may be misleading.
Accepting the intuition, we may believe that we are covering exactly the important cases,
when we are not. The contribution here is to warn of this potential gap. In fact, we will
show in the subsections below that the gap between the intuition and the actual assumption is
complicated for other assumptions of the model. For this discussion, it will be useful to define
rough identification as the identification of positive dependence with affiliation, based on the
intuition that “roughly, this [affiliation] means that a high value of one bidder’s estimate makes
high values of the others’ estimates more likely.”

3.3 Rough identification and multidimensionality of information
We argued above that the rough identification may be misleading. In this subsection, we show
that even if the rough identification is considered acceptable to the estimates that bidders make,
it does not necessarily follow that affiliation is justified.

The starting point of our argument is a quote from Milgrom and Weber (1982a, p. 1093-4),
where they explain why their model is more realistic:

“(...) consider the situation in an auction for mineral rights on a tract of land
where the value of the rights depends on the unknown amount of recoverable ore,
its quality, its ease of recovery, and the prices that will prevail for the processed
mineral.”

Thus, according to Milgrom and Weber (1982a) the typical situation is that of multidimen-
sional information. In other words, it is likely that the expected value of an object is a function
of various variables (quality, price, etc.), which is to say that private information is a multidi-
mensional signal.15 After making the estimates for each variable, the bidders use some model
to reach an estimate of the value of the object. Now, the (reasonable) idea that the bidders’
estimates are positively correlated is translated by rough identification into the assumption that
the estimates of each variable are affiliated across bidders. The question is, does this imply
that the values of the object are affiliated? It is useful to rephrase this question in more formal
terms: let X1

i , ..., X
m
i denote the estimates of a bidders for the m relevant variables and let

τ i ≡ vi (X
1
i , ..., X

m
i ) be bidder i’s estimation for the value of the object. The rough identifi-

cation leads us to accept that Xk
1 , ..., X

k
N are affiliated for k = 1, ...,m. Would this imply that

the τ i are affiliated? Unfortunately, the answer is no, as the following example shows.16

15Of course, this observation cannot be taken from a naive point of view. In many cases, multidimensional
random variables can be reduced to unidimensional ones. Nevertheless, we will illustrate that such reduction is
not free of consequences.

16In this discussion and in the example, we have worked with private values, although Milgrom and Weber
(1982a) emphasized common values. However, the negative result presented in the example is even easier to
obtain with common values.
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Example 3.3 Auction of an Oil Lease Consider the auction of a tract between two bidders.
Buyer i has a private estimation of the oil quality in the field, (qi), and the amount of re-
coverable ore (si). Estimates of these two variables are drawn from independent distribu-
tions, but q1 and q2 are affiliated, as well s1 and s2. The value of the field is calculated as
τ i = p (qi) si − c (si), where p (.) denotes the price of the oil according to its quality and
c (.) is the cost of oil extraction, depending, obviously, on the size. For simplicity, we will give
numerical examples with discrete values: the size can be S (small), M (medium) or B (big).
The quality can be L (low) or H (high). There are two bidders and their signals obey the
distributions below that are easily checked to be affiliated.

big 1/18 1/12 1/6
medium 1/12 1/6 1/12
small 1/6 1/9 1/18

2 ↑ / 1→ small medium big
Table 1 — Joint Distribution of Bidder’s Estimates for the size of the reserve.

High 1/3 1/3
Low 1/6 1/6

2 ↑ / 1→ Low High
Table 2 — Joint Distribution for the Estimates of the Quality of the Oil

We represent the small (S) size as 1, the medium (M) size as 2 and the big (B) as 3, take
a non-decreasing function of costs, c (1) = c (2) = 1 and c (3) = 3. Let p (L) = 1 and
p (H) = 3. With this, the possible values of the hole are τ i = 0, 1 or 3. Such specification
leads us to the following distribution of types τ i :

3 5/36 5/36 1/6
1 23/216 5/36 7/72
0 2/27 5/72 5/72

τ 2 ↑ /τ 1 → 0 1 3
Table 3 — Distribution of Values

It is easy to see that this distribution is not affiliated: for example, using the four probabil-
ities in the right down corner, we have 5

36
· 5

72
> 7

72
· 5

72
.17

The above example suggests that there are serious problems when affiliation has to be
applied to multidimensional settings.18 The point in the example is actually valid in more

17We can go further. Suppose that the small size (S) is 1
42 , the medium size (M) is 5

6 and the big size (B) is 6
7 .

We take an increasing function of costs, c
(

1
42

)
= 0, c

(
5
6

)
= 29

6 and c
(

6
7

)
= 5. Let p (L) = 6 and p (H) = 7.

With these values, the possible values of the petroleum field are τ i = 1
7 ,

1
6 or 1 and the distribution showed in

Table 3 remains the same, just substituting 0, 1 and 3 with 1
7 ,

1
6 and 1. Then, if bidder 1 has common value

utility u1 = τ1+τ2
2 , as usual, the expected utility turns out to be non-monotonic. Indeed, E

[
τ1+τ2

2 |τ1 = 1
7

]
=

0.3332 > 0.3310 = E
[
τ1+τ2

2 |τ1 = 1
6

]
.

18Previous examples of these problems were provided by Reny and Perry (1999) and Reny and Zamir (2002).
Note that our point here is different from these papers since we are pointing out a fundamental problem for
Milgrom and Weber (1982a)’s basic single object symmetric model, not for its extensions, as those papers do.
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general terms: it can be shown that unless the function vi that defines τ i depends only on
a single variable, the τ i will not be affiliated.19 We conclude that even if we are ready to
accept the rough identification, we will not be able to justify affiliation. In other words, the
justification for Milgrom and Weber (1982a)’s basic model with affiliation is based on a case
where it holds only under stronger assumptions.20

Let us summarize our findings. We began this section by assuming that the rough identi-
fication was true, which implied that bidders’ estimates of the many relevant variables were
affiliated. We have seen that affiliation would pass to the value of the object only if the bidders’
estimates were unidimensional. This assumption may be reasonable in auctions of non-durable
goods, such as fish, if the bidders do not need to take in account different aspects of the product.

Nevertheless, our faith in the theory could lead us to expect that, under the assumptions
of 1) rough identification and 2) bidders’ estimates are just one real variable, the theory could
finally be well grounded in. Unfortunately, this is yet not true, as we discuss next.

3.4 Rough identification and sufficient statistics
To describe the remaining difficulties, let us quote again Milgrom and Weber (1982a):

“To represent a bidder’s information by a single real-valued signal is to make two
substantive assumptions. Not only must his signal be a sufficient statistic for all
of the information he possesses concerning the value of the object to him, it must
also adequately summarize his information concerning the signals received by the
other bidders. The derivation of such a statistic from several separate pieces of
information is in general a difficult task. It is in the light of these difficulties that

19It is worth mentioning that this problem is related only to affiliation and not to positive dependence. Indeed,
Jogdeo (1977) shows that if the estimates are associated (Property III above) and the functions vi are concordant
(monotonic in the same direction) then the τ i will also be associated.

20Consider also the following reasoning, which closely relates the use of many variables to the need of positive
correlation (and, hence, affiliation, under the rough identification):

“What are we to use in place of the independence assumption? When the bidder’s costs or val-
uation depend on some common random factors, so that all the bidders are estimating the same
variables, their estimates will be positively correlated even if their estimation errors are indepen-
dent. Positive correlation has been especially prominent in models of auctions for oil and gas
drilling rights, where the rights being acquired are, to a first approximation, of equal value to each
of the bidders, and the main uncertainties concern such common factors as the quantities of recov-
erable hydrocarbons, the cost of recovery, the costs of transporting the product to market (perhaps
through as yet undeveloped pipelines over the Arctic Slope), future world energy prices, and so on.
The common uncertainties found in these auctions also play a large role in the sale of items like
wine or art which are purchased at least partly for their savings or investment value, as the parties
estimate what it would cost to purchase the same vintage in the future or what the eventual resale
price for the painting will be. So there is good reason to believe that positive correlations among
value estimates will often be present.

The actual equilibrium analysis of auctions relies on a stronger notion than positive correlation.
The appropriate concept, known as affiliation, was introduced by Milgrom and Weber (1982).”
Milgrom (1989, p. 13-4)
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we choose to view each Xi as a “value estimate,” which may be correlated with
the “estimates” of others but is the only piece of information available to bidder
i.” Footnote 14, p. 1097

Now, the reasonable positive dependence intuition and the rough identification, that were
previously justified for the estimates of the bidders, have to apply, indeed, for sufficient statis-
tics. But sufficient statistics can be much more complex than simple estimates, as the quotation
above points out. It is not clear why the positive dependence intuition should be considered
reasonable for sufficient statistics. This point is, of course, related to the previous one, about
multidimensional of estimates, but it is qualitatively different, since sufficient statistics sum-
marize not only the bidder’s own estimates, but also “his information concerning the signals
received by the other bidders”. Therefore, affiliation’s justification seems even harder than the
previous subsection suggested.21

This discussion suggests that we need a theory to derive and characterize the sufficient
statistics from the pieces of information possessed by the bidders. In the absence of such a
theory, we cannot be sure of what we are really assuming when we think of sufficient statistics
as affiliated values. Of course, it is possible that in many settings the assumption is reasonable,
but it is necessary to classify in which situations this is (approximately) true.

3.5 Conditional independence
A standard way to justify affiliation is to appeal to conditional independence. In fact, affiliation
was originally motivated using conditional probabilities (see Milgrom and Weber (1982a, p.
1094). Conditional independence models assume that the signals of bidders are conditionally
independent, given a variable v (the intrinsic value of the object, for instance). Since symmetry
is the same as exchangeability, which is the main assumption of de Finetti’s Theorem, some
auction specialists seem to believe that de Finetti’s Theorem implies that conditional indepen-
dence holds in symmetric auctions without loss of generality. De Finetti’s theorem states the
following:

De Finetti’s Theorem. Consider a sequence of random variables X1, X2,..., and assume
that they are exchangeable, that is, assume that the distribution of (X1, ..., Xn) is equal to the
distribution of

(
Xπ(1), ..., Xπ(n)

)
, for any n and any permutation π : N → N. Then, there is

a random variable Q such that all X1, X2,..., are conditionally independent (and identically
distributed) given Q.22

21More technically, one has to remember that a general theory of beliefs (about the beliefs) should take in
account models of higher order beliefs (or even the universal type space of Mertens and Zamir (1985)). In this
framework, it is not well known what affiliation implies or requires.

22De Finneti proved this theorem for the case where the Xi are Bernoulli variables. Hewitt and Savage (1955)
extended it to the general setting. The statement above is somewhat vague. A precise statement is as follows:
Let X1, X2,..., be an exchangeable sequence of random variables with values in a set S. Then there exists a
probability measure µ on the set of probability measures ∆(S) such that for all measurable sets A1, ..., An,

Pr(X1 ∈ A1, ...., Xn ∈ An) =
∫

∆(S)

Q(A1) · · ·Q(An)µ(dQ).
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Unfortunately, however, de Finneti’s theorem is not valid for standard models of auction
theory, even assuming symmetry. The reason is that standard auction models consider a finite
number of players and, hence, a finite number of random variables. De Finneti’s theorem is
valid only for an (infinite) sequence of random variables.23 The following example illustrates
the problem:

Example 3.4 Consider two random variables, X1 and X2, taking values in {0, 1}, with joint
distribution given by: P (X1 = 0, X2 = 1) = P (X1 = 1, X2 = 0) = 1

2
− ε and P (X1 =

0, X2 = 0) = P (X1 = 1, X2 = 1) = ε. It is easy to see that X1 and X2 are symmetric
(exchangeable). In the appendix, we show that the conclusion of de Finetti’s Theorem cannot
hold if ε < 1/4.24

Thus, de Finneti’s Theorem does not imply that conditional independence is a generic
condition in symmetric auctions. There is, however, another way to justify conditional inde-
pendence, as we discuss in section 5.1. However, even if we are ready to assume conditional
independence, this is not yet sufficient for affiliation. To see this, assume that the pdf of the
signals conditional to v, f (t1, ..., tn|v), is C2 (twice continuously differentiable) and has full
support. It can be proven that the signals are affiliated if

∂2 log f (t1, ..., tn|v)

∂ti∂tj
> 0,

and

∂2 log f (t1, ..., tn|v)

∂ti∂v
> 0, (1)

for all i, j (see Topkis (1978, p. 310)). It is important to note that conditional independence
implies only that

∂2 log f (t1, ..., tn|v)

∂ti∂tj
= 0.

Thus, conditional independence is not sufficient for affiliation. To obtain affiliation, one needs
to assume (1) above, i.e., that ti and v are affiliated. In other words, to obtain affiliation from
conditional independence, one has to assume affiliation itself. Thus, conditional independence
does not give an economic justification for affiliation.

The fact that we are not able to find a justification in the general model of conditional
independence does not imply that it does not exist, at least in special cases. See the results and
discussion in section 5.1.

23One can assume that there are an infinite number of potential players in the auction, but for some reason only
a finite number of them actually participate. Then, one can apply de Finetti’s theorem. However, this will be of
course with a loss of generality.

24See also Proposition 5.7 below. Example 3.4 generalizes an example given by Diaconis and Freedman
(1980). They prove an approximation version of de Finneti’s theorem for a finite set of random variables. See a
discussion of their paper after Proposition 5.7.
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There is a particular conditional independence model where affiliation can be reasonably
justified. Assume that the signals ti are a common value plus an individual error, that is,
ti = v + εi, where the εi are independent and identically distributed. Now, we almost have
the result that the signals t1, ..., tn are affiliated: it is still necessary to assume an additional
condition. Let g be the pdf of the εi, i = 1, ..., n. Then, t1, ..., tn are affiliated if and only if g
is a strongly unimodal function.25,26

3.6 The explanation of open auctions predominance
It is sometimes argued that affiliation is a sound assumption because it successfully explains
why English auctions are more common in reality than first-price auctions. The explanation
comes from Milgrom and Weber (1982a)’s famous result that English auctions yield (weakly)
higher expected revenue than first-price auctions under affiliation. This result is usually con-
trasted with the Revenue Equivalence Theorem (RET), which says that all standard auctions
(under some assumptions) give exactly the same revenue. This subsection argues that such
an explanation cannot be considered as evidence of affiliation and, therefore, it shall not be
regarded as an affiliation’s justification. The main point is the fact that this explanation is not
the only plausible one. Indeed, this subsection offers a new explanation for the English auction
predominance based exactly in the RET theorem.

Let us begin by observing the fact that when auctions began to be used thousands of years
ago, when most people were illiterate, the task of writing a bid in a sealed envelope would be
highly non trivial. Thus, the fact that open auctions were more common in the past is an imme-
diate consequence of technological restrictions at that time. This simple observation explains
the predominance of open auctions in the past. Why is that they are still more prevalent today,
where the cost differences are not that large? The RET suggests that all auction mechanisms
give the same revenue. In this case, sellers do not have any incentive to switch from open
auctions to sealed-bid ones. Therefore, the predominance of open auctions can be sustained.

It is worth clarifying that we do not claim that this explanation is better than the one pro-
vided by affiliation. Our point is weaker: the predominance of open auctions is not necessarily
a justification or an evidence of affiliation. On the contrary, we have just seen how we can use
the RET to explain exactly the same thing! It is also interesting to observe that it is difficult
to find empirical works supporting the thesis that English auctions are revenue superior.27 A
justification of affiliation through the revenue superiority of English auctions would need first
to establish this superiority in empirical findings.

25The term is borrowed from Lehmann (1986). A function is strongly unimodal if log g is concave. A proof
of the affirmation can be found in Lehmann (1986, Example 1, p. 509), or obtained directly from the previous
discussion.

26Even if g is strongly unimodal, so that t1, ..., tn are affiliated, it is not true in general that t1, ..., tn, ε1, ...,
εn, v are affiliated.

27For a review of empirical works in auctions, see Laffont (1997).
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3.7 The use of affiliation in other sciences
As we commented in the introduction, affiliation is used—under other names—in other sci-
ences. Thus, a natural question would be: “How can the use of affiliation be justified in other
sciences but not in economics?”

Affiliation is used in statistics, as Positive Likelihood Ratio Dependence (PLRD), the name
given by Lehmann (1966) when he introduced the concept, or in reliability theory, as Total
Positivity of order 2 (TP2) for the case of two variables, or Multivariate Total Positivity of
Order 2 (MTP2) for n variables, after Karlin (1968). TP2 is used when there are good reasons
for adopting special distributions in some problems, and those distributions happen to satisfy
the TP2 condition. An example of this can be seen in the historical notes of Barlow and
Proschan (1965, Chapter 1) about reliability theory. It is natural to assume that the failure
rates of components or systems follow specific probabilistic distributions (exponentials, for
instance), and such special distributions have the TP2 property. Thus, the corresponding theory
of total positive distributions can be advantageously used. Another example of this is the use
of copulas.28 If we assume that the distribution is in a family of copulas that have the MTP
property, then the use of affiliation’s properties and implications is advantageous and justified
by the choice of the set of distribution functions.

In the case of economic models, especially auction theory, the random variables (types)
represent information gathered by the bidders. There are some situations where we can assume
special forms of distributions, but in general there is no justification for such assumptions. In
fact, specific distributions are rarely assumed in the theory.29 Thus, the compelling justification
that is presented for applications in reliability theory or statistics is not valid for economics.

3.8 Monotonic comparative statics
Monotone comparative statistics play a special role in economics. Results related to this tech-
nique are considered central to modern economics. See, for instance, Milgrom and Roberts
(1990) and Milgrom and Shannon (1994)). Thus, if one is interested in this kind of results,
affiliation may seem a natural assumption, not because of its soundness, but because of the
results that it delivers. In sum, this justification is based on the results, not in the foundations
of the assumption.

However, even if one really wants to focus only on monotone comparative statics results,
it is not completely clear that affiliation is the right assumption. Reny and Zamir (2004) show
that affiliation is not sufficient to imply the standard single-crossing condition in asymmetric
auctions (although it is sufficient to imply a weaker condition that turns out to be sufficient for
equilibrium when the signals are unidimensional). More important, they show that an auction
with multidimensional affiliated signals may fail to have equilibrium in monotone strategies.
Also, McAdams (2003) gives an example with three bidders and affiliated types where a non-
monotonic equilibrium can exist. Perry and Reny (1999) show that the linkage principle can

28See, for instance, Li, Paarsch, and Hubbard (2007).
29McAfee and Vincent (1992) make a similar observation, when they note the “lack of any a priori guidance

about the appropriate distribution” (p. 512).
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fail in multi-unit auctions. In other words, affiliation is not in general sufficient to monotonic
equilibria or monotone comparative statics results out of some standard cases. On the other
hand, independence is in general sufficient for monotonic results. Thus, one can think that the
advantage and importance of monotonic methods may provide a stronger support for the use
of independence than for the use of affiliation.30

3.9 Other Justifications
Another kind of justification for affiliation may arise when we have some reason to believe or
accept that the bidders’ types have a specific distribution. If such distribution has the affiliation
property, then the use of affiliation is justified. This is the case, for example, when we assume
that the distributions are in some family of affiliated copulas. As we discuss in section 3.7, the
problem with this justification is that there is very little support for using specific distributions
as a model of players’ beliefs.

In some cases, the assumption can be justified only by a pragmatic reason: “use affiliation
because it works.” Although this justification may not appear compelling at least at first glance,
it is generally accepted when the focus is on the results, not on the appealing properties of the
assumption. In a sense, the assumption is justified by methodological advantages, not by its
soundness. This kind of justification is, in fact, very common, especially in applied works.
Note however that such kind of justification would also apply to independence.

3.10 Discussion
This section showed that most justifications for the use of affiliation in economics are not
well founded. However, it should be noted that the results and discussions in this section do
not imply that affiliation is not satisfied in the real world; only empirical tests can assert this.
Such tests are necessary, but they seem largely absent in the current experimental or empirical
literature.31

Even if affiliation is not valid in the real world, the above analysis does not constitute yet
a definitive reason to dismiss it. Rather, it is important to verify whether its implications are
typically true or not. As Friedman (1953) argues, the most important criterion for judging
an assumption is whether the resulting theory “yields sufficiently accurate predictions” (p.
14). This methodological position motivates the next section, which analyzes affiliation’s
implications.

30Again, it is possible to conceive a combination of criteria that would justify affiliation. For instance, the
economist may want monotonicity and generality. And in some cases, affiliation does deliver monotonic results
and, in some aspects, is more general. But in this case, other positive dependence conditions, such as those
presented in section 3.2, should also be considered. For instance, van Zandt and Vives (2007)’s theorem discussed
in section 4 shows that Property V above (first-order stochastic dominance) is sometimes sufficient to monotonic
equilibrium existence.

31See Laffont (1997) for a survey of empirical literature on auctions. We are aware of only two independent
working papers proposing tests of affiliation: de Castro and Paarsch (2008) and Jun, Pinkse, and Wan (2008).
Both papers were motivated by an earlier version of this paper. See also section 7 for a final discussion of this
topic.
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4 Affiliation’s implications may fail even under strong pos-
itive dependence

Affiliation has been used in the proof of many results. These results can be classified in two
groups: facts that are already true for the independent case (affiliation allows a generalization)
and predictions that are qualitatively different from the case of independence. In this section,
we will focus on one implication for each of these groups.

The first one is the existence of symmetric monotonic pure strategy equilibrium (SMPSE)
for first price auctions, generalized from independence to affiliation. The second one is the
revenue ranking of auctions: under affiliation, the English and the second-price auction give
expected revenue at least as high as the first price auction (a fact that we denote by R2 > R1).
This last result is in contrast with the case of independence, where the Revenue Equivalence
Theorem (RET) implies the equality of the expected revenues (R2 = R1).32,33 Both implica-
tions were obtained by Milgrom and Weber (1982a) and I chose them because of their impor-
tance. The purpose of this section is to verify whether these implications (existence of SMPSE
and R2 > R1) are true in a more general setting.

4.1 Equilibrium existence
Is the existence of SMPSE true under other definitions of positive dependence (see section
3.2)? Theorem 4.1 below shows that the following property is sufficient:34

Property VI′ — The joint (symmetric) distribution of X and Y satisfy Property VI′ if for
all x, x′ and y in [0, 1],

x > y > x′ ⇒ F (y|x′)
f (y|x′)

>
F (y|y)

f (y|y)
>
F (y|x)

f (y|x)
.

It is easy to see that Property VI implies Property VI′ (under symmetry and full support).
Thus, the question becomes whether or not it is possible to generalize the existence of SMPSE
for Property V or even further.

If we define Π (x, y) = (x− b (y))F (y|x), where b (·) is a candidate for symmetric equi-
librium,35 then equilibrium existence is equivalent to Π (x, x) > Π (x, y). Since b (·) is mono-
tonic, one may conjecture that the monotonicity of F (y|x) — as Property V assumes — may
be sufficient for equilibrium existence, through some single crossing arguments (see Athey
(2001)). Since Property V is still a strong property of positive dependence, this conjecture

32Since affiliation contains independence as a special case, the results can be qualitatively different, but must
have an overlap.

33Both the revenue ranking under affiliation and the RET requires symmetry, risk neutrality and the same
payoff by the lowest type of bidders.

34Motivated by an earlier version of this paper, Monteiro and Moreira (2006) obtained other generalizations
of equilibrium existence for non-affiliated variables. Their results are not directly related to positive dependence
properties.

35This candidate is increasing and unique, as we can show using standard arguments. See Maskin and Riley
(1984) or de Castro (2008).
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may be considered reasonable. In fact, the reader may think that the following recent result by
van Zandt and Vives (2007) actually proves that first-order stochastic dominance is sufficient
for equilibrium existence in auctions:

Theorem (van Zandt and Vives, 2007): Assume that for each player i:

1. the utility function is supermodular in the own player’s action ai, has increasing differ-
ences in (ai, a−i), and has increasing differences in (ai, t); and

2. the beliefs mapping pi : Ti →Mi is increasing in the first-order stochastic dominance
partial order.

Then there exist a greatest and a least Bayesian Nash equilibrium, and each one is in monotone
strategies.

Despite these compelling reasons, the conjecture that Property V is sufficient for equi-
librium existence in auctions is actually false; the following theorem clarifies that SMPSE
existence does not generalize beyond Property VI.36

Theorem 4.1 If f : [0, 1]2 → R satisfies Property VI′, there is a SMPSE. Nevertheless, Prop-
erty V is not sufficient for the existence of SMPSE.

This theorem shows that the rationale for existence of SMPSE existence for Property V do
not survive a formalization of the result. Simply, Property V is not strong enough to control
the equilibrium inequality Π (x, x) > Π (x, y) for every pair of points (x, y).

4.2 Revenue ranking
The next implication—R2 > R1—is also an inequality, but it is an inequality over expected
values, not specific realizations. For some realizations of the variables, the second-price auc-
tion can give less revenue than the first-price auction, but for the inequality R2 > R1 to be
true is sufficient that the opposite happens on average. Since this is a statement about average
cases, one could expect that the revenue ranking R2 > R1 would be stable across the cases of
positive dependence.

There is yet another way of reaching the same conclusion: it is the intuition for the revenue
ranking R2 > R1, which is a contribution of Klemperer (2004, p.48-9):

[In a first-price auction, a] player with value v + dv who makes the same bid
as a player with a value of v will pay the same price as a player with a value of
v when she wins, but because of affiliation she will expect to win a bit less often
[than in the case of independence]. That is, her higher signal makes her think her

36van Zandt and Vives (2007)’s main result does not apply because even simple auctions with 2 players and
private-values do not satisfy one of their assumptions (increasing differences). In fact, if ti > a′j > a′i > aj > ai
then (ti − a′i)1[a′

i>a
′
j ] − (ti − a′i)1[a′

i>aj ] = −(ti − a′i) < 0 while (ti − ai)1[ai>a′
j ] − (ti − ai)1[ai>aj ] = 0, to

the contrary of the increasing differences requirement.
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competitors are also likely to have higher signals, which is bad for her expected
profits.

But things are even worse in a second-price afilliated private-values auction for
the buyer. Not only does her probability of winning diminish, as in the first-price
auction, but her costs per victory are higher. This is because affiliation implies that
contingent on her winning the auction, the higher her value the higher expected
second-highest value which is the price she has to pay. Because the person with
the highest value will win in either type of auction they are both equally efficient,
and therefore the higher consumer surplus in first-price auction implies higher
seller revenue in the second-price auction.

This intuition appeals mainly to the notion of positive dependence. Thus, the intuition
should lead us to believe that the revenue ranking is still valid under other definitions of positive
dependence. Despite these intuitive arguments, however, the following theorem shows that the
implication R2 > R1 is not robust for weaker definitions of positive dependence.

Theorem 4.2 If f satisfies Property VI’ (see definition above), then the second-price auction
gives greater revenue than the first-price auction (R2 > R1). Specifically, the revenue differ-
ence is given by

n

∫ 1

0

∫ x

0

b
′
(y)

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

where n is the number of players and b (·) is the first-price equilibrium bidding function, or by

n

∫ 1

0

∫ x

0

[∫ y

0

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)

F (y|y)

]
· f (y|x) dy · f (x) dx, (2)

where L (α|t) = exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
.

More importantly, Property V is not sufficient for this revenue ranking.

Interestingly, the empirical literature has tested affiliation’s implication that the English
auction gives higher revenue than the first-price auction, but there is no clear confirmation of
this prediction.37

4.3 Discussion
The results of this section are essentially negative: affiliation’s implications are not robust.
This puts in doubt the comparative statics conclusion mentioned in the introduction. Namely,
Milgrom and Weber (1982a)’s results and intuition suggest that when the assumption of inde-
pendence is relaxed in the direction of positive dependence, equilibrium is not a problem and
the revenue superiority of the English auction (and second-price auction) increases. Section 3

37See Laffont (1997).
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shows that there is a gap between affiliation and positive dependence and Theorems 4.1 and
4.2 show that this gap is important for the two implications analyzed, even in the narrow setup
considered here (private values auctions with risk neutrality and symmetry).38 In sum, it may
be the case that affiliation is providing us with misleading indications.

It should be emphasized that there is no mathematical problem with earlier contributions.
However, as economists we see in our results more than just their mathematical content.39

This methodological position is motivated by the hope that our results tell us something about
economic phenomena. The results in this section are relevant to clarify the limitations of this
hope with respect to affiliation.40

Of course, a skeptical reader may not view economic results in this way. Even in this case,
the results of this section still provide technical contributions: a counterexample for equilib-
rium existence in auctions if just Property V (first-order stochastic dominance) is satisfied
(Theorem 4.1); a new proof of the revenue ranking of auctions (R2 > R1), a generalization
of this ranking to Property VI and a respective counterexample if only Property V is satisfied
(Theorem 4.2).

5 Alternative approach to the study of dependence
In this section, we consider an alternative approach to the study of dependence, which is
divided into two parts. Each part contains results that are useful and informative by themselves.
We collect them here because together they offer a general approach to the the dependence
problem.

The first part (section 5.1 below) shows that there always exists a minimally informative
random variable that makes any set of random variables conditionally independent. Theorem
5.2 also provides a classification of the cases of statistical dependence where the dependence
matters and where it does not matter (all the results that hold under independence can be
used). As we argue in that subsection, this result suggests that independence may be actually
less restrictive that appears at first sight. However, of course there are cases where dependence

38The fact that we worked with the restrictive symmetric risk neutral private values setup is not motivated by
the difficulty in making these observations in a broader context. On the contrary, these results would be easier to
obtain in more general settings. Our assumptions are restrictive exactly to show that affiliation’s implications are
not robust even in a particular case.

39For a useful illustration of this difference, consider again the revenue equivalence theorem (RET) and the
revenue ranking of auctions under affiliation (RRA), i.e., the fact that the second-price auction gives expected
revenue than the second-price auction (R2 > R1). From a mathematical point of view, RRA requires less
(affiliation instead of independence) than RET, but also says less (R2 > R1 instead of R2 = R1). Usually, an
economist does not compare RET and RRA in this way (requires less, says less). What is understood by the
contribution of RRA with respect to the RET is a kind of “comparative statics” result, in the sense that positive
dependence (affiliation) points out in the direction of increasing revenue advantage by the second-price auction,
as discussed above.

40A qualification is necessary, though: here we only proved that other (yet strong) definitions of positive
dependence are not sufficient for affiliation’s implication. In principle, it would still be possible that affiliation’s
implications were typically true in the class of all distributions with positive dependence. However, the results
presented in section 5.2 indicate that this weaker claim is also not true; affiliation’s implications are typically false
in the universe of all positive dependent distributions.
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is truly important. For those cases, the second part proposes the use of grid distributions. This
method is of great generality, but still tractable. The main results regarding this approach are
described here, but they are developed more extensively in a separate paper ( de Castro, 2008).

5.1 Conditional Independence
Consider the following definition:

Definition 5.1 (Conditional splitter) Let (Ω,Σ,Pr) be a probabilistic space, such that Ω is a
Polish (complete separable metrizable) space. Given σ-fields F i ⊂ Σ, i = 1, ..., n, we say that
F conditionally splits (or F is a conditional splitter of) F1, ..., Fn if F1, ..., Fn are condition-
ally independent given F . We say that a variable Z conditionally splits variables X1, ..., Xn

if the σ-field generated by Z, denoted σ(Z), conditionally splits σ(X1), ..., σ(Xn).41

It is useful to observe that the information content of a variable Z must refer to the σ-field
σ(Z) associated with it, and not with the variable’s value. For instance, it is clear that the
variable Y = 2Z contains exactly the same information as Z does and, as natural, σ(Y ) =
σ(Z) but Y 6= Z. The following theorem, whose statement and proof are slightly informal (a
more formal statement and proof are given in appendix B), is the main result of this section.

Theorem 5.2 Consider a game of asymmetric information with n players, such that each
player i = 1, ..., n receives a random variable (type) ti ∈ Ti and there is a joint distribution
on all types. Then one of the following alternatives happens:

1. the types are statistically independent;

2. the types are statistically dependent, but when each player receives his type, it becomes
common knowledge that the (conditional) beliefs are independent;

3. the types are statistically dependent, but there is a conditional splitter of the types.42

Moreover:

(a) any conditional splitter contains strictly more information that it is common knowl-
edge for the players;43

41The σ-field generated by a r.v. Z : Ω→ R is defined by σ(Z) = Z−1(B), where B is the Borel σ-field in R.
42 Thus, if players become aware of the outcome of this conditional splitter, case 3 is converted into case 2.
43Note that this statement requires proof, as it could in principle be the case that a random variable with

information completely different from the common knowledge information is a conditional splitter. Note also
a subtle aspect of this statement: if Z is a conditional splitter and C is a variable representing the common
knowledge information, statement 3(a) says only that σ(Z) ⊃ σ(C). It may happen that there exists a variable
Y , with σ(Y ) 6⊂ σ(C) such that if the players are informed of Y , the types will be conditionally independent.
This only means that σ(Y,C) is a conditional splitter and this does not contradict statement 3(a), since obviously
σ(Y,C) ⊃ σ(C).
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(b) there exists a conditional splitter that is minimally informative (in the sense of
inclusion by σ-fields);44

(c) if the support of types is a finite set, there is an algorithm to find all the minimally
informative conditional splitters Z;45

(d) in general, there is not a least informative conditional splitter in the sense of inclu-
sion by σ-fields;46

(e) nevertheless, in the finite case there is a least informative conditional splitter in the
sense of proximity of conditional beliefs.47

Case 1 in Theorem 5.2 is familiar and requires no comments. Cases 2 and 3 seem to re-
quire less and deliver more than de Finetti’s theorem. While de Finetti’s theorem requires
exchangeability and an infinite number of random variables (as we showed in example 3.4),
case 3 in Theorem 5.2 covers the case of a finite number of random variables that are not nec-
essarily exchangeable and states the existence of a variable that makes all types conditionally
independent. More important, at first glance, this existence seems to be in contradiction with
example 3.4. The contradiction is, of course, only apparent. The difference between the two
settings is that Theorem 5.2 does not assume nor does it deliver symmetric distributions, while
de Finetti’s theorem requires the conditional distribution to be symmetric (exchangeable) but
also delivers identical (i.i.d.) distributions. Therefore, Theorem 5.2 is incomparable to de
Finetti’s theorem.48 The following example illustrates this matter.

Example 5.3 (Example 3.4 continued.)

Consider the same distribution described in Example 3.4 and fix ε = 1
6
< 1

4
. As stated in

Example 3.4, there is no variable Z such that X|Z and Y |Z are conditionally independent and
symmetric. However, consider a variable Z ∈ {0, 1} such that the joint distribution with X

44By “minimally informative” we mean the following: if Y is another variable that makes the types condi-
tionally independent, and Y contains less information than Z (i.e., σ(Y ) ⊂ σ(Z)), then Y contains as much
information as Z (σ(Y ) = σ(Z)). Note that the existence of minimally informative variables is not trivial:
conditional independence is not preserved under the intersection of σ-fields.

45Naturally, our algorithm produces σ-fields, not exactly specific variables.
46By least informative conditional splitter we mean the following: if Y is another conditional splitter, then

σ(Y ) ⊃ σ(Z). This least informative conditional splitter would contain strictly more information that the com-
mon knowledge, unless we are in case 2 instead of case 3 of this Theorem.

47This statement is inaccurate. We represent conditional expectations by the associated Markov transitions and
observe that they can be seen as functions in L2. Therefore, we can show that there is a unique conditional splitter
that is the closest one (in the standard L2 norm) to the conditional expectation given the common knowledge
information. A formal description of our notion is only possible after a number of technical definitions, which
we prefer to postpone to the appendix B. There are good reasons for using this definition, but, of course, it can be
disputed. Our objective here is just to show that it is possible to give a reasonable definition of “least informative”
that allows to obtain existence. Since this is not a central point for this paper’s objective, we will not discuss this
further.

48Theorem 5.7 below provides necessary and sufficient condition for the conclusion of de Finetti’s theorem
with a finite number of variables in a setting that covers examples 3.4 and 5.3.
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and Y is given by:  a000 a010 a001 a011

a100 a110 a101 a111

 =

 3
48

1
48

5
48

15
48

15
48

5
48

1
48

3
48

 ,
where aijk = Pr(X = i, Y = j, Z = k), for (i, j, k) ∈ {0, 1}3. If we write aij|k for Pr(X =
i, Y = j|Z = k), for (i, j, k) ∈ {0, 1}3, we obtain: a00|0 a01|0

a10|0 a11|0

 =

 3
24

1
24

15
24

5
24

 ;

 a00|1 a01|1

a10|1 a11|1

 =

 5
24

15
24

1
24

3
24

 . (3)

Note that Pr(X = 0|Z = 0) = 1
6

and that Pr(Y = 0|Z = 0) = 3
4
. Therefore, Pr(X = 0, Y =

0|Z = 0) = 3
24

= Pr(X = 0|Z = 0) Pr(Y = 0|Z = 0). A similar verification can be done to
all other cases, showing thatX|Z is independent of Y |Z and, consequently, Z makesX and Y
conditionally independent (is a conditional splitter). Note, however, that the claim in example
3.4 is not violated, since the conditional distributions in (3) are not symmetric.

Figure 2 below illustrates cases 2 and 3 in Theorem 5.2. There are two players with con-
tinuous types t1 and t2 whose support is the union of the rectangles showed in Figure 2. The
random variable Z indicates the rectangle that contains the realization of t1 and t2; the types
are conditionally independent given the rectangle (which occurs, for instance, if the distribu-
tion is uniform in each rectangle). The darker the rectangle, the bigger the probability of that
rectangle. Note that the information contained in the variable Z is common knowledge in case
2, and it is not completely informative (does not imply the knowledge of the other player’s
type) in case 3. Note also that even in case 3, it is possible that some realization of Z is
common knowledge, as shown in Figure 2 (d).

t2 t2 t2 t2

t1 t1 t1 t1
(a) Case 2 (b) Case 2 (c) Case 3 (d) Case 3

Figure 2 — Examples of cases 2 and 3 in Theorem 5.2.

Although case 2 seems special, it is not possible to say, from a theoretical point of view,
whether it is typical or not in economic applications. An example will illustrate this claim.
Suppose that an econometrician observes data on wine auctions. Analyzing the data, the
econometrician observes that the bids (and therefore the values, assuming symmetry and affil-
iation) are extremely positively correlated. However, the vintage, the producer (and in some
cases, the previous prices) of that wine are common knowledge to market participants. If the
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econometrician also has this common knowledge information and controls (conditions) on it,
this large correlation will reduce and maybe even disappear. If it disappears, this corresponds
exactly to case 2.

The proof of Theorem 5.2 also gives conditions that characterize the three cases in its
statement (see lemma B.16). Although the proof is too long to describe here, it is useful to
state separately a step in the proof that may be of interest by itself.

Proposition 5.4 Let F1, ...,Fn be the sub-σ-fields of Σ. There exists a σ-field Z ⊂ Σ such
that F1, ...,Fn are conditionally independent given Z . More specifically, given random vari-
ables X1, ..., Xn, then there exists a random variable Z that makes them conditionally inde-
pendent.

While Proposition 5.4 only states the existence of a random variable that makes the types
conditionally independent, Theorem 5.2 deals also with minimally informative variables. Thus,
Proposition 5.4 can be proven with a complete informative variable Z, i.e., a variable that con-
tains all the information about X1, ..., Xn. That this variable exists may not seem completely
obvious. In particular, since X = (X1, ..., Xn) is n-dimensional, one may be confused by
the fact that all information in a model with multidimensional information can be summarized
by a one-dimensional variable (Z). As it turns out, the information contained in any vector
of random variable (with values in Rn) can be summarized by a single dimensional random
variable.49 The following (coding) argument can be instructive.

Assume, without loss of generality, that X i is in [0, 1]. For each i = 1, 2, ..., write X i as
0.Xi1Xi2Xi3.... From this, define Z as the r.v. in [0, 1] whose realization is given by:

Z = 0.X11X21...Xn1X12X22...Xn2X13X23...

Recall that two random variables X and Y are conditional independent given Z if and only
if the additional knowledge of Y does not improve the assessment of X once one knows V ,
that is, Pr (X|Z) = Pr (X|Y, Z). It is easy to see that Z contains all the information that
(X1, X2, ..., Xn) contains, that is, Pr (X i|Z) = Pr (X i|Xj, Z).

Unfortunately, however, this “coding argument” is not a formal proof because it considers
conditioning with respect to null events (Z = z). As it is well-known, a number of paradoxes
may arise from this kind of procedure. See, for example, Billingsley (1995, Exercise 33.1, p.
441) and the following quote: “There are pathological examples showing that the interpretation
of conditional probabilities in terms of an observer with partial information breaks down in
certain cases.” (Billingsley (1995, p. 437)) This “proof” is useful, however, from an intuitive
point of view, because it appeals directly to the notion of information. Consider the following
quote from Billingsley (1995, p. 58-9): “The heuristic equating of σ-field and information is
helpful even though it sometimes breaks down, and of course proofs are indifferent to whatever
illusions and vagaries brought them into existence.”

49This observation is interesting by itself, because it suggests that the gap between the results obtained for
one-dimensional and multidimensional information models is not due to information complexity, but rather to
techniques employed to obtain those results, such as techniques based on order, monotonicity, calculus, etc.
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The confusion about the use of de Finetti’s theorem to deliver conditional independence
(discussed after example 3.4) shows that the statement and proof of Proposition 5.4 is already
helpful.50 The result itself, however, is not totally useful from a practical point of view, because
it is based on a fully informative random variable. This fact highlights the minimal informa-
tiveness established by Theorem 5.2. This result is of economic importance, because the less
information is sufficient to make bidders conditionally independent, the easier it is for bidders
to acquire it. And if conditional independence turns out to be common knowledge, as in case
2, then dependence does not matter: we can apply any result that is valid for independent
variables.

Lemma 5.5 Any result that holds with independent types also holds with the statistically de-
pendent variables in case 2.51

Proof. Although the types in case 2 are statistically dependent, they are independent given the
common knowledge information observed in the interim stage. Following the arguments in
Harsanyi (1967-8), this interim stage is exactly the realistic stage from where we construct the
ex ante stage (and impose the common prior assumption). For the given realization of types in
the interim stage, it is not necessary that the ex ante stage be the original one: it can just be the
event whose occurrence is common knowledge. In that event, the variables are independent.
The result follows.

An immediate corollary of Lemma 5.5 is:

Corollary 5.6 The Revenue Equivalence Theorem (RET) holds for dependent types in case 2
(provided the other assumptions of this theorem also hold).

In particular, the variables illustrated in Figure 2 (b) are truly affiliated, but the RET holds
for this case. Thus, it is important for the study of dependence in economics to be able to
distinguish when we are in case 2. For econometric applications, this seems a rather difficult
task, because one has to know what is common knowledge among the participants, and this
piece of information may be unobservable to the econometrician. In the wine auctions example
given above, it is possible that more than just the vintage is common knowledge; for example,
some brochure could have been distributed or some explanation (information) about the object
may have been given at the the time of the auction, which the econometrician is not aware
and/or cannot use as a control.

Even if the situation corresponds to case 3 instead of case 2, it is possible that Z can be
learned with the repetition of the game. Alternatively, the information contained in Z may
be available for acquisition (from a consultant or a spy, for instance). If Z becomes common
knowledge, case 3 will reduce to case 2. Thus statistical dependence is only relevant in case

50 Although the result contained in Proposition 5.4 is certainly known by specialists, we were unable to find
a good reference for it. See remark B.28 in appendix B for a review of results related to Theorem 5.2 and
Proposition 5.4.

51This statement is slightly informal, but its content should be clear: the conclusions hold conditionally to each
piece of common knowledge information. For instance, we can have monotone pure strategy equilibria in each
common knowledge part, but this does not imply that the equilibria will be overall monotonic.
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3 with a Z that cannot be (is not) learned. Even if a conditional splitter cannot be learned, it
may happen that after conditioning to the common knowledge, the remaining correlation is so
small that independence already gives a good approximation, since revenue and equilibria vary
continuously with the distribution.52 In sum, independence can already give a good approxi-
mation in many cases of interest. However, if this is true or not is an empirical/experimental
question, not a theoretical one. The following summarizes the discussion in this section:

1. There is always a random variable (r.v.) Z that makes the types of the bidders condition-
ally independent.

2. If this r.v. is common knowledge, then the appropriate framework is that of independent
types models.

3. If this r.v. can be learned with time, then the game will converge to the previous situation.

4. Only if the r.v. cannot become common knowledge, then a model with dependence is
truly necessary.

Therefore:

5. It is important to test whether or not independence is a good approximation in econom-
ically relevant environments.

5.1.1 De Finetti’s Theorem for a finite number of random variables

It was noted earlier that Theorem 5.2 ensures the existence of conditional independence but it
does not deliver de Finetti’s Theorem implication that the conditional probabilities are iden-
tical, that is, symmetric. Although the implication given in Theorem 5.2 is sufficient for our
purposes, in some applications one may be interested in the stronger implication, which we
will call symmetric conditional independence. This terminology means that the variables are
not only conditionally independent given Z, but also symmetrically (identically) distributed.
The full exploration of this question is beyond the scope of this paper, but we present here a
theorem in a simple setting in which the question can be totally clarified.

Theorem 5.7 Let X and Y be symmetric (exchangeable) binary random variables that are
statistically dependent. Then there is a binary random variable Z that makes X and Y sym-
metrically conditionally independent if and only if X and Y are positively correlated.

Theorem 5.7 generalizes the claim made in Example 3.4. It should be noted that Diaco-
nis (1977) and Diaconis and Freedman (1980) have previously studied versions of de Finetti’s
theorem for a finite set of variables, but these papers do not present any result comparable

52This statement can be formalized by using the sup-norm in the space of continuous densities. This observa-
tion is sufficiently simple and intuitive, so that we do not pursue its formalization. See, however, items 3 and 4 in
Theorem 5.8 below for related results.
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to Theorem 5.7. They are interested in how the conclusion of de Finetti’s theorem is asymp-
totically true for a finite set of exchangeable variables when the size of the set increases. In
contrast, we are interested in a fixed (and small) set of random variables and look for a (nec-
essary and sufficient) condition for de Finetti’s conclusion to hold exactly.

5.2 Grid Distributions
If we are in case 3 of Theorem 5.2, then we have to deal with general cases of dependence.
The third alternative is designed to be a comprehensible yet tractable approach to general
dependence in economic models. In fact, this approach can also be used to study asymmetries
in auctions. This approach uses grid distributions to approximate any distribution of types.
Grid distributions consist of all distributions whose densities are constant in squares. Figure
3 below represents a grid distribution whose density is constant in four squares that form a
partition of its support. This example corresponds to the simple case of two players with
values v1 and v2, with two intervals for each player.

v1

v2

f (v1, v2)

Figure 3 — The density function of a grid distribution.

Many results concerning this class of distribution functions are presented in de Castro
(2008). For describing some of those results, letD be the set of all probability density functions
(p.d.f.’s) f : [0, 1]n → R, representing the joint distribution of types of n players in a game
of incomplete information (more specifically, an auction). Also, let Dk represent the set of
grid distributions f ∈ D, where the interval [0, 1] is divided in k sub-intervals and let D∞ ≡
∪k∈NDk be the set of all grid distributions (with arbitrary number of intervals).

Theorem 5.8 Consider first-price auctions with n players, with private values in [0, 1].53

Then:

1. The set of grid distributions D∞ is dense in the set of all p.d.f.’s D. More specifically:

2. Let T k : D → Dk denote the projection of D over Dk. Then, T k(f) → f in the strong
sense.54

53The first four claims are not restricted to first-price auctions.
54By strong, we mean in the L1-norm. If f is continuous, the convergence can be established also in the

supnorm.
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3. If f ∈ D is continuous and symmetric, and there exists k0 such that all auction with
distribution T k (f) have a monotonic pure strategy equilibrium (MPSE) for all k > k0,
then f also has a MPSE. Moreover, the equilibria for f is the limit of the equilibria of
T k(f) as k →∞.

4. Conversely, if f has a MPSE, then for each ε > 0, there exists kε such that T k(f) has a
MPS ε-equilibrium for all k > kε and which converge to f ’s equilibrium.

5. If f ∈ D∞ is symmetric, there is a unique candidate for a symmetric MPSE (SMPSE);
moreover a closed form expression of this bidding function is available;55

6. If f ∈ D∞ is symmetric and there are only two risk neutral bidders (n = 2), there exists
an algorithm that decides in finite time whether there is or there is not a symmetric
monotonic pure strategy equilibrium for this auction.56 For f ∈ Dk, the algorithm
requires less than 3 (k2 + k) comparisons. The algorithm is exact, in the sense that
there is an equilibrium if and only if the algorithm detects its modulo only errors in
elementary operations.57

7. If f ∈ D∞ is symmetric or asymmetric, there are n > 2 bidders with any risk attitude,
there is still an algorithm to verify if a MPSE exists or not, although it will not be exact
as before.

A more detailed statement of the above results and their proofs can be found in de Castro
(2008), together with some other facts about grid distributions. The facts that grid distributions
are dense (item 1 in Theorem 5.8 above) and there are sufficient continuity properties (items
3 and 4) show that the study of auctions using grid distributions is meaningful. This method
allows the use of simulations to investigate what is the typical situation in the set of all distri-
butions. In particular, this method allows us to verify that there are many cases of equilibrium
existence in which the revenue ranking is exactly the opposite of that implied by affiliation.
Typically the first-price auction gives higher expected revenue than the second-price auction,
even for the cases with positive dependence.

Figure 4 illustrates the general distribution of the relative revenue difference (Rf
2−R

f
1)/Rf

2 ,
whereRf

1 (Rf
2 ) denotes the expected revenue of the first (second) price auction when the distri-

bution of types is given by the density function f ∈ D4 and there are two risk neutral bidders.
As the reader can see, the peak occurs at –5%, while the linkage principle would imply a
positive number.58 The following remarks are in order:

55Since grid distributions are not continuous, standard techniques for dealing with the solution of the respective
differential equations need adaptation. See de Castro (2008) for details.

56The existence of such an algorithm is not trivial, since there are infinitely many types and the equilibrium
condition should in principle be checked in infinite many points, which is not feasible.

57By elementary operations we mean sums, multiplications, divisions, comparisons and square and third degree
roots.

58The histogram refers to symmetric functions in f ∈ D4 generated at random, and considers only f ∈ D4 for
which a SMPSE exists for the first-price auction with n = 2 players. The algorithm mentioned in point 6 above
was implemented to obtain the results.
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Figure 4: Histogram of R2−R1

R2
, for k = 4, with symmetry and risk neutrality. The peak of the
relative frequency occurs at -5%.

• The histogram moves to the left (the peak becomes more negative) when k increases.

• The result is qualitatively the same if only positive dependent distributions are consid-
ered.

• The result is also qualitatively the same if instead of n = 2, we consider more players.

• Although we have run 107 simulations, the results are already stable for 105.

• The histogram is similar (the peak is also negative) if we consider the absolute difference
Rf

2 −R
f
1 instead of the relative (Rf

2 −R
f
1)/Rf

2 .

• The functions f ∈ Dk were picked at random (generated by a uniform distribution). Of
course, with other distributions over Dk, the histogram may be different. It should be
stressed that this is not a problem of the method proposed here; we used the uniform
distribution over Dk for lack of guidance about what kind of distribution would be the
more realistic one. If the empirical/experimental literature provides guidance as to what
are the typical kinds of distribution, the simulations could be easily adapted.59

• The objective of the exercise shown in Figure 4 is to compare the revenue ranking of first-
price and second-price auctions under general (positive) dependence with affiliation’s

59The determination of what are the typical forms of dependence in the real world is a very important contri-
bution that experimental or empirical economists could make.
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revenue ranking in the simplest of the settings, but the method can be applied more
generally.60

An alternative method to approximate general distributions is to use discrete distributions.
Nevertheless, the use of discrete values precludes us from using the convenient tools of dif-
ferential calculus. This advantage is important because differential calculus is much more
tractable than finite differences methods. In particular, differential calculus allows for a char-
acterization of equilibrium strategies. Grid distribution combine the benefits of the simplicity
of finite values and the tools previously developed.

A possible opposition to the results in this section is that it refers more to simulations than
direct proofs, as usual in economic theory. However, the use of grid distributions does not
exclude the possibility of proving general theorems. Indeed, there is a one-to-one correspon-
dence between grid distributions in Dk and sets of kn random variables in [0, 1]. In particular,
distributions in D∞ can be modeled by sequences of independent random variables. Thus,
many tools of modern Probability can be used to prove general theorems about the properties
of grid distributions. By continuity, such kind of results will be informative about the general
case. de Castro (2008) illustrates this idea by proving that the set of distributions with pure
strategy equilibrium is a small set (it essentially has measure zero) in the set of all distribu-
tions. It should be noted also that this author would not be able to anticipate this fact without
the simulations that the grid method makes possible.

Another observation is that the simulations are not done for particular parametric exam-
ples, as it is usually the case with simulations. The simulations considered here allow the
consideration of the generic picture (a dense set), not particular examples. In this sense, they
are much more informative and useful than usual simulation exercises.

Another conceivable opposition is that this method is restricted to the analysis of MPSE
and it would be desirable to consider mixed equilibria, which are more general. However,
the restriction to MPSE is a characteristic of most of the received auction theory literature.
Although it is certainly desirable to know what happens with mixed strategy equilibria, the
difficulties related to this task are already considerable for games far simpler than auctions.
In other words, our focus on MPSE follows the standard practice in the received literature. It
seems reasonable to pursue a complete understanding of MPSE’s properties before passing to
the much more complex case of mixed strategies.

6 Related literature
Few papers have pointed out restrictions or limitations to the implications of affiliation. Perry
and Reny (1999) presented an example of a multi-unit auction where the linkage principle
fails and the revenue ranking is reversed, even under affiliation. This result shows that revenue
ranking is not robust when the number of objects increases from one to many. In contrast, one

60However, the algorithm for equilibrium existence is exact only in the special case described in item 6 of
Theorem 5.8 (see also item 7). We were able to verify, however, that the general algorithm is accurate. See
de Castro (2008) for more details.
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of our results shows that the revenue ranking is not robust even if we maintain the number of
objects but allow for other kinds of dependences. Klemperer (2003) argues that, in real auc-
tions, affiliation is not as important as asymmetry and collusion and illustrates his arguments
with examples of the 3G auctions conducted in Europe in 2000–2001.

Nevertheless, much more has been written in accordance with the conclusions of affiliation.
McMillan (1994, p.152) says that the auction theorists working as consultants to the FCC in
spectrum auctions advocated for the adoption of the open auction using the linkage principle as
an argument: “Theory says, then, that the government can increase its revenue by publicizing
any available information that affects the licensee’s assessed value.” The disadvantages of the
open format in the presence of risk aversion and collusion were judged “to be outweighed
by the bidders’ ability to learn from other bids in the auction” (p. 152). Milgrom (1989)
emphasizes affiliation as the explanation for the predominance of the English auction over the
first-price auction.

On the other hand, the experimental and empirical literature show an amazing lack of
studies about whether affiliation holds or not. The available studies investigated only some of
the implications of affiliation. See Kagel (1995) for a survey about the experimental literature
and Laffont (1997) for a survey of empirical results in auctions. See also footnote 31.

7 Final remarks
This paper began with an assessment of affiliation because this assumption is widely used as
a substitute for independence not only in auction theory but also in economics of information
in general. This (theoretical) criticism of this paper serves the purpose of motivating the need
for new results and new approaches to the study of dependence in economic models, such as
those presented in section 5. Although this criticism suggests that affiliation is unlikely to hold
in typical situations, it cannot state that it does not hold in general; only empirical studies can
assert this.

The criticism is based in a series of results (theorems and examples), but it does not con-
tain a clear and simple thought experiment to show that affiliation is not realistic, as Allais
(1953) and Ellsberg (1961) do in their famous criticisms of expected utility. The reason for
this absence is that such an example cannot exist in a simple form. This fact comes from
Theorem 5.2 and the discussion following it, which show that it is not possible to rule out
independence (and, therefore, affiliation) without a control of what is common knowledge for
the participants. In other words, it is virtually impossible to assert what kind of dependence is
typical from a purely theoretical point of view. This impossibility raises the question of testing
affiliation and dependence in more general terms. Again, Theorem 5.2 implies that this test
requires special care with characteristics that are unobservable but may be (commonly) known
by market participants.

Experimental studies could shed light on the actual distribution of values across individu-
als, controlling for the common knowledge. It would be very helpful to develop methods to
determine the values that people attribute to objects in an auction and whether those values are
correlated or not. With respect to econometrics, an obvious need is to develop methods to test
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the affiliation of bidders’ values, controlling for the common knowledge (if this is possible).61

It would also be useful to develop techniques to describe the kind of dependence of the bids
in real auctions. It would be very helpful to learn whether the kind of dependence is differ-
ent across different markets and how these differences can be characterized. For instance, is
there less correlation in Internet auctions, where the participants are consumers with almost
no interaction, than in auctions where the participants are firms or professionals acting in the
same industry? Yet another direction of research would be the development of econometric
techniques to deal with dependence out of affiliation.62

In sum, there is much yet to be done to fully understand dependence in economics.

A Proofs

A.1 Proof of Theorem 3.1 .
First, we prove that C\A is open. If f ∈ C\A, then

f (x) f (x′) > f (x ∧ x′) f (x ∨ x′) ,

for some x, x′ ∈ [0, 1]n. Fix such x and x′ and define K = f (x) + f (x′) + f (x ∧ x′) +
f (x ∨ x′) > 0. Choose ε > 0 such that 2εK < f (x) f (x′) − f (x ∧ x′) f (x ∨ x′) and let
Bε (f) be the open ball with radius ε and centre in f . Thus, if g ∈ Bε (f), ‖f − g‖ < ε,
which implies g (x) > f (x)− ε, g (x′) > f (x′)− ε, g (x ∧ x′) < f (x ∧ x′) + ε, g (x ∨ x′) <
f (x ∨ x′) +ε, so that

g (x) g (x′)− g (x ∧ x′) g (x ∨ x′)
> [f (x)− ε] [f (x′)− ε]− [f (x ∧ x′) + ε] [f (x ∨ x′) + ε]

= f (x) f (x′)− f (x ∧ x′) f (x ∨ x′)− ε [f (x) + f (x′) + f (x ∧ x′) + f (x ∨ x′)]
= f (x) f (x′)− f (x ∧ x′) f (x ∨ x′)− εK
> εK > 0,

which implies that Bε (f) ⊂ C\A, as we wanted to show.
Now, let us show that C\A is dense, that is, given f ∈ C and ε > 0, there exists g ∈

Bε (f) ∩ C\A. Since f ∈ C, it is uniformly continuous (because [0, 1]n is compact), that is,
given η > 0, there exists δ > 0 such that ‖x− x′‖Rn < 2δ implies |f (x)− f (x′)| < η. Take
η = ε/4 and the corresponding δ.

Choose a ∈ (4δ, 1− 4δ) and define x (x′) by specifying that their first
⌊
n
2

⌋
coordinates

are equal to a − δ (a+ δ) and the last ones to be equal to a + δ (a− δ). Thus, x ∧ x′ =
(a− δ, ..., a− δ) and x∨x′ = (a+ δ, ..., a+ δ). Let x0 denote the vector (a, ..., a). For y = x,
x′, x∧ x′ or x∨ x′, we have: |f (y)− f (x0)| < η. Let ξ : (−1, 1)n → R be a smooth function

61See footnote 31.
62Grid distributions can be useful for this task. See de Castro and Paarsch (2008).
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that vanishes outside
(
− δ

2
, δ

2

)n and equals 1 in
(
− δ

4
, δ

4

)n. Define the function g by

g (y) = f (y) + 2ηξ (y − x) + 2ηξ (y − x′)
−2ηξ (y − x ∧ x′)− 2ηξ (y − x ∨ x′) .

Observe that ‖g − f‖ = 2η = ε/2, that is, g ∈ Bε (f). In fact, g ∈ Bε (f) ∩ C\A, because

g (x) = f (x) + 2η > f (x0) + η;

g (x′) = f (x) + 2η > f (x0) + η;

g (x ∧ x′) = f (x ∧ x′)− 2η < f (x0)− η;

g (x ∨ x′) = f (x ∨ x′)− 2η < f (x0)− η,

which implies

g (x) g (x′)− g (x ∧ x′) g (x ∨ x′)
> [f (x0) + η]2 − [f (x0)− η]2

= 4η > 0,

as we wanted to show.

A.2 Proof of Theorem 3.2.
The proof of Theorem 3.2 is divided in two parts: the implications and the counterexamples.

A.2.1 Implications

It is obvious that (III) ⇒ (II) ⇒ (I). The implication (IV ) ⇒ (III) is Theorem 4.3. of
Esary, Proschan, and Walkup (1967). The implication (V ) ⇒ (IV ) is proved by Tong (1980,
p. 80). The implication (V II)⇒ (V I) is Lemma 1 of Milgrom and Weber (1982a). Thus, we
need only to prove (V I)⇒ (V ).

For this, assume that H (y|x) ≡ f(y|x)
F (y|x)

is non-decreasing in x for all y. Then, H (y|x) =

∂y [lnF (y|x)] and we have

1− ln [F (y|x)] =

∫ ∞
y

H (s|x) ds >
∫ ∞
y

H (s|x′) ds = 1− ln [F (y|x′)] ,

if x > x′. Then, ln [F (y|x)] 6 ln [F (y|x′)], which implies that F (y|x) is non-increasing in x
for all y, as required by Property V .

A.2.2 Counterexamples

The counterexamples for each passage are given by Tong (1980, Chapter 5), except those
involving Property (VI): (V ) ; (V I), (V I) ; (V II). For the counterexample of (V ) ;
(V I), consider the following symmetric and continuous pdf defined on [0, 1]2:
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f (x, y) =
d

1 + 4 (y − x)2

where d = [arctan (2)− ln (5) /4]−1 is the suitable constant for f to be a pdf We have the
marginal given by

f (y) =
k

2
[arctan 2 (1− y) + arctan 2 (y)]

so that we have, for (x, y) ∈ [0, 1]2:

f (x|y) = 2
[
1 + 4 (y − x)2]−1

[arctan 2 (1− y) + arctan 2 (y)]−1 ,

F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]

arctan 2 (1− y) + arctan 2 (y)

and

F (x|y)

f (x|y)
= 2

[
1 + 4 (y − x)2] [arctan (2x− 2y) + arctan (2y)] .

Observe that for y′ = 0.91> y = 0.9 and x = 0.1,

F (x|y′)
f (x|y′)

= 0.366863 > 0.366686 =
F (x|y)

f (x|y)
,

which violates Property (VI). On the other hand,

∂y [F (x|y)] =

2
1+4y2

− 2
1+4(x−y)2

arctan (2− 2y) + arctan (2y)

−
[arctan (2x− 2y) + arctan (2y)]

[
2

1+4y2
− 2

1+4(1−y)2

]
[arctan (2− 2y) + arctan (2y)]2

In the considered range, the above expression is non-positive, so that Property (V) is satisfied.
Then, (V ) ; (V I).

Now we will establish that (V I) ; (V II). Fix an ε < 1/2 and consider the symmetric
density function over [0, 1]2 :

f (x, y) =

{
k1, if x+ y 6 2− ε
k2, otherwise

where k1 > 1 > k2 = 2 [1− k1 (1− ε2/2)] /ε2 > 0 and ε ∈ (0, 1/2) . For instance, we could
choose ε = 1/3, k1 = 19/18 and k2 = 1/18. The conditional density function is given by

f (y|x) =


1, if x 6 1− ε

k1
k2(x+ε−1)+k1(2−ε−x)

, if x > 1− ε and if y 6 2− ε− x
k2

k2(x+ε−1)+k1(2−ε−x)
, otherwise

35



and the conditional c.d.f. is given by:

F (y|x) =


1, if x 6 1− ε

k1y
k2(x+ε−1)+k1(2−ε−x)

, if x > 1− ε and if y 6 2− ε− x
k2(y+x+ε−2)+k1(2−ε−x)
k2(x+ε−1)+k1(2−ε−x)

, otherwise

and

F (y|x)

f (y|x)
=


1, if x 6 1− ε
y, if x > 1− ε and if y 6 2− ε− x
y + x+ ε− 2 + k1/k2 (2− ε− x) , otherwise

Since 1 − k1/k2 < 0, the above expression is non-increasing in x for all y, so that Property
(VI) is satisfied. On the other hand, it is obvious that Property (VII) does not hold:

f (0.5, 0.5) f
(

1− ε

2
, 1− ε

2

)
= k2k1 < k2

1 = f
(

0.5, 1− ε

2

)
f
(

0.5, 1− ε

2

)
.

This shows that (V I) ; (V II).

A.3 Proof of Theorem 4.1.
The equilibrium existence follows from Milgrom and Weber (1982a)’s proof. For the coun-
terexample, consider the pdf defined in the proof of Theorem 3.2:

f (x, y) =
d

1 + 4 (y − x)2 ,

where d = [arctan (2)− ln (5) /4]−1 . In the proof of Theorem 3.2, we established that this
pdf satisfies Property V but not Property VI and that:

F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]

arctan 2 (1− y) + arctan 2 (y)
.

If there is a SMPSE, it has to be given by the following expression:63

b (y) = y −
∫ y

0

exp

[
−1

2

∫ y

z

1

arctan 2w
dw

]
dz

cannot be an equilibrium, that is, to verify the existence of x and y such that

(y − b (y))F (y|y) < (y − b (x))F (x|y) .

63This is the solution of the standard differential equation. For a careful proof of this intuitive fact, see de Castro
(2008).
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This simplifies to the condition:∫ y
0

exp
[
−1

2

∫ y
z

1
arctan 2w

dw
]
dz

y − x+
∫ x

0
exp

[
−1

2

∫ x
z

1
arctan 2w

dw
]
dz

<
arctan 2 (x− y)

arctan 2y
+ 1.

Let y = 0.5 and x = 1. Mathematica gives
∫ y

0
exp

[
−1

2

∫ y
z

1
arctan 2w

dw
]
dz = 0.391128 and∫ x

0
exp

[
−1

2

∫ x
z

1
arctan 2w

dw
]
dz = 0.745072. Thus, we have:

0.391128

−0.5 + 0.745072
= 1.59597 < 2 =

arctan 2 (x− y)

arctan 2y
+ 1,

which concludes the verification for the counterexample of SMPSE existence.

A.4 Proof of Theorem 4.2.
The dominant strategy for each bidder in the second-price auction is to bid his value: b2 (t) = t.
Then, the expected payment by a bidder in the second-price auction, P 2, is given by:

P 2 =

∫
[t,t]

∫
[t,x]

yf (y|x) dy · f (x) dx =

=

∫
[t,t]

∫
[t,x]

[y − b (y)] f (y|x) dy · f (x) dx+

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first-price auctions. Thus, the first
integral can be substituted by

∫
[t,t]
∫

[t,x]
b
′
(y) F (y|y)

f(y|y)
f (y|x) dy · f (x) dx, from the first-order

condition: b′ (y) = [y − b (y)] f(y|y)
F (y|y)

. The last integral can be integrated by parts, to:

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx

=

∫
[t,t]

[
b (x)F (x|x)−

∫
[t,x]

b
′
(y)F (y|x) dy

]
· f (x) dx

=

∫
[t,t]

b (x)F (x|x) · f (x) dx−
∫

[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first-price auction, P 1.
Thus, we have
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D = P 2 − P 1

=

∫
[t,t]

∫
[t,x]

b
′
(y)

F (y|y)

f (y|y)
f (y|x) dy · f (x) dx

−
∫

[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)

f (y|y)
f (y|x)− F (y|x)

]
dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

Remember that b (t) =
∫

[t,t]
αdL (α|t) = t−

∫
[t,t]

L (α|t) dα, whereL (α|t) = exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
.

So, we have

b
′
(y) = 1− L (y|y)−

∫
[t,y]

∂yL (α|y) dα

=
f (y|y)

F (y|y)

∫
[t,y]

L (α|y) dα.

We conclude that

D =

∫
[t,t]

∫
[t,x]

f (y|y)

F (y|y)

∫
[t,y]

L (α|y) dα

[
F (y|y)

f (y|y)
− F (y|x)

f (y|x)

]
f (y|x) dy · f (x) dx

=

∫
[t,t]

∫
[t,x]

[∫
[t,y]

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)

F (y|y)

]
· f (y|x) dy · f (x) dx,

which is the desired expression if we multiply by the number n of players.
For the counterexample, consider the grid distribution f : [0, 1]2 → R+, f ∈ D4 (see

section 5.2), defined by:

f (x, y) = amp if (x, y) ∈
(
m− 1

k
,
m

k

]
×
(
p− 1

k
,
p

k

]
,

for m, p ∈ {1, 2, 3, 4} , where
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


2.7468 0.0803 0.1195 0.0696
0.0803 0.3200 0.5271 0.1224
0.1195 0.5271 1.7814 0.5650
0.0696 0.1224 0.5650 1.2705

 .
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The definition of f at the zero measure set of points {(x, y) =
(
m
k
, p
k

)
: m = 0 or p =

0} is arbitrary. This distribution satisfies Property V (but not Property VI). Moreover, the
first-price auction with this distribution has a SMPSE and a higher expected revenue than
the correspondent second-price auction (R2 < R1). These claims can be verified with the
methodology developed by de Castro (2008) and discussed in section 5.2.

A.5 Proof of Example 3.4.
Although this is implied by Theorem 5.7, we give here a direct proof for this example. Let p de-
note the probability of Heads and let µ be a distribution over coins. Then: Pr(Heads,Heads) =
ε =

∫
(p)2µ(dp), and Pr(Tails,Tails) = ε =

∫
(1− p)2µ(dp) =

∫
(1)µ(dp) +

∫
(−2p)µ(dp) +∫

(p)2µ(dp) = 1 − 2E[p] + ε. Then, 1 − 2E[p] = 0, or E[p] = 1/2. This implies:
Var[p]=

∫
(p − E[p])2µ(dp) =

∫
(p2 − p + 1

4
)µ(dp) =

∫
(p)2µ(dp) − 1

4
= ε − 1

4
. Since

Var[p] is non-negative, ε > 1
4
.

B Conditional Independence
This appendix develops the concepts and tools necessary to the proofs of results in section 5.1.
This appendix is organized in subsections for clarity and didactic reasons. We begin with some
notation.

B.1 Preliminaries
Let (Ω,Σ,Pr) be a probability space, where Ω is a Polish (separable complete metrizable)
space and Σ, its Borel σ-field, unless otherwise specified. Let B denote the Borel σ-field in
R (the set of real numbers). Given a σ-field F ⊂ Σ, a random variable Y is F-measurable if
Y −1(B) ≡ {ω : Y (ω) ∈ B} ∈ F for every B ∈ B. Let σ(Y ) denote the smallest σ-field with
respect to which Y is measurable. If C is a class of sets, σ(C) denotes the σ-field generated by
C, that is, the smallest σ-field containing C. Let Σ◦ denote the set of Σ-measurable null sets,
that is, Σ◦ ≡ {A ∈ Σ : Pr(A) = 0}. The completion of F ⊂ Σ is F̄ given by σ(F ∪ Σ◦). As
usual, F∆G denotes (F ∩Gc) ∪ (F c ∩G). We have the following:

Lemma B.1 F ∈ F̄ if and only if there is G ∈ F such that Pr(F∆G) = 0.

Proof. Define F̃ ≡ {F ∈ Σ : ∃G ∈ F such that Pr(F∆G) = 0}. It is clear that F̃ ⊃
F ∪ Σ◦. The fact that F c∆Gc = F∆G implies that F̃ is closed to complementation. If
F1, ..., Fn, ... ∈ F̃ , with corresponding G1, ..., Gn, ... ∈ F such that Pr(Fn∆Gn) = 0, let
F = ∪n∈NFn and G = ∪n∈NGn. Then, F c ∩ G = (∩nF c

n) ∩ ∪nGn ⊂ ∪n∈N(F c
n∆Gn) and

similarly for F ∩ Gc. Thus, F∆G ⊂ ∪n∈N(Fn∆Gn). Therefore, countable additivity implies
that F̃ is closed to countable unions, which shows that F̃ is a σ-field. Since it contains F ∪Σ◦,
F̃ ⊃ F̄ . On the other hand, assume that F ∈ F̃ and let G ∈ F be such that F∆G ∈ Σ◦. Then
G∩ F c ∈ Σ◦ ⊂ F̄ and F ∪G = G∪ (F∆G) ∈ F̄ . Therefore, F = (F ∪G) \ (G∩ F c) ∈ F̄ ,
which shows that F̃ ⊂ F̄ and concludes the proof.
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Definition B.2 We say that F and G are equivalent σ-fields if F̄ = Ḡ.

We will consider random variables X i : Ω → R, for i = 1, ..., n and Z.64 The vector
(X1, ..., Xn) will be denoted by X . We will denote the σ-fields σ(X i), σ(X1, ..., Xn) and
σ(Z) by X i, X and Z , respectively.

Definition B.3 Given a σ-field F ⊂ Σ, a regular conditional probability given F is a function
Q : Ω× Σ→ R+ satifying:

(a) ω 7→ Q(ω,A) is F-measurable, for any A ∈ Σ;

(b) for every B ∈ F and A ∈ Σ,∫
B

Q(ω,A) dPr(ω) = Pr(A ∩B);

(c) for each ω, Q(ω, ·) is a (countably additive) probability measure on (Ω,Σ);65

In this case, the (regular) conditional probability Q(ω,A) will be denoted by Pr(A|F)ω. Fol-
lowing the usual practice, ω will be sometimes omitted in Pr(·|F)ω.

Although conditional probabilities always exist, sometimes there does not exist a regular
conditional probability. See Billingsley (1995, Exercise 33.11, p. 443). However, regular
conditional probabilities always exist if Ω is a Polish (complete, separable, metrizable) space
and Σ is its Borel field, as we assume here. (See Billingsley (1995, Theorem 33.3, p. 439)).
Thus, we will consider only regular conditional probabilities in what follows, and refer to them
simply as conditional probabilities.

Definition B.4 We say that the sub-σ-fields F1, ...,Fn are conditionally independent given
F ⊂ Σ if for any Ai ∈ F i ⊂ Σ, for i = 1, ..., n, we have:

Pr(∩iAi|F) = Πi Pr(Ai|F). (4)

We denote this by ⊥⊥ (F1, ...,Fn)|F or, if n = 2, by F1 ⊥⊥ F2|F and we say that F condi-
tionally splits (or is a conditional splitter of) (F1, ...,Fn). We say that the random variables
(r.v.) X1, ..., Xn are conditionally independent given a r.v. Z if⊥⊥ (X 1, ...,X n)|Z and we also
denote this by ⊥⊥ (X1, ..., Xn)|Z. In this case, we also say that Z conditionally splits (or is a
conditional splitter of) (X1, ..., Xn).

The following non-trivial results will be needed:

Lemma B.5 (Mutual Conditional Independence) The σ-fields Ft, t ∈ T are conditionally
independent given F ( denoted ⊥⊥ Ft|F) if and only if FS ⊥⊥ FT\S|F for all sets S ⊂ T ,
where FS ≡ ∨t∈SFt is the σ-field generated by ∪t∈SFt.

64Our theory can be generalized for random variables taking values in more general spaces, but this seems
sufficient for our purposes and avoid unnecessary complications.

65If only the first two conditions are satisfied, we have just a conditional probability (not regular).
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Proof. It is sufficient to adapt the proof of Kallenberg (2002, Lemma 3.8 (ii), p. 51) to
conditional independence.

Lemma B.6 (Doob) For any σ-fieldsF ,G andH, F ⊥⊥ G|H if and only if

Pr[H|F ,G] = Pr[H|G] a.s.,∀H ∈ H.

Proof. See Kallenberg (2002, Proposition 6.6, p. 110).

B.2 Proof of Proposition 5.4
To prove Proposition 5.4, we need the following lemma, which is in fact the first half of that
proposition.

Lemma B.7 Let F1, ...,Fn be the sub-σ-fields of Σ. There exist a σ-field Z ⊂ Σ such that
F1, ...,Fn are conditionally independent given Z .

Proof. For each set S ⊂ N ≡ {1, ..., n}, let ZS ≡ ∨i∈SF i, that is, ZS denotes the σ-
field generated by ∪i∈SF i. For simplicity, we write Z Instead of ZN . By lemma B.5, it is
sufficient to prove that ZS and ZSc are conditionally independent given Z for all S ⊂ N . By
lemma B.6, this follows by establishing Pr[H|ZS,Z] = Pr[H|Z], for all H ∈ ZSc . But since
σ(ZS,Z) = Z , the conditional probability is the same in both sides of this equation.

Observe that the existence of Z given in Lemma B.7 above is yet not sufficient for the last
statement in Proposition 5.4 because it is not always true that given a σ-field Z , there exists
a r.v. Z such that Z = σ(Z). For this to hold, it is necessary that Z is countably generated.
A σ-field F is countably generated if there is a countable class of sets A1, A2, ... such that
F = σ(A1, A2, ...). Indeed, we have the following:

Claim B.8 There exists r.v. Z such that F = σ(Z) if and only if F is countably generated.66

Proof. If F = σ(A1, A2, ...), define: Z(ω) =
∑∞

k=1 3−k1Ak
(ω). It is easy to see that σ(Z) =

σ(A1, A2, ...). Conversely, assume that F = σ(Z) for some r.v. Z. Since Z is F-measurable,
for each B ∈ B, Z−1(B) ∈ F . Take a countable class of sets A1, A2, ... which generate B
(for instance, the class of intervals (a, b], for a, b ∈ Q). Since Ak ∈ B, Z−1(Ak) ∈ F , which
implies Z−1(σ(A1, A2, ...)) = Z−1(B) ⊂ F . But since F = σ(Z) is the smallest σ-field with
respect to which Z is measurable, F ⊂ σ(Z−1(B)) = Z−1(B), concluding the proof of the
claim.

Given a countably generated σ-field F and a sub-σ-field G ⊂ F , it is not necessarily true
that G is countably generated. To see a counterexample, let F be the borelianos in [0, 1] and
G the class of all countable or cocountable subsets of [0, 1] (a set is said to be cocountable if
its complement is countable). It is not difficult to verify that G is a sub-σ-field of F , which is

66See Billingsley (1995, Exercise 20.1, p. 270). We include the proof for completeness.

41



not countably generated. Therefore, the rest of the proof of Proposition 5.4 requires the use of
equivalent equivalent fields (see definition B.2). From Lemma B.1, we know that two σ-fields
G,G ′ ⊂ Σ are equivalent if for every B ∈ G, there is a B′ ∈ G ′ such that Pr(B∆B′) = 0 and
for every B′ ∈ G ′, there is a B ∈ G, such that Pr(B∆B′) = 0. Consider the following two
facts:

Lemma B.9 Every sub-σ-field G of Σ is equivalent to a countably generated sub-σ-field G ′.

Proof. GivenE,F ∈ Σ, let d(E,F ) ≡ Pr(E∆F ). This defines a pseudo-metric in Σ. Since Σ
is the Borel σ-field in Ω, there is a countable set of sets {En} such that Σ = σ({En}). Since the
ring generated by {En} is also countable, then we may assume that {En} is a ring. By Halmos
(1974, Theorem 13.D), for every m ∈ N and set A ∈ Σ (in particular, for every A ∈ G), there
is a integer n such that Pr(A∆En) < 1/m. Let Bm,n denote this set. Then, the collection of
sets {Bm,n} ⊂ {En} is countable and it is dense in G. Therefore, G ′ ≡ σ({Bm,n}) is countably
generated and is equivalent to G.

Lemma B.10 If F and G are equivalent σ-fields then Pr(·|F) = Pr(·|G) (a.e.).

Proof. It can be shown that a function f : Ω → R is F-measurable if and only if there
is a f̄ : Ω → R which is equal to f a.e. and is F̄-measurable. Thus, if ω 7→ Q(ω,A)
is a probability kernel which is F-measurable, it is F̄-measurable (up to a null set). Since
the second condition in the definition of conditional expectation is also satisfied for F̄ , then
Pr(·|F) = Pr(·|F̄). This implies the result.

Conclusion of the proof of proposition 5.4: Lemmas B.7, B.9 and B.10 imply that there
exist a random variable Z such that ⊥⊥ (X1, ..., Xn)|Z, which concludes the proof.

B.3 Theorem 5.2 for the finite support case
In this section, we will assume that each X i have a finite support Si = {xi1, ..., xiki

}.67 remain
true We will assume the following trivial condition:68

Assumption B.11 For all x ∈ S1 × · · · × Sn, there is ω ∈ Ω such that X(ω) = x.

Lemma B.12 Assume that F is a σ-field formed by a finite partition Π = {Ck}k∈K of Ω. For
any A ∈ Σ,

Pr(A|F)ω =
∑
k∈K

Pr(A|Ck)ω1Ck
(ω). (a.e.)

67Most results and proofs are exactly the same for the case of countable support, although with some potential
complication in the notation. Naturally, the algorithm described at the end of this subsection is restricted to the
finite support case.

68 It is easy to construct examples of spaces that do not satisfy this. For example, let Ω = {a, b}, n = 2,
X1(a) = X2(b) = 0 and X1(b) = X2(a) = 1. Then, (0, 0) ∈ S1 × S2 but there is no ω ∈ Ω such that
X(ω) = (0, 0). However, in this case, we can easily add new zero-probability states to the space and change it to
a space that satisfy it.
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Proof. It is easy to see that the expression on the right above satisfies the two conditions
for being a conditional probability. On the other hand, let J ⊂ K be the set of indices j
such that Pr(Cj) > 0. Then Pr(∪j∈JcCj) =

∑
j∈Jc Pr(Cj) = 0 and the sets Cj for j 6∈ J

can be ignored. Since Pr(A|F)ω is F-measurable, it must be constant in each Cj for j ∈ J
and, therefore, it must be Pr(A|F)ω = Pr(A|Ck) for almost all ω ∈ Ck. This concludes the
proof.

The following definition will be useful in the sequel.

Definition B.13 A set C ∈ Σ is admissible if ∀x = (x1, ..., xn) ∈ S1 × · · · × Sn,

Pr({X i = xi} ∩ C) > 0, ∀i⇒ Pr({X = x} ∩ C) > 0.

We say that a partition Π is admissible if for all C ∈ Π, C is admissible.

To understand the concept of admissible set, consider the following example.

Example B.14 Ω = {a, b, c, d}; Π = {{a}, {b, c, d}} and Pr(ω) > 0,∀ω ∈ Ω. Let the values
of X(ω) be given as in Figure 4. While the set {a} ∈ Π is admissible, the set C = {b, c, d} is
not, because Pr(X1 = 0, X2 = 1|C) = 0 while Pr(X1 = 0|C) Pr(X2 = 1|C) > 0. Note also
that Π′ = {{a, b}, {c, d}} is an admissible partition.

a

c d

b

0

1

0 1 X1

X2

Π = {{a, b}, {c, d}} is admissible, but
Π = {{a}, {b, c, d}} is non-admissible.

Figure 4: Admissible and non-admissible parti-
tions.

We have the following:

Proposition B.15 X̄ 1, ..., X̄ n are conditionally independent given F if and only if Π is admis-
sible and

(Pr(C))n−1 =
Pr({X1 = x1} ∩ C) · · ·Pr({Xn = xn} ∩ C)

Pr({X = x} ∩ C)
, (5)

for all C ∈ Π and x = (x1, ..., xn) ∈ S1 × · · · × Sn s.t. Pr({X = x} ∩ C) > 0.

Proof. Necessity. Observe that Lemma B.12 gives

Pr(A|Σ)ω =
∑
C∈Π

Pr(A|C)ω1C(ω) (a.e.),

which implies that the conditional independence must hold for all C ∈ Π for which Pr(A ∩
C) > 0. If Π is not admissible, then there exists x = (x1, ..., xn) ∈ S1 × · · · × Sn and C ∈ Π
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such that Pr({X = x} ∩ C) = 0 and Pr({X i = xi} ∩ C) > 0, ∀i = 1, ..., n. But then
Pr(C) > 0 and Pr({X = x}|C) = 0 while

∏n
i=1 Pr({X i = xi}|C) > 0. Then X 1, ...,X n is

not conditionally independent given Σ, a contradiction.
Since {xi} ∈ X i, for i = 1, ..., n, necessity of the second condition comes directly from

the conditional independence requirement:

Pr(X1 = x1, ..., Xn = xn|C) = Pr({X1 = x1}|C) · · ·Pr({Xn = xn}|C)

⇐⇒ Pr({X = x} ∩ C)

Pr(C)
=

Pr({X1 = x1} ∩ C) · · ·Pr({Xn = xn} ∩ C)

(Pr(C))n
.

Sufficiency. From Lemma B.12, it is sufficient to check the conditional independence con-
dition for each C ∈ Π satisfying Pr(C) > 0. So, fix an element C of an admissible partition
Π. For i = 1, ..., n, fix Ai ∈ X i and let A = A1∩· · ·∩An. Let S̃i ⊂ Si be the set of the values
of X i implied by Ai, that is, S̃i ≡ X i(Ai). If for some i and xi ∈ S̃i, Pr({X i = xi}∩C) = 0,
we can redefine Ãi = Ai \ {X i = xi} and Ã = A \ {X i = xi} so that Pr(Ã|C) = Pr(A|C)
and Pr(Ãi|C) = Pr(Ai|C). In other words, we can assume without loss of generality that
Pr({X i = xi} ∩ C) > 0 for all i and xi ∈ S̃i. Since Π is admissible, this implies that
Pr({X = x} ∩ C) > 0 for all x ∈ S̃ ≡ S̃1 × · · · × S̃n. It is clear that X(A) ⊂ S̃. As-
sume that there exists x ∈ S̃ \ X(A). By assumption B.11, there exists ω ∈ Ω such that
X(ω) = x = (x1, ..., xn). Without loss of generality, we can assume that ω ∈ Ai for all
i.69 Thus, ω ∈ A1 ∩ · · · ∩ An = A. This implies that x = X(ω) ∈ X(A), which is a
contradiction. This shows that X(A) = S̃, that is, A = ∪x∈S̃X−1(x). It is also clear that
Ai = ∪xi∈S̃i(X i)−1(xi).

Since Pr({X = x} ∩ C) > 0 for all x ∈ S̃, the assumption implies that Pr(X = x|C) =∏n
i=1 Pr(X i = xi|C) for all x ∈ S̃. Therefore,

Pr(A|C) =
∑
x∈S̃

Pr(X = x|C) =
∑
x∈S̃

n∏
i=1

Pr(X i = xi|C)

=
∑
x1∈S̃1

· · ·
∑
xn∈S̃n

n∏
i=1

Pr(X i = xi|C)

= Pr(A1|C) · · ·Pr(An|C),

as we wanted to show.

The above result gives an algorithm to find (all) partitions Π that make the variables
X1, ..., Xn conditionally independent.70 The variable Z will be just the indication of the ele-
ment of the partition Π that contains the true realization of types. The algorithm can be roughly
described as follows:

69Since Xi(ω) = xi ∈ S̃i, if Pr({ω}) > 0, then ω ∈ Ai ∈ X i; otherwise, we can put Ãi ≡ Ai ∪ {ω} ∈ X i.
Note that this change does not affect the previous assumption that Pr({Xi = xi} ∩ C) > 0.

70The algorithm will run in exponential time, but we conjecture that this cannot be significantly improved,
unless P = NP.
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Input: the finite probabilistic space (Ω,Σ,Pr) and the partitions Π1, ...,Πn generating
X 1, ...,X n.

1. Find the common knowledge partition: Π0 ≡ ∧ni=1Πi, that is, the finest common coars-
ening partition.

2. Test whether Π0 is admissible. If Π0 is not admissible, find a coarser refinement of Π0

that is admissible and call it Π0.

3. Put Π := ∅. Let Π0 = {C1, ..., CK}. For k = 1, ..., K, do:

(a) Test whether Ck satisfies (5) for all x = (x1, ..., xn) ∈ S1 × · · · × Sn such that
Pr({X = x} ∩ C) > 0. If it satisfies, do Π := Π ∪ {Ck}. If Ck does not satisfy
(5) for some x, do the following:

(b) Calculate P (·) = Pr(·|Ck), that is the conditional probability given Ck;
(c) Obtain ΣCk

= Σ ∩ Ck;
(d) Derive and Πi

Ck
≡ Πi ∩ Ck;

(e) Call this program for the input (Ck,ΣCk
, P ) and partitions Π1

Ck
, ....,Πn

Ck
. The out-

come will be a partition Πk = {C1
k , ..., C

m
k } of Ck. Put Π := Π ∪ {C1

k , ..., C
m
k }.

Output: the partition Π.

This algorithm will produce all partitions that make X1, ..., Xn conditionally independent
if step 2 considers all partitions that are coarser refinements of Π0 and admissible. It will stop at
some point because the fully informative partition makesX1, ..., Xn conditionally independent
(see Proposition 5.4).

Gossner, Kalai, and Weber (2009) also have the existence of minimal conditional structure
for finite or countable setting treated in this subsection.71 It should be noted however that the
important contribution of this subsection is not existence, since this is known at least since
McKean (1963, p. 343, property e) (see also Mouchart and Rolin (1984, Theorem 4.3)). The
main contribution of this subsection is the algorithm that it provides. The development of
such an algorithm was an open question: see van Putten and van Schuppen (1985) and van
Schuppen (1982). Gossner, Kalai, and Weber (2009)’s existence proof is based in the Zorn’s
Lemma, which is obviously non-constructive. They also provide a characterization of the
case where the common knowledge partition makes the variables conditionally independent.
However, their definition puts together cases 1 and 2 of of Theorem 5.2. We offer a different
characterization of all cases below.

Lemma B.16 Let Si denote the finite or countable the support of theX i. Consider the follow-
ing two conditions: (i) the common knowledge partition is the (unique) outcome of the above
algorithm; (ii) there exist xi ∈

∏n
i=1 S

i such that Pr(X = x) = 0.72

71I am grateful to Olivier Gossner for pointing out this paper to me. This happened after I had obtained my
results.

72This lemma is also true without the restriction to finite or countable support. In this case, condition (i) should
be that the common knowledge partition makes the variables conditionally independent; and condition (ii) should
be that there exist Bi ⊂ Si such that Pr(Bi) > 0,∀i, but Pr(B1 × · · · ×Bn) = 0.
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If only condition (i) holds, but not (ii), we are in case 1 of Theorem 5.2. If both conditions
hold, we are in case 2. If condition (i) does not hold, we are in case 3.

Proof. It is clear that if condition (i) does not hold, we are in case 3. Under condition (i),
the common knowledge partition makes the types conditionally independent. Now, condition
(ii) holds, that is, if there exists x = (x1, ..., xn) ∈

∏n
i=1 S

i such that Pr(X = x) = 0, this
means that there is i and j such that xi and xj cannot be in the same element of common
knowledge partition. Therefore, this partition is not trivial, which means that the variables are
not independent, that is, they are not in case 1. On the other hand, if condition (ii) does not
hold, we have independence (case 1).

This section establishes the existence of minimally informative conditional splitters in the
finite support case, provides an algorithm to find all of them and establishes the classification
of cases 1, 2 and 3 given in Theorem 5.2. The other statements of Theorem 5.2 for the case
of finite support are included in the discussion for the general case, which is done in the next
subsection.

B.4 Theorem 5.2 for the general case.
The minimally informative conditional splitters are defined as follows:

Definition B.17 (Minimally informative conditional splitters) A variableZ that makesX1, ..., Xn

conditional independent is minimally informative, denoted⊥⊥ (X1, ..., Xn)|minZ, if there is no
σ-field F such that: (i)⊥⊥ (X1, ..., Xn)|F , and (ii) F is equivalent to Z .

A variable Z that makes X1, ..., Xn conditional independent is the least informative if for
every σ-field F such that: ⊥⊥ (X1, ..., Xn)|F , we have F ⊂ Z̄ .

Lemma B.16 gives the classification of cases in Theorem 5.2. The following lemma estab-
lishes statement 3(a) in Theorem 5.2:

Lemma B.18 If ⊥⊥ (X 1, ...,X n)|F , the common knowledge σ-field K is included in F .

Proof. It is easy to see that the common knowledge σ-field is given by K = ∩ni=1X i. Let H ∈
K and ⊥⊥ (X 1, ...,X n)|F . We want to prove that H ∈ F . For each set S ⊂ N ≡ {1, ..., n},
let X S ≡ ∨i∈SX i, that is, X S denotes the σ-field generated by ∪i∈SX i. By Lemmas B.5 and
B.6 ⊥⊥ (X 1, ...,X n)|F is equivalent to P [H|F ] = P [H|X S,F ], for all H ∈ X Sc and S ⊂
{1, ..., n}. Since H ∈ K = ∩ni=1X i ⊂ X Sc , P [H|F ] = P [H|X S,F ]. Also, K ⊂ σ(X S,F)
implies that H is σ(X S,F)-measurable and P [H|X S,F ] = 1H . But P [H|F ] = 1H implies
that H ∈ F , as we wanted to show.

For a proof of statement 3(b), see Mouchart and Rolin (1984, Theorem 4.3) (see also
McKean (1963, p. 343, property e)). The algorithm mentioned in item 3(c) for the finite
support case is presented in section B.3 above. The following example establishes statement
3(d), that is, it shows that it may not exist a least informative conditionally splitter.
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Example B.19 Let Ω = {a, b, c} and Pr({ω}) = 1
3
, for all ω ∈ Ω. Consider the following

σ-fields:

F1 = σ({a, b}, {c});
F2 = σ({a}, {b, c}).

Note that F1 and F2 are not independent because Pr({b}) 6= Pr({a, b}) Pr({b, c}). However,
it is not difficult to verify that F1 ⊥⊥ F2|F1 and F1 ⊥⊥ F2|F2 and these two different σ-fields
are minimally informative. Thus, it is not possible that there is a least informative conditional
splitter.

The proof of item 3(e) is given in the next subsection.

B.5 Proof of item 3(e) of Theorem 5.2
Although we will prove item 3(e) for the finite case, we will introduce definitions for the
general case below, since these are more common.

Definition B.20 A Markov transition from (S,S) to (X,X ) is a Borel measurable function
T : S → ∆(X), where ∆(X) is the set of all measures in the measurable space (X,X ), and
the topology in ∆(X) (for giving its Borel sets) is its weak? topology, i.e., the σ(∆(X), Cb)-
topology.

Definition B.21 A Markov kernel from (S,S) to (X,X ) is a function k : S × X → [0, 1]
satisfying the following:

1. for each s ∈ S, the set function k(s, ·) : X → [0, 1] is a probability measure.

2. For each A ∈ X , the mapping k(·, A) : S → [0, 1] is S-measurable.

The reader will note that a conditional probability as defined in definition B.3 is just a
Markov kernel as defined by definition B.21. The following two results are informative. They
are respectively theorems 19.12 and 19.13 of Aliprantis and Border (2006, p.630).

Lemma B.22 Let S and X be separable metrizable spaces. Then for a mapping T : S →
∆(X) the following statements are equivalent.

1. T is a Markov transition, that is, T is Borel measurable.

2. The function k : S × BX → [0, 1], defined by k(s, A) = Ts(A), is a Markov kernel.

Lemma B.23 Let S andX be separable metrizable spaces. Then for a mapping k : S×BX →
[0, 1] the following statements are equivalent.

1. The function k is a Markov kernel.
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2. The function T : S → ∆(X), defined by s 7→ Ts(·) = k(s, ·), is a Markov transition.

For now, let Y denote the set ∆(Ω), and let Y denote the weak? topology mentioned in
definition B.20. Let M ⊂ Y denote the set of all independent (product) measures, that is,

M = {µ ∈ ∆(Ω,Σ) : µ = µ1 × · · · × µn, µi ∈ ∆(Ω,X i)}

It is easily seen thatM isY-measurable. The following result clarifies the relationship between
Markov transitions and conditional probabilities.

Lemma B.24 A Markov transition T : Ω→ ∆(Ω) = Y from (Ω,F) to (Ω,Σ) represents the
conditional probability given F if and only if for every B ∈ F and A ∈ Σ,∫

B

Tω(A) dPr(ω) = Pr(A ∩B)

where Tω(A) represents the probability of the set A ∈ Σ under the measure T (ω) ∈ ∆(Ω).
In this case, F conditionally splits (X1, ..., Xn) if and only if T (Ω) ⊂M .

Proof. The first part is immediate from definitions B.3, B.20 and B.21 and Lemmas B.22 ,
B.23. The second part comes from the definition of M above and definition B.4.

Corollary B.25 The set C of Markov transitions T : Ω → ∆(Ω) that conditionally splits
(X1, ..., Xn) is a closed convex subset of all Markov transitions.73

Proof. This comes directly from the two characterizing conditions given in Lemma B.24
above.

The following result establishes the fact 3(e) of Theorem 5.2 for Ω finite. It is useful to
introduce the notation: Lp(F , X) for the space Lp((Ω,F ,Pr), X), 1 6 p 6 ∞, where X is a
Banach space (see Diestel and Uhl (1977)). If X = R, then we will write just Lp(F) instead
of Lp(F ,R). Also, in the references below, DU stands for Diestel and Uhl (1977), while DS
abbreviates Dunford and Schwartz (1958).

Proposition B.26 Let T 0 denote the Markov transition representing the conditional probabil-
ity given the common knowledge σ-field K. If Ω is finite, then there is a unique T ∈ C which
realizes the minimal distance from T 0 to C.

Proof. Let n be the number of points in Ω. Then a Markov transition is a function T : Ω →
∆(Ω) ⊂ Rn. Then, C can be seen as a subset of L2(Σ,Rn).74 Since C is closed and convex
subset of the Hilbert space L2(Σ,Rn), and T 0 6∈ C (because we are considering case 3 of
Theorem 5.2), there exists a unique point T̄ ∈ C that realizes infT∈C ||T − T 0||, where || · ||
denotes the L2(Σ,Rn)-norm (see DS, IV.4.2, p. 248).

73We will use this result for Ω finite, so that the topology of Y = ∆(Ω) is not important.
74Since all T ∈ C take value in ∆(Rn), which is compact, then C is actually a subset of L∞(Σ,Rn) ⊂

L2(Σ,Rn).
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Remark B.27 Note that Proposition B.26 only holds because C is a subset of a Hilbert space
and we used its norm. If we have just a Banach space instead of a Hilbert space, it is not always
true that there is a unique point minimizing the distance from C to P 0. For example, consider
the set D = {(x1, x2) ∈ [0, 1]2 : x1 = x2} in R2 with the sum norm: ||(x1, x2)|| = |x1|+ |x2|.
The distance of the point x0 = (1, 0) to D is 1 = ||(x1, x2)− (1, 0)|| = |x1 − 1|+ |x2| for all
(x1, x2) ∈ D.75 However, every Hilbert space is reflexive (DS, IV.4.6, p. 250) but L2(Σ, X) is
reflexive if and only if X is reflexive (see DU, Corollary IV.1.2, p. 100). Unfortunately, ∆(Ω)
is reflexive if and only if it is finite dimensional (for instance, if Ω is finite) (DS, IV.13.21, p.
341). These observations show that the ideas in Proposition B.26 do not extend directly to
general Ω.

Remark B.28 (Related works) Although Proposition 5.4 is known by specialists, we were
unable to find a good reference for it. The closest reference is Suppes and Zanotti (1981), who
state the existence of a (fully informative) Z when ti are binary variables. It is interesting
to note that Holland and Rosenbaum (1986, p.1525) quote Suppes and Zanotti’s theorem and
say that their proof “is easily generalized to the discrete case” and that “any distribution
on RJ may be approximated arbitrarily well by a discrete distribution of RJ , and Theorem 1
[Suppes-Zanotti] applies to such discrete approximation.” They do not state, discuss or give
any references for the result established in Proposition 5.4. We also found no reference for
Proposition 5.4 in Probability text-books. Mouchart and Rolin (1984) and van Putten and van
Schuppen (1985) prove the first part of Proposition 5.4 (that is, Lemma B.7), for the case of
n = 2. It is obvious that those authors could have easily stated and proved Lemma B.7, in
which case we would just quote them. A similar comment is valid for the existence of random
variables (the second part of Proposition 5.4), which does not follow immediately from Lemma
B.7.

The closest references for Theorem 5.2 that we were able to find (unfortunately after ob-
taining our results) was section 4 of Mouchart and Rolin (1984) (see also section 5 of van Put-
ten and van Schuppen (1985) and Mouchart and Rolin (1985)). They discuss what they call
“σ-algebraic realization problem”, which is the problem of finding a “minimal conditional
independence relation CImin” and proved item 3(b) of Theorem 5.2. The fact that there is no
least informative conditional splitter (item 3(d) of Theorem 5.2) was known by van Schuppen
(1982). However, the classification given in Theorem 5.2 is ours. The algorithm provided in
item 3(c) was regarded as an open problem by van Putten and van Schuppen (1985), which the
algorithm provided here solves. The contribution given in item 3(e) of Theorem 5.2 (definition
and existence of least informative conditional splitter) is also completely new.

75The norm of Hilbert space is given by an inner product. Naturally, this example fails with the euclidian norm,
which comes from an inner product.
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B.6 Proof of Theorem 5.7.
Let the distribution of X and Y be given by the table below, that is, Pr(X = 1, Y = 0) = b.

Y = 0 Y = 1
X = 0 a b
X = 1 b d

Our purpose is to find a binary variable Z, with joint distribution with X and Y described
by the tables below,

Z = 0 Y = 0 Y = 1
X = 0 ua vb
X = 1 vb wd

Z = 1 Y = 0 Y = 1
X = 0 (1− u)a (1− v)b
X = 1 (1− v)b (1− w)d

such that the conditional independence conditions are satisfied:


aduw = b2v2

ad(1− u)(1− w) = b2(1− v)2

u, v, w ∈ (0, 1)

Let us define r ≡ b2

ad
. From the first equation above, we obtain: w = r v

2

u
. Thus, w < 1 is

equivalent to rv2 < u. The second equation simplifies to (1− u−w+ uw) = r(1− 2v + v2)
and, using the first equation, to 1− u− w = r(1− 2v). Substituting w = r v

2

u
we obtain:

1− u− rv
2

u
= r(1− 2v) ⇐⇒

u2 − u [1− r(1− 2v)] + rv2 = 0.

Observe that the case r = 1 corresponds to independence of X and Y , in which case
u = v = w can be anything. So, we assume r 6= 1 in what follows. The solution is:

u =
[1− r(1− 2v)]±

√
[1− r(1− 2v)]2 − 4rv2

2
(6)

The conditions u, v, w ∈ (0, 1) will be satisfied if u, v ∈ (0, 1) and rv2 < u. Let us define the
polynomial P (u) ≡ u2 − u [1− r(1− 2v)] + rv2 and observe that:

P (0) = 02 − 0[1− r(1− y − z)] + rv2 = rv2 > 0;

P (rv2) = (rv2)2 − (rv2)[1− r(1− 2v)] + rv2

= rv2(rv2 − 1 + r − 2rv + 1) = r2v2(1− v)2 > 0;

P (1) = 12 − 1[1− r(1− 2v)] + rv2 = r(1− 2v + v2) = r(1− v)2 > 0.
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Since u must be a root of the polynomial P (u), the conditions u, v ∈ (0, 1) and rv2 < u are
equivalent to v ∈ (0, 1) and:

rv2 <
1− r(1− 2v)

2
< 1 ⇐⇒

1−
√

2−r
r

2
< v < min{

1 +
√

2−r
r

2
,
1 + r

2r
};

[1− r(1− 2v)]2 > 4rv2 ⇐⇒


v > r−1

2(r−
√
r)

if r > 1

v 6 1−r
2(
√
r−r) if r < 1

Note that the inequality rv2 < u ⇐⇒ rv2 < 1−r(1−2v)
2

cannot be satisfied for r > 2. For
r ∈ (1, 2],

r − 1

2(r −
√
r)

>
1 +

√
2−r
r

2

⇐⇒ (
√
r − 1)(

√
r + 1) >

1√
r

(
√
r +
√

2− r)(r −
√
r)

⇐⇒
√
r + 1 >

√
r +
√

2− r,

which is obviously true for r ∈ (1, 2]. Therefore, the conditions cannot be met if r > 1.76

On the other hand, if r < 1, then
√

2−r
r

> 1 and 1+r
2r

> 1 , in which case the inequalities
1−
√

2−r
r

2
< v < min{1+

√
2−r

r

2
, 1+r

2r
} are trivially satisfied for any v ∈ (0, 1). We simplify all

conditions to: v ∈ (0, 1) and v 6 1−r
2(
√
r−r) , but this last condition is also trivially satisfied for

any v ∈ (0, 1), since:

1− r
2(
√
r − r)

> 1

⇐⇒ 1− r > 2
√
r − 2r

⇐⇒ (
√
r − 1)2 > 0.

Therefore, if r < 1, we can choose any v ∈ (0, 1), obtain u from (6) and put w = r v
2

u
. This

will give the decomposition that we wanted. Note that the condition r < 1 is equivalent to
ad > b2, which is just positive correlation.
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