“A Relationship Between Risk And time Preferences”

Key words: Allais paradox; hyperbolic discounting

JEL classification: D11, D81, D91

Kota Saito
Northwestern University

www.kellogg.northwestern.edu/research/math
A RELATIONSHIP BETWEEN RISK AND TIME PREFERENCES *

Kota SAITO †
Department of Economics, Northwestern University
kotasaito@northwestern.edu
August 4, 2009

Abstract

This paper investigates a general relationship between risk and time preferences. I consider a decision maker who chooses between consumption of a particular prize in one period and a different prize in another period. The individual believes that today’s good is certain, and that, as the promised date for a future good becomes increasingly distant, the probability of his consuming the good decreases. Under these assumptions, this paper shows that the individuals exhibits the common ratio effect, the certainty effect, and the expected utility if and only if he discounts hyperbolically, quasi-hyperbolically and exponentially, respectively.

KEYWORDS: Allais paradox; hyperbolic discounting.

†I wish to thank Eddie Dekel, Jeff Ely and Michihiro Kandori for their excellent guidance. I am also grateful to Kazuki Baba, Manel Baucells, Colin Camerer, Thomas Epper, Faruk Gul, Yoram Halevy, Kazuya Kamiya, David Levine, Akihiko Matsui, Shinjiro Miyazawa, Daisuke Nakajima, Arthur Robson, Balazs Szentes, and seminar audiences at Northwestern. I acknowledge financial support from the NSF grant SES 0820333 and the Center for Economic Theory of the Economics Department of Northwestern University.
1 Introduction

Conventional wisdom recognizes that the future is uncertain in many respects. Several researchers, therefore, have claimed that there should be a relationship between risk and time preferences. Based on this intuition, they have tried to explain future discounting on the basis of the uncertainty associated with future payoffs. These approaches are not completely satisfactory, however, because each paper uses different utility functions and the probability functions representing the future uncertainty. It is therefore difficult to identify the fundamental relationship between risk and time preferences.\(^1\)

The purpose of the present paper is to establish a general relationship between risk and time preferences, without assuming specific forms of utility functions and probability distributions. To achieve this purpose as simply as possible, I consider a decision maker who chooses between consumption of a particular prize in one period and a different prize in another period. The individual discounts a future good because it is uncertain whether he can consume it or not. I assume a weak condition on the probability function representing the uncertainty: that today’s good is certain, but as the promised date for a future good becomes increasingly distant, the probability of consuming the good decreases continuously to zero. I call the above property regularity. For example, if the probability reflects the decision maker’s subjective mortality rate or an objective hazard rate for future goods, the regularity condition would be reasonable.

The theorem of this paper shows the following: (i) a decision maker exhibits the common ratio effect if and only if he discounts hyperbolically; (ii) he exhibits the certainty effect if and only if he discounts quasi-hyperbolically; and (iii) he exhibits the expected utility if and only if he is temporally unbiased (an exponential discounter). One implication of the theorem would be that the certain delivery of present goods makes subjects present biased. This implication is compatible with the experimental evidence found by Keren and Roelofsm (1995), which finds that a present bias disappears when the outcome become uncertain.

Since most of the conventional research satisfies the regularity condition, the present paper may be viewed as a generalization of that research. In particular, parts (i) and

\(^1\)For example, many papers are only interested in finding the specific probability (hazard) function to describe hyperbolic discounting, under the implicit assumption of expected utility theory. So in this sense, they study only the one-way relationship from expected utility theory to hyperbolic discounting.
(ii) of the theorem are a generalization of the main theorem in Halevy (2008)2 and Epper et al. (2009). Halevy (2008) considers preferences on stochastic consumption streams. However, his main theorem is about single period consumption model as in the present paper.3 Although some authors (such as Prelec and Loewenstein (1991) and Loewenstein and Prelec (1992)) had suggested an analogy between risk and time preferences, the precise relationship between the two had not been formally studied until Halevy (2008). Both Halevy (2008) and Epper et al. (2009) assume a constant Poisson mortality rate. Halevy (2008) shows, within a class of Yarri (1987)'s rank-dependent utilities, that the common ratio effect implies quasi-hyperbolic discounting.4 Epper et al. (2009) shows the same result within a class of utilities of Prelec (1998)'s prospect theory. In the present paper, I drop almost all restrictions on the preferences and the assumption of a constant Poisson mortality rate. Nevertheless, thanks to the flexibility of the model, I can generalize the conclusion.

Part (iii) of the theorem implies that the hazard function approach of “explaining” deviations from exponential discounting by assuming that prizes are not received with some probability but otherwise using a standard expected utility model, as is currently prevalent in psychology and biology, cannot succeed. For example, Kagel et al. (1986) and Green and Myerson (1996) argue that the decreasing rate of the Poisson hazard rate over time leads to hyperbolic discounting. Sozou (1998) offers an alternative theory in which that the hazard rate is constant but unknown to the decision maker. However, part (iii) of the theorem shows that this approach must lead to temporally unbiased preferences, i.e., to dynamic consistency. That is because the probability (survival) function defined from the hazard function satisfies the regularity condition of this paper. In fact, most researchers who adopt the hazard function approach describe a

2There is a methodological difference between Halevy (2008) and the present paper. Contribution of Halevy (2008) is to propose theoretical relationship between non-expected utility and non-exponential time discounting and to propose simple functional form with axioms. While, the purpose of the present paper is to show more general relationship between risk and time preferences with minimal assumption or axioms.

3Halevy (2008) characterizes quasi-hyperbolic discounting in terms of Diminishing Impatience and discusses the relationship between diminishing impatience and the common ratio effect. Both diminishing impatience and the common ratio effect are defined in single period consumption model. I discuss a generalization of the present paper’s model to a stochastic single period consumption model and a generalization including pure time discounting in the appendix.

4Halevy (2008) claims that the common ratio effect is equivalent to quasi-hyperbolic discounting. However, one direction of the equivalence (quasi-hyperbolic discounting ⇒ the common ratio effect) turns out to be false. I will explain this point in the appendix.
preference reversal in static decision making, but not in dynamic decision making.5 In contrast, the theorem herein suggests two ways of using a hazard function approach to successfully describe dynamic inconsistency. One is to assume non-regular uncertainty, such as uncertainty about the timing of consumption (as in Dasgupta and Maskin (2005)). The other is to assume nonexpected utility, such as rank dependent utilities (as in Halevy (2008)) or prospect theory (as in Epper et al. (2009)), or-as part (ii) of the theorem shows more generally-assuming the common ratio effect.

The present paper also sheds light on certain aspects of static decision making, as discussed in Baucells and Heukamp (2008), in which a specific representation of preferences over lotteries with delay is obtained. Their representation shows a relationship between the common ratio effect and the common difference effect (a preference reversal in static decision making).6 In contrast, the present paper focuses on dynamic decision making.

The rest of the paper is organized as follows. Section 2 formally defines preferences exhibiting the Allais paradox. Section 3 defines preferences exhibiting hyperbolic and quasi-hyperbolic discounting. Section 4 shows the theorem. Section 5 constitutes the appendix.

2 The Allais Paradox

In this section, I consider a risk preference \succeq^r on the set of binary lotteries, defined as follows:

$$\Delta = \{(x, p; 0, 1-p) \mid x \in X \text{ and } p \in [0,1]\},$$

where X is a non-degenerate closed interval on \mathbb{R} including 0. I formally define the common ratio effect and the certainty effect on the preference \succeq^r, which are typical effects of the Allais paradox. The common ratio effect is characterized as follows:

5As Dasgupta and Maskin (2005) point out, there are two distinct meanings for the term “hyperbolic discounting.” One applies to dynamic decision making with variable decision times. The other applies to static decision making with fixed decision times. Most of the theoretical works, Laibson(1997), O’Donoghue and Rabin (1999), and Dasgupta and Maskin (2005) for example, are interested in the dynamic concept because of dynamically inconsistent behavior. I also focus on the dynamic concept.

6In the appendix, I will examine relationship between risk and time preferences in static decision making and show a corollary to the theorem of the present paper. The corollary includes equivalence between the common ratio effect and the common difference effect.
Suppose that subjects choose either a safer option which gives a smaller gain x with a higher probability η, or a riskier option which gives a larger gain y with a lower probability $\eta\mu$, where $\mu < 1$. As η falls, subjects switch their choice from the safe option to the risky option. Note that for both options, reducing η means increasing the risk of getting nothing. Formally, the common ratio effect is defined as follows:

Definition: \succeq^r is said to exhibit the **common ratio effect**\(^7\) if, for any $x, y \in X$ and $\mu, \tilde{\eta} \in [0, 1]$ such that $(x, \tilde{\eta}) \sim^r (y, \tilde{\eta}\mu)$,

$$(x, \eta) \prec^r (y, \eta\mu) \text{ for all } \eta \in (0, \tilde{\eta}) \text{ and } (x, \eta) \succ^r (y, \eta\mu) \text{ for all } \eta \in (\tilde{\eta}, 1].$$

This definition appears in Starmer (2000, p. 337). The general definition provided by Machina (1982, p. 305) also becomes equivalent to the above definition within the set of simple binary lotteries. This tendency is called the certainty effect specifically in regard to the choice between a sure option and a risky option. So the condition characterizing the certainty effect is the special case of the common ratio effect, when $\tilde{\eta} = 1$:

Definition: \succeq^r is said to exhibit the **certainty effect** if, for any $x, y \in X$ and $\mu \in [0, 1)$ such that $(x, 1) \sim^r (y, \mu)$,

$$(x, \eta) \prec^r (y, \eta\mu) \text{ for all } \eta \in (0, 1).$$

By definition, if a decision maker exhibits the common ratio effect, then he exhibits the certainty effect.\(^8\)

Finally, in the set Δ of binary lotteries, the independence axiom reduces to the following:

\(^7\)Under the standard assumption of monotonicity and continuity axioms, for any $x, y \in X$ and $\tilde{\eta} \in [0, 1]$, there exists μ such that $(x, \tilde{\eta}) \sim^r (y, \tilde{\eta}\mu)$. So the condition cannot be satisfied by any trivial way.

\(^8\)Several experimental studies on the common ratio effect and the certainty effect have found that the preference is reversed by changing the prizes from gains into losses (see, for example, Kahneman and Tversky (1979, p.268)). I can define these preferences by just switching strict preferences from \succ to \prec, and vice versa. Henceforth, I will mention the case of negative payoffs only in footnotes.
Definition: \succeq^r is said to satisfy the independence axiom if, for any $x, y \in X$ and $\mu, \eta, \tilde{\eta} \in [0, 1],$

$$(x, \eta) \succeq^r (y, \eta\mu) \iff (x, \eta) \succeq^r (y, \tilde{\eta}\mu).$$

3 The Present Bias

In this section, I define how to derive time preferences from risk preferences; I also define preferences exhibiting hyperbolic and quasi-hyperbolic discounting. Consider a decision maker who chooses between consumption of a particular prize in one period and a different prize in a different period. The individual discounts the future goods because it is uncertain whether or not he can consume it. To capture the uncertainty, let $p(t)$ be the probability that the decision maker can consume the good at a promised time $t \in \mathbb{R}_+$. One interpretation of $p(t)$ corresponds to the probability that the decision maker is alive at time t.

Consider the decision maker’s time preference \succeq_0 at time 0. The preference \succeq_0 is on the set of one-time consumptions after time 0; this set is defined as $T_0(X) = \{ [x, t] \mid x \in X$ and $t \in \mathbb{R}_+$ such that $t \geq 0 \}$. Suppose that the decision maker is still alive at date $d \geq 0$. Then the probability that he is still alive and able to consume the good at date $t \geq d$ is the conditional probability $p(t|d) = p(t)/p(d)$. Therefore, the decision maker at time d prefers prize x at time t, denoted by $[x, t]$, to another future payoff $[y, s]$ if and only if he prefers the binary lottery $(x, p(t|d))$, which gives x with the probability $p(t|d)$, to the lottery $(y, p(s|d))$. Thus, the decision maker’s time preferences $\{\succeq_d\}_{d \in \mathbb{R}_+}$ for each decision time $d \in \mathbb{R}_+$, is defined as follows:

\[\text{Another interpretation of } p(t), \text{ as seen in biology and psychology, is the probability that the goods have not been stolen by other animals by time } t \text{ (see, for example, Kagel et al. (1986)). These two interpretations are representative of most of the research ascribing future discounting to future uncertainty.}\]
DEFINITION: For all \(d \in \mathbb{R}_+ \) and \([x, t], [y, s] \in T_d(X)\),

\[
[x, t] \succeq_d [y, s] \iff (x, p(t|d)) \succeq^r (y, p(s|d)).
\]

Henceforth, I will denote this time preferences by \(\{\succeq_d\} \). I am now in a position to define preferences exhibiting hyperbolic and quasi-hyperbolic discounting. Hyperbolic discounting is characterized as follows: Suppose that subjects choose either an earlier, smaller payoff which gives a payoff \(x \) at a date \(t \) or a later, larger payoff which gives a payoff \(y \) at a date \(s \), where \(x < y \) and \(t < s \). Many subjects want to wait for the later, larger payoff, that is, they prefer \([y, s]\) to \([x, t]\). After some time \(\tilde{d} \), however, they do not want to wait any longer, and consequently reverse their preferences as described in Figure 2.\(^{10}\)

![Figure 2: Preferences Exhibiting Hyperbolic Discounting](image)

Hyperbolic discounting is therefore defined as follows:

DEFINITION: \(\{\succeq_d\} \) is said to exhibit hyperbolic discounting if, for any \(x, y \in X \) and \(\tilde{d}, t, s \in \mathbb{R}_+ \) such that \([x, t] \sim_{\tilde{d}} [y, s]\) and \(\tilde{d} \leq t \leq s \),

\[
[x, t] \prec_d [y, s] \text{ for all } d < \tilde{d} \text{ and } [x, t] \succ_d [y, s] \text{ for all } d > \tilde{d}.
\]

Note that the characterization of hyperbolic discounting in Proposition 1 of Dasgupta and Maskin (2005, p. 1293) is exactly the same as above.

Quasi-hyperbolic discounting focuses on present-biased behavior specifically when the promised date for the payoff is close at hand. (See Laibson (1997), for example.) Hence, the condition characterizing quasi-hyperbolic discounting is defined as a special case of hyperbolic discounting, where \(\tilde{d} = t \) as follows:

\(^{10}\) In the following three definitions of time preferences, I focus on positive payoffs for simplicity. For the case of negative payoffs, present biasness appear as procrastination and is defined by the same way just by switching strict preference from \(\succ \) to \(\prec \), and vice versa. O’Donoghue and Rabin (1999) offers examples of procrastination.
Definition: \(\{ \succ_d \} \) is said to exhibit quasi-hyperbolic discounting if, for any \(x, y \in X \) and \(t, s \in \mathbb{R}_+ \) such that \([x, t] \sim_t [y, s] \) and \(t \leq s \),

\[
[x, t] \prec_d [y, s] \quad \text{for all } d < t.
\]

By definition, if a decision maker exhibits hyperbolic discounting, then he exhibits quasi-hyperbolic discounting, but the converse is not true.\(^{11}\)

Finally, I define temporally unbiased preferences, which corresponds to exponential discounting, as follows:

Definition: \(\{ \succ_d \} \) is said to be temporally unbiased if, for any \(x, y \in X \) and \(d, d', s, t \in \mathbb{R}_+ \),

\[
[x, t] \succ_d [y, s] \Leftrightarrow [x, t] \succ_{d'} [y, s].
\]

4 The Theorem

To establish the result of the present paper, I assume a regularity condition on future uncertainty which means that today’s good is certain, but, as the promised date for future goods becomes increasingly distant, the probability of consuming the good continuously decreases to zero:

Assumption 1: \(p(0) = 1 \), \(p \) is continuous and strictly decreasing, and \(p(\infty) = 0 \).

Theorem: Under Assumption 1, the following three equivalences hold.\(^{12}\)

(i) \(\succ^r \) exhibits the common ratio effect if and only if \(\{ \succ_d \} \) exhibits hyperbolic discounting.

(ii) \(\succ^r \) exhibits the certainty effect if and only if \(\{ \succ_d \} \) exhibits quasi-hyperbolic discounting.

\(^{11}\)It is easy to see the above definition is equivalent to Halevy (2008)’s characterization of quasi-hyperbolic discounting. Halevy (2008, p. 1150) characterizes quasi-hyperbolic discounting by \(\forall t \in \mathbb{Z}_+ \) s.t. \(t \geq 1 \left[\frac{D(0)}{D(t)} \right] > \frac{D(0)}{D(t+1)} \) (Diminishing Impatience).

\(^{12}\)In the section above, I have defined the Allais paradox and present bias for positive payoffs. However, as I mentioned in footnote, I can define these concepts for negative payoffs just by switching strict preferences. Hence, the equivalence here also holds for negative payoffs as well.
(iii) \(\succeq^r \) satisfies the independence axiom if and only if \(\{\succeq_d\} \) is temporally unbiased.

The proof is in the appendix. The proof crucially relies on two structural similarities between risky choices and intertemporal choices. One is the similarity that relates safe outcomes to earlier ones, and risky outcomes to later ones. The other is the similarity that relates increasing risk to moving a decision time forward as well as decreasing risks to moving a decision time backward.

As explained in detail in the introduction, the theorem of the paper may be viewed as a generalization of most of the conventional research on hyperbolic discounting (for example, Kagel et al. (1986), Green and Myerson (1996), Sozou (1998), Halevy (2008), Epper et al. (2009)), because most of them adopt Assumption 1. In other words, to obtain a relation which is not included in the theorem, it is necessary to violate Assumption 1. As far as I know, Dasgupta and Maskin (2005) is the unique example of such approach. They assume not only a constant Poisson mortality rate, but also uncertainty regarding the timing of the payoffs. Accordingly they violate Assumption 1 and describe dynamically inconsistent behavior, despite assuming the expected utility.

The theorem may also answer the question as to what causes hyperbolic discounting. I discuss three possible answers which are compatible with the theorem presented here. The first answer is that the Allais paradox causes hyperbolic discounting (see, for example, Halevy (2008) and Epper et al. (2009)). The second answer is that non-regular uncertainty causes it (see, for example, Dasgupta and Maskin (2005)). The third answer is that a third factor may cause both the Allais paradox and hyperbolic discounting; for example, Fudenberg and Levine (2008) claim that temptation caused by either certainty or presentness would be the common factor. The choice among these three must await future research.

5 Appendix

5.1 Proof of The Theorem

Proof of Theorem: I will prove (i) \(\succeq^r \) exhibits the common ratio effect if and only if \(\{\succeq_d\} \) exhibits hyperbolic discounting for the case of positive payoffs. Part (ii) and
(iii) of the theorem can be proved in the same way. Analogous theorem for negative payoffs also can be proved in the same way.

To Referees: The omitted proofs are available upon request.

Step 1: If \(\succ^r \) exhibits the common ratio effect, then \(\succ_d \) is hyperbolic.

Proof of Step 1: Choose any \(x, y \in X \) and \(\bar{d}, t, s \in \mathbb{R}_+ \) such that \([x, t] \sim_d [y, s] \) and \(\bar{d} \leq t \leq s \). Then by definition, \((x, p(t|\bar{d})) \sim^r (y, p(s|\bar{d})) = (y, p(s|t)p(t|\bar{d})) \). Fix \(d < \bar{d} \) to show \([x, t] \prec_d [y, s] \). Since \(p \) is strictly decreasing, \(p(t|d) < p(t|\bar{d}) \). So the common ratio effect implies that \((x, p(t|d)) \prec^r (y, p(s|t)p(t|d)) = (y, p(s|d)) \). Then by definition, \([x, t] \prec_d [y, s] \). The case where \(d > \bar{d} \) can be proved in the same way.

Step 2: If \(\succ_d \) exhibits hyperbolic discounting, then \(\succ^r \) exhibits the common ratio effect.

Proof of Step 2: Choose any \(x, y \in X \) and \(\mu, \tilde{\eta} \in [0, 1] \) such that \((x, \tilde{\eta}) \sim^r (y, \eta \mu) \). Fix \(\eta \in (0, \tilde{\eta}) \) to show \((x, \eta) \prec^r (y, \eta \mu) \). Since \(p \) is strictly decreasing bijection, there exist \(t \) and \(\bar{d} \) such that \(t \geq \bar{d} > 0 \) and \(p(t) = \eta \) and \(p(t|\bar{d}) = \tilde{\eta} \). Also, there exists \(s \geq t \) such that \(p(s|t) = \mu \). Hence, \((x, p(t|\bar{d})) \sim^r (y, p(s|t)p(t|\bar{d})) = (y, p(s|d)) \), so that \([x, t] \prec_d [y, s] \), by definition. Therefore, if \(\succ_d \) is hyperbolic, then \([x, t] \prec_0 [y, s] \). So the definition shows that \((x, \eta) \prec^r (y, \eta \mu) \) again. The case where \(\eta > \tilde{\eta} \) can be proved in same way.

5.2 Relationship with Halevy (2008)

In Halevy (2008), the decision maker has rank-dependent utilities. He characterizes quasi-hyperbolic discounting in terms of *Diminishing Impatience*:

\[
\forall t \in \mathbb{Z}_+ \text{ s.t. } t \geq 1 \left[\frac{D(0)}{D(1)} > \frac{D(t)}{D(t + 1)} \right],
\]

where \(D(\cdot) \) is a discount function. In his model, \(D(t) = \beta^tg((1 - r)^t) \), where \(\beta \) is a pure time-discount factor, \(g \) is a rank-dependent probability-weighting function, \(r \) is a constant hazard probability per period. In Theorem 1, Halevy (2008, p. 1150) shows
the following two equivalences:

\[
\text{Diminishing Impatience} \
\Leftrightarrow \forall t \in \mathbb{Z}_+, \forall r \in (0, 1) \left[g((1-r)^{t+1}) > g(1-r)g((1-r)^t) \right] \\
\Leftrightarrow \forall p, q \in (0, 1) \left[g(pq) > g(p)g(q) \right].
\]

Then Halevy (2008) cites Segal (1987a, b). Let \(\varepsilon_g(p) = \frac{g'(p)p}{g(p)} \) be the elasticity of \(g \).

\[
\forall p, q \in (0, 1) \left[g(pq) > g(p)g(q) \right] \Leftrightarrow \varepsilon_g(p) \text{is strictly increasing} \\
\Leftrightarrow \text{Common Ratio Effect},
\]

where the first equivalence is claimed in Lemma 4.1 of Segal (1987a) and the second one is observed in Section 2.2 of Segal (1987b). However, in the proof of Lemma 4.1, Segal (1987a) assumes that \(\varepsilon_g(p) \) is monotone.

Indeed, a probability-weighting function \(g \) of prospect theory proposed in Kahneman and Tversky (1992) satisfies \(g(pq) > g(p)g(q) \) for all \(p, q \in (0, 1) \), but \(\varepsilon_g(p) \) is strictly decreasing on some interval. Hence, only this partial result of Halevy (2008) is true in general:

\[
\text{Diminishing Impatience} \Leftarrow \text{Common Ratio Effect}.
\]

Indeed, this result is implied by the “only if” component of part (ii) of the theorem in the present paper.

There may be an argument under which the other direction of Halevy (2008) also holds. However, any such argument leads to equivalence between the common ratio effect and the certainty effect, although each effect is clearly distinguished experimentally (see, for example, Cohen and Jaffray(1988)).\(^{13}\) Moreover, part (ii) of the main theorem shows in general that quasi hyperbolic is equivalent to the certainty effect.\(^{14}\)

Thus, whatever condition is added to obtain the result that diminishing impatience implies the common ratio effect must confound the interesting distinctions between diminishing impatience, which is equivalent to quasi-hyperbolic discounting, and hyperbolic discounting on the one hand, and the common ratio effect and the certainty

\(^{13}\)Cohen and Jaffray(1988) provides experimental data which support the certainty effect, but reject the common ratio effect.

\(^{14}\)Remember in general, the common ratio effect implies the certainty effect.
effect on the other hand.15

In the following, in the framework of Halevy(2008), I show that if diminishing impatience implies the common ratio effect then the certainty effect implies the common ratio effect, too. To show this, it suffices to show the certainty effect is equivalent to diminishing impatience. It is easy to see that the certainty effect is equivalent to the following condition: for all $x, y \in X, p, q \in (0, 1)$,

$$u(x) = g(q)u(y) \Rightarrow g(p)u(x) < g(pq)u(y); \text{ hence } g(p)g(q) < g(pq),$$

which is equivalent to diminishing impatience as Halevy (2008) shows.16 A similar argument also shows that if diminishing impatience implies the common ratio effect then diminishing impatience, which is equivalent to quasi-hyperbolic discounting, implies hyperbolic discounting.

In the following, I will show a counter example to the claim that diminishing impatience implies the common ratio effect in Halevy (2008). Consider a functional form of g proposed in Kahneman and Tversky (1992). Let $a \in [0, 1]$. For all $p \in [0, 1]$, define

$$g(p) = \frac{p^a}{(p^a + (1 - p)^a)^{1/a}}.$$

Claim: For $a = 0.5$, rank-dependent decision maker with the above probability-weighting function g exhibits the diminishing impatience but does not exhibit the common ratio effect.17

Step 1: The decision maker exhibits the diminishing impatience.

Proof of Step 1: I will show that $\forall p, q \in (0, 1) [g(pq) > g(p)g(q)]$. For all $p, q \in [0, 1]$, define

$$f(p, q) = g(pq) - g(p)g(q).$$

15About these two distinctions, Prelec and Loewenstein (1991 p.774) says “Many researchers feel, however, that these phenomena are qualitatively distinct, and warrant separate treatment”. For experiments distinguishing quasi-hyperbolic discounting and hyperbolic discounting, see, for example, Benzion, Rapoport, and Yagil (1989).

16Indeed, this observation shows that the certainty effect is equivalent to the quasi-hyperbolic discounting, under the assumption made by Halevy (2008).

17Camerer and Ho (1994, p.188) estimate the parameter a as 0.52 based on their experiments, so $a = 0.5$ would be a reasonable estimate. The above claim is true for other parameters too, such as 0.4, 0.9.
I will show that $f(p, q) > 0$ for all $p, q \in (0, 1)$. Choose any $b \in (0, 1)$ to show that $f(p, b - p) > 0$ for all $p \in (0, b)$. By the symmetry of f, without loss of generality, it suffices to show that $f(p, b - p) > 0$ for all $p \in (0, \frac{b}{2})$. By calculation,

\[
\frac{df(p,b-p)}{dp} = \frac{dg(p(b-p))}{dp} - \frac{dg(p)g(b-p)}{dp} = g'(p(b-p))(b-2p) - g'(p)g(b-p) + g'(b-p)g(p).
\]

For $a = 0.5$, it can be shown that the derivative is 0 if and only if $p = \frac{b}{2}$. Since $f\left(\frac{b}{2}, \frac{b}{2}\right) > f(0, b) = 0$, then f attains its maximum when $p = \frac{b}{2}$ and its minimum when $p = 0$. Hence, $f(p, b - p) > 0$ for all $p \in (0, \frac{b}{2})$

\[\square\]

Step 2: The decision maker does not exhibit the common ratio effect.

Proof of Step 2: By Segal (1987 b), it suffices to show that $\varepsilon_g(p)$ is strictly decreasing for all $p < 0.14$. By calculation,

\[
\varepsilon'_g(p) = \frac{(1 - p)^{-2+a}(1 - p)^a p - ap^a + p^{1+a}}{p((1 - p)^a + p^a)^2}.
\]

Hence, for $a = 0.5$,

\[
\varepsilon_g(p) \text{ is strictly decreasing } \iff p\sqrt{1-p} - .5\sqrt{b} + p\sqrt{b} < 0 \iff p < 0.14.
\]

\[\square\]

5.3 Static Present Bias

In the section above, I focused on dynamic decision making. In this section, I will examine static decision making. I first define preferences exhibiting hyperbolic and quasi-hyperbolic discounting in the static sense. Then I explore the relationship between these preferences and the preferences exhibiting the Allais paradox defined in Section 2. Most of the experimental work on time-discounting focus on the static
concept. In typical experiments, subjects are supposed to choose the earlier, smaller payoff \([x, t + \alpha]\) or the later, larger payoff \([y, s + \alpha]\) by changing common delay \(\alpha\), at a fixed decision time. Hyperbolic and quasi-hyperbolic discounting in the static sense are defined analogously to those in the dynamic sense which are defined in Section 3. The only difference is that the variable here is a common delay and the decision time is fixed at some \(\tilde{d} \in \mathbb{R}_+\);

Definition:

(i) \(\succsim_d\) is said to exhibit *hyperbolic discounting in a static sense* \(^{18}\) if, for any \(x, y \in X\) and \(\tilde{d}, t, s \in \mathbb{R}_+\) such that \([x, t] \sim_{\tilde{d}} [y, s]\) and \(\tilde{d} \leq t \leq s\),

\([x, t + \alpha] \prec_{\tilde{d}} [y, s + \alpha]\) for all \(\alpha \in (0, \infty)\) and \([x, t - \alpha] \succ_{\tilde{d}} [y, s - \alpha]\) for all \(\alpha \in [0, t - \tilde{d}]\).

(ii) \(\succsim_d\) is said to exhibit *quasi-hyperbolic discounting in a static sense* if, for any \(x, y \in X\) and \(\tilde{d}, t, s \in \mathbb{R}_+\) such that \([x, t] \sim_{\tilde{d}} [y, s]\) and \(\tilde{d} \leq t \leq s\),

\([x, t + \alpha] \prec_{\tilde{d}} [y, s + \alpha]\) for all \(\alpha \in (0, \infty)\).

(iii) \(\succsim_d\) is said to be *temporally unbiased in a static sense* if, for any \(x, y \in X\) and \(d, \tilde{d}, s, t \in \mathbb{R}_+\) such that \(\tilde{d} \leq t \leq s\),

\([x, t] \succsim_{\tilde{d}} [y, s] \iff [x, t + \alpha] \succsim_{\tilde{d}} [y, s + \alpha]\) for all \(\alpha \in [\tilde{d} - t, \infty)\).

Assumption 1 must be strengthened in order to link preferences exhibiting hyperbolic and quasi-hyperbolic discounting in the static sense with preferences exhibiting the Allais paradoxes:

Assumption 2: There exists a positive real number \(r\) such that \(p(t) = \exp(-rt)\) for all \(t \in \mathbb{R}_+\).

Corollary: Under Assumption 2, the following three equivalences hold:

(i) \(\succsim^r\) exhibits the common ratio effect if and only if \(\succsim_d\) exhibits hyperbolic discounting in a static sense.

\(^{18}\)This effect is often called the common difference effect.
(ii) \succeq^r exhibits the certainty effect if and only if \succeq_d exhibits quasi-hyperbolic discounting in a static sense.

(iii) \succeq^r satisfies the independence axiom if and only if \succeq_d is temporally unbiased in a static sense.

Since Assumption 2 implies Assumption 1, the theorem also holds under Assumption 2. Hence, each static preference is equivalent to corresponding dynamic preference.

5.4 Generalizations

Recall the basic definition tying risk and time preferences.

Definition: For all $d \in \mathbb{R}_+$ and $[x; t], [y; s] \in T_d(X)$,

$$[x; t] \succeq_d [y; s] \iff (x; p(t|d)) \succeq^r (y; p(s|d)).$$

This can be generalized to a stochastic single period consumption model as follows.

Definition: For all $d \in \mathbb{R}_+$ and $[l; t], [q; s] \in T_d(\Delta(X))$,

$$[l; t] \succeq_d [q; s] \iff (l; p(t|d)) \succeq^r (q; p(s|d)).$$

It can also be generalized to include pure time discounting β as follows.

Definition: For all $d \in \mathbb{R}_+$ and $[x; t], [y; s] \in T_d(X)$,

$$[x; t] \succeq_d [y; s] \iff \left(CE(x; \beta t^{-d}), p(t|d) \right) \succeq^r \left(CE(y; \beta t^{-d}), p(s|d) \right),$$

where $CE(x; \beta t^{-d})$ is a certainty equivalent of the binary lottery which gives x with probability βt^{-d} and gives 0 with probability $1 - \beta t^{-d}$.

It is easy to see the three equivalences in the original theorem hold for these extensions without any additional assumptions.
References

