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INFORMATION INDEPENDENCE AND COMMON KNOWLEDGE

BY OLIVIER GOSSNER, EHUD KALAI, AND ROBERT WEBER1

In Bayesian environments with private information, as described by the types of
Harsanyi, how can types of agents be (statistically) disassociated from each other and
how are such disassociations reflected in the agents’ knowledge structure?

Conditions studied are (i) subjective independence (the opponents’ types are inde-
pendent conditional on one’s own) and (ii) type disassociation under common knowl-
edge (the agents’ types are independent, conditional on some common-knowledge vari-
able). Subjective independence is motivated by its implications in Bayesian games and
in studies of equilibrium concepts.

We find that a variable that disassociates types is more informative than any
common-knowledge variable. With three or more agents, conditions (i) and (ii) are
equivalent. They also imply that any variable which is common knowledge to two agents
is common knowledge to all, and imply the existence of a unique common-knowledge
variable that disassociates types, which is the one defined by Aumann.

KEYWORDS: Bayesian games, independent types, common knowledge.

1. INTRODUCTION

THIS NOTE DEALS WITH the private information available to different agents
in Bayesian environments, as described by the types of Harsanyi (1967/68),
and with the notion of common knowledge, as described in Aumann (1976). In
particular, we are interested in conditions of partial independence of agents’
types and their relationship to common-knowledge variables. Such conditions
help explain the environment’s information structure: how types of agents are
(statistically) associated with each other and what is common knowledge about
such associations.

A central condition of interest is subjective independence: the opponents’
types of every agent are (statistically) independent when the agent conditions
on his own type. This condition is interesting for a variety of reasons.

First, from an empirical point of view, when agents test whether their oppo-
nents’ types are independent, it is often done after they already know their own
type. So in effect, they test conditions of subjective, and not full, independence.

From an analytical point of view, subjective independence plays an impor-
tant role when individual agents make use of laws of large numbers that re-
quire independence. In a strategic game, for example, a player who knows his
own type can use laws of large numbers to make accurate predictions about
the aggregate behavior of large groups of opponents. Kalai (2004) showed that
in one-simultaneous-move Bayesian games with many semianonymous play-

1Kalai’s research is partially supported by the National Science Foundation Grant SES-
0527656. We are grateful for excellent expositional and technical suggestions made by a co-editor
and the anonymous referees.
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ers, under subjective independence,2 the equilibria are robust to structural
changes.3

Yet even if the number of players is small, a player who knows his own type
and repeatedly observes his opponents’ choices can use laws of large num-
bers to predict the opponents’ future actions. Kalai and Lehrer (1993) studied
the equilibria of Bayesian repeated games and showed that subjective indepen-
dence implies that every Bayesian equilibrium converges to a Nash equilibrium
of the repeated game, as if the privately known types were common knowledge.

Gossner and Hörner (2006) studied repeated games with imperfect monitor-
ing under subjective independence, where, conditional on each player’s signal
(or on a garbled version of it), the opponents’ signals are independent. They
showed that each player’s punishment level, defined as his min–max payoff
in the repeated game (where the min is taken over the independent strategy
profiles of the opponents), equals the player’s usual min–max payoff in mixed
strategies of the stage game. Thus, in this context subjective independence al-
lows for simple characterizations of individually rational payoffs, an important
step in the analysis of folk theorems in repeated games with imperfect moni-
toring.

In different contexts, which do not involve laws of large numbers, subjective
independence is important in the epistemological analysis of game-theoretic
solutions. For example, Bernheim (1986) used subjective independence to jus-
tify the use of Nash equilibrium (for the case of more than two agents), and,
more recently, Brandenburger and Friedenberg (2008) used it to differentiate
rationalizability from iterated dominance.

With implications like those above, it is desirable to have a better under-
standing of the condition of subjective independence. How restrictive is it and
in what types of situations does it arise? This note answers such questions.

A second important condition in this paper is independence under common
knowledge: conditional on some common-knowledge variable, the types of all
the agents are independent. This condition is important for two reasons: (i) it
enables an analyst to break down a complex strategic environment into individ-
ual components, each defined by the realized value of the common-knowledge
variable and (ii) conditional on each such realized value, the analyst may as-
sume type independence. For example, a Bayesian game can be broken down
to smaller strategically separable Bayesian subgames, each with independent
types.

With three or more agents, this paper shows that subjective independence is
equivalent to independence under common knowledge. Moreover, when there

2While the formal statement there is stated with full independence, the proof only uses sub-
jective independence.

3The equilibria survive even if the simultaneous move assumption is relaxed to allow for se-
quential play, revisions of earlier choices, delegation, information transmission, communication,
and more.
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is independence under a common-knowledge variable, there is a unique vari-
able with this property, namely, the variable identified by Aumann (1976). This
suggests useful algorithms for disassociating types in Bayesian environments.

A direct proof of the equivalence of the two independence conditions above
is long and tedious. The main body of the paper identifies general relationships
between type independence and common knowledge. In addition to leading
to a simpler proof of the equivalence above, these relationships offer better
understanding of the structures of Bayesian environments.

In particular, we show that, in general, any variable that disassociates the
types must be more informative than any common-knowledge variable. More-
over, subjective independence implies (i) that there can be no coalitional se-
crets (any variable that is common knowledge to two agents is common knowl-
edge to all) and (ii) that there is essentially a unique way to disassociate types.

The next section offers examples to help with the underlying intuition. It
is followed by a formal presentation that establishes the above results in a
standard model where the agents hold a common-prior distribution over the
possible environment’s states, as is customary in much of the epistemologic lit-
erature and applications. The concluding section offers two additional items:
(i) an elaboration on how to disassociate types and (ii) a discussion on the role
of the common-prior assumption, showing that without it the main results may
fail.

1.1. Examples

The following examples help illustrate the concepts.

EXAMPLE 1—Sun and Moods: In an n-person Bayesian environment, the
sun may either shine or not and, conditional on the state of the sun, σ ,
agent i’s mood, μi, is either happy or depressed. Each agent privately learns
both whether it is sunny or not and his own mood (for example, “It is sunny
and I am depressed”), and hence he may be one of four possible types.

Let s(·) be the probability distribution over the states of the sun (with pos-
itive probability on each) and let mi(·|σ) be agent i’s probability distribution
over moods, given the state of the sun. Assume that the likelihood of any vector
of types (σ�μ) is the product s(σ)

∏
i mi(μi|σ) and that all these distributions

are commonly known to the agents.

In the example above, the agents’ types are not independent. For example,
knowledge of one’s type precludes possible types of the opponents. But the
state of the sun disassociates the types in the sense that conditional on any state
of the sun, the types are independent. Moreover, the state of the sun is common
knowledge. Since in this situation a common-knowledge variable disassociates
the types, the types are independent under common knowledge. One can also
verify that in this example the agents’ types are subjectively independent.



1320 O. GOSSNER, E. KALAI, AND R. WEBER

EXAMPLE 2—Sun, Ozone, and Moods: As in the previous example, the state
of the sun, σ , can be shine or not shine, and each agent’s mood, μi, can be
happy or depressed. In addition, the ozone level, ζ, may be good or bad. So
each state of the environment is described by a triple: (σ�ζ� 〈μi〉i=1�����n). How-
ever, each agent knows only the weather and his own mood; he does not know
the ozone level. So he can be one of the same four types as in the previous
example.

Pairs of sun–ozone combinations, (σ�ζ), are determined by a full-support
joint distribution k(σ�ζ) and, conditional on any such pair, the n moods are
independently and identically distributed with 0 < p(μi|σ�ζ) < 1 denoting the
probability that agent i’s mood is μi. Assume that for every fixed sun state σ ,
the probability of a happy mood is strictly greater when the ozone level is good
than when it is bad.

In the last example, the state of the sun is a common-knowledge variable.
But it does not disassociate the moods (the moods are not independent condi-
tional on it) and no common-knowledge variable disassociates the moods. To
disassociate the moods, one needs to know both the state of the sun and the
ozone level. Subjective independence fails too, since knowledge of the sun and
one’s own mood is not sufficient to disassociate the opponents’ moods.

2. FORMAL PRESENTATION

A set I = {1�2� � � � � n} (n≥ 2) describes the agents in a Bayesian environment
E = (Ω�P�T), where T = TI = (Ti)i∈I is the profile of agents’ type functions,
each being a random variable defined over the probability space (Ω�P). For a
group of players J ⊆ I, TJ = (Ti)i∈J denotes the profile of types of players in J.

Implicitly, it is assumed that there is common knowledge of the three compo-
nents of the environment E and that when a state ω ∈Ω is drawn, each agent i
is informed only of his own type ti = Ti(ω).4 However, through his knowledge
of E , each agent makes inferences about the possible types of his opponents,
the inferences that the opponents may make, and so forth.

The space Ω may be finite or countable, and we assume without loss of gen-
erality that P(ω) > 0 for every ω ∈ Ω and that P(ti) > 0 for every ti in the
range of each Ti, that is, Ti is onto its range. We do not assume that P(t) > 0
for all profiles of types t, which would be a severe restriction.

DEFINITION 1: A random variable Y is finer than (or refines) a random vari-
able Z (alternatively Z is coarser than Y ) if for every pair of states, ω and ω′,
Z(ω) �=Z(ω′) implies that Y(ω) �= Y(ω′).

4Readers who are used to epistemology models may prefer to think of the underlying partitions
rather than the variables Ti. This would avoid the need for equivalence classes discussed below,
but would be more cumbersome in notations and applications.
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Two variables, Y and Z, are (informationally) equivalent, Y ≈ Z, if they re-
fine each other (Z(ω) = Z(ω′) if and only if Y(ω) = Y(ω′)). Y strictly refines
Z if Y refines Z and they are not equivalent.

Clearly, “Y refines Z” is transitive and Y ≈ Z is an equivalence relation
on the set of random variables. In the discussion that follows, we are mostly
interested in the equivalence classes of variables [Z] instead of the variables Z
themselves.

It is easy to see that under the equivalence above and the “Y refines Z”
relation, the variables form a (complete) lattice. The finest variable is repre-
sented by the function F(ω) = {ω} and the coarsest variable is represented by
the function K(ω)=Ω.

2.1. Conditional Independence: Disassociating Types

DEFINITION 2: Consider a subgroup of agents J ⊆ I. The variables TJ are
independent if for every vector of values tJ , P(TJ = tJ) = ∏

j∈J P(Tj = tj). The
variables TJ are independent conditional on a variable D if for all possible values
tJ and d, P(TJ = tJ|D = d) = ∏

j∈J P(Tj = tj|D = d). When this is the case, we
say that D disassociates TJ .

When J is the group of all agents I, we may omit the subscript J, and simply
say that the types are independent conditional on D and that D disassociates
the types. In this case we may write

P(T = t)=
∑

d

∏

i

P(Ti = ti|D = d)P(D = d)�

Clearly, if D disassociates the types of T , it disassociates the types of any sub-
group of agents, but the converse is not true. Moreover, disassociating types is
always possible (for example, by conditioning on the finest variable F) and of-
ten beneficial, but coarser disassociations are more desirable, since they help
explain the relationships between the types with a smaller number of parame-
ters.

PROPOSITION 1: There exists a maximally coarse disassociation, that is, a dis-
association D, such that any coarser disassociation is equivalent to it.

PROOF: We apply Zorn’s lemma to the set of disassociations, partially or-
dered by the “is coarser than” relation. We only need to prove that for any to-
tally ordered family (Dα)α∈D of disassociations, there exists a disassociation D
that is coarser than any Dα. Define the equivalence relation ω ∼ ω′ to mean
that there exists an α such that Dα(ω) = Dα(ω

′) and define the variable D(ω)
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to be the equivalence class of ω, D(ω) = {ω′;ω ∼ω′}. D is clearly coarser than
any Dα. For every vector of values tJ and every ω,

P(TJ = tJ|Dα(ω)) = P(TJ = tj�Dα(ω))

P(Dα(ω))
�

Both P(TJ = tj�Dα(ω)) and P(Dα(ω)) are increasing and converge, respec-
tively, to P(TJ = tj�D(ω)) and to P(D(ω)) on the chain defined by D. Thus,
all the equalities defining each Dα as a disassociation can be taken to the limit,
and D is also a disassociation. Q.E.D.

DEFINITION 3: A type disassociation is coarsest if it is coarser than any other
disassociation. Clearly, a coarsest disassociation must be unique (up to equiv-
alence).

Although there always exists a maximally coarse disassociation, it may not
be unique and the coarsest disassociation may not exist. We defer further dis-
cussion about the negative implications of this phenomenon to the concluding
section.

2.2. Common Knowledge

DEFINITION 4: For a group of agents J ⊆ I, a variable C is J common knowl-
edge if C is coarser than every Tj with j ∈ J. When C is I common knowledge,
we simply say that it is common knowledge.5

Clearly, common-knowledge variables exist, since any constant variable is
common knowledge for any group of agents. Also, common knowledge is coali-
tionally monotonic: if C is J common knowledge, it must also be L common
knowledge for any L ⊆ J.

Unlike disassociations, in the case of common knowledge it is desirable to
identify the maximally refined (rather than the maximally coarse) variables,
since they describe the most detailed information that is commonly known to
the agents.

DEFINITION 5: A common-knowledge variable C is finest if it refines every
other common-knowledge variable. Clearly, a finest common-knowledge vari-
able is unique (up to equivalence).

Unlike disassociations of types, for which the coarsest one may not exist, the
finest common-knowledge variable always exists. An explicit description of it is
offered by a construction due to Aumann:

5As we clarify below, this is equivalent to the standard definition of common knowledge de-
scribed in Aumann (1976).



INFORMATION INDEPENDENCE AND COMMON KNOWLEDGE 1323

For a fixed group of agents J ⊆ I , let ∼ be the equivalence relation de-
fined by ω ∼ ω′ if there exists a chain ω0 = ω�ω1� � � � �ωn = ω′ such that for
every k = 1� � � � � n, there exists an agent j ∈ J who is the same type in states
ωk−1 and ωk−1: Tj(ωk−1)= Tj(ωk). We define AumJ by the equivalence classes
for this relation: AumJ(ω) = {ω′ :ω′ ∼ ω}. For notational simplicity we let
Aum = AumI .

Formally, as defined above, Aum is a random variable with a range in the
set of all subsets of Ω, but it also describes the common-knowledge partition
defined by Aumann (1976).

The following lemma shows that Aum is common knowledge and it is the
finest common-knowledge variable.

LEMMA 1: Aum is the finest common-knowledge variable.

PROOF: To see that Aum is common knowledge, note that under the con-
struction above, Ti(ω) = Ti(ω

′) implies Aum(ω) = Aum(ω′). Thus, Aum is
refined by every Ti.

To see that Aum is the finest common knowledge, consider any common-
knowledge variable C. For any ω�ω′ such that Aum(ω) = Aum(ω′), consider
a chain ω0 = ω�ω1� � � � �ωn = ω′ such that for every k = 1� � � � � n, there exists
an i with Ti(ωk−1)= Ti(ωk). For every k, Ti(ωk−1)= Ti(ωk) implies C(ωk−1)=
C(ωk), so that C(ω)= C(ω′). Hence, Aum refines C.

Finally, if both Aum and Aum′ are finest, Aum refines Aum′ and Aum′ re-
fines Aum. Q.E.D.

2.3. Main Results

THEOREM 1—Type Disassociations Refine Common Knowledge: Any vari-
able D that disassociates the types is finer than any common-knowledge variable.

PROOF: We prove a stronger conclusion, namely, that D refines any C which
is common knowledge to any group of two agents. This is stronger because if
C is common knowledge, it must be common knowledge to any group of two
or more agents, yet the converse is not true.

Notice, however, that if D disassociates the types of T , then it disassociates
the types of any group of two agents. So it suffices to prove the theorem for the
case of n = 2 agents.

Since Aum refines all common-knowledge variables, it suffices to show that
if D(ω1) = D(ω2), then Aum(ω1) = Aum(ω2). Let D(ω1) = D(ω2) = d, and
let t1 = T1(ω

1) and t2 = T2(ω
2). Then P(T1 = t1 and T2 = t2|D = d) = P(T1 =

t1|D= d)P(T2 = t2|D = d) > 0. So there is a ω with T1(ω) = t1 (= T1(ω
1)) and

T2(ω) = t2 (= T2(ω
2)). In other words, ω1 and ω2 are equivalent in the sense

of Aumann so that Aum(ω1)= Aum(ω2). Q.E.D.
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COROLLARY 1: The only common-knowledge variable that may disassociate
the types is Aum.

DEFINITION 6: The types of T are subjectively independent if P(T−i =
t−i|Ti = ti)= ∏

j �=i P(Tj = tj|Ti = ti) for every agent i and every vector of types t
(alternatively, Ti disassociates T−i for every i).

Notice that the definition of subjective independence is global, rather than
local, where one would require only subjective independence at individual
states ω. Moreover, given the implicit common knowledge of P and T , if sub-
jective indepence holds, then it is common knowledge: every agent can verify it
for himself, for each one of his opponents, for their ability to verify it for their
opponents, and so on.

DEFINITION 7: The types of T are independent under common knowledge
if there is a common-knowledge variable that disassociates them.

THEOREM 2: For n ≥ 3 agents and any vector of types T , the following three
conditions are equivalent:

C1. The types are subjectively independent.
C2. The types are independent under common knowledge.
C3. Aum disassociates the types.
Moreover, any of the conditions above implies the following statements:
C4. The coarsest disassociating variable exists.
C5. No Coalitional Secrets: Any variable Z is common knowledge to a group

of agents J if and only if it is common knowledge to a group of agents K, where
J and K are any two groups (overlapping or disjoint) with two or more agents
each.

PROOF: C2 ⇒ C1. The following lemma is useful.

LEMMA 2: If X1 and (X2�X3) are independent conditional on X4, then X1

and X2 are independent conditional on (X3�X4).

PROOF: P(X1|(X2�X3)�X4) = P(X1|X4) implies P(X1|X3�X4) = P(X1|
X4), which implies the desired conclusion: P(X1|X2� (X3�X4)) = P(X1|X3�
X4). Q.E.D.

Assume C2, that is, that Ti and (Tk)k �=i are independent conditional on
a common-knowledge variable Z. For any j �= i, Lemma 2, with X1 = Ti,
X2 = (Tk)k �=i�j , X3 = Tj , and X4 = Z, shows that Ti and (Tk)k �=i�j are indepen-
dent conditional on (Tj�Z). This proves that Ti and (Tk)k �=i�j are independent
conditional on Tj , since (Tj�Z) and Tj generate the same partition. This is true
for every i� j, establishing subjective independence.
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C1 ⇒ C5. Let J be any group of at least two agents and take i /∈ J. Since
the family (Tj)j∈J is independent conditional on Ti, Theorem 1 implies that Ti

refines AumJ . Thus, AumJ∪{i} = AumJ . Since this is true for any J, an induction
argument shows that for any group J of at least two agents, AumJ = Aum.

C1 ⇒ C3. Let i, j, and k be three different agents. Since Tk and (Tl)l �=k�i are
independent conditional on Ti, P(tk|(tl)l �=k�i� ti)= P(tk|(t ′l)l �=k�i� ti) if P((tl)l �=k�i�
ti)P((t

′
l)l �=k�i� ti) > 0. Similarly, P((tl)l �=k�j� tj)P((t

′
l)l �=k�j� tj) > 0 implies

P(tk|(tl)l �=k�j� tj) = P(tk|(t ′l)l �=k�j� tj). Thus for any a in the range of Aum{i�j},
P(tk|(tl)l �=k� a) = P(tI |(t ′l)l �=k� a) holds whenever P((tl)l �=k� a)P((t

′
l)l �=k� a) > 0.

Hence, Tk and (Tl)l �=k are independent conditional on Aum{i�j}. Now using C1
and its implied C5, Tk and (Tl)l �=k are independent conditional on Aum. Since
this is true for any k, the family T is independent conditional on Aum.

C3 ⇒ C2. This is immediate, since Aum is common knowledge.
C3 ⇒ C4. This is immediate, since Aum disassociates the types and refines

any variable that disassociates the types by Theorem 1. Q.E.D.

3. FURTHER ELABORATION

The first example—sun and moods (no ozone)—illustrates a situation where
subjective independence and all the other C1–C5 conditions hold. The state
of the sun disassociates the moods of the agents and as the Aum variable, any
other disassociation must simply be its refinement. In other words, other than
the sun, there is no explanation of how the moods of the agents are related to
each other (including among subsets of agents), and this sun disassociation is
also the finest common knowledge.

The second example—sun, ozone, and moods—illustrates a situation in
which subjective independence and the equivalent conditions C1–C3 fail. The
Aum variable is still the state of the sun, but it does not disassociate the moods.
What can we say about disassociating the types in such situations? As it turns
out, despite the failing of subjective independence, the main findings of this
paper may still be helpful.

3.1. Disassociating Types

Continuing with the sun, ozone, and moods example, we observe first that
the two-dimensional variable that describes the values of the sun and the
ozone, (S�Z), does disassociate the types and that it is a maximally coarse
variable with this property. To see that it is maximally coarse among all disasso-
ciations, assume to the contrary that there is a disassociation D that is strictly
coarser than (S�Z). By Theorem 1, D must be strictly finer than Aum. This
leaves only two such possible disassociations: D1, which discloses the ozone
levels when the sun is shining, but does not do so when the sun is not shining,
or, similarly, D2, which discloses the ozone levels when the sun is not shining,
but does not do so when the sun is shining.
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To show, for example, that D1 is not a disassociation, restrict yourself to the
event “the sun is not shining,” which is common knowledge, and verify that
conditional on this event the moods are not independent.

Do the state of the sun and the ozone level, (S�Z), offer the only way to
disassociate the moods? No. For example, for every agent i, let Ni = (S�M−i)
describe the state of the sun and the vector of moods of all agents other than i.
The reader may verify, using some of the main results described earlier, that
every such Ni is a maximally coarse variable that disassociates the types. More-
over, Ni is not equivalent to (S�Z).

The nonexistence of the coarsest disassociation, or the existence of multiple
maximally coarse disassociations, presents a conceptual difficulty. This is be-
cause unlike the example with the sun only, where there is a unique and full
explanation of the mood relationships among the agents, now there are several
competing such explanations. This means that an analyst, who wants to have
one “natural” explanation of the mood relationships, has to introduce addi-
tional considerations. For example, Gossner, Laraki, and Tomala (2009) chose
the decomposition that minimizes the entropy of the information not observed
by the analyst.

As the discussion above suggests, type disassociation may be attempted by
the following series of steps: First, identify the variable Aum, a task that in-
volves only unions and intersections, and disregards probabilities. Then check
to see if the types are independent conditional on Aum. If they are, then Aum
is the unique explanation of type relationships (and it is also common knowl-
edge). If the types are not independent conditional on Aum, then there are
no common-knowledge disassociations and all disassociations must be strict
refinements of Aum.

3.2. Relaxing the Common-Prior Assumption

In the model above, we (implicitly) assumed that the environment E =
(Ω�P�T) is common knowledge. Differential information was expressed only
by the fact that when a state ω is realized, each agent i is informed only of
the value of his own type Ti(ω). This formulation follows the original model of
Aumann (1976) and most of the followup literature.

What happens to subjective independence if E = (Ω�P�T) is not common
knowledge to all the agents? There are different ways to model such relax-
ations, while still retaining coherent concepts of common knowledge and dis-
associations.

One simple relaxation is the following. Replace the triple E = (Ω�P�T) by
n triples E k = (Ωk�Pk�T k), k = 1�2� � � � � n, where every such triple represents
the beliefs of agent k about the complete setting. For every such k, impose on
E k the assumptions made in the paper on E . In other words, each agent has a
different model of the world, but he believes that all the agents have the same
model as his. It follows immediately that all the results hold in every agent’s
mind.
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However, the above relaxation is extreme in opposite directions. On the
one hand, the triples E k, modeling the different agents’ representations of the
world, are completely unrelated to each other. One the other hand, within his
own E k, every agent assumes full coincidence and common knowledge of the
same environment.

A model that relaxes the common-prior assumption in a minimal sense and
is less extreme than the one above is a generalized Harsanyi model (GHM;
see Harsanyi (1967/68)). While, in general, a minimal relaxation may not go
far enough, it is sufficient for our purpose here. As we show below, such a
minimal relaxation already overturns the main result of the paper.

In this GHM there is common knowledge of the set of states Ω and of the
vector of types T , but each agent k has a different prior probability Pk over
the states of the environment. Moreover, it is assumed that the different Pk’s
are common knowledge. This means that each agent k is convinced that his
prior Pk is correct and that the priors of his opponents, Pk′ ’s, are wrong. So
in contrast to the model of Aumann (1976), they may agree to disagree, with
disagreements that are common knowledge. The following is an example of
such a GHM in which the main results of the paper fail.6

EXAMPLE 3 —Three Mood Setters: There are nine states described by
triples μ = (μ1�μ2�μ3), where each μi, taking the values happy (H) or de-
pressed (D), describes the mood of agent i. Each agent is informed only
of his own mood. Moreover, based on his individual prior distribution over
moods Pi, he believes that he is the “mood setter.” For example, agent 1’s
prior is (i) P1(μ1 = H) = P1(μ1 = D) = 0�50, and with each of X�Y�Z taking
the values of H and D, he has (ii) P1(μ2 =X|μ1 = X)= P1(μ3 = X|μ1 =X)=
0�90 and (iii) P1(μ2 = Y and μ3 = Z|μ1 = X) = P1(μ2 = Y |μ1 = X)P1(μ3 =
Z|μ1 = X).

Condition (ii) represents the fact that agent 1 believes that he is a mood
setter. Moreover, condition (iii) states his belief that his mood disassociates
the moods of the others, which is subjective independence.

In addition to the fact that each agent believes that he is the mood setter,
as described by symmetric distributions P2 and P3, there is implicit common
knowledge that all three agents believe themselves to be the sole mood setter.

In the example above the only common-knowledge variable (or the Aum
variable) is the coarsest variable, represented by any constant function. Thus,
the condition of independence under common knowledge translates to uncon-
ditional type independence.

But under any Pi, i = 1�2�3, no agent believes that the types are inde-
pendent. (For example, P1(μj = H) = 0�50 for j = 1�2�3, yet P1(H�H�H) =

6We thank an associate editor for suggesting a different (more complex) example in which the
same phenomenon is observed.
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0�5 × (0�9)2 �= (0�5)3.) Given the common knowledge of the different priors,
there is common knowledge that nobody believes the type independence, that
is, independence under common knowledge fails.

Yet condition (iii) above means that there is subjective independence, where
each agent believes that for any type of himself, his opponents are indepen-
dent of each other. Again, given the common knowledge of the individual pri-
ors, there is also common knowledge of subjective independence, that is, every
agent knows that conditional on his types, the opponents’ types are indepen-
dent, they all know that they all know that, and so forth.

Clearly, one special case of the GHM is the case of a common prior studied
in this paper, in which subjective independence and independence under com-
mon knowledge are equivalent. It is not clear whether, within the GHM, the
equivalence can be obtained under weaker conditions than a common prior.
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