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Abstract

Tennenholtz (GEB 2004) developed Program Equilibrium to model play in a finite two-player
game where each player can base their strategy on the other player’s strategies. Tennenholtz’s
model allowed each player to produce a “loop-free” computer program that had access to the
code for both players. He showed a folk theorem where any mixed-strategy individually rational
play could be an equilibrium payoff in this model even in a one-shot game. Kalai et al. gave a
general folk theorem for correlated play in a more generic commitment model.

We develop a new model of program equilibrium using general computational models and
discounting the payoffs based on the computation time used. We give an even more general folk
theorem giving correlated-strategy payoffs down to the pure minimax of each player. We also
show equilibrium in other games not covered by the earlier work.

1 Introduction

Consider two players Alice and Bob who play a finite game like Prisoner’s Dilemma. Instead of just
choosing an action, suppose they try to reason about what the other player will do. For example,
Alice may be willing to cooperate as long as Alice believes Bob will also cooperate and vice-versa.
Cooperation may become an equilibria, even in a one-shot game, if both players can share their
reasoning mechanisms.

Tennenholtz [Ten04] suggests modeling the reasoning processes as computer programs where
each player submits a program that can see the code of the other player (as well as its own code).
To avoid infinite regression (each player simulating the other with neither ever willing to halt first)
Tennenholtz limits the programs to be “loop-free” or straight-line programs in the CS vernacular
that must pick some action in the action space.

Tennenholtz defines a notion of Program Equilibrium in this model and shows that dual cooper-
ation can indeed be achieved: Both players submit programs that will cooperate if both programs
are identical and defect otherwise.

Tennenholtz proves a general “Folk Theorem” for these games where every individually rational
mixed strategy can be achieved as an equilibrium in the program equilibrium model, even for one-
shot games.

We broaden Tennenholtz’s work by allowing the players to play arbitrary Turing machines.
We avoid infinite regression by discounting the running time, i.e., for some δ < 1, the payoff of

∗Supported in part by NSF grants CCF-0829754 and DMS-0652521.

1



each player is discounted by a multiplicative factor of δt where the player used t steps in their
computation. If a player’s program doesn’t halt, the player gets a payoff of zero. If one player halts
while the opponent doesn’t, the player gets the best possible (discounted) payoff for his action.

The idea of discounting utility comes from a standard assumption in economic theory that
people value an (inflation-adjusted) dollar a year from now less than receiving that dollar today.
The discount δ for a specific time-period is chosen so that an agent is indifferent between receiving
δ dollars at the beginning of the period and one dollar at the end of the period.

Not only does our model allow for arbitrary computer programs, we also get a stronger folk
theorem than Tennenholtz or his successors. We can achieve any correlated strategy individual
rational play down to the pure-strategy minimax as a program equilibrium in our model.

We describe our model in Section 3 and the main Folk theorem in Section 4. In Section 5,
we consider the largest-integer game where each player announces an integer and the one who
announces the largest integer receives $100 and splitting the pot if they give the same number.
This game has no Nash equilibrium and no program equilibrium in Tennenholtz or later models.
We give a simple equilibrium that splits the pot in our model and can also achieve a general Folk
theorem for this game.

In Section 6.1 we look at Chess. The Nash equilibrium and previous program equilibriums
would require the players to play best play despite the fact that it is assumably computationally
hard. We argue that in our discounted time model, best play is not an equilibrium and make the
case (but don’t prove) that the right equilibrium better matches how computers and humans play
chess.

Finally in Section 6.2 we discuss discounted time in traditional computational complexity out-
side of game theory, arguing that it is more natural than our traditional definitions, can be used to
capture the standard classes and may give us a different way to understand average-case complexity,
expected running time and approximation algorithms.

2 Related Work

2.1 Tennenholtz Program Equilibrium

In his seminal paper, Tennenholtz [Ten04] developed the first program equilibrium model. Fix a
finite 2-play normal-form game G. Instead of playing actions in G, each player produces a program
to compute the action. The twist is that each program can look at the code of the other player’s
program (as well as its own). This twist captures the idea of reasoning about the other player’s
strategy.

He shows how to achieve cooperation in a 1-shot Prisoner’s Dilemma game.

C D
C 3, 3 0, 4
D 4, 0 1, 1

Figure 1: Prisoner’s Dilemma

The Equilibrium Strategies work as follows:

P1(〈P1〉, 〈P2〉) :
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If 〈P2〉 is as below
Cooperate.

Otherwise Defect.

P2(〈P1〉, 〈P2〉) :
If 〈P1〉 is as above

Cooperate.
Otherwise Defect.

If both players play the equilibrium programs the programs will both cooperate. If one player
deviates the other will defect.

To guarantee that the programs always play an action, Tennenholtz allows only “loop-free” or
straight-line programs. In his model, the players must use pure strategies to choose a program
but the programs themselves can randomize. Tennenholtz shows the following Folk theorem for his
model. A program equilibrium is a choice of programs for each player such that neither player has
incentive to choose a different program.

Theorem 1 (Tennenholtz) Fix a finite two-player game G and mixed strategies of the players
on that game such that are individually rational, that is the payoff for each player is better than
their worst-possible payoff for some mixed-strategy. Then there is a program equilibrium where each
player picks a program that has the same payoffs for each player.

2.2 Later Work

Monderer and Tennenholtz [MT06] consider “mediated equilibrium” where agents can optionally
use a mediator that behaves in a pre-specified way based on messages received from agents. They
show that this model generalizes Tennenholtz and show a number of Folk theorems for arbitrary
numbers of players.

Kalai, Kalai, Lehrer and Samet [KKLS07] consider a model of “commitments.” Each player
has a set of devices that represent a total function from the other player’s device to an action of
a finite two-player game. There are additional “voluntary devices” that allow a player to play an
action of the original game and the other player cannot react to that choice of action.

In this model Kalai et al. prove a stronger version of Tennenholtz’s Theorem 1. A correlated
play is a arbitrary distribution on the set of pairs of actions of both players (whereas a mixed
strategy only allows product distributions on the sets of pairs).

Theorem 2 (Kalai-Kalai-Lehrer-Samet) Fix a finite two-player game G and correlated strate-
gies of the players on that game such that are individually rational, that is the payoff for each player
is better than their worst-possible payoff for some mixed-strategy. Then there is a set of devices
(including voluntary devices) for both players and a mixed-strategy equilibrium over devices with
the same payoffs for each player.

Note the players choose mixed-strategies over devices yet still can achieve equilibrium for correlated
strategies in the original game. One can get a similar result for Tennenholtz’s model if one allows
mixed-strategies and apply the techniques of the proof of Theorem 2.
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Peters and Szentes [PS08] consider the model where each player can play a first-order formula
over the integers which gets the Gödel-numbering of the formula for the other player as well as its
own. This is equivalent to allowing the players to play total functions in the arithmetic hierarchy
(computable in the halting problem, the halting problem relative to the halting problem, etc.) They
get results similar to Theorem 1 and 2 in their model even when allowing more than two players.

Halpern and Pass [HP08] consider mediation based on cryptographic assumptions with players
of limited computational power.

3 Our Model

Let G = (A1, A2, u1, u2) be a two-player finite normal-form game. Each Ai is a finite set of actions
and ui : A1 ×A2 → <≥0.

Player i has action space Ai and receives utility ui(a1, a2) when each player i chose action ai.
In the program equilibria model, each player does not directly choose an action, rather they

choose a program Pi. We allow a program to be an arbitrary Turing machine. Let 〈Pi〉 represent the
code for program Pi. Alternatively we can allow program to be chosen from any Turing-complete
programming language (includes nearly all common languages including C, Java, Basic as long as
there is no a priori bound on memory).

Each Pi will receive two inputs, 〈P1〉 and 〈P2〉, the codes for the programs produced by the
players denoted by Pi(〈P1〉, 〈P2〉). Since we allow arbitrary Turing machines, Pi(〈P1〉, 〈P2〉) may
have an arbitrary output or may not output at all because it doesn’t halt. Let ai be the output of
Pi(〈P1〉, 〈P2〉), where we say ai = ⊥ if there was no output or the output was not in Ai. Let ti be
the number of computation steps used by Pi(〈P1〉, 〈P2〉) before it outputs ai where we say ti =∞
if the machine didn’t halt or didn’t output an action in Ai.

We discount the utility by the running time. Fix δ with 0 < δ < 1. In current technology, think
of δ about 1− 10−12.

Let a1, a2, t1 and t2 be the actions and times as described above where each Player i plays
program Pi. Here are the payoffs in the program equilibria game:

• If a1 6= ⊥ and a2 6= ⊥ then each Player i receives utility δtiui(a1, a2).

• If a1 = a2 = ⊥ both players receive zero utility.

• If a1 6= ⊥ and a2 = ⊥ then Player 2 receives zero utility and Player 1 receives utility
δt1 maxb∈A2 u1(a1, b).

• If a1 = ⊥ and a2 6= ⊥ then Player 1 receives zero utility and Player 2 receives utility
δt2 maxb∈A1 u2(b, a2).

One could also consider using discounting functions that use both running times such as δt1+t2 or
δmax(t1,t2) or use min instead of max when one machine doesn’t give an action. Our results hold in
those models as well but we don’t want to punish one player because the other player’s program
used a large or infinite amount of time.

We allow players to use mixed strategies to choose the programs P1 and P2 but the programs
themselves must be deterministic.
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4 Folk Theorem

For a game G the pure minimax utility for player 1 is

α1 = min
a2∈A2

max
a1∈A1

u2(a1, a2)

and the pure maximin utility for player 2 is

α2 = min
a1∈A1

max
a2∈A2

u1(a1, a2).

A game G has a non-empty interior of individually rational strategies if each player can possibly
achieve better than their pure minimax, specifically for i ∈ {1, 2},

αi < max
a1∈A1

max
a2∈A2

ui(a1, a2).

A correlated play of a game G is when the actions a1 and a2 are drawn from some joint
distribution D over A1 × A2. A correlated play is purely individually rational if the expected
utilities of each player over D is at least their pure maximin utility.

Theorem 3 For every game G with nonnegative payoffs and a non-empty interior of individually
rational strategies, and any purely individually rational correlated play on G with distribution D
and every ε > 0 there is some δ < 1 such that there is a Nash Equilibrium in the mixed program
equilibrium game where each player’s expected utility is within ε of their expected utility over D.

Like Kalai et al. [KKLS07], we achieve correlated actions with only mixed strategies. We use
techniques similar to Kalai et al. to achieve the correlation though our programs are otherwise
quite different than those used by Kalai et al. or Tennenholtz [Ten04].

Note we achieve a true Nash equilibrium, not merely an ε-Nash. However we can achieve
equilibrium on only a dense subset of the correlated strategies for two reasons:

1. There are an uncountable number of distribution D but only a countable number of distribu-
tions possibly generated by the countable set of Turing machines.

2. In equilibrium the programs use a small but non-zero amount of computation time which
leads to a tiny amount of discounting.

In Section 4.1 we give an example to show why we need a non-empty interior.

Proof of Theorem 3:
Assume that under D, both players achieve an expected payoff more than ε higher than their

minimax payoffs. We can achieve this, if needed, by modifying D to put a small amount of weight
on the action pairs that give each player their maximum utility.

Since the expected utilities of the players are continuous as a function of D choose n and a
distribution E such that the each probability of choosing any action pair (a1, a2) according to E is
a multiple of 2−n and the expected utilities of both players according to D and E differ by at most
ε/2. Fix a function f : {0, 1}n → A1 ×A2 such that

Pr
r

(f(r) = (a1, a2)) = Pr
E

(a1, a2)

where r is chosen uniformly over {0, 1}n.
In equilibrium each player i chooses a string ri uniformly over {0, 1}n and plays the following

programs.
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P1(〈P1〉, 〈P2〉) :
If 〈P2〉 is not as below

Simulate P2(〈P1〉, 〈P2〉)
If P2(〈P1〉, 〈P2〉) outputs action a2

output action a1 that minimizes u2(a1, a2).
Otherwise

Pull r2 from 〈P2〉.
Play action a1 where f(r1 ⊕ r2) = (a1, a2).

P2(〈P1〉, 〈P2〉) :
If 〈P1〉 is not as above

Simulate P1(〈P1〉, 〈P2〉)
If P1(〈P1〉, 〈P2〉) outputs action a1

output action a2 that minimizes u1(a1, a2).
Otherwise

Pull r1 from 〈P1〉.
Play action a2 where f(r1 ⊕ r2) = (a1, a2).

Suppose both players play according to the equilibrium strategy. In which case the “Otherwise”
clause will kick, r1⊕r2 will be uniformly distributed over {0, 1}n and the expected payoff for player
i will be δtβi where t is the number of steps used by each program and βi is the expected payoffs
according to E . Choose δ so that (1 − δt)βi ≤ ε/2 for each i and the payoffs for each player is at
most ε worse than the expected payoffs in G under D.

Suppose Player 1 plays the equilibrium strategy but Player 2 deviates (the reverse case is
similar). We have two cases.

If Player 2 plays a different program than above than either Player 2’s program doesn’t halt
and Player 2 receives zero utility, or Player 2’s program halts with some action a2 and Player 1’s
program will play the a1 that minimizes u2(a1, a2). At best Player 2 will achieve her pure minimax
payoff which by assumption is more than ε less than Player 2’s payoff in G under D and thus strictly
less than Player 2’s program equilibrium payoff.

Player 2 can also deviate by playing the program above but not choosing r2 according to the
uniform distribution. But since r1 is chosen uniformly, r1 ⊕ r2 will be uniform independent of the
distribution chosen by Player 2. Since the running time of the program is independent of the choice
of r2, Player 2 will not gain (or lose) by deviating in this way. �

4.1 Empty Interior

We give an example as to why we need non-trivial strategies to achieve for our Folk Theorem
(Theorem 3). Consider the game in Figure 2.

L R
U 1, 5 1, 4
D 0, 1 1, 1

Figure 2: A Game with an Empty Interior of Individually Rational Strategies
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An expected payoff of (1, 3) can be achieved by the correlated play of playing (U,L) and (D,R)
each with probability 1/2 or the mixed strategy of player 2 always playing R and player 1 playing
U with with probability 2/3 and D with probability 1/3 or some combination of the two.

In either case if we used the programs in the proof of Theorem 3, player 1 could deviate by just
immediately playing U since it still receives a utility one 1 but with less time and thus less of a
discount. Any program equilibrium achieving expected payoff (1, 3) would have Player 1’s program
either immediately playing U or D with a positive probability of the program playing U . However
in that case Player 2 could benefit by just playing L and thus there is no program equilibrium
achieving an expected discounted payoff close to (1, 3).

5 Largest Integer Game

Our Folk theorem can be extended to some infinite games that don’t even have a Nash Equilibrium.
Consider the following 2-player infinite game, Largest Integer. Each Player i choose an integer

ai.

• If a1 > a2 then Player 1 receives 100 and Player 2 receives 0.

• If a2 > a1 then Player 2 receives 100 and Player 1 receives 0.

• If a1 = a2 then both players receive 50.

Largest Integer has no Nash equilibrium since for any mixed strategy of Player 1, player 2 can play
a large enough integer to achieve 100− ε for any ε > 0 and vice-versa. For similar reasons there is
no equilibrium in Tennenholtz’s model or any of the other models described in Section 2.

We can achieve a discounted equilibrium of 50− ε as follows:

P1(〈P1〉, 〈P2〉) :
If 〈P2〉 is not as below

Simulate P2(〈P1〉, 〈P2〉)
If P2(〈P1〉, 〈P2〉) outputs action a2

output action a1 = a2 + 1.
Otherwise Output 1.

P1(〈P1〉, 〈P2〉) :
If 〈P1〉 is not as above

Simulate P1(〈P1〉, 〈P2〉)
If P2(〈P1〉, 〈P2〉) outputs action a1

output action a2 = a1 + 1.
Otherwise Output 1.

If a player deviates from the equilibrium strategy they will receive a payoff of zero, either
because they ran forever or because the other player will play a larger number.

Using similar ideas from the proof of Theorem 3, we can get a general Folk Theorem for the
Largest Integer game.
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6 Future Directions

In Section 5 we gave a Folk theorem for a countable game. Can we prove a Folk theorem for a
general class of games.

What happens if we have more than two players? What if we look at a family of games
paramaterized by some value n? In the parameterized setting, the number of players could also
depend on the parameter.

Can we use the Kleene recursion theorem [Kle38] to eliminate the need for each program to
have its own code as input?

6.1 Computationally Hard Games

Consider a standard chess game and say the payoff is 100 for winning, 50 for a draw and 1 for losing
(so it is better to lose than to keep playing indefinitely). The only Nash equilibrium is best play
and this is also the only equilibrium in previous models of program equilibriums and commitment.
But neither man nor machine plays best play in chess because of the computationally difficulty in
searching the full game tree. We can’t prove that there is some unknown quick algorithm that does
play perfectly but for the sake of the argument let us assume no such algorithm exists.

For a reasonable choice of δ, say δ = 1− 10−12, best play no longer becomes an equilibrium in
the discounted time model since searching the game tree would drop the discounted payoff to less
than just immediately resigning.

Instead discounting suggests a method of playing that more closely matches how humans and
computers play chess: Doing an carefully pruned search of small number of levels of the game tree
and then apply some evaluation function that gives a belief of winning from that position as well
as a belief in a possible increase in value from further exploration, optimizing the time with the
amount of discount given up in the search.

It would be extremely difficult if not impossible to exactly characterize such an equilibrium.
One could try to characterize equilibria of other simpler but still computationally difficult games.

6.2 Discounted Time in Computational Complexity

Are there interesting applications of discounted time outside of game theory? In computational
complexity when we talk about time it usually represents a hard limit in the running time, solving
the problem in time t(n). So we are happy, say, if we can solve the problem in one hour and
miserable if it takes 61 minutes. But our real gradation of happiness over the running time is not
so discontinuous.

Let us consider discounting the value of a solution by a δt factor for an algorithm that uses t
steps, so a small increase in the running time yields only a small decrease in utility. When t is
small, δt is about 1− εt, a linear decrease. For t large, δt is about e−εt, an exponential decrease.

There is also a time-independent flavor to this notion. After time t the additional discount for
continuing for another r steps is δr, independent of t.

We can also recover traditional complexity classes. DTIME(O(m(n))) is the set of languages
computable in time t such that for some constant c > 0, δt > c for δ = 1− 1

m(n) .
Abbott and Garcia-Molina [AG88] had considered non-hard deadlines in databases though not

specifically using a discount factor.
Some possible applications of discounted time in computational complexity and algorithms.
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• What does average case and expected time mean in the discounted time model?

• What if you take the value of the solution of some approximation problem and discount it
with the time taken? Can you determine the optimal point to stop?

7 Acknowledgments

I thank in particular Ehud Kalai, Balázs Szentes and Rakesh Vohra for their many useful insights as
well as the many great comments I received from early presentations at Dagstuhl and Northwestern.

I presented the ideas on discounted time in complexity in Section 6.2 at a rump session at the
2008 Conference on Computational Complexity and in my weblog [For08] and thank those who
game me comments. In particular thanks to Alex Lopez-Ortiz for pointing me to the work of
Abbott and Garcia-Molina [AG88].

References

[AG88] R. Abbott and H. Garcia-Molina. Scheduling real-time transacations. ACM SIGMOD
Record, 17(1):71–81, March 1988.

[For08] L. Fortnow. Discounted time. Computational Complexity Weblog, August 2008.
http://weblog.fortnow.com/2008/08/discounted-time.html.

[HP08] J. Halpern and R. Pass. Game theory with costly computation. Technical Report
arXiv:0909.0024v1, arXiv, 2008.

[KKLS07] A. Kalai, E. Kalai, E. Lehrer, and D. Samet. A commitment folk theorem. Manuscript.,
2007.

[Kle38] S. Kleene. On notation for ordinal numbers. Journal of Symbolic Logic, 3:150–155, 1938.

[MT06] D. Monderer and M. Tennenholtz. Strong mediated equilibrium. Manuscript., 2006.

[PS08] M. Peters and B. Szentes. Definable and contractible contracts. Manuscript., 2008.

[Ten04] M. Tennenholtz. Program equilibrium. Games and Economic Behavior, 49(2):363–373,
November 2004.

9


