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Abstract

Dynamic consistency leads to Bayesian updating under expected utility. We ask

what it implies for the updating of more general preferences. In this paper, we charac-

terize dynamically consistent update rules for preference models satisfying ambiguity

aversion. This characterization extends to regret-based models as well. As an appli-

cation of our general result, we characterize dynamically consistent updating for two

important models of ambiguity averse preferences: the ambiguity averse smooth am-

biguity preferences (Klibano¤, Marinacci and Mukerji [Econometrica 73 2005, pp.

1849-1892]) and the variational preferences (Maccheroni, Marinacci and Rustichini

[Econometrica 74 2006, pp. 1447-1498]). The latter includes max-min expected utility

(Gilboa and Schmeidler [Journal of Mathematical Economics 18 1989, pp. 141-153])

and the multiplier preferences of Hansen and Sargent [American Economic Review

91(2) 2001, pp. 60-66] as special cases. For smooth ambiguity preferences, we also

identify a simple rule that is shown to be the unique dynamically consistent rule among

a large class of rules that may be expressed as reweightings of Bayes�rule.
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1 Introduction

A central question facing any theory of decision making under uncertainty is how preferences

are updated to incorporate new information. Since updated preferences govern future choices,

it is important to know how they relate to information contingent choices made ex-ante.

Dynamic consistency is the requirement that ex-ante contingent choices are respected by

updated preferences. This consistency is implicit in the standard way of thinking about a

dynamic choice problem as equivalent to a single ex-ante choice to which one is committed,

and is thus ubiquitous in economic modeling.

Under subjective expected utility, updating preferences by applying Bayes�rule to the

subjective probability is the standard way to update. Why is this so? Dynamic consistency

is the primary justi�cation for Bayesian updating. Not only does Bayesian updating imply

dynamic consistency, but, if updating consists of specifying a conditional probability measure

for each (non-null) event, dynamic consistency implies these conditional measures must be

the Bayesian updates.1 The requirement that updating consists of specifying a conditional

probability measure ensures closure for expected utility preferences � i.e., that each such

preference remains an expected utility preference after updating.

Since dynamic consistency and closure lead to a well-established theory of updating for

expected utility, it makes sense to ask what they imply for the updating of more general

preferences. Closure for a set of preferences means that each member of that set remains in

the set after updating. In earlier work (Hanany and Klibano¤ [20]), we began to address this

issue by identifying and characterizing the �rst dynamically consistent update rules satisfying

closure for the maxmin expected utility (MEU) model of decision-making under ambiguity

(Gilboa and Schmeidler [16]).2 In this paper, we are able to substantially generalize the

approach taken there and characterize dynamically consistent update rules for essentially all

continuous, monotonic preferences that are ambiguity averse in that they satisfy the uncer-

tainty aversion axiom introduced in Schmeidler [45] (i.e., have convex upper contour sets in

utility space). Schmeidler�s axiom (stated in Section 2.2) is very commonly used to describe

ambiguity aversion in the literature and MEU is but one of many models satisfying this

property.3 We consider several applications of our general result in some detail, character-

izing dynamically consistent update rules satisfying closure for important speci�c models of

ambiguity averse preferences: the smooth ambiguity preferences (Klibano¤, Marinacci and

1See e.g., Proposition 6 in Hanany and Klibano¤ [20] or Proposition 3.1 in Section 2.2.
2Epstein and Schneider [11] had previously investigated updating of MEU preferences using a stronger

notion of dynamic consistency (see our discussion of recursive dynamic consistency in Section 6) and, as a
result, to avoid a collapse to expected utility had to restrict attention to updating given a limited set of
events (the so-called rectangular events).

3For alternative notions of ambiguity aversion, see Epstein [9] and Ghirardato and Marinacci [15].
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Mukerji [28], henceforth KMM),4 the variational preferences (Maccheroni, Marinacci and

Rustichini [33], henceforth MMR) and regret-based models of ambiguity aversion, such as

minimax regret with multiple priors (Hayashi [24], Stoye [52]). We propose the �rst dynami-

cally consistent update rules satisfying closure for these models. In Section 6.1, we elaborate

on the connections between our update rules and the recursive extensions of these models

proposed in Klibano¤, Marinacci and Mukerji [29], Maccheroni, Marinacci and Rustichini

[34] and Hayashi [25].

What is a main di¤erence in the implications of dynamic consistency when updating

ambiguity averse preferences rather than standard preferences? Consider Ellsberg�s three-

color example, in which bets are made over the color of a ball drawn randomly from an

urn with 90 balls, of which 30 are black (B) and the remaining 60 are somehow divided

between red (R) and yellow (Y ). Taking triples (uB; uR; uY ) 2 R3 to represent utility
acts, i.e. state (color) contingent utility payo¤s, the typical preference (1; 0; 0) � (0; 1; 0)

(betting on black rather than red) and (0; 1; 1) � (1; 0; 1) (betting against black rather

than against red) is inconsistent with expected utility but is consistent (and is one of the

primary motivations for) many models of preferences under ambiguity. Let us introduce

dynamics by supposing that after the ball is drawn from the urn, the decision maker (DM)

is informed whether or not the ball is yellow.5 The DM is allowed to condition her choice

of bets on this information. Notice that this conditioning opportunity does not expand the

feasible set of utility acts compared to the original problem of choosing between betting on

B or on R �only the utility payo¤s (1; 0; 0) or (0; 1; 0) (and their convex combinations, if

randomization is considered) are achievable. The same applies to the choice between betting

on the event fB; Y g or on fR; Y g �even with conditioning allowed, only convex combinations
of (1; 0; 1) or (0; 1; 1) are feasible. Ex-ante, then, the static and dynamic choice problems

are the same. A DM with the typical Ellsberg preferences is dynamically consistent in this

problem if (1; 0; 0) is chosen over (0; 1; 0) when the dynamic problem is played out (i.e.,

conditional on the event fB;Rg, betting on B is chosen over betting on R) and (0; 1; 1)

is chosen over (1; 0; 1) when the dynamic problem is played out (i.e., conditional on the

event fB;Rg, betting on fR; Y g is chosen over betting on fB; Y g). Dynamic consistency
creates a problem for the usual methods of updating preferences. To see this, observe that

a choice of (1; 0; 0) over (0; 1; 0) conditional on fB;Rg from a feasible set consisting of this

pair would directly con�ict with a choice of (0; 1; 1) over (1; 0; 1) conditional on fB;Rg from
4See also Ergin and Gul [12], Nau [35], Neilson [36], and Seo [47] for related preference analyses and

Hansen [22] for an application to macroeconomic risk. While smooth ambiguity preferences may display a
full range of ambiguity attitudes, we focus exclusively on the ambiguity averse subset of these preferences.

5Such dynamic extensions of Ellsberg have been considered before, e.g., Epstein and Schneider [11],
Hanany and Klibano¤ [20].
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a feasible set consisting of this latter pair. The con�ict results because, when restricted to

the event fB;Rg, each pair involves exactly the choice of (1; 0) versus (0; 1). Therefore,
to allow dynamic consistency of the prototypical ambiguity averse preferences while ruling

out updated preferences that give weight to unrealized events, one must allow updating to

depend on the ex-ante contingent plan and/or feasible set of acts. We do exactly this when

formally de�ning dynamic consistency in Section 2.2. Such dynamically consistent updating

will maximize the DM�s ex-ante welfare compared to any other form of updating. This is

a strong justi�cation for investigating dynamically consistent updating �such update rules

are precisely what a DM would want to use if adopting an update rule in advance.

There are two other approaches to modeling ambiguity averse preferences in dynamic

settings. One approach deals with recursive extensions (e.g., Epstein and Schneider [11],

MMR [34], KMM [29]), while the other posits dynamic inconsistency and adopts (either

explicitly or implicitly) assumptions, such as backward induction (e.g., Siniscalchi [50]) or

naive ignorance of the inconsistency, to pin down behavior. We discuss them with related

literature in Section 6, but want to mention here that in both of these approaches updating

is independent of the ex-ante contingent plan and feasible set of acts, thus neither approach

delivers dynamically consistent updating.

The fact that dynamically consistent updating of preferences that are not expected utility

requires dependence on more than just the conditioning event was recognized by Machina

[30] and McClennen [31]. Such updating is referred to as non-consequentialist. Machina [30]

proposed a dynamically consistent update rule in the context of preferences over objective

lotteries, and this was later adapted by Machina and Schmeidler [32] to satisfy dynamic

consistency and closure for probabilistically sophisticated preferences over acts.6

Capturing ambiguity averse behavior, however, requires models that go beyond prob-

abilistic sophistication. We would like to �nd, for a variety of such models, dynamically

consistent update rules that satisfy closure. In an early contribution in this direction, Eich-

berger and Grant [7] succeed in characterizing a class of preferences quadratic in probabilities

that allows for ambiguity aversion and is closed under Machina-Schmeidler updating. Why

closure? Economists often choose to work with speci�c models because they are tractable

and parsimoniously capture desired behavioral features (frequently expressed through ax-

ioms on preferences). A theory of updating will be most helpful when it allows the use of the

same type of model throughout the problem under consideration. At a normative level, if

properties of a model have strong appeal before updating, it would seem odd for this appeal

6They show, in this latter context, that the rule is equivalent to updating beliefs by Bayes�rule while
simultaneously updating risk preferences in a speci�c, non-consequentialist way. See also Segal [46] and
Wakker [55] who investigate alternative non-consequentialist update rules.
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to disappear after updating. Thus, desired properties imposed on the ex-ante preferences

should also be imposed on the updated preferences, as this has the advantage of delivering

the most relevant and interesting theory.

Unfortunately, the Machina-Schmeidler update rule fails closure for any set of preferences

that includes non-probabilistically sophisticated members, as long as the preferences satisfy

essentially the Savage [44] axioms without the Sure-Thing Principle (Savage�s P2) (see Ep-

stein and Le Breton [10]). Similarly, one can show that this rule is not closed for smooth

ambiguity preferences or for variational preferences (both of which violate Savage�s P4 as

well as P2). In this paper, we successfully develop and characterize dynamically consistent

update rules satisfying closure, for models ranging from imposing only ambiguity aversion,

continuity and monotonicity to those requiring particular families of ambiguity averse pref-

erences such as smooth ambiguity preferences, variational preferences, MEU preferences or

multiplier preferences.

Why are these models of particular interest? The smooth ambiguity model simultane-

ously allows: separation of ambiguity attitude from perception of ambiguity; �exibility and

non-constancy in ambiguity attitude; subjective and �exible perception of which events are

ambiguous; the tractability of smooth preferences; and expected utility as a special case

for any given ambiguity attitude. Furthermore, its modeling of ambiguity attitude allows

tools and insights from the usual treatment of risk attitude under expected utility to be

imported. The variational preferences model is an elegant and highly �exible model most

notable for including and relating widely used models such as the MEU model and the

robust-control/multiplier preferences of Hansen and Sargent [23] as special cases. The mul-

tiplier preferences of Hansen and Sargent [23] model ambiguity or model uncertainty using

relative entropy with respect to a reference subjective probability measure and have proven

tractable in applications.

In addition to specializing our characterization of dynamically consistent updating for

these models, we provide some more results of interest for each. Among rules satisfying

closure for smooth ambiguity preferences, a rule we construct is shown to be the unique dy-

namically consistent rule that is a reweighting of Bayes�rule. We also show that it has other

nice properties, for example, it is commutative, in the sense that only the total information

available and not the order in which it arrives is important for updating. Among rules satis-

fying closure for variational preferences, we show that a large set of dynamically consistent

update rules imply that multiplier preferences should be updated by applying Bayes�rule to

the reference measure.

What allows us to characterize dynamic consistency for the broad class of preferences

analyzed in this paper? The key is characterizing global (conditional) optimality of the
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ex-ante optimum. For convex feasible sets and preferences that have convex upper contour

sets, this comes down to the existence of a measure in the intersection of two sets: the set of

measures corresponding to hyperplanes supporting the conditional indi¤erence curve at the

ex-ante optimum and the set of measures supporting the relevant feasible set at the ex-ante

optimum.7

1.1 An illustration of our approach: the Smooth Rule

To give some understanding of our results and the type of argument that underlies them, we

brie�y describe a dynamically consistent update rule proposed in this paper satisfying closure

for ambiguity averse smooth ambiguity preferences and apply it to the dynamic Ellsberg

example. Consider preferences having the following representation: beliefs are represented

by a �nite support probability measure � over the set � of all probability measures � over a

state space S, risk attitudes are represented by a von Neumann-Morgenstern expected utility

function u : X ! R over a set of lotteries X, and ambiguity attitudes are represented by a
strictly increasing, concave and di¤erentiable function � : u (X)! R, such that for all acts
f and h, f % h () E�� (E�u � f) � E�� (E�u � h), where E is the expectation operator.
Think of an update rule de�ned by updating � to a new belief, denoted �E;g, given any

non-null event E � S and act g that is unconditionally optimal within the feasible set of

acts available to the DM. Imagine such a rule leading to conditional preferences represented

by E�E;g� (E�Eu � f) where �E denotes the Bayesian update of � given E. To understand
when such a rule is dynamically consistent, consider the ex-ante optimization problem that

g solves over some convex feasible set of acts B:

max
f2B

E�� (E�u � f) .

Since � is concave and di¤erentiable and the feasible set is convex and given an interiority

condition, a necessary and su¢ cient condition for the optimality of g is that the utility

gradient of the objective function when f = g be normal to the feasible set at u�g. To satisfy
dynamic consistency (essentially to remain optimal on E within the feasible set given that

one can no longer change outcomes on Ec), g must also solve the conditional optimization

problem:

max
f2B s.t. f=g on Ec

E�E;g� (E�E (u � f)) .

7In Hanany and Klibano¤ [20] on updating MEU, the former set was available �directly�in the form of
the updated set of measures in the representation of conditional preferences. The generalization from this
speci�c form is a key insight of the present paper.
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Again, a necessary and su¢ cient condition for g to solve this problem is that, on E, the utility

gradient of the objective function when f = g be normal to the set u�ff 2 B s.t. f = g on Ecg
at u � g.
From the above, one can show that it is necessary and su¢ cient for dynamic consistency

that the utility gradients of the unconditional and conditional objective functions are propor-

tional on E when evaluated at f = g. The gradient of the unconditional objective function

with respect to u � f is
E��0 (E� (u � f))�.

The gradient of the conditional objective function with respect to u � f for s 2 E is

E�E;g�
0 (E�E (u � f))�E.

Thus such a rule is dynamically consistent if and only if

E�E;g�
0 (E�E (u � g))�E / E��0 (E� (u � g))� restricted to s 2 E.

This argument is informative because it may be modi�ed to work for more general models of

preferences and more general notions of gradient. This is what lies behind our characteriza-

tion for concave preference models, and therefore also our characterizations for the smooth

ambiguity and variational models of preferences. The important aspect of the gradient at

the optimum is that it is normal to a hyperplane separating a feasible set from an upper

contour set. Our most general characterization, applying to quasiconcave (ambiguity averse)

preference models, exploits this by working directly at the level of separating hyperplanes

and their normals.

An example of a dynamically consistent rule we propose in the smooth ambiguity setting

is the smooth rule de�ned by setting

�E;g (�) =
� (�)� (E) �0(E�(u�g))

�0(E�E (u�g))P̂
�2�

� (�̂) �̂ (E) �0(E�̂(u�g))
�0(E�̂E (u�g))

if � (E) > 0,

(and equals 0 otherwise). Notice that when the smooth rule is used to de�ne �E;g,

E�E;g�
0 (E�E (u � g))�E / E��0 (E�E (u � g))

�0 (E�(u � g))
�0 (E�E(u � g))

�(E)�E = E��0 (E�(u � g))� for s 2 E

verifying dynamic consistency. We will see that this rule has many nice properties.

A numerical example of the smooth rule serves to show how it generates dynamically
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consistent preferences in the dynamic Ellsberg example described above. Recall that the

relevant state space is S = fB;R; Y g corresponding to the three colors that might be drawn
from the urn. We assume that the DM has smooth ambiguity preferences with � a half-half

distribution over the distributions �� � (1
3
; 2
3
�; 2

3
(1 � �)) for � 2

�
1
3
; 2
3

	
. This is consistent

with the fact that the chance of drawing a black ball is known to be one-third and the ex-ante

symmetry of the situation. Lotteries are monetary and evaluated by their expected value

(i.e., u is the identity) and �(x) = �e��x where � > 0 so that the DM displays constant

absolute ambiguity aversion with coe¢ cient � (see KMM [28]). We can verify, using Jensen�s

inequality, that these preferences display the modal Ellsberg choices: (1; 0; 0) � (0; 1; 0) and
(0; 1; 1) � (1; 0; 1). Now consider updating on the event that the ball is not yellow so that
E = fB;Rg. According to the smooth rule, conditional preferences are represented by

VE;g(u � f) = �[E�1=3E
(u � f)]�E;g(�1=3) + �[E�2=3E

(u � f)]�E;g(�2=3)

where �E;g(�
�) =

�0(E�� (u�g))
�0
 
E
��
E
(u�g)

!�(�)��(E)

P
�̂2f 13 ; 23g

�0
�
E
��̂

(u�g)
�

�0
0@E

��̂
E

(u�g)

1A�(�)�
�̂(E)

and ��E = (
1

1+2�
; 2�
1+2�

; 0) for � 2
�
1
3
; 2
3

	
.

For the feasible set B1 = co f(1; 0; 0); (0; 1; 0)g corresponding to the �rst Ellsberg choice
pair8, u � g = (1; 0; 0). Applying the smooth rule, �E;(1;0;0)(�

�) = (3+6�)e
�( 1
1+2�

)

5e
3�
5 +7e

3�
7
. Similarly,

for the feasible set B2 = co f(1; 0; 1); (0; 1; 1)g corresponding to the second Ellsberg choice
pair, u � g = (0; 1; 1) and �E;(0;1;1)(�

�) = (3+6�)e
�( 2�
1+2�

)

5e
2�
5 +7e

4�
7
. Notice that when u � g = (1; 0; 0)

the updated belief puts more weight on the measure giving higher conditional probability of

black than it does when u � g = (0; 1; 1). If, for example, � = 1, then �E;(1;0;0)(�
1
3 ) � 0:4588,

while �E;(0;1;1)(�
1
3 ) � 0:3757. What is an intuition for why these weights are di¤erent?

When facing problem B1, preferring (1; 0; 0) reveals that the DM must in some sense be

assigning more prior weight to the scenario � = 1
3
where red has a low probability relative to

black. Upon updating, this will mean that such scenarios continue to get more weight than

they would under symmetric prior weighting. When facing problem B2, however, preferring

(0; 1; 1) reveals that the DM must in the same sense be assigning less prior weight to the

scenario � = 1
3
. After updating then, this scenario will continue to get less weight than under

symmetric prior weighting. Further calculation shows that with smooth rule updating, as

dynamic consistency requires, (1; 0; 0) is conditionally optimal within B1 and (0; 1; 1) is

conditionally optimal within B2.

8We use co to denote the convex hull operator. We take the convex hull of the available acts to re�ect
the fact that the DM may randomize among them.
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By way of contrast, consider standard Bayesian updating in this example, given by

�E(�
�) = 1+2�

4
for � 2

�
1
3
; 2
3

	
, so that �E(�

1
3 ) = 5

12
� 0:4167. In comparing (1; 0; 0)

and (0; 1; 0), observe that the distribution of conditional expected utilities for (1; 0; 0), (3
5

w.prob. 5
12
; 3
7
w.prob. 7

12
), is a mean-preserving spread of the distribution (2

5
w.prob. 5

12
;

4
7
w.prob. 7

12
) for (0; 1; 0). Since � is strictly concave, this implies (0; 1; 0) �E (1; 0; 0), and

thus Bayesian updating violates dynamic consistency for such a DM.

What happens if we use the Machina-Schmeidler update rule in this example? In our

context, their rule is equivalent to saying that if ex-ante preferences are represented by

the functional V (u � f) for all acts f , then updated preferences after learning E, given
that g was unconditionally optimal within the feasible set of acts B, are represented by

V (u � fEg) for all acts f where fEg denotes the act equal to f on E and g on Ec. In the

example, V (u�f) � E�� (E�u � f) and thus the updated preferences are represented by V (u�
fEg) � E�� (E�u � fEg). Substituting yields �1

2
e��(

1
3
f(B)+ 2

9
f(R)) � 1

2
e��(

1
3
f(B)+ 4

9
f(R)) when

g = (1; 0; 0) and �1
2
e��(

1
3
f(B)+ 2

9
f(R)+ 4

9
) � 1

2
e��(

1
3
f(B)+ 4

9
f(R)+ 2

9
) when g = (0; 1; 1). One can

show these updated preferences are not smooth ambiguity preferences over acts.9 Therefore

the Machina-Schmeidler rule, although dynamically consistent, does not allow one to talk

about updating beliefs �, nor does it produce updated preferences that satisfy the properties

of the smooth ambiguity model (something that the ex-ante preferences do satisfy), so it

cannot even be described as updating a combination of tastes, �, and beliefs, �.

The rest of the paper is organized as follows. Section 2 contains an exposition of the

framework and notation, formally de�nes dynamic consistency and presents our main result

characterizing dynamic consistency in ambiguity averse preference models. This result is

applied in Section 3 to characterize dynamically consistent update rules satisfying closure

for the smooth ambiguity model. We then derive a novel update rule, the smooth rule

mentioned above, which is shown to be the unique dynamically consistent rule among a large

class of rules that may be expressed as reweightings of Bayes�rule. We describe additional

desirable properties of this update rule, including invariance to the order in which information

arrives (commutativity) and a strict version of dynamic consistency. We then show several

impossibility results when strengthening dynamic consistency. Section 4 applies the general

characterization result to rules satisfying closure for variational preferences and constructs

some consistent update rules. The result on dynamically consistent updating of multiplier

preferences is here as well. Section 5 explains how our results extend to updating regret-

based models, including minimax regret with multiple priors. Related literature, including

recursive approaches and dynamic inconsistency, is discussed in Section 6. The �nal section

contains a brief conclusion. All proofs not appearing in the main text are collected in

9Not even if restricted to acts of the form fEg.
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Appendix A.

2 Dynamic Consistency and Updating Ambiguity Averse

Preferences

2.1 Setting and Notation

Consider an Anscombe-Aumann framework [2], where X is the set of all simple (i.e., �nite-

support) lotteries over a set of consequences Z, S is a �nite set of states of nature and A is
the set of all acts, i.e., functions f : S ! X. Abusing notation, x 2 X is also used to denote

the constant act for which 8s 2 S, f(s) = x.
Let B denote the set of all non-empty subsets of acts B � A such that B is convex

(with respect to the usual Anscombe-Aumann mixtures) and compact (according to the

norm taking the maximum over states and Euclidean distance on lotteries in X). Elements

of B are considered feasible sets and their convexity could be justi�ed, for example, by

randomization over acts. Compactness is needed to ensure the existence of optimal acts.

Let P denote the set of preference relations (i.e., complete and transitive binary rela-

tions) % on the acts A satisfying the following quite standard assumptions: preferences

(i) are non-degenerate (i.e., f � h for some acts f; h), (ii) are mixture continuous (i.e., the
sets f� 2 [0; 1] j �f + (1� �)i % hg and f� 2 [0; 1] j h % �f + (1� �)ig are closed), (iii) are
weakly monotonic (i.e., f (s) % h (s) for all s 2 S implies f % h) and (iv) when restricted to
constant acts, obey the von Neumann-Morgenstern expected utility axioms.

Given V : RS ! R such that (i) V is non-constant and continuous and (ii) a � b implies
V (a) � V (b) for all a; b 2 RS, and given a non-constant von Neumann-Morgenstern utility
function u : X ! R, the functional V (u � �) : A ! R represents a unique preference in P.
Consider a pair (V; u) where V and u satisfy these conditions. Let 	 denote the set of all

such pairs. Each element of 	 is thus associated with a unique preference %2 P. Conversely,
given any preference in P there exists at least one (V; u) 2 	 that represents it.10 For any
(V; u) 2 	, it will be useful to identify the set of interior acts, int (A) � ff 2 A j u � f is in
the interior of u � Ag. These are the acts that do not give a best or a worst lottery in any
state. If utility is unbounded, then all acts are interior.

For an event E � S, let �(E) denote the set of all probability measures on 2S giving

weight 0 to Ec (the complement of E in S). Let � � �(S). For any q 2 � with q(E) > 0,

we denote by qE 2 �(E) the measure obtained through Bayesian conditioning of q on E
10Existence may be shown along the lines of Lemma 51 in the Appendix of Cerreja, Maccheroni, Marinacci

and Montrucchio [4].
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(i.e., for F � S, qE (F ) = q(E\F )
q(E)

). For E � S and f; h 2 A, we use fEh to denote the act
equal to f on E and h on Ec. Say that an event E is Savage-null [44] according to % if, for
all acts f; h; i 2 A, hEf � iEf . Say that an event E is non-null according to % if, for all

acts f; h; i 2 A, h(s) � i(s) for all s 2 E implies hEf � iEf .11

Denote by Q the set of all quadruples ((V; u); E; g; B) where (V; u) 2 	 (with associated
preference %), E is a non-null event, and g 2 int (A)12 is an act optimal according to %
within a feasible set B 2 B (i.e., g % f for all f 2 B). Q is the largest domain that we

consider in de�ning an update rule. It will also be useful to be able to restrict an update

rule to domains that are strict subsets of Q, for example when we consider update rules that
apply only to a speci�c model of preferences or only to speci�c events. To this end, say that

a non-empty D � Q is a domain if ((V; u); E; g; B) 2 D implies ((V; u); E; g0; B0) 2 D for all
g0; B0 such that ((V; u); E; g0; B0) 2 Q.

De�nition 2.1 An update rule is a function U mapping elements of a domain D to a

codomain consisting of pairs (VE;g;B; uE;g;B) 2 	 such that, after updating, Ec is Savage-null
and E remains non-null.

We use %E;g;B to denote the preferences represented by VE;g;B(uE;g;B � �). Such a con-
ditional preference is viewed as governing choice upon the realization of the conditioning

event E. Recall from the Introduction that allowing dependence on g and B is necessary

for dynamic consistency under ambiguity aversion. For a discussion of the observability of

conditional preferences see Appendix A.2 of Hanany and Klibano¤ [20].

2.2 Dynamically Consistent Update Rules

Dynamic consistency of one form or another has often been put forward as a rationality

criterion and thus, from a normative point of view, it is important to identify rules that

satisfy some version of this property. Moreover, from the normative point of view, optimal

acts are the most important for dynamic consistency to be satis�ed on because those are the

acts that are chosen. Under dynamic consistency, optimal contingent plans remain optimal

according to updated preferences. Therefore dynamically consistent updating necessarily

11This notion of non-null excludes some events that are not Savage-null � under expected utility the
two concepts agree, but they need not more generally. Throughout the paper we will restrict attention to
updating on non-null events. This stronger, yet still quite mild, sense of �events that matter� is useful in
avoiding extraneous complications related to what should be required of update rules if considering events
sometimes given positive weight and sometimes not.
12The interiority assumption is mild and allows the simpli�cation of a number of characterizations provided

below by avoiding the multiplicity of supporting hyperplanes that can occur on the boundaries (if any) of
the utility act space.
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maximizes ex-ante welfare among all update rules. Another normative argument in favor

of dynamic consistency is the dominated choice argument described in the context of an

example in Section 6.2. Dynamic consistency also makes it easier to describe an individual

planning ahead and to make welfare statements in dynamic models because it is only under

dynamic consistency that ex-ante and ex-post preferences agree on optimal feasible choices.

Our axiom requires that, for each feasible set of acts, B, the update rule guarantees, for any

preference and any non-null conditioning event E, if g is chosen within B, it remains optimal

conditionally. Formally,

Axiom 2.1 DC (Dynamic Consistency). For any ((V; u); E; g; B) 2 D, if f 2 B with f = g
on Ec, then g %E;g;B f .

This formalization of dynamic consistency appeared in Hanany and Klibano¤ [20] and

is related to ideas and concepts in earlier literature such as Machina [30], McClennen [31],

Segal [46] and Grant, Kajii and Polak [18].13 Recall from the Introduction that dependence

of conditional preference on g and B is needed, in general, to attain dynamic consistency

under ambiguity aversion. With ambiguity aversion, the weighting of states supporting the

choice of g from B is typically di¤erent than that supporting the choice of some g0 optimal in

B0. It is quite natural, then, that g and/or B also a¤ect the manner in which new information

changes the DM�s view of these uncertainties through updating.

Observe that conditional optimality of g is checked against all f 2 B such that f and g

agree on Ec. Why check conditional optimality only against these acts? Dynamic consistency

is relevant only ceteris paribus, i.e., when exactly the same consequences occur on Ec. To

make clear why this is reasonable, consider an environment where the DM has a �xed budget

to allocate across bets on various events. It would be nonsensical to require that the ex-ante

optimal allocation of bets remained better than placing all of one�s bets on the realized event.

This justi�es the restriction of the conditional comparisons to acts that agree on Ec.

Is there a way to describe the set of dynamically consistent update rules for ambiguity

averse preferences? We give a characterization of dynamic consistency that applies to update

rules that preserve risk preferences (by leaving u unchanged), and that produce represen-

tations of preferences satisfying Schmeidler�s [45] uncertainty aversion axiom. Schmeidler�s

axiom says that f % h implies �f+(1��)h % h for � 2 [0; 1], and is equivalent in our setting
to the quasiconcavity of V (i.e., preferences are convex in utility space). All smooth ambigu-

ity preferences that are ambiguity averse in the sense of KMM [28] satisfy this condition, as

do all variational preferences, and the general uncertainty averse preferences recently studied

13For a more detailed discussion of the relation to other de�nitions, see Hanany and Klibano¤ [20] and
the discussion of recursive approaches in Section 6.1 of this paper.
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by Cerreja, Maccheroni, Marinacci and Montrucchio [4]14, so this includes a very large and

interesting class of models.15 Formally, then, we restrict attention to update rules satisfying

the following two properties that we have verbally described above:

(i) (uncertainty/ambiguity aversion) all VE;g;B in the codomain of the update rule are qua-
siconcave; and

(ii) (preservation of risk preferences) uE;g;B = u.

Letting Y denote the family of all update rules satisfying the above two properties, Y
will be the largest family for which we describe the rules that are dynamically consistent.

The following de�nitions are key in characterizing conditional optimality and thus dy-

namic consistency. We de�ne two sets of probability measures. The �rst set will correspond

to hyperplanes supporting the conditional indi¤erence curve at a given point. The second

will correspond to hyperplanes supporting the feasible set of acts at a given point.

De�nition 2.2 For a quasiconcave V : RS ! R, act h 2 A and event E � S, de�ne the

measures supporting the conditional indi¤erence curve at h on E to be

TE;h (V ) =

�
q 2 �(E) j

Z
(u � f)dq >

Z
(u � h)dq for all f 2 A such that V (u � f) > V (u � h)

�
.

If we think of V as representing conditional preferences over utility acts given the event E,

then the measures in TE;h are normals to hyperplanes supporting the conditional indi¤erence

curve containing u�h. The modi�er �conditional�is important �if V is such that Ec matters,
then TE;h (V ) will typically be empty. Thus the name �measures supporting the conditional

indi¤erence curve at h on E.�

De�nition 2.3 For an act h 2 A, event E � S and feasible set B 2 B, de�ne the measures
supporting the conditional optimality of h in B to be QE;h;BE where

QE;h;B =

�
q 2 � j q (E) > 0 and

Z
(u � h)dq �

Z
(u � f)dq for all f 2 B with f = h on Ec

�
,

14They show that (subject to some additional technical requirements) V can be taken to have the form
V (a) = minp2�G

�R
adp; p

�
where G : R�� ! (�1;1] is quasiconvex, and is increasing in the �rst

variable.
15What about preferences that are not quasiconcave (i.e., that violate Schmeidler�s [45] axiom)? The

methods we describe will still apply if one is willing to update these so that the conditional preferences
satisfy Schmeidler�s axiom. However, if one wants to allow non-quasiconcavity after updating, while the
existence of dynamically consistent rules is easy to show, the general characterization of such rules would
su¤er from all of the substantial di¢ culties in characterizing global maxima of non-quasiconcave problems,
and is therefore beyond the scope of this paper.
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and QE;h;BE is given by the Bayesian updates on E of measures in QE;h;B.

There are two reasons why calling these sets �measures supporting the conditional optimality

of h�makes sense. The �rst is obvious: if we consider a conditional expected utility preference

with measure qE 2 QE;h;BE , then according to such a preference, h will be conditionally

optimal in the set ff 2 B j f = h on Ecg. Similarly, if h can�t be conditionally optimal
because it is dominated on E by an element of ff 2 B j f = h on Ecg then QE;h;BE is empty.

The second reason is deeper: as we will show, the existence of a measure in QE;h;BE that

is a measure supporting the conditional indi¤erence curve at h on E is equivalent to the

conditional optimality of h.

We can now state our characterization of dynamically consistent updating.

Theorem 2.1 U 2 Y is dynamically consistent if and only if TE;g (VE;g;B) \QE;g;BE 6= ; for
all ((V; u); E; g; B) 2 D.

This proposition provides a test for dynamic consistency of an update rule for ambiguity

averse preferences. First, given an event E, a feasible set B, and an act g unconditionally

optimal within B, one can calculate QE;g;BE . If the image in utility space of the set of feasible

acts agreeing with g on Ec is smooth at u� g, QE;g;BE will be a singleton and can be found by

di¤erentiation. Second, apply the candidate update rule to produce a representation of the

updated preferences, VE;g;B. Third, calculate TE;g (VE;g;B). If, for example, VE;g;B is smooth

at u � g this is no more complicated than usual di¤erentiation. Finally, see if the two sets
intersect.

The intuition is quite familiar from convex optimization: g will be conditionally optimal

within ff 2 B j f = g on Ecg if and only if there exists a hyperplane containing u � g that
separates u � ff 2 B j f = g on Ecg from the utility acts conditionally better than u � g.
Each hyperplane in utility space may be uniquely associated with a probability measure on

the state space. The proof in Appendix A shows that the measures in TE;g (VE;g;B) \QE;g;BE

exactly correspond to such separating hyperplanes.

When the functions VE;g;B representing conditional preferences are concave as opposed

to simply quasiconcave, the set TE;g (VE;g;B) may be replaced in the characterization of

dynamically consistent updating with a set derived from the generalization of the gradient

in convex analysis. The de�nition below is standard (see e.g., Rockafellar [41]) and simpli�es

to the usual gradient at points of di¤erentiability.

De�nition 2.4 If V : RS ! R is a concave function then its superdi¤erential at x is

@V (x) �
�
r : 2S ! R j r is additive and V (z)� V (x) �

R
(z � x) dr for all z 2 RS

	
.
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Using this concept, we consider the following set of measures to replace TE;g (VE;g;B) in

our characterization:

De�nition 2.5 For a concave V : RS ! R, act h 2 A and event E, de�ne the superdi¤er-

ential measures at h on E to be

GE;h (V ) = fq 2 �(E) j 9� > 0 such that q 2 �@V (a) evaluated at a = u � hg .

The characterization of dynamic consistency for update rules generating concave repre-

sentations is then the following:

Theorem 2.2 If V is concave for all (V; u) in the codomain of U 2 Y, then U is dynamically
consistent if and only if GE;g (VE;g;B) \QE;g;BE 6= ; for all ((V; u); E; g; B) 2 D.

This specialization is helpful in that it facilitates the use of gradients when available.

Much of the remainder of the paper will show the power of this result when combined with

closure requirements. In the next section, we apply it to characterize dynamically consistent

update rules satisfying closure for ambiguity averse smooth ambiguity preferences. In the

subsequent section we do the same for variational preferences. Recall from the Introduction,

when we say that an update rule satis�es closure for a set of preferences, we mean that both

unconditional and conditional preferences are restricted to that set. For example, if one

wishes to restrict ex-ante preferences to be variational preferences (i.e., to obey the axioms

in MMR [33]) then it will be most desirable to have an update rule that generates only

variational preferences. Similarly, if one thinks it appropriate or useful to further restrict

to multiplier preferences (i.e., to obey the axioms in Strzalecki [54]), then an update rule

de�ned on and generating only multiplier preferences will be of interest. No dynamically

consistent update rules have been previously proposed satisfying closure for either smooth

ambiguity or variational preferences.

3 Dynamically Consistent Updating of Smooth Ambi-

guity Preferences

In this section we investigate dynamically consistent update rules satisfying closure for am-

biguity averse smooth ambiguity preferences. Let PSM denote the set of smooth ambiguity

preference relations over A (KMM [28]).16 For any preference %2 PSM , there exists a count-
ably additive probability measure, �, over the set �, a von Neumann-Morgenstern expected
16The framework in Klibano¤, Marinacci and Mukerji [28] is not precisely an Anscombe-Aumann frame-

work as the acts there need not have lottery consequences. However their state space S is assumed to be a
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utility function, u : X ! R and a strictly increasing function � : u (X) ! R, such that
8f; h 2 A, f % h () E�� (E�u � f) � E�� (E�u � h), where E is the expectation operator.
We will assume that � is di¤erentiable and concave. According to KMM, concavity of �

re�ects ambiguity aversion. If � is degenerate, we adopt the convention that � is the identity

(with a degenerate �, � is irrelevant for %). For simplicity, we will also assume that the
support of � (i.e., the smallest A � � such that � (A) = 1) is �nite. Let supp(�) denote this
support.

Notice that (V; u) 2 	 is an ambiguity averse smooth ambiguity representation whenever
V (a) = E�� (E�a) for all a 2 RS. Such a V is completely determined by specifying � and �.
Let	SM denote the set of all such (V; u). Each element of	SM is associated with a preference

%2 PSM through the smooth ambiguity representation. To update ambiguity averse smooth
ambiguity preferences we consider rules de�ned on an appropriate subset of quadruples

((V; u); E; g; B) �speci�cally, DSM is set of all elements of Q such that (V; u) 2 	SM . Note
that the only events in DSM are those for which

P
�2supp(�) � (�)� (E) > 0 as they are the

non-null events in the sense de�ned in Section 2.1.

We consider update rules U � Y satisfying:

(i) (closure for ambiguity averse smooth ambiguity preferences) the domain and codomain
is DSM ,

(ii) (preservation of ambiguity attitude) �E;g;B = �, and

(iii) (independence from feasible sets) VE;g;B1 = VE;g;B2 for all ((V; u); E; g; B1); ((V; u); E; g; B2) 2
DSM .

Property (i) re�ects the scope of this particular application of our results �we want

to update within the class of ambiguity averse smooth ambiguity preferences. Since this

class of preferences separates tastes (risk and ambiguity attitudes) from beliefs, property (ii)

extends the common notion that new information should a¤ect beliefs but not a¤ect tastes

to encompass ambiguity attitudes in addition to the previously assumed preservation of risk

attitudes. Property (iii) is assumed mainly because update rules satisfying it are in a natural

sense simpler than those requiring dependence on B, and because we can �we shall see that

even with this restriction interesting dynamically consistent update rules exist for this class

of preferences. The fact that we are able to avoid dependence on the feasible set stems from

the smoothness of the preferences under consideration.17

product space with an ordinate that is [0; 1] and is treated as a randomizing device. Thus, their theoretical
development could be easily adapted to the setting here. See Seo [47] for an alternative axiomatization and
model.
17In contrast, for models with kinks, (iii) would lead to the non-existence of dynamically consistent updates.

See Hanany and Klibano¤ [20] for proof in the MEU case.

16



Given V (a) = E�� (E�a), a rule in U generates VE;g (a) = E��E;g� (E�a) where ��E;g
satis�es ��E;g (� (E)) = 1. Notice that such a VE;g may also be written as E�E;g� (E�Ea)
where

P
f�̂2supp(�E;g)j�̂E=�g �E;g (�̂) = ��E;g (�) for all � 2 �(E). We �nd it convenient to

work with such representations. Any �E;g determines a unique ��E;g in this way. Thus, to

specify an update rule in U we can and will specify conditional measures �E;g rather than
��E;g. Of course this relationship is not one-to-one �all �E;g corresponding to the same ��E;g
identify the same update rule in U (i.e., result in the same VE;g).
An example of an update rule in U is Bayes� rule (i.e., Bayesian updating of beliefs).

Given ((V; u); E; g; B) 2 DSM , applying Bayes�rule produces �E;g where

�E;g (�) =
� (�)�(E)P

�̂2supp(�)
� (�̂) �̂(E)

.

Dynamic consistency is intimately connected with Bayesian updating under expected

utility. In fact, the following result shows that dynamic consistency justi�es adopting Bayes�

rule when preferences are expected utility.

Proposition 3.1 Any update rule in U with domain restricted so that % are expected utility
(i.e., � is a¢ ne) and that satis�es DC must produce the same conditional preferences as

Bayes�rule.

What does dynamic consistency say about updating smooth ambiguity preferences be-

yond expected utility? We can use Theorem 2.2 to characterize the dynamically consistent

rules in U . We will also show that this characterization is not vacuous �such rules exist.
Unfortunately, it is no longer true that Bayesian updating is dynamically consistent for this

larger class of preferences. In fact, as the dynamic Ellsberg example in the Introduction

demonstrated, no rule that depends on only (V; u) and E can be dynamically consistent.18

The following result completely characterizes the update rules in U satisfying DC.19

Theorem 3.1 U 2 U satis�es DC if and only if

E�E;g [�
0(E�E(u � g))�E(s)]

E�E;g [�
0(E�E(u � g))]

=
E�[�0(E�(u � g))�(s)]
E�[�0(E�(u � g))�(E)]

(3.1)

for all s 2 E.
18Even if we expand the set of update rules U to allow arbitrary updating of the ambiguity attitude function

� by dropping properties (ii) and (iii) above, one can show that there is still no dynamically consistent rule
that involves updating � by Bayes�rule.
19This result may be easily extended to the larger set of rules obtained by dropping properties (ii) and

(iii) used to de�ne U �simply add a subscript for B to �E;g and an E; g;B subscript for � on the left-hand
side of (3.1).
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The sketch of the proof is to use di¤erentiation and the unconditional optimality and

interiority of g to show that for any U 2 U , E�E;g [�
0(E�E (u�g))�E(s)]

E�E;g [�
0(E�E (u�g))]

for s 2 S is the unique

element of GE;g (VE;g;B) and that
E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))�(E)] for s 2 E and 0 for s 2 Ec is an element

of QE;g;BE . Interiority and unconditional optimality of g implies that for some feasible set B,

QE;g;BE is a singleton. Theorem 2.2 and the fact that rules in U are independent of B then

delivers the result.

Another perspective on Equation 3.1 can be gained by thinking of normalized gradi-

ents (in utility space) as local probability measures. Since preferences are smooth, they

are locally expected utility and normalizing the gradient of the unconditional representa-

tion, E�[�(E�(u � g))], gives the local probability measure at u � g. Similarly, normalizing
the gradient of the conditional representation, E�E;g [�(E�E(u � g))], gives a local conditional
probability measure. Equation 3.1 reveals that dynamically consistent updating is equiva-

lent to the statement that, at u � g, the local conditional probability measure is exactly the
Bayesian update of the local probability measure �in this sense there is still a connection be-

tween Bayes�rule and dynamic consistency. When preferences are expected utility, updating

the local measure at u � g according to Bayes�rule is accomplished by updating the overall
measure according to Bayes�rule, since the overall measure is also the local measure for all

acts. For smooth ambiguity preferences more generally, updating the local measure at u � g
according to Bayes�rule no longer corresponds to updating the overall measure using Bayes�

rule. In the next section, we show how this can be done through a speci�c reweighting of

Bayes�rule.

3.1 An attractive update rule: the smooth rule

Among rules in U that are particularly simple, in that they can be expressed as reweightings
of Bayes�rule, we show using Theorem 3.1 that dynamic consistency selects a unique rule.

We will also show that this rule has further desirable properties, such as invariance to the

order in which information is presented (�commutativity�) and obeying a strict version of

dynamic consistency.

Formally a reweighting of Bayes�rule is the following:

De�nition 3.1 An update rule in U is reweighted Bayesian (RB) if �E;g (�) =
�(�;�;u;g;E)�(�)�(E)P

�̂2�
�(�̂;�;u;g;E)�(�̂)�̂(E)

for some real-valued function � satisfying � (�; �; u; g; E) > 0 if � (E) > 0.

There are several things worth noticing in this de�nition. First, the weights, �, are

independent of �. This expresses the fact that the rule should be the �same�for all beliefs.

Second, the value of � when � (E) = 0 is clearly irrelevant, so attention may be restricted
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to values on f� 2 � j �(E) > 0g. Third, Bayesian updating corresponds to the special
case where � is constant in �, so that these rules include Bayes�rule. Fourth, the positivity

restriction on � is needed to ensure that �E;g (�) is a well-de�ned probability measure for

all �. To see this, note that if � (�̂; �; u; g; E) = 0, taking � (�̂) = 1 does not yield a well-

de�ned �E;g. Note also that if, for given (�; u; g; E), some values of � were positive and

some negative, �E;g would be either ill-de�ned or not a probability measure for some ��s. It

would be OK for all values of � to be negative, but this produces no new rules, so we rule it

out. Finally, all reweighted Bayesian rules preserve ambiguity in the sense that any � with

� (E) > 0 that is given positive weight by � is also given positive weight by the updated

measure �E;g.

The next result shows that dynamic consistency identi�es a unique reweighted Bayesian

update rule. We will refer to this novel rule as the smooth rule, and it is the reweighted

Bayesian update rule generated by setting

� (�; �; u; g; E) =

8<:
�0(E�(u�g))
�0(E�E (u�g))

if � (E) > 0

0 otherwise
.

If � is a¢ ne (ambiguity neutrality according to KMM), �0 is constant and our rule collapses

to Bayesian updating and preferences collapse to expected utility. The intersection with

Bayes�rule is even larger than this, however. For example, whenever the act g is a constant

act, our rule collapses to Bayes�rule. In general, the departure from Bayes�rule depends

both on the ambiguity attitude, as re�ected in � (and in particular, in ratios of derivatives

of �, a quantity preserved under positive a¢ ne transformations) and on conditional and un-

conditional valuations of the unconditionally optimal act g. Observe that since � is concave,

relative to Bayes�rule the smooth rule overweights measures � that result in higher con-

ditional valuations of g relative to unconditional valuations of g. Therefore, this updating

favors the unconditionally chosen act, making it easier to satisfy dynamic consistency. That

the smooth rule is dynamically consistent follows directly from substituting into the equation

for dynamic consistency established in Theorem 3.1. The contribution of Theorem 3.2 is in

showing that it is the unique such rule.

Theorem 3.2 The smooth rule is the unique reweighted Bayesian update rule satisfying
DC.

To understand why the smooth rule is the only dynamically consistent reweighted Bayesian

update rule, note that given Theorem 3.1, the question of uniqueness becomes whether a

distinct reweighted Bayesian rule can satisfy Equation 3.1. Since the weights � do not de-

pend on �, it is enough to show uniqueness for a single �. Using an event E containing at
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least two states and a � with two-point support (and where the two points have distinct

conditionals on E), one can show that Equation 3.1 generates a system of linear equations

having a unique solution.

Given this result, from a normative point of view, dynamic consistency is a justi�cation

for adopting the smooth rule instead of Bayes�rule. One psychological interpretation of this

update rule is that it re�ects an ex-post �rationalization�e¤ect or a way to make current

beliefs consonant with ex-ante optimal choices or plans.

We next explore further attractive properties of the smooth rule. Before doing so, we

note formally that the dependence of the smooth rule on g is unavoidable. Independence

from g means the following:

Axiom 3.1 ICA (independence from the chosen act). For every ((V; u); E; g1; B), ((V; u); E; g2; B) 2
D, %E;g1;B=%E;g2;B.

Any dynamically consistent rule in U must depend on g:

Proposition 3.2 No update rule in U satis�es DC and ICA.

The smooth rule has a number of nice properties beyond the dynamic consistency that

selects it. First, because the smooth rule is an RB rule, it preserves ambiguity � the

only measures in the support of � that are eliminated by updating are the measures that

assigned zero weight to the realized event, E. This distinguishes the smooth rule from, for

example, the dynamically consistent rule de�ned by setting �E;g equal to the degenerate

measure on ��g �
E�[�0(E�(u�g))�]
E�[�0(E�(u�g))] . This degenerate rule removes all ambiguity as soon as any

information is learned. Given that ambiguity and reaction to it is the main feature of interest,

such a degenerate rule is undesirable. Second, the smooth rule satis�es commutativity.

Commutativity means that the order of information received does not a¤ect updating. If

two sequences of events have the same intersection, ceteris paribus, beliefs following those

sequences must be identical. Gilboa and Schmeidler [17] advocate commutativity as an

important property for an update rule to satisfy.

Axiom 3.2 CM (Commutativity). Let ((V; u); E; g; B) 2 D and F be a non-null event such
that E \F is non-null and U be an update rule. U satis�es commutativity if updating on E
then F yields the same as updating on E\F . (i.e., U(U((V; u); E; g; B); F; g; ff 2 B j f = g
on Ecg) = U((V; u); E \ F; g; B).)

Proposition 3.3 The smooth rule satis�es CM.
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Third, when � is strictly concave, the smooth rule satis�es a desirable strengthening of

dynamic consistency. One way in which DC is weak is that it requires only weak condi-

tional preference of g over f . Therefore, it is compatible with the axiom, for example, to

unconditionally have g � f for some f = g on Ec while conditionally g �E;g;B f . In such a
circumstance, it is true that the DM is willing to continue with g, but this is only weakly so.

It turns out that the smooth rule satis�es a strengthening of DC that rules out such shifts

from strict preference to indi¤erence, as well as similar shifts from indi¤erence to strict pref-

erence. Ruling out the latter shifts is a robustness requirement for dynamic consistency �just

because an indi¤erence was broken in favor of g unconditionally, why should it necessarily

continue to be broken in favor of g conditional on E?

Formally, the stronger DC is:

Axiom 3.3 Strict DC. For any ((V; u); E; g; B) 2 D, if f 2 B with f = g on Ec, then

g � (resp. �)f implies g �E;g;B (resp. sE;g;B)f .

De�nition 3.2 A real-valued function � is strictly concave if, for all x; y 2 Domain (�),
x 6= y implies � (�x+ (1� �)y) > �� (x) + (1� �)� (y) for all � 2 (0; 1).

Proposition 3.4 Assume � is strictly concave. The smooth rule satis�es Strict DC.

One may wonder if it might be appropriate to strengthen DC even further. The next

section shows that, at least for two directions suggested by other consistency concepts in

the literature, further strengthening results in the impossibility of dynamically consistent

updating.

3.2 The impossibility of stronger consistency when updating smooth

ambiguity preferences

Recall that DC requires only conditional optimality of g among those feasible acts agreeing
with g on Ec. Adding Strict DC extends the checking of conditional optimality to any

f s g and equal to g on Ec. Why not check that the ordering of all feasible acts agreeing
with g on Ec is preserved conditionally? The following axiom does exactly this.

Axiom 3.4 DC1 For any ((V; u); E; g; B) 2 D, if f; h 2 B with f = h = g on Ec and

f % h then f %E;g;B h.

Requirements implying this appear in a number of places in the literature (e.g., Machina

[30], Machina and Schmeidler [32], Epstein and Le Breton [10] and Ghirardato [14]). Is

21



such a stronger axiom desirable? This is debatable. At least two arguments that might be

used to support DC don�t seem to extend support to the additional requirements of DC1.
First, the verbal essence of dynamic consistency involves reversals, which will only ever have

the opportunity to occur when they involve unconditionally optimal acts. As Machina [30]

writes (pp. 1636-7) �. . . behavior. . . will be dynamically inconsistent, in the sense that . . .

actual choice upon arriving at the decision node would di¤er from . . . planned choice for

that node.�Second, many normative arguments in support of dynamic consistency, such as

arguments showing how lack of consistency may lead to payo¤-dominated outcomes (see e.g.,

Machina [30], McClennen [31], Seidenfeld [48], and Segal [46]), require only the conditional

optimality of g. Most importantly for our purposes, we will show below that no update rules

in U can satisfy DC1.
Epstein and Schneider [11], when discussing di¤erences between recursive multiple priors

and the robust control model of Hansen and Sargent [23] point out that the robust control

model satis�es a version of dynamic consistency that checks only optimality of g. Aside from

minor di¤erences in the framework, the following is that condition:

Axiom 3.5 DC2 For any ((V; u); E; g; B) 2 D, if f 2 A with f = g on Ec, then g % f

implies g %E;g;B f .

The only di¤erence from DC is that comparisons with g are not restricted to acts in the
feasible set. Why restrict comparisons of g to feasible acts? Again we point out that the

essence of dynamic consistency involves reversals, which are only relevant if they involve ex-

ante feasible acts. Moreover, if we imposeDC2, we will show that impossibility of consistent
updating results.

Proposition 3.5 No update rule in U satis�es DC1 or DC2.

Remark 3.1 We note that the same proof used for Proposition 3.5 su¢ ces for further
results. In particular, the restriction to rules in U is overly strong �the same impossibility
holds even if the update rule is allowed to depend on the feasible set B. Moreover, one could

replace unconditional and conditional weak preference with indi¤erence in the statement of

DC2 and also yield impossibility.

4 Dynamically consistent updating of Variational Pref-

erences

Another model of ambiguity averse preferences is the variational preference model character-

ized by MMR [33]. A variational preference over Anscombe-Aumann acts has the following
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concave representation:

min
p2�

�Z
(u � f) dp+ c (p)

�
where u : X ! R is a nonconstant a¢ ne function and c : � ! [0;1] is grounded (i.e.,
has in�mum zero), convex and lower semicontinuous (in the weak* topology). We will

assume that u is unbounded (either above or below), as then c is unique given u (MMR

[33], Proposition 6). They refer to c as the ambiguity index. Notice that (V; u) 2 	 is a

variational representation whenever V (a) = minp2�
�R
adp+ c (p)

�
for all a 2 RS. Such a

V is completely determined by specifying c. Let 	V R denote the set of all such (V; u) and

let PV R denote the set of variational preference relations over A. To update variational
preferences we consider rules de�ned on an appropriate subset of quadruples ((V; u); E; g; B)

�speci�cally, DV R is the set of all elements of Q such that (V; u) 2 	V R. The events E for
which p (E) = 0 implies c (p) = +1 for all p 2 � are the only events we consider conditioning
on for variational preferences, as they are the non-null events in the sense de�ned in Section

2.1. Formally, restrict attention to the set of update rules W � Y satisfying:

(i) (closure for variational preferences) the domain and codomain is DV R.

Property (i) re�ects the scope of this application �we want to update within the class of

variational preferences.

The following result completely characterizes the update rules inW that are dynamically

consistent:

De�nition 4.1 WDC =
n
U 2 W j QE;g;BE \ argminp2�

�R
(u � g) dp+ cE;g;B (p)

�
6= ;

o
.

Proposition 4.1 WDC is the set of all update rules in W satisfying DC.

This result does for variational preferences what Theorem 3.1 does for ambiguity averse

smooth ambiguity preferences. Note that MEU preferences are a special case of variational

preferences. MEU preferences with set of measures C correspond to variational preferences

with ambiguity index

c (p) =

(
0 if p 2 C
+1 if p =2 C

.

Proposition 4.1 is thus a strict generalization of Proposition 1 in Hanany and Klibano¤ [20],

which characterized dynamically consistent update rules for MEU preferences. For examples

and characterizations of such rules, we refer the reader to that paper.

Although Proposition 4.1 is a complete characterization and is quite useful for checking

if any given update rule for variational preferences is dynamically consistent, it is not as
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useful for explicitly constructing dynamically consistent update rules. To aid in this task,

we present next an explicit family of dynamically consistent update rules for variational

preferences.

Notation 4.1 Given p 2 �(E) and q 2 �, let p 
E q be the measure in � for which

p 
E q (F ) = q(E)p(F ) + q(F \ Ec) for all events F . Note that if q (Ec) > 0, we can write
this as p
E q(F ) = q (E) pE (F ) + q (Ec) qEc (F ) for all events F .

In p
E q the choice of p determines the probabilities conditional on E while q determines
all other probabilities. The idea behind our family of update rules is to: (1) �x a probability

measure r that is used to evaluate g unconditionally and supports the conditional optimality

of g in B; (2) observe that if the updated ambiguity index, cE;g;B, is to relate to the uncondi-

tional ambiguity index, c, we need a way to map measures conditional on E back to uncon-

ditional measures; (3) given that r was used to evaluate g unconditionally, a natural choice

for this map is to treat any conditional measure p 2 �(E) as if it were the unconditional
measure p
E r; (4) since cE;g;B must be grounded to be part of a variational representation,
ensure this without altering preferences by subtracting o¤ the constant minq2�(E) c

�
q 
E r

�
;

(5) observe that since
R
(u � f) dp 
E r = r(E)

R
(u � f) dp +

R
Ec
(u � f) dr, the expected

utility component of the contribution of p when evaluating an act f ,
R
(u � f) dp, is 1

r(E)

times the expected utility component of the contribution of p as a part of p 
E r when
evaluating f , so it is as if the utility function has been rescaled by the factor 1

r(E)
when

calculating the contribution of p; and (6) by the uniqueness properties of the variational

representation, when the utility function is multiplicatively rescaled, the ambiguity index

must also be rescaled by the same factor. This leads to the following set of update rules:

De�nition 4.2

WDC
0 =

8><>:
U 2 W j for some r 2 QE;g;B \ argminp2�

�R
(u � g) dp+ c (p)

�
,

cE;g;B(p) =

(
1

r(E)

�
c
�
p
E r

�
�minq2�(E) c

�
q 
E r

��
if p 2 �(E)

+1 if p =2 �(E)

9>=>; .
The next result says that these rules exist and that all of these rules are dynamically

consistent.

Proposition 4.2 ; 6=WDC
0 � WDC.

An important subset of variational preferences are smooth variational preferences (i.e.,

variational preferences that are everywhere di¤erentiable). In addition to the tractability of

smoothness, such preferences are rich in the sense that any variational preference may be
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approximated arbitrarily well by a smooth variational preference. Theorem 18 of MMR [33]

shows that this smoothness is equivalent to the ambiguity index being essentially strictly

convex (i.e., strictly convex on the domain of convex combinations of measures in � that are

minimizers of the representing functional for at least one act). Assume this for the uncondi-

tional preference. In this case, since u�g is interior in u�A, argminp2�
�R
(u � g) dp+ c (p)

�
is a singleton, meaning there is only one choice of r possible in WDC

0 .

Corollary 4.1 Restricted to smooth variational preferences, there is only one update rule
in WDC

0 and this update rule does not depend on the feasible set B given g; c and u.

Let�s consider a prominent example of smooth variational preferences and see how it is

updated according to our (now unique) rule.

Example 4.1 MMR point out that multiplier preferences (Hansen and Sargent [23]) are a
special case of variational preferences, where, for � > 0 and a reference probability q 2 �,

c (p) = �
X

s2supp(q)

p(s) ln
p(s)

q (s)
if p << q (and 1 otherwise).

How does the rule in WDC
0 update these preferences? For p 2 �(E),

c
�
p
E r

�
= �(

X
s2supp(q)\E

r(E)p(s) ln
r(E)p(s)

q (s)
+

X
s2supp(q)\Ec

r(s) ln
r(s)

q (s)
).

Observe that argminp2�(E) c
�
p
E r

�
= fqEg. Thus, cE;g;B(p) = 1

r(E)

�
c
�
p
E r

�
� c

�
(qE)
E r

��
=

�(
P

s2supp(q)\E p(s) ln
r(E)
q(E)

p(s)
qE(s)

) � � ln r(E)
q(E)

= �
P

s2supp(q)\E p(s) ln
p(s)
qE(s)

. So, our update rule

says to update multiplier preferences simply by updating the reference measure q using Bayes�

rule and otherwise leaving the ambiguity index unchanged. One may show that the same is

true for any rule in WDC that does not depend on the feasible set B and that preserves �

when updating multiplier preferences. This procedure seems quite natural, and its dynamic

consistency makes sense in light of our Proposition 3.1 justifying Bayes�rule for expected

utility and the result of Strzalecki [54] that multiplier preferences satisfy the Savage [44]

axioms of subjective expected utility applied to acts mapping from S to X.

5 Updating minimax regret and other regret-based mod-

els

Thus far, we have considered models that generate a single complete and transitive binary

relation over acts. In contrast, there is a literature in statistical decision theory and in eco-
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nomics (e.g., Chamberlain [5], Bergemann and Schlag [3]) that considers models of decision

making under uncertainty that incorporate regret, and, as a result, cannot be represented

by a single preference ordering. In particular, concepts like regret lead to di¤erent order-

ings when considering di¤erent feasible sets. In this section, we show that all of our results

apply equally well to models incorporating regret, including for example, minimax regret

with multiple priors (Hayashi [24], Stoye [52]), a generalization of the classic minimax regret

criterion (Savage [43]).20

The key to extending our results to regret-based settings is recognizing that our char-

acterizations of updating apply feasible set-by-feasible set, and thus are straightforward to

adapt to models where preferences di¤er with the feasible set, but are standard ambiguity

averse preferences given any �xed feasible set. Typically the only aspect of regret-based

models that varies with the feasible set is the benchmark with respect to which regret is

measured. This generates a di¤erent state-dependent utility function for each feasible set.

To adapt our results, wherever we use the utility pro�le of an act, u � f , replace it with the
�regret-adjusted�utility pro�le ûB(f) de�ned by ûB(f)(s) = u � f(s)�maxh2B u � h (s) for
each s 2 S. With this replacement, our results apply to any regret-based models, where,
�xing the feasible set B, preferences over acts f 2 B are represented by V (ûB(f)) with V

non-constant, continuous, weakly increasing and quasiconcave.

As an example, consider the model of minimax regret with multiple priors:

V (ûB(f)) = �max
p2C

Z �
max
h2B

u � h (s)� u � f(s)
�
dp = min

p2C

Z
ûB(f)dp

with C a compact, convex subset of �. This is an MEU representation with regret-adjusted

utility. Direct adaptation of Theorem 2.2 yields the following characterization of dynamically

consistent rules for updating the set of priors C. A rule is dynamically consistent if and only

if the updated sets of measures, CE;g;B, satisfy

Q̂E;g;BE \ arg min
q2CE;g;B

Z
ûB(g)dq 6= ;,

where Q̂E;g;BE di¤ers from QE;g;BE only in replacing u � f and u � g with ûB(f) and ûB(g)
respectively. One can further apply the more explicit characterizations and examples of

update rules for MEU provided in Hanany and Klibano¤ [20] and the algorithms for calcu-

lating these rules developed in Hanany, Klibano¤ and Marom [21]. See Hayashi [25] for an

alternative approach to dynamic extensions of the minimax regret model relaxing dynamic

20There are also models of regret that generate intransitivity even when restricting to a �xed feasible set
(for references see Stoye [51]). Our theory does not apply to these models.
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consistency.

6 Related Literature

In some of the earliest relevant work, as mentioned in the Introduction, Machina [30] and

McClennen [31] provide excellent and deep analyses of the problem of rational dynamic

choice and advocate dropping consequentialism in order to maintain some type of consistency.

McClennen proposed a theory of resolute choice, where it is assumed that conditional choices

are in agreement with an unconditionally optimal plan, even when those conditional choices

may con�ict with some underlying conditional preference. He does not specify how this

agreement is to be obtained. One way to view a dynamically consistent update rule is as

a way of implementing McClennen�s resolute choice while also preserving the property that

conditional choices are based solely on conditional preferences. McClennen does not pursue

this idea, and his de�nition of dynamic consistency is much too strong for this purpose (see

Hanany and Klibano¤ [20]).

As explained in the Introduction, there are two approaches to modeling ambiguity averse

preferences in dynamic settings that, unlike our approach, maintain consequentialism �using

recursion on a limited set of events or adopting assumptions, such as consistent planning

or naivete, that pin down behavior under dynamic inconsistency.21 We compare these ap-

proaches with ours in the remainder of this section.

6.1 Recursive approaches

The recursive models most related to the preferences for which we examine updating are the

recursive smooth ambiguity model of Klibano¤, Marinacci and Mukerji [29], the recursive

subset of the dynamic variational preferences model of Maccheroni, Marinacci and Rustichini

[34] (which contains the recursive multiple priors model of Epstein and Schneider [11] as a

special case) and the model of regret with consistency to information arrival of Hayashi [25].

These models satisfy what we refer to as recursive dynamic consistency for events in a given

information �ltration and bene�t from the tractability delivered by recursion. However, the

limitation to events in particular �ltrations is no accident � these models are inherently

incapable of satisfying DC for many events in the presence of ambiguity.

In our notation, recursive dynamic consistency is equivalent to the following condition:

21See also Ozdenoren and Peck [39], who use extensive form games of con�ict with nature to illustrate how
varying the game the DM thinks she is playing is an alternative modeling strategy for generating variation
in conditional choices in Ellsberg-like problems.
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Axiom 6.1 DC-R (Recursive Dynamic Consistency). For any ((V; u); E; g; B) 2 D, if
f; h 2 A with f = h on Ec, f % h if and only if f %E;g;B h.

How does this relate to ourDC condition? DC-R impliesDC plus consequentialism. As
mentioned earlier, consequentialism should be thought of as the requirement that updated

preferences depend only on the ex-ante preference and the realized event, E, and make Ec a

Savage-null event. Formally, we can write the following axiom:

Axiom 6.2 C (Consequentialism). For any ((V; u); E; g1; B1), ((V; u); E; g2; B2) 2 D,
%E;g1;B1=%E;g2;B2 and f; h; i 2 A implies fEh �E;g1;B1 fEi.

In fact, as stated in the next result, the straightforward proof of which is omitted, DC-R
also implies the various strengthenings of DC mentioned in this paper.

Proposition 6.1 The update rules satisfying DC-R satisfy DC, C, Strict DC, DC1 and
DC2.22

This result helps us understand why recursive models are simply not an option for updat-

ing on many events under ambiguity. For instance, from the dynamic Ellsberg example in

the Introduction, we know that any update rule satisfying C must violate DC when applied
to Ellsberg preferences upon observing the event fB;Rg. By the proposition above, this
implies every update rule violates DC-R when updating these preferences on fB;Rg and
is therefore incompatible with recursion with respect to any �ltration including the event

fB;Rg.
Another way to understand this failure of recursive models to handle updating on many

events under ambiguity is to recognize that recursion leads to a lack of reduction in terms

of information. For example, Figure 6.1 displays the choice between betting on black or

betting on red in the traditional 3-color Ellsberg problem under two possible information

structures. Squares indicate choice nodes and circles indicate nodes where uncertainty is

(partially) resolved. In the pair on the right, the DM simply chooses and then learns which

color was drawn, as is typical in the literature on Ellsberg behavior. In the pair on the left,

the DM chooses and then the same information is revealed, but in two stages. First, the DM

is told whether or not the ball drawn was yellow, and then, if it was not yellow, whether it

was black or red. Assume that under the information structure on the right, choices follow

22We can also say something about the implications of DC plus C. It can be shown that they imply that
the ex-ante and conditional optima are the same for any feasible sets containing only acts that agree on Ec.
We conjecture that under natural conditions this can be used to show that DC plus C is, in fact, equivalent
to DC-R. We have proved this conjecture for the case where preferences are MEU. Therefore, at least in
this case, we can be con�dent that consequentialism is the only di¤erence between DC-R and DC.
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Figure 6.1: Betting on black vs. red with and without interim information revelation
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Figure 6.2: Dynamic consistency vs. inconsistency in a dynamic Ellsberg problem

the usual Ellsberg pattern (in the �gure, b0 � r0.) This, by itself, is consistent with recursion
because all information is revealed at one time. However, these choices could be reversed

(r � b) under a recursive model and the information structure on the left.23Notice that this
change in information structure does not a¤ect the feasible actions or payo¤s at all. In both

cases the DM is choosing between betting on black or red once and for all at the beginning.

The reversal across the two pairs under recursion is due purely to non-indi¤erence toward

timing of information even though that information has no instrumental value (and even

when the actual time involved could be merely the time it takes to say �not yellow�).

6.2 Dynamic inconsistency

Dynamic consistency is a central feature of our analysis. In contrast, there are approaches to

dynamic decision making that take dynamic inconsistency of preferences over acts as given.

23Moreover, if preference does not reverse in this example, then, in an example that di¤ers only in replacing
the 0 payo¤s on Ec with payo¤s of 1, recursion will necessarily force a reversal between the two information
structures.
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In fact, several authors have explicitly suggested that a DMmay wish to maintain consequen-

tialism in the face of ambiguity, thus generating dynamic inconsistency (e.g., Eichberger and

Grant [7], Eichberger, Grant and Kelsey [8]). Although not usually thought of in this way,

this includes the vast literature (excepting Hanany and Klibano¤ [20]) exploring update rules

for MEU such as full Bayesian updating (applying Bayes�rule to each measure in the set of

measures)24 and Maximum likelihood updating (applying Bayes�rule to only those measures

assigning the largest probability to the observed event)25, and for Choquet expected utility

(Schmeidler [45]), such as the Dempster-Shafer rule (Dempster [6] and Shafer [49])26. All

of these classic rules are dynamically inconsistent, as they satisfy consequentialism. Unlike

preferences that are dynamically consistent, dynamically inconsistent preferences need to be

coupled with assumptions about how this inconsistency is resolved before these preferences

may be translated into behavior. The two most popular assumptions in the literature are

naivete and sophistication. This distinction was made by Strotz [53] and many that fol-

lowed. A sophisticated DM correctly anticipates future conditional preferences and chooses

by optimizing current preferences taking these future preferences as a constraint. Under the

assumption of consequentialism, Siniscalchi [50] shows how sophistication relates to consis-

tent planning (a re�nement of backward induction) in an environment rich enough to allow

for ambiguity. A naive DM incorrectly anticipates that future conditional desires will be the

same as currently desired plans for the future and therefore chooses assuming that ex-ante

desired plans will be carried out. Figure 6.2 presents an example illustrating the distinction

between these approaches and ours in the context of ambiguity. The setting of the example

is as in the dynamic Ellsberg example presented in the Introduction. As there, the three

states correspond to the three colors that might be drawn from the urn �black (B), red (R)

and yellow (Y) �with the odds of drawing black known. The event E is the event that the

drawn ball is not yellow. At the initial choice node, the DM must choose between d, b�" and
r+ ". The choice d leads to exactly the situation described in the dynamic Ellsberg problem

where the DM must choose between betting on black or on red contingent on whether E

or Ec is realized. The choice b � " leads to commitment to bet on black (still contingent,
though trivially so, on whether E or Ec is realized) by removing the contingent option of

betting on red, and requires payment of a fee of " to do so. Similarly, the choice r + " leads

to commitment to bet on red (again trivially contingent) by removing the contingent option

24See Ja¤ray ([26],[27]), Fagin and Halpern [13], Wasserman and Kadane [58], and Walley [56]. Sarin and
Wakker [42], Pires [40], Siniscalchi [50], Wang [57] and Epstein and Schneider [11] formally characterize this
update rule using preference axioms in various settings.
25Explored in terms of preferences in Gilboa and Schmeidler [17].
26For preference characterizations of this rule see e.g., Gilboa and Schmeidler [17], Wang [57], and

Nishimura and Ozaki [37].
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of betting on black, and o¤ers a payment of " to do so. Assume that the DM unconditionally

strictly prefers betting on black to betting on red (as is usual in the Ellsberg problem), that

higher payo¤s are desirable and that " > 0 is small enough, the DM will have preferences

with

(1; 0; 0) � (1� ";�";�") � ("; 1 + "; ") � (0; 1; 0) .

If the DM updates in a dynamically consistent way, then d will be chosen initially and will

be followed by the choice of B if the event E is realized. These choices result in the payo¤

vector (1; 0; 0), the ex-ante optimum. Suppose instead that the DM updates in a dynamically

inconsistent way. For example, the DMmight have the smooth ambiguity preferences used in

the numerical example in the Introduction and use Bayes�rule to update �. As was shown

in that example, this would lead R to be chosen over B if the event E were realized. A

naive DM would not anticipate this choice of R over B, and thus would choose d initially,

planning to then choose B, generating (1; 0; 0). However, what would actually be realized is

d followed by R, generating (0; 1; 0). Observe that naive dynamic inconsistency leads to a

strictly dominated outcome �choosing r + " rather than d would generate the dominating

payo¤s ("; 1 + "; ").27 A sophisticated DM, realizing correctly that the choice of d would lead

to (0; 1; 0) would instead choose b� ", generating payo¤ vector (1� ";�";�"). In e¤ect, the
sophisticated but dynamically inconsistent DM is willing to pay a fee to remove the option

R contingent on the event E occurring. Thus, under dynamically inconsistent updating,

the choice between adopting sophistication and naivete becomes relevant. In the example

above, sophistication was superior to naivete from an ex-ante point of view. However, in

other examples the DM may be ex-ante better o¤ if future selves were naive than if they

were sophisticated.28 Thus there is not a clear ex-ante welfare justi�cation for taking a

sophisticated approach over a naive one or vice-versa. In contrast, there is a clear welfare

comparison between dynamic consistency and dynamic inconsistency. If a DM could choose

an update rule at the ex-ante stage, it would always be optimal to choose a dynamically

consistent one, such as the rules explored in this paper.

Note that while recursion (as noted in Figure 6.1) violates invariance (reduction) with

respect to information timing (when holding the action timing and feasible payo¤s �xed),

Figure 6.2 shows sophistication plus dynamic inconsistency violates invariance (reduction)

with respect to action timing (holding the information timing and feasible payo¤s �xed). Our

dynamically consistent updating satis�es both these invariances while violating invariance

27For previous papers arguing that naive dynamic inconsistency may lead to strictly dominated choices,
see e.g., Green [19], Machina [30], and Segal [46] to name just a few.
28O�Donoghue and Rabin�s [38] Example 2 demonstrates this point under certainty when dynamic incon-

sistency is generated by non-exponential discounting. Similar examples may be constructed using updating
as the source of dynamic inconsistency.
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with respect to the ex-ante optimum induced by the decision problem (consequentialism).

7 Summary

In this paper, we have characterized dynamically consistent updating for general ambiguity

averse (quasiconcave) preference models and proposed novel update rules for broad classes

of preferences for which there was little prior understanding of how to update in a consis-

tent way. For ambiguity averse smooth ambiguity preferences, we characterized consistent

updating and proposed a rule, called the smooth rule, that has a number of attractive prop-

erties including dynamic consistency and invariance to the order in which information arrives

(commutativity). The form of the rule is a �reweighting�of Bayes�rule, where the weights

depend on the DM�s ambiguity aversion and her unconditionally chosen act in a decision

problem. The rule is the unique reweighting to be dynamically consistent. We also char-

acterized dynamically consistent update rules for variational preferences, constructed such

rules and applied them to multiplier preferences. Finally, we showed that our results on

updating apply equally well to regret-based modi�cations of ambiguity averse models.

A Appendix: Proofs not in the main text

The following lemma is the key to proving Theorem 2.1.

Notation A.1 For a 2 RS, E � S, the restriction of a to E is denoted ajE.

Lemma A.1 Fix a preference relation, %E;g;B, on A, a von Neumann-Morgenstern utility
u : X ! R representing %E;g;B on constant acts, and an event E � S. Assume there exists
a quasiconcave VE;g;B : RS ! R such that (i) f %E;g;B h if and only if VE;g;B (u � f) �
VE;g;B (u � h), (ii) ajE = bjE implies VE;g;B (a) = VE;g;B (b), and (iii) a (s) > b (s) for all

s 2 E implies VE;g;B (a) > VE;g;B (b). Then for any h 2 B, [h %E;g;B f for all f 2 B with

f = h on Ec] is equivalent to TE;h (VE;g;B) \QE;h;BE 6= ;.

Proof. (h 2 B, [h %E;g;B f for all f 2 B with f = h on Ec] =) TE;h (VE;g;B)\QE;h;BE 6=
;) Let I be RE. Let v be a complete, transitive binary relation on I de�ned by

ajE v bjE if and only if VE;g;B (a) � VE;g;B (b) .

Note that v is well-de�ned because of (ii). Let m and t be the asymmetric and symmetric
parts of v. Consider the sets D1 �

�
a j a 2 I with am u � hjE

	
and D2 � fu � fjE j f 2 B
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with f = h on Ecg. Quasiconcavity of VE;g;B implies D1 is convex, while B convex implies

D2 is convex. Conditional optimality of h implies D1 \ D2 = ;. D1 is non-empty by

(iii) and also has a non-empty interior. D2 is non-empty since it contains u � hjE. By a
separating hyperplane theorem (e.g., Aliprantis and Border [1], Thm. 5.50, p. 190), there

must exist a hyperplane separating D1 and D2. Without loss of generality, such a hyperplane

may be de�ned by
�
a 2 I j

R
adr = �

	
for r 2 �(E) restricted to 2E and real � such thatR

adr � � �
R
bdr for all a 2 D1 and b 2 D2. Since u � hjE 2 D2, � �

R
(u � hjE)dr.

Suppose � >
R
(u � hjE)dr. Then by the event-wise continuity of

R
(�) dr and (iii), there

would exist an a 2 D1 such that
R
adr < �, a contradiction. Thus, � =

R
(u � hjE)dr.

Similarly, one can show that a 2 D1 implies
R
adr >

R
(u � hjE)dr. Therefore,

R
adr >R

(u�hjE)dr �
R
bdr for all a 2 D1 and b 2 D2. Let r̂ be the extension of r to 2S obtained by

assigning zero to all measurable events in Ec. By the de�nitions of TE;h (VE;g;B) and Q
E;h;B
E ,

r̂ 2 TE;h (VE;g;B) \QE;h;BE .

(h 2 B, TE;h (VE;g;B) \ QE;h;BE 6= ; =) [h %E;g;B f for all f 2 B with f = h on Ec]) Let
r̂ be an element of TE;h (VE;g;B) \ QE;h;BE . Since r̂ 2 QE;h;BE ,

R
(u � h)dr̂ �

R
(u � f)dr̂ for all

f 2 B with f = h on Ec. Since r̂ 2 TE;h (VE;g;B),
R
(u � f)dr̂ >

R
(u � h)dr̂ for all f such

that VE;g;B (u � f) > VE;g;B (u � h). Thus VE;g;B (u � f) � VE;g;B (u � h) � 0 for all f 2 B
with f = h on Ec. Since VE;g;B (u � �) represents %E;g;B by (i), this implies h is conditionally
optimal among all f 2 B with f = h on Ec.
Proof of Theorem 2.1. Note that applying the above lemma where h is taken to be

the unconditionally optimal act g and E is non-null yields TE;g (VE;g;B) \ QE;g;BE 6= ; as a
characterization of DC for update rules in Y.

Lemma A.2 If VE;g;B : RS ! R satis�es the assumptions of Lemma A.1 and is, in addition,
concave, then the condition TE;h (VE;g;B)\QE;h;BE 6= ; is equivalent to GE;h (VE;g;B)\QE;h;BE 6=
;.

Proof. (GE;h (VE;g;B) \ QE;h;BE 6= ; =) TE;h (VE;g;B) \ QE;h;BE 6= ;) Let r̂ be an
element of GE;h (VE;g;B) \ QE;h;BE . Since r̂ 2 GE;h (VE;g;B) there exists a � > 0 such that

� (VE;g;B (u � f)� VE;g;B (u � h)) �
R
(u � f)dr̂ �

R
(u � h)dr̂ for all f 2 A. Thus, since

r̂ 2 QE;h;BE implies
R
(u � h)dr̂ �

R
(u � f)dr̂ for all f 2 B with f = h on Ec, VE;g;B (u � f)�

VE;g;B (u � h) � 1
�

�R
(u � f)dr̂ �

R
(u � h)dr̂

�
� 0 for all f 2 B with f = h on Ec. This

implies h is conditionally optimal among all f 2 B with f = h on Ec and this, by Lemma

A.1, implies TE;h (VE;g;B) \QE;h;BE 6= ;.
(TE;h (VE;g;B) \ QE;h;BE 6= ; =) GE;h (VE;g;B) \ QE;h;BE 6= ;) By the argument in the
�rst part of the proof of Lemma A.1, there exists a probability measure r on 2E such thatR
adr �

R
(u � hjE)dr �

R
bdr for all a 2 D1 and b 2 D2. Event-wise continuity of

R
(�) dr
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and the monotonicity property (iii) in the statement of Lemma A.1 together imply that

a t u � hjE implies
R
adr �

R
(u � hjE)dr. Thus,

R
adr �

R
(u � hjE)dr �

R
bdr for all a 2 I

such that a v u � hjE and b 2 D2. Let r̂ be the extension of r to 2S obtained by assigning

zero to all events in Ec. By de�nition, r̂ 2 QE;h;BE . It remains to show that r̂ 2 GE;h (VE;g;B).
Since r̂ is normal to the set

�
â 2 RS j VE;g;B (â) � VE;g;B (u � h)

	
at u �h, there exists � � 0

such that r̂ 2 �@VE;g;B (u � h) (see Rockafellar [41], Corollary 23.7.1). As r̂ (E) = 1, � > 0
and so r̂ 2 GE;h (VE;g;B). Thus, r̂ 2 GE;h (VE;g;B) \QE;h;BE 6= ;.
Proof of Theorem 2.2. Follows from Theorem 2.1, concavity of VE;g;B, Lemma A.2

and the interiority of u � g.
The following lemma will be invoked in proving our next two results:

Lemma A.3 Given a smooth ambiguity preference, %, with � concave and di¤erentiable,
an interior act g and a non-null event E, there always exists a feasible set B such that (i)

g 2 B, (ii) g is optimal in B according to % and (iii) QE;g;BE is a singleton.

Proof. If E is a singleton, then B = fgg works. Otherwise, consider the indi¤erence
curve through g. Let B be the intersection of the set ff 2 A j f = g on Ecg and the unique
(by di¤erentiability of � and interiority of u � g) hyperplane through g supporting the set
ff 2 A j f % gg. B is convex since it is the intersection of two convex sets. Since u � B
is de�ned by linear constraints and has dimension jEj � 1, the projection of u � B onto E,

denoted projE (u �B), has a unique supporting hyperplane at projE (u � g). Thus, there is
a unique r 2 �(E) such that

R
(u � g)dr �

R
(u � f)dr for all f 2 B. By de�nition of QE;g;BE ,

QE;g;BE = frg. To make B closed, since u�g is interior in u�A, we can limit B to acts within
a given Euclidean utility-distance of g.

Proof of Proposition 3.1. For expected utility preferences, � is a¢ ne and the only

aspect of the belief relevant for preferences over acts is the reduced measure v � E��.

Applying Bayes�rule yields expected utility preferences with � and u and updated reduced

measure vE;g = E�E;g�E = vE. Since the conditional representation is di¤erentiable and

u � g is interior, GE;g (VE;g;B) = fvEg. Unconditional optimality of g implies vE 2 QE;g;BE .

Theorem 2.2 then implies that Bayes�rule satis�es DC for such preferences. We prove it

does so uniquely. Since the updated preferences may depend on only ((V; u); E; g), and since

u � g is interior in u �A, by Lemma A.3 we can without loss of generality �x a problem with
a feasible set that is smooth at g. We then have QE;g;B = fvg. Then invoking Theorem 2.2

again, DC implies

vE;g (s) = vE(s) for all s 2 E.

Thus, updating must be Bayesian in the sense that the updated preferences over acts are

identical to those generated by using Bayes�rule.
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Proof of Theorem 3.1. Since E�E;g� (E�Ea) is �nite, concave and di¤erentiable at
a = u � g, @VE;g;B (u � g) is a singleton set consisting of the gradient of E�E;g� (E�Ea) at
a = u� g (see Rockafellar [41], Theorem 25.1). Since u� g is interior, this gradient is also the
unique element of the superdi¤erential at u�g of the restriction of VE;g;B to u�A. To see that�
E�E;g [�

0(E�E (u�g))�E(s)]
E�E;g [�

0(E�E (u�g))]

�
s2S

2 GE;g (VE;g;B), observe that it is proportional to the gradient of
VE;g;B (a) = E�E;g� (E�Ea) at a = u�g with constant of proportionality

1
E�E;g [�

0(E�E (u�g))]
> 0.

Any other constant of proportionality does not produce a measure in �. Therefore, Theorem

2.2 says U satis�esDC if and only if
E�E;g [�

0(E�E (u�g))�E(s)]
E�E;g [�

0(E�E (u�g))]
2 QE;g;BE . Since g is unconditionally

optimal, an element of QE;g;B may be obtained by di¤erentiating E�� (E�a) with respect to
a 2 RS, evaluating at a = u � g, and normalizing. This yields E�[�0(E�(u�g))�(s)]

E�[�0(E�(u�g))] for all s 2 S.
Since E�[�0(E�(u�g))�(s)]

E�[�0(E�(u�g))] 2 QE;g;B, its conditional on E, E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))�(E)] for s 2 E and 0

otherwise, must be an element of QE;g;BE . As u � g is interior in u � A, Lemma A.3 implies
there exists an appropriate B such that QE;g;BE is a singleton. For such a B, therefore,
E�E;g [�

0(E�E (u�g))�E(s)]
E�E;g [�

0(E�E (u�g))]
2 QE;g;BE if and only if

E�E;g [�
0(E�E (u�g))�E(s)]

E�E;g [�
0(E�E (u�g))]

= E�[�0(E�(u�g))�(s)]
E�[�0(E�(u�g))�(E)] for all

s 2 E. As U does not depend on B (since U 2 U), the proposition follows.
Proof of Theorem 3.2.
By Theorem 3.1, in order to satisfy DC it must be that

E�E;g [�
0(E�E(u � g))�E(s)]

E�E;g [�
0(E�E(u � g))]

=
E�[�0(E�(u � g))�(s)]
E�[�0(E�(u � g))� (E)]

for all s 2 E.

For any reweighted Bayesian update rule, substituting for �E;g yields

E�[� (�; �; u; g; E)�0(E�E(u � g))�(s)]
E�[� (�; �; u; g; E)�0(E�E(u � g))� (E)]

=
E�[�0(E�(u � g))�(s)]
E�[�0(E�(u � g))� (E)]

for all s 2 E. (A.1)

The smooth rule is de�ned by setting

� (�; �; u; g; E) = �SM (�; �; u; g; E) �

8<:
�0(E�(u�g))
�0(E�E (u�g))

if � (E) > 0

0 otherwise
.

Substituting this � into Equation A.1, it is immediate that the smooth rule satis�es DC.
To show that it is the unique such rule, �x �; u; g and E. When E is a singleton, the

value of � at E is irrelevant. Therefore, assume E contains at least two states. Observe

that if � (�; �; u; g; E) = k�SM (�; �; u; g; E) for k 6= 0, this is the same as the smooth

updating rule, since the multiplicative factor cancels out in the normalization. So, in order

for a reweighted Bayesian rule to be an update rule di¤erent than the smooth rule, there

must exist �1 6= �2 with �i (E) > 0; i = 1; 2 and positive real numbers k1 6= k2 such that
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� (�1; �; u; g; E) = k1�
SM (�1; �; u; g; E) and � (�2; �; u; g; E) = k2�

SM (�2; �; u; g; E). Fix

such �1; �2. There exists a �3 with �3 (E) > 0 such that �3E is di¤erent than at least one

of �1E or �
2
E and a k3 > 0 such that � (�

3; �; u; g; E) = k3�
SM (�3; �; u; g; E). k3 must di¤er

from at least one of k1 and k2. Therefore, without loss of generality, assume �1E 6= �2E (since
we can substitute �3 for one or the other if this is not the case). We will show that this

implies DC is violated. Consider a � having support f�1; �2g. For such a �, the left-hand
side of (A.1) is equal to:

k1�
0(E�1(u � g))�1(s)� (�1) + k2�0(E�2(u � g))�2(s)� (�2)

k1�
0(E�1(u � g))�1(E)� (�1) + k2�0(E�2(u � g))�2(E)� (�2)

for all s 2 E.

From (A.1), this must equal

�0(E�1(u � g))�1(s)� (�1) + �0(E�2(u � g))�2(s)� (�2)
�0(E�1(u � g))�1(E)� (�1) + �0(E�2(u � g))�2(E)� (�2)

for all s 2 E

for DC to hold. Simplifying yields

k1
�
�0(E�1(u � g))�

�
�1
�
�0(E�2(u � g))�

�
�2
�� �
�1(s)�2(E)� �2(s)�1(E)

�
= k2

�
�0(E�1(u � g))�

�
�1
�
�0(E�2(u � g))�

�
�2
�� �
�1(s)�2(E)� �2(s)�1(E)

�
.

Since k1 6= k2, the only case in which this can be true is if, for all s 2 E,�
�0(E�1(u � g))�

�
�1
�
�0(E�2(u � g))�

�
�2
�� �
�1(s)�2(E)� �2(s)�1(E)

�
= 0.

As �0 > 0, this requires

�1(s)�2(E)� �2(s)�1(E) = 0 for all s 2 E,

meaning

�1E = �
2
E,

a contradiction. Therefore no other reweighted Bayesian rule in U is dynamically consistent.

Proof of Proposition 3.2. Follows from the introductory dynamic Ellsberg example

and the fact that rules in U assign zero weight to Ec and do not depend on the feasible set
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B.

Proof of Proposition 3.3. According to the smooth rule, �E\F;g =
�0(E�(u�g))

�0(E�E\F (u�g))
�(�)�(E\F )P

�̂2�

�0(E�̂(u�g))
�0(E�̂E\F (u�g))

�(�̂)�̂(E\F )
.

Similarly, updating onE then F using the smooth rule produces �(E;F );g =

�0(E�E (u�g))
�0(E�EF

(u�g))�E;g(�)�E(F )P
�̂2�

�0(E�̂E (u�g))
�0(E�̂EF

(u�g))�E;g(�̂)�̂E(F )
=

�0(E�E (u�g))
�0(E�EF

(u�g))
�0(E�(u�g))
�0(E�E (u�g))

�(�)�(E)�E(F )P
�̂2�

�0(E�̂E (u�g))
�0(E�̂EF

(u�g))
�0(E�̂(u�g))
�0(E�̂E (u�g))

�(�̂)�̂(E)�̂E(F )

=

�0(E�(u�g))
�0(E�EF

(u�g))�(�)�(E\F )P
�̂2�

�0(E�̂(u�g))
�0(E�̂EF

(u�g))�(�̂)�̂(E\F )
. Since �EF =

(
�E

�E(F )
if s 2 E \ F

0 otherwise
= �E\F , �(E;F );g = �E\F;g.

As u and � remain unchanged, this proves commutativity.

Before proving Proposition 3.4, we show a quite useful lemma and corollary deriving

implications of strict concavity of �.

Lemma A.4 Assume � is strictly concave. If f 2 B and f s g, then
� (f� 2 �(S) j E�u � f 6= E�u � gg) = 0.

Proof of Lemma A.4. Let b = u � g and a = u � f . We show that for any f such that
� (f� 2 � j E�a 6= E�bg) > 0 and E�� (E�a) = E�� (E�b), �f+(1��)g � g for all � 2 (0; 1).
To see this, �x such an a. By strict concavity of � and � (f� 2 � j E�a 6= E�bg) > 0,

E�� (�E�a+ (1� �)E�b) > E� (�� (E�a) + (1� �)� (E�b)) = �E�� (E�a)+(1��)E�� (E�b)
= E�� (E�b). Since g is optimal in B and B is convex, if f 2 B with f s g then

� (f� 2 � j E�u � f 6= E�u � gg) = 0.

Corollary A.1 Assume � is strictly concave and � is absolutely continuous with respect to �.
If f 2 B, f s g and f = g on Ec then � (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) = 0.

Proof of Corollary A.1. Lemma A.4 and absolute continuity imply

� (f� 2 �(S) j E�u � f 6= E�u � gg) = 0. f = g on Ec implies E�u�f 6= E�u�g () E�Eu�
f 6= E�Eu�g for � 2 �(S) n�(Ec). Thus, � (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) =
0.

Proof of Proposition 3.4. By Theorem 3.2, the smooth rule satis�es DC. We �rst
show that g s f implies f sE;g;B g. By strict concavity of � and Lemma A.4, if g is optimal
in B and f 2 B with g s f then � (f� 2 � j E�u � f 6= E�u � gg) = 0. By Corollary A.1,
absolute continuity and f = g on Ec, �E;g (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) = 0.
Thus, for all f 2 B with f = g on Ec, g s f implies g sE;g;B f .
It remains to show that g � f implies g �E;g;B f . We prove this by contradiction.

Suppose f 2 B with f = g on Ec, g � f and g sE;g;B f (since DC holds, the possi-

bility f �E;g;B g is not relevant). Since the set ff 2 B j f = g on Ecg is convex and �
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is strictly concave, by the arguments used in the proof of Lemma A.4 applied to %E;g;B,
�E;g (f� 2 �(S) n�(Ec) j E�Eu � f 6= E�Eu � gg) = 0. From the de�nition of the smooth

rule, this implies � (f� 2 �(S) n�(Ec) j E�u � f 6= E�u � gg) = 0, implying g s f , a con-

tradiction.

Proof of Proposition 3.5. Let %2 PSM with S = f1; 2; 3g, �f(0:01; 0; 0:99)g =

�f(0; 0:01; 0:99)g = 1
2
, E = f1; 2g, Z = R, u (z) = z for z 2 Z, and � (z) =

(
2(z � 1) 12 if z � 2

z if z � 2
.

The key feature of this � that we exploit in our argument is that it exhibits a decreasing

coe¢ cient of Arrow-Pratt relative risk aversion (corresponding to decreasing relative am-

biguity aversion) in the range z � 2. Consider g = (1700; 1700; 0), h = (1000; 1000; 0),

f1 = (1700; 500; 0), f2 = (500; 1700; 0) and B = cofg; h; f1; f2g. Since g weakly dom-

inates all acts in B, it is unconditionally optimal. Observe that h s f1 s f2 (since

6 = � (10) = 1
2
� (17) + 1

2
� (5) = 4 + 2 = 6). Since E consists of only two states, any

update rule U 2 U delivers a probability measure, call it p̂, over the conditional probability
of state 1 (which we denote by �). We will show that either f1 �E;g;B h or f2 �E;g;B h and
thus that DC1 fails.
Observe that f1 �E;g;B h if and only if

� (1000) < Ep̂� (�1700 + (1� �)500)
, 999

1
2 < Ep̂ (499 + 1200�)

1
2 .

Similarly, f2 �E;g;B h if and only if

� (1000) < Ep̂� (�500 + (1� �)1700)
, 999

1
2 < Ep̂ (1699� 1200�)

1
2 .

We will show that the sum of these two inequalities holds. This implies that at least one of

the two inequalities must hold.

The sum of the two right-hand side expectations is

Ep̂
h
(499 + 1200�)

1
2 + (1699� 1200�)

1
2

i

and subtracting twice 999
1
2 yields

Ep̂
h
(499 + 1200�)

1
2 + (1699� 1200�)

1
2 � 2 � 999 12

i
.
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Examining the integrand for a �xed � 2 [0; 1] gives

(499 + 1200�)
1
2 + (1699� 1200�)

1
2 � 2 � 999 12 . (A.2)

As a function of �, (A.2) is strictly concave, and attains a maximum at � = 1
2
. Therefore, if

(A.2) is positive at the boundary points � = 0 and � = 1 then it is positive for all � 2 [0; 1].
At � = 0 and � = 1, (A.2) becomes

1699
1
2 + 499

1
2 � 2 � 999 12 > 0:3433 > 0.

Therefore, for any p̂, either f1 �E;g;B h or f2 �E;g;B h and thus DC1 fails.
To show that DC2 must fail, consider the same setting as above, except that now g =

(1000; 1000; 0) and B = fgg. Since B is a singleton, g is trivially unconditionally optimal.

Recall that g s f1 s f2. That either f1 �E;g;B g or f2 �E;g;B g and thus that DC2 fails
follows from the same calculations as above.

Proof of Proposition 4.1. By Theorem 2.2, a rule in W satis�es DC if and only if

QE;g;BE \GE;g (VE;g;B) 6= ;. Using Theorem 18 of MMR [33], one can show that

GE;g (VE;g;B) = argmin
p2�

�Z
(u � g) dp+ cE;g;B (p)

�
.

Proof of Proposition 4.2. By Theorem 2.2 and Theorem 18 of MMR [33], opti-

mality of g is equivalent to QE;g;B \ argminp2�
�R
(u � g) dp+ c (p)

�
6= ;. Let r 2 QE;g;B \

argminp2�
�R
(u � g) dp+ c (p)

�
. Since p (E) = 0 implies c (p) = 1, r (E) > 0. For any

p 2 �(E),
R
(u � g) dp 
E r + c

�
p
E r

�
�
R
(u � g) dr + c (r). Since

R
(u � g) dp 
E r =

r(E)
R
(u � g) dp +

R
Ec
(u � g) dr, r(E)

R
(u � g) dp + c

�
p
E r

�
� r(E)

R
(u � g) drE + c (r).

Thus
R
(u � g) dp + 1

r(E)
c
�
p
E r

�
�
R
(u � g) drE + 1

r(E)
c
�
rE 
E r

�
, so rE 2 argminp2�(E)

(
R
(u � g) dp + 1

r(E)
c
�
p
E r

�
). Since Ec Savage-null implies cE;g;B(p) = +1 for p =2 �(E)

(because u is unbounded either above or below) and since subtracting the constant,minq2�(E)
c
�
q 
E r

�
, does not a¤ect the minimization, rE 2 argminp2�

�R
(u � g) dp+ cE;g;B(p)

�
.

Since rE 2 QE;g;BE \argminp2�
�R
(u � g) dp+ cE;g;B(p)

�
, g is conditionally optimal by Propo-

sition 4.1. It remains to show that cE;g;B satis�es the conditions required of an ambiguity

index in a variational representation. cE;g;B is non-negative and grounded by construction.

It is straightforward to verify that cE;g;B inherits convexity and lower semi-continuity from
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