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Abstract

We consider a dynamic auction problem motivated by the traditional single-leg,
multi-period revenue management problem. A seller with C units to sell faces po-
tential buyers with unit demand who arrive and depart over the course of T time
periods. The time at which a buyer arrives, her value for a unit as well as the time
by which she must make the purchase are private information. In this environment,
we derive the revenue maximizing Bayesian incentive compatible selling mechanism.

Keywords: dynamic mechanism design, optimal auctions, virtual valuation, reve-
lation principle
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1 Introduction

The problem of optimally selling a finite number of indivisible goods to buyers ar-
riving over time has a long pedigree (see for example Stokey (14) and Bulow (4)).
One setting restricts the seller to using posted prices and capacity controls. Such
mechanisms are widely used in the airline, hotel, and car-rental industries. With the
rise in Internet commerce, many sellers have begun experimenting with alternative
pricing mechanisms such as auctions. This has inspired a number of theoretical in-
vestigations into such dynamic auctions, for example Vulcano et al (15) and Lavi and
Nisan (7).

This paper involves a risk neutral seller seeking to sell C identical and indivisible
units over T discrete time periods, indexed by t. Buyers with unit demand (also
called bidders hereafter) arrive over time, and have private valuations for a unit of
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the good. In particular, buyer i has a valuation vi for one unit of the good, excess
units are worthless. Furthermore, each bidder has an arrival time ti and a deadline
t̄i. This means bidder i cannot participate in the auction before time ti or after time
t̄i. Goods assigned to agent i outside the interval [ti, t̄i] have no value to him. The
3-tuple (vi, ti, t̄i), called bidders i’s type, are assumed to be the private information
of bidder i. Thus bidder i is in a position to claim a valuation smaller or larger than
vi, an arrival later than ti and a deadline earlier than t̄i.

The airline industry is an example which corresponds closely to the model we
analyze. The separation of buyers over time is also typical to this industry. The
two major customer segments are leisure travelers and business travelers, the former
generally making travel plans well in advance of actual travel (due to the need to
coordinate this with other arrangements), while the latter may make travel plans
just a few days before departure. The no-early-entry assumption can be justified on
the grounds that travelers will not seek tickets until they know that they actually
need to travel. The no-late-exit assumption can be justified on the grounds that the
bidder may need time to make other arrangements (hotel accommodations, take time
off work etc.), and getting the ticket later may not leave the bidder with sufficient
time to make these arrangements.

1.1 Overview of the Main Results

Under the assumption that agents types are independent draws from a common distri-
bution, satisfying a suitable hazard rate condition, we derive the revenue maximizing
Bayesian Incentive compatible mechanism. The intuition is the same as in Myerson’s
(10) classic optimal auction paper, but our result is not a corollary of it.

Myerson’s paper considers a static problem where the type of a bidder is one
dimensional, i.e. a bidder’s only private information is his valuation. The seller solicits
bidders types, and then uses this information to compute each bidder’s ‘virtual value’.
It is then shown that under a suitable hazard rate assumption, allocating greedily
according to this ‘virtual value’ is optimal in terms of expected revenue amongst all
mechanisms that are incentive compatible.

Myerson’s results should properly be viewed as a statement about the equivalence
of two classes of optimization problems. The first is the problem of optimally allo-
cating the good when the seller has full information. The second is when the buyers’
valuations are private information (and therefore incentive compatibility constraints
must also be met). What Myerson shows is that under a suitable hazard rate as-
sumption, the second problem is computationally equivalent to the first. In other
words, the additional incentive constraints to do not make the problem ‘harder’.

Our setting departs from Myerson (10) in that types are multi-dimensional, but
we obtain a similar equivalence result. The multi-dimensional setting introduces in-
centive compatibility constraints not present in the one dimensional type case. So
our main result does not follow from Myerson (10). Nevertheless, we show how to
compute a modified ‘virtual value’ for each type. Then one can use use a dynamic pro-
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gram based on the virtual values to determine the optimal allocation and payments.
The resulting allocation and payments are incentive compatible.

The general problem of finding a revenue maximizing Bayesian incentive compati-
ble problem when types are multi-dimensional is well known to be difficult (see Rochet
and Choné (13)) and solved cases are rare (for example, Armstrong (1)) Typically,
this literature assumes the types come from a continuum, and employs the tools of
vector calculus to derive the results. Here we assume that types are discrete. This
allows us to use a network flow interpretation of the problem developed in Malakhov
and Vohra (8). In our view this makes the analysis both more transparent and com-
prehensible. We know of no good argument to prefer a continuum type space to a
discrete one. The choice should be based on whichever is the most mathematically
convenient.

1.2 Related Literature

The idea to use auctions for revenue management is not new. Vulcano et al (15)
consider a special case of our model where each buyer is present for at most one
period (in terms of our model t̄i = ti for all i). The only private information is the
buyer’s valuation for a single unit.

Gallien (5) studies a monopolist selling a finite number of identical items over an
infinite horizon to time sensitive buyers with unit demands. Buyers arrive over time
via a renewal process. He shows that a direct revelation mechanism where an arriving
buyer is offered a unit at a price depending on his valuation, the time of arrival and
past history, is the expected revenue optimal incentive compatible mechanism. Time
sensitivity of buyers is modeled using a discount factor common to all buyers that is
known to the seller. The valuation of the bidder and his time of entry are his private
information.

Board (2) studies a durable goods monopolist with infinite supply. In each period
T = 1, 2, . . . ,∞, a measure of consumers with unit demand enter the market. The
measure of consumers entering and the distribution of their valuations for the good
vary stochastically over time. Consumers can delay their purchases, but are time
sensitive via a discount rate that is common knowledge. Board calculates a price
path that maximizes expected revenue. The bidder’s valuation and his time of entry
are his private information.

Lavi and Nisan (7) consider the same model as Vulcano et al but in a setting where
there is no prior distribution over types. In this setting they propose a mechanism
and perform a worst case analysis of the revenue achieved.

Ng, Parkes and Seltzer (11) consider a closely related model where the seller has
C identical indivisible units of a good. These units are re-usable, i.e. a sale in this
case is one unit being allotted for one period. They demonstrate a dominant strategy
mechanism, and perform a worst case analysis of the revenue achieved. Hajiaghayi,
Kleinberg, Mahdian and Parkes (6) consider the same model but achieve a better
competitive ratio. They also look to characterize the class of deterministic allocation
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rules that can be part of a dominant strategy incentive compatible mechanism.

1.3 Organization of this Paper

In Section 2 we introduce notation and describe our model. In Section 3, we describe
the incentive compatibility constraints that a mechanism must meet, and then sim-
plify them. In Section 4 we formulate and analyze the seller’s decision problem, and
derive the (expected) revenue maximizing auction. In this section, we also discuss
the difficulties associated with exit time. Section 5 discusses some possible extensions
to this model and concludes.

2 Model and Notation

A seller wishes to sell C units of a good (identical and indivisible) over T time periods,
numbered 1, 2, . . . , T .

Buyers arrive over time. In particular, buyers learn their types at some point
t ≤ T . There is a finite set of agents’ types T = I × T 2. A 3-tuple (i, t, t̄) ∈ T is
interpreted as follows:

• i ∈ I is the reservation value of the agent for his desired quantity, where I =
{1, 2, . . . , I}.

• t ≤ T is the time of entry of the agent into the system.

• t̄ ≤ T is his time of exit from the system, t̄ ≥ t.

In each period t, Nt risk neutral potential buyers arrive. Nt is a non-negative,
discrete valued random variable, distributed according to a known probability mass
function g(·), with support {0, 1, . . . ,∞} (our reasons for requiring full support are
discussed in footnote 8).

There is a common prior (a probability distribution with p.d.f. f) on the space
of types.1 Agents arriving at time t receive i.i.d. draws from the posterior of this
distribution (i.e. given time of arrival is type t). Formally, the probability that an
agent arriving at time t has type (i, t, t̄) is

P{type = (i, t, t̄)|arrivaltime = t} =
f(i, t, t̄)∑

i′∈I,t̄′≥t f(i′, t, t̄′)
. (1)

Thus we assume that the valuation of an agent arriving at some time t is independent
of both the number of agents arriving at that time and the valuation of other agents
arriving at that time.

We impose a partial order º on the space T, defined as

(i′, t′, t̄′) º (i, t, t̄) ≡ (i′ ≥ i) ∧ (t′ ≥ t) ∧ (t̄′ ≥ t̄). (2)

1We restrict our attention to pdf’s that have a ‘monotone hazard’ rate, appropriately redefining this
property for our current environment. A formal definition is in (3).
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Intuitively, a type will be partially ordered above another if it has a (weakly) higher
valuation, arrives earlier and has a later deadline. The monotone hazard rate condi-
tion here is that:

(i′, t′, t̄′) º (i, t, t̄) ⇒ f(t′,t̄′)(i′)
1− F(t′,t̄′)(i′)

≥ f(t,t̄)(i)
1− F(t,t̄)(i)

. (3)

Here f(t,t̄)(·) and F(t,t̄)(·) are the pdf and cdf respectively conditional on entering at
time t and exiting at t̄. An interpretation of the condition is given in Section 3.2.

An inventory of bids I is a list of bids that arrived over the the T time periods,
with their entry and exit times. The set of all possible inventories is denoted I. At
any time t, the system only knows It, the bids that arrived at time t or earlier. Let It

t′

be the multi-set of bids of agents who arrived at time t or earlier whose bids expire at
or after t′. Let At be the multi-set of bids of agents who arrive at time t (unknown,
random at time t− 1). Given an inventory of bids I, let Lt(I) be the set of bids in I

that expire at t. Therefore, we have that

It+1
t+1 =

(
It
t\Lt(It

t )
)⋃

At+1.

Let It be the bids in I that expire at or after t. Finally, given inventories I and I ′,
we say that It

t º I ′tt if the vector of bids in It
t dominates the vector of bids in I ′tt . In

other words, for every bid in I ′tt , there exists a distinct bid in It
t which has a higher

(virtual) valuation and a later exit time, intuitively making It
t a ‘better’ inventory of

bids to have (at time t).
An agent of type (i, t, t̄), and given a probability of allotment a assigns a monetary

value to this allocation, given as: 2

v(a|(i, t, t̄)) = i.a (4)

By the revelation principle, we can restrict attention to direct revelation mecha-
nisms.3 Each agent is asked to reveal her type. The auctioneer, as a function of the
announcements, decides on the allocation, and the payment each agent is to make.

An allocation rule is a sequence of functions, one for each time period τ ∈ T ,
aτ : T × Iτ → [0, 1].4 In other words, aτ

(i,t,t̄)(I
τ ) is the allocation that an agent who

announces type (i, t, t̄) gets in time period τ , given that the inventory of bids in the
system up to that point in time are Iτ .

If a type (i, t, t̄) is not present in the profile Iτ , we take aτ
(i,t,t̄)(I

τ ) = 0∀τ ∈ T .
Further we let P : T× I→ R+ be the payment function, i.e. an agent who announces
type (i, t, t̄) when the inventory turns out to be I makes a payment of P(i,t,t̄)(I).

We further posit that an agent derives utility if he is allocated a unit somewhere

2Since the agent here is sensitive to when he gets allotted the object, strictly speaking we should point
out that this is if he gets the allotment in any period t′, t ≤ t′ ≤ t̄.

3A proof that the Revelation Principle applies to this setting is in Appendix B.
4There are various feasibility constraints that we impose on allocation rules which we introduce later.
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over the time periods he is present in the system. The idea is that an agent of
type (i, t, t̄) cares for exactly 1 unit, allotted to him sometime between t and t̄. Let
A(i,t,t̄)(I) = max{aτ

(i,t,t̄)(I
τ ) : t ≤ τ ≤ t̄}; we refer to this as his allotment. Define

P(i,t,t̄) as the interim expected payment that an agent who announces type (i, t, t̄)
must make.

We can now define (by yet another abuse of notation)

a(i,t,t̄) = EI

[A(i,t,t̄)(I)|[(i, t, t̄) ∈ I]
]

as the interim allocation probability (for type(i, t, t̄)). The expected monetary gain
for an agent whose type is (i, t, t̄) is i.a(i,t,t̄) − P(i,t,t̄).

3 Incentive Compatibility

Incentive Compatibility requires that no agent should have an incentive to misreport
his type. In other words, for every type (i, t, t̄), and any misreport (i′, t′, t̄′):

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i′,t′,t̄′)|(i, t, t̄))− P(i′,t′,t̄′).

However, we can relax the constraints corresponding to some of these misreports
based on the context. An agent of type (i, t, t̄) can only misreport his type as (i′, t′, t̄′),
where

• t′ ≥ t: This captures the fact that the agent can announce his type only after he
is in the system.5

• t̄′ ≤ t̄: This says that an agent cannot claim to be in the system any longer than
he actually is, alternately, receiving the object after the agent’s true deadline is
worthless to the agent.

The relevant (Bayesisan) incentive compatibility (IC) constraints are listed below.

1. Misreport Value: An agent can misreport his valuation.

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i′,t,t̄)|(i, t, t̄))− P(i′,t,t̄). (5)

2. Under-report Presence: An agent present in the system from t through t̄ periods
may choose to report he is in the system for some strict contiguous subset of
that, i.e. t′ ≥ t, t̄′ ≤ t̄.

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t′,t̄)|(i, t, t̄))− P(i,t′,t̄), (6)

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t,t̄′)|(i, t, t̄))− P(i,t,t̄′). (7)

3. Misreport Value and Presence:

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i′,t′,t̄′)|(i, t, t̄))− P(i′,t′,t̄′). (8)

5Alternately, an agent can announce his type only after he knows it himself.
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Further, we have the Individual Rationality constraint, that no agent can have a
strictly negative expected surplus:

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ 0. (9)

3.1 Implications of Incentive Compatibility

In this section we show that the only IC constraints that matter are the adjacent
misreports of value, over-reports of requirement and misreports of presence.

Recall that given an allocation of a, an agent of type (i, t, t̄) derives utility from
it only if this allotment is made in a period t′ ∈ [t, t̄].

Observation 1 Any incentive compatible mechanism in this model, represented by
(a, P ) (i.e. an allotment rule and a payment rule), can be represented by an allocation
rule a′ and the same payment rule P , where the allocation rule a′ allots type (i, t, t̄)
at time t̄ if at all.

Proof: Consider a modified allocation rule a′ constructed as follows: For each type
(i, t, t̄), reallocate the maximum probability of getting a unit during any period t

through t̄ to getting exactly at time t̄. As long as a is feasible, a′ will also be, since
each agent gets weakly fewer units. Also a′ will be incentive compatible with the
same pricing rule since the agent, by our assumptions, will be indifferent between a

and a′ regardless of his type. ¤
Note that this observation does not require that certain misreports are forbidden. In
particular, it applies even when reporting a later exit time is allowed. To be precise,
we have the following observation.

Observation 2 Suppose the pricing rule is a non-negative function of types, and
that the allotment rule is of the type identified in Observation 1. Then the IC
constraint corresponding to an agent reporting a late-departure is redundant.

Proof: Consider an agent of type (i, t, t̄) misreporting type as (i, t, t̄′), where t̄ < t̄′.
The relevant IC constraint is:

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t,t̄′)|(i, t, t̄))− P(i,t,t̄′).

By Observation 1, an agent reporting an exit time of t̄′ gets allotted at t̄′. By our
assumptions on the functional form of v(.) v(a(i,t,t̄′)|(i, t, t̄)) = 0. Therefore,

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ −P(i,t,t̄).

This is redundant given Individual Rationality (9) and the fact that P ≥ 0. ¤
The following proposition is based on the case of one dimensional types.
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Observation 3 If a mechanism (a, P ) is incentive compatible, then:

∀t, t̄ : i′ > i ⇒ a(i′,t,t̄) ≥ a(i,t,t̄).

Proof: Suppose not, i.e. suppose for some t, t̄ and i′ > i, we have that a(i′,t,t̄) <

a(i′,t,t̄). From the fact that i has no incentive to say that he is i′, we have that:

i · (a(i,t,t̄) − a(i′,t,t̄)) ≥ P(i,t,t̄) − P(i′,t,t̄).

Since i′ > i, we have that:

i′ · (a(i,t,t̄) − a(i′,t,t̄)) > P(i,t,t̄) − P(i′,t,t̄).

Rewriting, we see:

v(a(i′,t,t̄)|(i′, t, t̄))− P(i′,t,t̄) < v(a(i,t,t̄)|(i′, t, t̄))− P(i,t,t̄).

This contradicts incentive compatibility for type (i′, t, t̄). ¤
Next we identify a subset of these IC constraints that are redundant. As a nota-
tional shorthand we refer to the IC constraint corresponding to where a type (i, t, t̄)
misreports his type as (i′, t′, t̄′) by the notation (i, t, t̄) → (i′, t′, t̄′).

Lemma 1 The IC constraint (8) is implied by (5), (6) and (7).

Proof: Add the ICs (i, t, t̄) → (i, t′, t̄′) and (i, t′, t̄′) → (i′, t′, t̄′). This yields:

P(i,t,t̄) − P(i′,t′,t̄′) ≤ v(a(i,t,t̄)|(i, t, t̄)) + v(a(i,t′,t̄′)|(i, t′, t̄′))−
v(a(i,t′,t̄′)|(i, t, t̄))− v(a(i′,t′,t̄′)|(i, t′, t̄′)). (10)

Recall that by our assumptions on the functional form of v;

v(a(i,t′,t̄′)|(i, t, t̄)) = v(a(i,t′,t̄′)|(i, t′, t̄′)), (11)

v(a(i′,t′,t̄′)|(i, t′, t̄′)) = v(a(i′,t′,t̄′)|(i, t, t̄)). (12)

Substituting from (11) and (12) into (10), we see that (10) implies the IC (8). ¤
We now show that of the remaining IC constraints only the ‘adjacent’ ones matter.

Theorem 1 Suppose that v is of the form described in section 2. Further suppose
that i > i′ ⇒ a(i,t,t̄) ≥ a(i′,t,t̄) (follows from Observation 3). Then all IC constraints
are implied by the following adjacent IC constraints:

1. (i, t, t̄) → (i + 1, t, t̄)

2. (i, t, t̄) → (i− 1, t, t̄)

3. (i, t, t̄) → (i, t + 1, t̄)

4. (i, t, t̄) → (i, t, t̄− 1)
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Proof: To prove item 1, we show that the following pair of inequalities:

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i−1,t,t̄)|(i, t, t̄))− P(i−1,t,t̄),

v(a(i−1,t,t̄)|(i− 1, t, t̄))− P(i−1,t,t̄) ≥ v(a(i−2,t,t̄)|(i− 1, t, t̄))− P(i−2,t,t̄)

imply

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i−2,t,t̄)|(i, t, t̄))− P(i−2,t,t̄).

The rest follows by induction.Adding the two inequalities above, and adding and
subtracting v(a(i−2,t,t̄)|(i, t, t̄)); we get

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ [v(a(i−1,t,t̄)|(i, t, t̄))− v(a(i−2,t,t̄)|(i, t, t̄))]−
[v(a(i−1,t,t̄)|(i− 1, t, t̄))− v(a(i−2,t,t̄)|(i− 1, t, t̄))] +

v(a(i−2,t,t̄)|(i, t, t̄))− P(i−2,t,t̄).

Recall that by increasing differences, and monotonicity of the allocation rule:

0 ≤ [v(a(i−1,t,t̄)|(i, t, t̄))− v(a(i−2,t,t̄)|(i, t, t̄))]−
[v(a(i−1,t,t̄)|(i− 1, t, t̄))− v(a(i−2,t,t̄)|(i− 1, t, t̄))].

Therefore, we have that

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i−2,t,t̄)|(i, t, t̄))− P(i−2,t,t̄).

Item 2 can also be proven in a similar manner, and the proof is omitted. We now
proceed to show item 3. To show this we prove that the following pair of inequalities:

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t+1,t̄)|(i, t, t̄))− P(i,t+1,t̄),

v(a(i,t+1,t̄)|(i, t + 1, t̄))− P(i,t+1,t̄) ≥ v(a(i,t+2,t̄)|(i, t + 1, t̄))− P(i−2,t+2,t̄)

imply that

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t+2,t̄)|(i, t, t̄))− P(i,t+2,t̄).

To see this add the two ICs and recall that based on our assumptions about functional
form of v.

v(a(i,t+1,t̄)|(i, t, t̄)) = v(a(i,t+1,t̄)|(i, t + 1, t̄)) (13)

v(a(i,t+2,t̄)|(i, t + 1, t̄)) = v(a(i,t+2,t̄)|(i, t, t̄)) (14)

Making the appropriate substitution via (13)&(14), we get the desired inequality.
The proof of item 4 is similar and omitted. ¤

Now, we show that under certain conditions, one need not even consider one of

9



the under-and over-report of value ICs (5).

Lemma 2 If either the under-report of value ((i, t, t̄) → (i− 1, t, t̄)) or over-report of
value ((i− 1, t, t̄) → (i, t, t̄)) IC binds, the other is satisfied.

Proof: If the downward adjacent IC binds, then we have that

v(a(i,t,t̄)|(i, t, t̄)− v(a(i−1,t,t̄)|(i, t, t̄) = P(i,t,t̄) − P(i−1,t,t̄).

Invoking monotonicity of the allocation rule (which follows from Observation 3),
followed by increasing differences, we have that

v(a(i,t,t̄)|(i− 1, t, t̄)− v(a(i−1,t,t̄)|(i− 1, t, t̄) ≤ P(i,t,t̄) − P(i−1,t,t̄).

This implies that the corresponding over-report IC is satisfied. The other direction
can be shown similarly. ¤

3.2 Monotonicity

When types are one dimensional, an allocation rule is said to be monotonic if higher
types have a higher (interim) probability of getting allotted than lower types. We
modify this definition to account for the fact that in this setting, types are multi-
dimensional.

Definition 1 An allocation rule a is said to be monotonic if:

1. ∀i, i′, t, t̄ : (i ≥ i′) ⇒ (a(i,t,t̄) ≥ a(i′,t,t̄)), i.e. a higher valuation increases probabil-
ity of allotment (all other things being equal).

2. ∀i, t, t̄, t′ : (t ≥ t′) ⇒ (a(i,t,t̄) ≤ a(i,t′,t̄)), i.e. an earlier entry into the system
increases probability of allotment (all other things being equal).

3. ∀i, t, t̄, t̄′ : (t̄ ≤ t̄′) ⇒ (a(i,t,t̄) ≤ a(i,t,t̄′)), i.e. a later exit from the system increases
probability of allotment (all other things being equal).

Note that this is equivalent to the allocation rule being monotonic with respect to
the partial order we imposed on the space of types, i.e.

(i, t, t̄) º (i′, t′, t̄′) ⇒ a(i,t,t̄) ≥ a(i′,t′,t̄′). (15)

Also, note that in our setting, part 1 of the definition follows from Observation 3.
However parts 2 & 3 are not implications of incentive compatibility (as opposed to
the classical 1-D types case where monotonicity is an implication of IC).

We now state a more general theorem:

Proposition 1 Suppose the distribution of types meets the monotone hazard rate
described earlier (3). Consider a class of mechanisms that satisfy (5) & (6), i.e. the
agent can misreport his valuation and entry time but where the agent must report his
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exit time truthfully. There exists a mechanism with an allocation scheme that meets
parts 1 & 2 of Definition 1 which maximizes expected revenue within the class of
all feasible, incentive compatible and individually rational mechanisms. Furthermore
if this allocation rule satisfies part 3 of Definition 1, then the mechanism will be
Incentive Compatible, i.e. it will satisfy the IC constraints (5-7).

The allocation scheme proceeds as follows: the valuation of each type is replaced with
a ‘virtual valuation’, defined below in (20). Any type is considered for allocation only
at its stated exit time. It is allocated only if its ‘virtual valuation’ exceeds the expected
marginal value of that unit given that the optimal policy is followed on all other
currently received bids and future arrivals. The allocation rule is formally described
and discussed in Appendix A. The payment rule to accompany this allocation rule is
described in Theorem 2.

If this allocation rule is not monotonic with respect to exit time, the (expected)
revenue maximizing mechanism is hard to specify. We provide sufficient conditions
for the allocation rule to be monotonic below, along with a discussion of possible
interpretations. Recall that we required the inverse hazard rate to be ordered as the
types, i.e.

(i′, t′, t̄′) º (i, t, t̄) ⇒ f(t′,t̄′)(i′)
1− F(t′,t̄′)(i′)

≥ f(t,t̄)(i)
1− F(t,t̄)(i)

.

This condition can be broken into two parts: firstly, fixing entry and exit times, the
distribution of valuations with that entry and exit time has a increasing hazard rate-
this is a standard assumption in auction design since Myerson (10). The other part
of this condition has a natural interpretation: fix (t, t̄) and (t′, t̄′) such that t′ ≥ t and
t̄′ ≤ t̄. The condition implies that

E[i|(t, t̄), i ≥ ν] ≥ E[i|(t′, t̄), i ≥ ν]

Thinking of users who stay in the system shorter as ‘business’ travelers, and users
who stay in the system longer as ‘leisure’ travelers, we are effectively saying that the
latter is expected to have higher valuations than the former.

A sufficient condition for allocations to be monotonic in exit time is that types
with lower exit times ceteris paribus have a substantially lower hazard rate, ie

Definition 2 A distribution is said to have sufficiently increasing hazard rate if, for
any two types (i, t, t̄) and (i, t, t̄ + 1), we have that:

f(t,t̄)(i)
1− F(t,t̄)(i)

<
f(t,t̄+1)(i)

1− F(t,t̄+1)(i)
+ c(i, T, n, t, t̄, F ) (16)

where c(.) is a non-negative function which depends on the problem parameters.

It appears impossible to get a closed form expression for c. However, in the appendix
we give an example to show how the existence of such a c can be verified in a particular
instance.
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4 A Formulation

We now look to formulate the problem of finding the revenue maximizing mechanism
as a linear program. Before we do this, we identify the constraints that any such
program must satisfy.

Let n(i,t,t̄)(I) be the number of agents of type (i, t, t̄). Now, let us enumerate the
constraints our mechanisms must satisfy:

1. Incentive Compatibility: We have already shown that the only relevant ICs are
adjacent versions of equations (5), (6) and (7).

2. Individual Rationality: All types must have non-negative expected surplus from
participating in the auction.

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ 0

3. Monotonicity: Recall that monotonicity was defined as:

(i, t, t̄) º (i′, t′, t̄′) ⇒ a(i,t,t̄) ≥ a(i′,t′,t̄′).

4. Feasibility of allocation:

∀I :
∑

τ∈T

∑

(i,t,t̄)∈T
n(i,t,t̄)(π)aτ

(i,t,t̄)(I
τ ) ≤ C. (17)

5. No Clairvoyance: This says that an online allocation rule cannot base the allot-
ment at time τ on the types of agents who enter the system after time τ . We
have implicity assumed this by specifying the allocation at time τ as a function
of the inventory up to time τ , Iτ .

6. Allot Agents at exit: This says that only agents exiting the system at the time
can be allocated units, i.e.

∀I; ∀(i, t, t̄) ∈ T,∀τ 6= t̄ : Aτ
(i,t,t̄)(I

τ ) = 0 (18)

This is without loss of generality by Observation 1.

Now suppose an allocation rule is given. We characterize a revenue maximizing IC
payment rule that supports it. Our methodology is based on Malakhov and Vohra
(8). They show in their model that the problem of finding the optimal payment rule
given an allocation rule is the dual of finding the shortest path in a network. They
also show that if the allocation rule is monotonic, then one can characterize these
shortest paths.

So suppose that the allocation rule given to us meets the constraints listed above.
Recall that by Lemma 2, if the under-report of value IC is met as an equality, then the
corresponding over-report constraint is satisfied. We therefore proceed by relaxing
the over-report ICs. We show that the solution to our relaxed optimization problem
does in fact satisfy under-report ICs at equality, thus justifying relaxing over-report
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ICs.
Therefore, fix a (feasible) allotment rule A. The relaxed linear program to maxi-

mize expected revenue from a single agent is [OPTPRICE]:

max
P(i,t,t̄)

∑

(i,t,t̄)∈T
f(i,t,t̄)P(i,t,t̄)

s.t.

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i−1,t,t̄)|(i, t, t̄))− P(i−1,t,t̄)

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t+1,t̄)|(i, t, t̄))− P(i,t+1,t̄)

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ v(a(i,t,t̄−1)|(i, t, t̄))− P(i,t,t̄−1)

v(a(i,t,t̄)|(i, t, t̄))− P(i,t,t̄) ≥ 0

We now describe a network representation of this linear program. Fix the allo-
cation rule as suggested above. Introduce a vertex for each type in T. Introduce
one more vertex as a dummy vertex. The dummy vertex corresponds to a dummy
type that always gets allotted nothing, and pays 0, which allows us to represent the
individual rationality constraint as an extra IC constraint. We need to introduce 4
types of edges corresponding to four classes of adjacent ICs in this model (over-report
of valuation is relaxed based on Lemma 2).

1. IC (i, t, t̄) → (i − 1, t, t̄): Introduce an edge from (i − 1, t, t̄) to (i, t, t̄), of length
v(a(i,t,t̄)|(i, t, t̄))− v(a(i−1,t,t̄)|(i, t, t̄)) = i.(a(i,t,t̄) − a(i−1,t,t̄)).

2. IC (i, t, t̄) → (i, t + 1, t̄): Introduce an edge from (i, t + 1, t̄) to (i, t, t̄), of length
v(a(i,t,t̄)|(i, t, t̄))− v(a(i,t+1,t̄)|(i, t, t̄)) = i.(a(i,t,t̄) − a(i,t+1,t̄)).

3. IC (i, t, t̄) → (i, t, t̄ − 1): Introduce an edge from (i, t, t̄ − 1) to (i, t, t̄), of length
v(a(i,t,t̄)|(i, t, t̄))− v(a(i,t,t̄−1)|(i, t, t̄)) = i.(a(i,t,t̄) − a(i,t,t̄−1)).

Further, introduce an edge from the dummy node to each vertex (i, t, t̄) of length
i.a(i,t,t̄).

[OPTPRICE] is the dual of a min-cost flow problem on the graph specified above,
where a flow of f(i,t,t̄) needs to be sent to vertex (i, t, t̄) from the dummy node. (see
for instance Papadimitriou and Steiglitz (12)). Let P(i,t,t̄) be the cost of the relevant
flow. We show that the shortest path in such a network is well defined. Monotonicity
of the allocation rule implies all edges in this network are positive in length, ruling out
negative cycles.We show that the shortest path from type (1, τ, τ) to a generic type
(i, t, t̄) (where t ≤ τ ≤ t̄) is of the form (1, τ, τ) → (1, t, t̄) → (2, t, t̄) . . . → (i, t, t̄).

The following theorem shows that the payments of any type (i, t, t̄) is a linear
function of its own allocation, and the allocations of types (i′, t, t̄), i′ < i.

Theorem 2 The optimal payment rule given a monotonic allocation rule is:

P(i,t,t̄) = i.a(i,t,t̄) −
i−1∑

k=1

a(k,t,t̄). (19)
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(i,t) (i+1,t)

(i+1,t-1)(i,t-1)

(i+1)(a_(i+1,t) - a_(i,t))

(1)

(2)

(3)

(4)

(i+1)(a_(i+1,t-1) - a_(i,t-1))

(i+1)( a_(i+1,t-1)
         -a_(i+1,t))

i.( a_(i,t-1)
   -a_(i,t))

Figure 1: The Shortest Path Graph

Proof: To begin, suppose all agents have exit time T . We therefore drop exit times
from the agents’ type wlog. Consider the 4 adjacent types (i, t), (i + 1, t), (i, t −
1), (i + 1, t − 1), as shown in Figure 1. There are 2 possible paths from (i, t) to
(i+1, t− 1)- edge 1 followed by 2 and edge 4 followed by 3. The length of the former
path is (i + 1)(a(i+1,t−1) − a(i,t)). The length of the latter path is (i + 1).a(i+1,t−1) −
i.a(i,t) − a(i,t−1). By monotonicity a(i,t−1) ≥ a(i,t) and therefore the latter path is
shorter than the former. By the Principle of Optimality, in a setting where all agents
had exit time T , the shortest path from (1, T ) to a generic type (i, t) would be
(1, T ) → (1, T − 1) . . . → (1, t) → (2, t) . . . → (i, t).

Now, we drop the assumption that all agents have the same exit time T . Suppose
we wish to find the shortest path from (i, t, t̄) to (i, t− 1, t̄ + 1). There are 4 possible
paths: 6

1. (i, t, t̄) → (i, t, t̄ + 1) → (i, t− 1, t̄ + 1) → (i + 1, t− 1, t̄ + 1).

2. (i, t, t̄) → (i, t− 1, t̄) → (i + 1, t− 1, t̄) → (i + 1, t− 1, t̄ + 1).

3. (i, t, t̄) → (i, t− 1, t̄) → (i, t− 1, t̄ + 1) → (i + 1, t− 1, t̄ + 1).

4. (i, t, t̄) → (i + 1, t, t̄) → (i + 1, t, t̄ + 1) → (i + 1, t− 1, t̄ + 1).

The lengths of these paths are:

1. Paths 1 and 3: (i + 1)a(i+1,t−1,t̄+1) − i.a(i,t,t̄) − a(i,t−1,t̄+1).

2. Path 2: (i + 1)a(i+1,t−1,t̄+1) − i.a(i,t,t̄) − a(i,t−1,t̄).

3. Path 4: (i + 1)(a(i+1,t−1,t̄+1) − a(i,t,t̄)).

By monotonicity a(i+1,t−1,t̄+1) ≥ a(i,t−1,t̄) ≥ a(i,t,t̄), and therefore path 1 is the shortest
path. Once again, applying the principle of optimality, the shortest path is of they

6This list is not exhaustive, but other paths can be ruled out by the previous argument.
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type described, and Equation (19) follows. ¤
By Theorem 2 we can now write the problem of finding the revenue maximizing
auction [OPTAUC] as:

max
{a}

∑

(i,t,t̄)∈T
f(i,t,t̄)(i.a(i,t,t̄) −

i∑

k=1

a(k,t,t̄))

s.t. ∀(i, t, t̄) º (i′, t′, t̄′) : a(i,t,t̄) ≥ a(i′,t′,t̄′)∑

πn−1

P[π = ((i, t, t̄), πn−1)|(i, t, t̄) ∈ π]At̄
(i,t,t̄)(((i, t, t̄), π

n−1)) = a(i,t,t̄)

∀π ∈ Π :
∑

τ∈T

∑

(i,t,t̄)∈T
n(i,t,t̄)(π)aτ

(i,t,t̄)(π
τ ) ≤ Q

∀π; ∀τ ∈ T ;∀(i, t, t̄) ∈ T : At̄
(i,t,t̄)(π

τ ) ∈ {0, q}
∀π; ∀(i, t, t̄) ∈ T,∀τ 6= t̄ : Aτ

(i,t,t̄)(π
τ ) = 0

Let Ftt̄(r) =
∑r−1

k=1 f(t,t̄)(k). Then we can re-write the objective function of [OP-
TAUC] as ∑

(i,t,t̄)∈T
f(i,t,t̄)a(i,t,t̄)νi,t,t̄

where
νi,t,t̄ =

(
i− 1− Ftt̄(i)

f(t,t̄)(i)

)
(20)

is the type (i, t, t̄)’s virtual valuation (in the sense of Myerson). Actually solving this
program requires a dynamic programming approach that is outlined in Appendix A.

We conclude this section by giving an example where the optimal allocation rule
is non-monotonic, but the payment rules turn out to be the same as those computed
by Theorem 2. This shows that monotonicity of the allocation rule is sufficient but
not necessary for our pricing rule to be incentive compatible. Also, the allocation rule
fails part 3 of Definition 1; and this can be traced back to the fact that the setting
below does not meet Definition 2.

An Example Let T = 2, C = 1. There are 2 possible valuations, i.e. I =
{1, 2}. Therefore there will be 6 possible types, corresponding to the 3 possible
entry-exit times (1, 1), (1, 2) and (2, 2) and 2 possible valuations. Let the arrival
rate be such that in each period 1 agent arrives with probability 0.49 (and no-agent
arrives otherwise). Suppose that conditional on arrival at time 2, type (2, 2, 2) has
probability 1. Further suppose that conditional on arrival at time 1, types (2, 1, 2)
and (2, 1, 1) have probability 0. It is easy to show that this distribution meets the
monotone hazard rate condition. However it does not meet Definition 2, since the
types (i, 1, 2) and (i, 1, 1) have the same virtual valuations. Finally consider the
following allocation rule: a(1,1,1) = 1, a(2,2,2) = 1, a(1,1,2) = .51. Note that this rule
is clearly not monotonic in the sense of Definition 1. However, coupled with the

15



payment rule P(1,1,1) = 1, P(1,1,2) = .51 and P(2,2,2) = 2, this is incentive compatible.
To see that this is the optimal allocation rule: if type (1, 1, 1) arrives at time 1,

allot him for a payment of 1 (in expectation this is better than not allotting him).
On the other hand if (1, 1, 2) arrives, then it is optimal to wait, since, potentially in
period 2 an agent of higher valuation arrives. Finally note that the payments are the
same as would have been calculated from equation (19).

5 Conclusion

In this paper, we formulate and solve a multi-period dynamic mechanism problem
for the sale of multiple identical items, with the novel feature that we allow agents
to be strategic with respect to the revelation of their arrival times. Remarkably,
despite the generality of the problem, the solution turns out to be intuitive in that it
is the natural generalization of the optimal auction for the static case to this dynamic
framework. Our use of a discrete type space has the advantage of transparency of
analysis, and allows us to approach this problem from an intuitive graph theoretic
perspective.

As for additional work, we can see several important extensions to this model
that are potentially interesting. Intuitively, the assumption driving our results is the
preferences of the bidder. We assume throughout that the bidder desires exactly 1
unit of a homogenous good, and would get no utility from being allotted outside his
time in the system. This cuts down severely on the number of ways a bidder may
misreport his private information. Recall that we motivated this problem (rather,
this entire model has been motivated) as particularly relevant to the airline and
hotel industries. Given that several companies and online retailers in this sector are
trying to sell ’package deals’, where they sell, for example, airline tickets and hotel
reservations together, we believe it may be of interest to study how this can be done
optimally, while relaxing our rather strong assumption on preferences. Models of
selling heterogenous goods dynamically have been studied, but there has been no
work we are aware of where buyers are allowed to be strategic with respect to their
time preferences.
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A Monotonicity

In this appendix we give a proof for Proposition 1. In our opinion this proof is
of independent interest. Since the proof is reasonably elaborate, we build intuition
by examining the 1-D case (C = 1, T = 1) where agents cannot over-report their
valuation. We believe this case captures the crux of the argument. In the one-
dimensional types case, a variant of the classical Spence-Mirrlees condition tells us
that if an agent can misreport his type both up and down, only monotonic allocation
rules can be Incentive Compatible. When misreports can only take place in one
direction, monotonicity is not implied by Incentive Compatibility.

In the first subsection, we consider the 1-D case as described above (i.e. agents
cannot over-report their valuation). Then we prove prove Proposition 1 for our model.
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A.1 Single Dimensional Types

There are n risk-neutral bidders bidding for a single object to be sold by a risk-
neutral seller. Bidders have private valuations i ∈ I = {1, 2, . . . , I}. In terms of our
model, C = 1, T = 1, Q = {1}. Types are i.i.d. by some distribution f , which
satisfies the monotone hazard rate condition, i.e. f(i)

1−F (i) is increasing in i. There are
n agents/bidders. Possible realizations of types are π ∈ Π = In. Suppose, no agent
can lie ‘upward’, i.e. an agent of type i cannot report that he is of type i′ > i. Hence
only the downward IC constraints need be imposed. Border (3) shows how to write
the space of feasible (interim) allocation rules as a set of linear constraints.

The revenue maximizing program can be rewritten as [P ]

max
a,p

T∑

i=1

f(i)pi

s.t. i.ai − pi ≥ i.ai′ − pi′ ∀i, i′ < i

i.ai − pi ≥ 0∀i
a feasible

ai ∈ [0, 1] ∀i ∈ T

To solve [P ] consider a relaxed program where agent of type i can only report his
type as i or i− 1: [P ′]

max
a,p

T∑

i=1

f(i)pi

s.t. i.ai − pi ≥ i.ai′ − pi′ ∀i, i′ = i− 1

i.ai − pi ≥ 0∀i
a feasible

ai ∈ [0, 1] ∀i ∈ T

Claim 1 Given any (feasible) allocation rule a, the prices that maximize revenue for
[P ′] will be pi = iai −

∑i−1
j=1 aj .

Proof: We prove this by induction. Consider the lowest type i that gets allotted.
Clearly in any revenue maximizing auction it will pay i. Induction Hypothesis: (i+k)
pays : (i + k)ai+k −

∑i+k−1
j=1 aj .

Induction Step: In the optimal solution, i + k + 1 is indifferent to being i + k (else
increase his price till he is: recall that in this relaxed program, an agent with valuation
i can only report his type as i or i− 1).

(i + k + 1)ai+k+1 − pi+k+1 = (i + k + 1)ai+k − pi+k =
i+k∑

j=1

aj .
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Claim 2 Therefore, given a, the net revenue is
∑T

j=1 f(i)ai(i− 1−F (i)
f(i) ).

Pick the following solution to program [P ′]. In each profile allot the highest type as
long as it has a positive virtual value. Call this allocation rule a∗. Note that a∗ is
clearly monotonic. Given the monotone hazard rate assumption, a∗ is optimal for
[P ′]. Monotonicity of a∗ implies that it is feasible in [P ]. Therefore it must also be
optimal [P ].

Claim 3 The allocation rule a∗ and the prices pi = ia∗i −
∑i−1

j=1 a∗j are optimal for
[P ] given our monotone hazard rate assumption.

A.2 A Dynamic Allocation Rule

The idea of the proof is the same as above. First, we relax the IC constraints corre-
sponding to misreports of time i.e. (6),(7). By the machinery in Section 4; solving
the problem is equivalent to solving a maximization problem where valuations in the
objective function are replaced by ‘virtual valuations’ as defined in (20), as long as the
resulting allocation is monotonic with respect to Part 1 of Definition 1. We relax this
monotonicity condition as well; and show that if virtual valuations are monotonic,
the solution of the program meets parts 1 and 2 of Definition 1. This proves the first
part of Proposition 1. Finally, we show that if the virtual valuations also meet the
extra condition in Definition 2; the allocation rule will meet part 3 of Definition 1
as well, therefore proving the second part of Proposition 1. The proof is convoluted,
and to aid understanding we begin by considering the case C = 1, i.e. there is only
1 unit for sale.

A.2.1 The 1 Unit Case

With monotonicity, the incentive constraints and the individual rationality condition
relaxed, the problem is a standard dynamic allocation problem: At any time t, nt

users enter, each having valuation and exit time (νi,t,t̄, t̄) with probability ft,t̄(i)∑
i′,t̄′ ft,t̄′ (i′)

.
Further any unallocated users with exit time t exit. If a unit has not already been
allotted, the program can choose to allot it to any user currently in the system
(including the ones exiting the system in that period). Standard arguments show
that in any period, the expected value maximizing program will allot if at all to
agents exiting the system in that period. Further, at each time t, there exists a
function Rt+1(·), whose argument is the types of users in the system arriving at or
before period t, and departing in period t+1 or later (denoted by It

t+1).
7 The optimal

policy at time t allots to the highest virtual valuation exiting at time t conditional
on it being higher than the cutoff Rt+1(·). This cutoff, Rt+1 represents the expected
value of following the optimal policy from t + 1 onward, given the users currently

7We do not formally specify the domain of the function Rt for ease of notation.
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in the system. One can easily specify the family of functions {Rt}T
t=1 by backward

induction. The notation ()+ in the sequel refers to the maximum element in a set.

RT+1 = 0; (21)

RT (I) = EAT [(I
⋃

AT )+]; (22)

Rt(I) = EAt

[
I{(Lt(At)

⋃
Lt(I))+>Rt+1(At

t+1

⋃
It+1)}

(
Lt(At)

⋃
Lt(I)

)+

+I{(Lt(At)
⋃

Lt(I))+≤Rt+1(At
t+1

⋃
It+1)}Rt+1(At

t+1

⋃
It+1)

]
. (23)

Equation (21) says that the value of the unit after period T is 0. Equation (22) says
that the value of the unit in the last period is the expected maximum virtual valuation
among the remaining inventory and the users that arrive in that period. Equation
(23) inductively defines the value of the unit in period t as a function of the inventory.
The allocation rule can allot either to the agent leaving in period t with the highest
virtual valuation, which it will do if this is larger than Rt+1(At

t+1

⋃
It+1). Alternately,

it can let those bids expire and pick up Rt+1(At
t+1

⋃
It+1) (in expectation).

Before we can study properties of this allocation rule, we prove some (intuitive)
properties of the cutoff rule Rt(·). Our first observation confirms our intuition that
a better inventory leads to a higher future expected payoff Rt(·).

Observation 4 If It º I ′t, Rt(It) ≥ Rt(I ′t).

Proof: The proof is by induction on t. Clearly if IT º I ′T , we have that RT (IT ) ≥
RT (I ′T ). Assume that for all t′ ≥ t + 1,

It′ º I ′t′ ⇒ Rt′(It′) ≥ Rt′(I ′t′).

We show this is true for t.
We know that It º I ′t, let St ⊆ It be the set of bids that dominate Lt(I ′t). Then

for any set of people arriving in period t, At; It+1
⋃

At
t+1\St º I ′t+1

⋃
At

t+1. By our
inductive hypothesis,

Rt+1(It+1

⋃
At

t+1\St) ≥ Rt+1(I ′t+1

⋃
At

t+1). (24)

It remains to show that Rt(It) ≥ Rt(I ′t). However,

Rt(It) ≥ EAt

[
I{(Lt(At)

⋃
Lt(It)

⋃
St)+>Rt+1(At

t+1

⋃
It+1\St)}

(
Lt(At)

⋃
Lt(It)

⋃
St

)+

+I{(Lt(At)
⋃

Lt(It)
⋃

St)+>Rt+1(At
t+1

⋃
It+1\St)}Rt+1(At

t+1

⋃
It+1\St)

]
,

where the right hand side of the inequality above corresponds to the suboptimal
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policy of allotting either the leaving agents at time t or agents in St. By definition,

Rt(I ′t) = EAt

[
I{(Lt(At)

⋃
Lt(I′t))+>Rt+1(At

t+1

⋃
I′t+1)}

(
Lt(At)

⋃
Lt(I ′t)

)+

+I{(Lt(At)
⋃

Lt(I′t))+≤Rt+1(At
t+1

⋃
I′t+1)}Rt+1(At

t+1

⋃
I ′t+1)

]

Consider the terms inside the expectation operator in the two inequalities above. It
is easy to see that

(
Lt(At)

⋃
Lt(It)

⋃
St

)+ ≥ (
Lt(It

t )
⋃

Lt(I ′t)
)+

,

combining this with equation (24), we get our desired result. ¤
Armed with this result, we can pursue our original goal of showing that the interim

allocation probabilities are monotonic as per Definition 1. We will prove each of the
3 parts of Definition 1 separately, hence proving Proposition 1

Part 1 Since the allocation rule is a cutoff rule, any sequence of bids along which
a type (i, t, t̄) gets allotted will also result in the allocation of (i′, t, t̄) for i′ > i. ¥

Part 2 This requires that the interim probability of getting allotted is decreasing in
entry time, holding exit time and valuation constant. To see this, fix two types, (i, t, t̄)
and (i, t+1, t̄) (by Theorem 1, monotonicity in adjacent entry times is necessary and
sufficient). Consider an I such that (i, t, t̄) is in It

t . If (i, t + 1, t̄) is in It+1
t+1 , it will

never be allotted, since at t̄, (i, t, t̄) will also be present, but it has a higher virtual
valuation. So suppose (i, t + 1, t̄) is not in It+1

t+1 .
Consider the inventory I ′ constructed as:

I ′tt = It
t\{(i, t, t̄)},

I ′t+1
t+1 = It+1

t+1

⋃
{(i, t + 1, t̄)},

with I ′t+2
t+2 through I ′t̄t̄ defined appropriately. The set of all I ′’s as constructed above

is the set of all inventories that contain the bid (i, t + 1, t̄), but not (i, t, t̄). 8 We
show that whenever (i, t + 1, t̄) is allotted in I ′,(i, t, t̄) is allotted in I. To see that,
(i, t + 1, t̄) will be allotted along this sequence if:

1. The good was not allotted before t + 1.

2. The good was not allotted from time t + 1 through t̄.

8It is at this precise step that we need the property that nt has full support on Z+. Without it, on some
inventories, an agent misreporting his entry time could produce an inventory that was impossible under
the problem parameters. For example if in a given period, nt is such that at most n people can arrive at
time t, then a misreport of entry time by an agent who arrived earlier could lead to n + 1 agents claiming
a t arrival; which the auctioneer knows is impossible. This would make misreports easier to detect and
punish- something a full support assumption would rule out.
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3. (i, t + 1, t̄) has the highest virtual valuation among I ′t̄t̄ ; and this is greater than
Rt̄+1(I ′t̄t̄+1).

Further note that since It′
t′ º I ′t′t′ for any t′, it must be that Rt′(It′

t′ ) ≥ Rt′(It′
t′ ).

Therefore:

1. If the good was not allotted before t+1 along I ′, it would not have been allotted
up to t+1 along I (all bids stay the same except that I has the bid (i, t, t̄) which
I ′ does not, which weakly increases Rt+1(.)).

2. If the good was not allotted from time t+1 through t̄ along I ′, it would not have
been allotted along I either, by the same token.

3. Finally, by assumption the good was allotted to (i, t + 1, t̄) at t̄. Therefore this
was the highest virtual valuation among I ′t̄t̄ ; and this is greater than Rt̄+1(I ′t̄t̄+1).
But then (i, t, t̄) has the highest virtual valuation among I t̄

t̄ (by construction);
and this is greater than Rt̄+1(I t̄

t̄ ) since I ′t̄t̄ = I t̄
t̄ .

Therefore ai,t,t̄ ≥ ai,t+1,t̄. ¥

Part 3 Fix two types (i, t, t̄) and (i, t, t̄ + 1), we refer to them in the rest of this
proof as τ and τ ′ respectively. Denote their virtual valuations by ντ and ντ ′ . We
need to show that a(i,t,t̄) ≤ a(i,t,t̄+1). Let I = (I1

1 , . . . , IT
T ) be a sequence of inventories

as before. The probability that the good is allotted to type (i, t, t̄), a(i,t,t̄) =

P[Good not allotted before t] (25)

× P[Good not allotted up to t̄− 1| Good not allotted before t, τ ∈ At] (26)

× P[ντ is largest virtual valuation in Lt̄(I
t̄
t̄ ), ντ ≥ Rt̄+1(I

t̄
t̄+1)

| Good not allotted up to t̄− 1,τ ∈ At]. (27)

Define ν ′τ ′ = ντ +c for c > 0. Compute R′ as in Equations (21-23) with the virtual
valuation of τ ′ taken as ν ′τ ′ . Recompute the allocation rule with this R′. Note that
for any time t′ ≥ t̄ + 2, R′

t′ = Rt′ . The probability that this good is allotted to type
(i, t, t̄ + 1), a′(i,t,t̄+1), with its virtual valuation defined as ν ′τ ′ is:

P[Good not allotted before t] (28)

× P[Good not allotted up to t̄− 1| Good not allotted before t, τ ′ ∈ At] (29)

× P[Good not allotted at t̄| Good not allotted before t̄ , τ ′ ∈ At] (30)

× P[ν ′τ ′ is largest virtual valuation in Lt̄+1(I
t̄+1
t̄+1

), ντ ′ ≥ Rt̄+2(I
t̄+1
t̄+2

)

| Good not allotted up to t̄ + 1, τ ′ ∈ At.] (31)

We note that a′
(i,t, ¯t+1)

is increasing in c:

1. (28) is weakly increasing in c- as the value of a possible future arrival increases;
the allocation rule is more conservative about allotting at earlier times.

2. (29) and (30) are weakly increasing in c- as the value of a current type already
present in the system increases, the allocation rule is more conservative about
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allotting to another type.

3. (31) is weakly increasing in c- as the value of one of the exiting types increases,
it is more likely to be the highest valued exiting type. Further it is more likely
that it is larger than the expected future payoff from not allotting in that period,
Rt̄+2(I

t̄+1
t̄+2

).

Further for some c large enough; clearly a′(i,t,t̄+1) ≥ a(i,t,t̄) (for very large values of c,
a′(i,t,t̄+1) → 1). Let c∗ be the lowest such c. If

ντ ′ ≥ ντ + c∗, (32)

it follows that a(i,t,t̄+1) ≥ a(i,t,t̄). By Definition 2, the distribution is such that (32)
is satisfied. As we pointed out earlier, we are unable to analytically characterize c∗.
Example 1 shows that there are meaningful distributions that meet this condition. ¥

Example 1 There is 1 unit for sale, over 2 time periods, 1 and 2. In period 1, 1 or
2 agents arrive with equal probability. In period 2, only 1 agent arrives. Conditional
on arriving in period 1, agents have an exit time of 1 or 2 with equal probability.

Agents with entry-exit time combinations (1, 2) and (2, 2) have valuations drawn
from a uniform distribution on [1, 2]. This implies that the virtual valuation of an
agent of type (v, ., 2) = 2v − 2; and virtual valuations are uniform on [0, 2]

Agents with entry and exit time 1 have valuations drawn from a uniform distri-
bution [1, 2.5]. Therefore, the virtual valuation of an agent of type (v, ., 2) = 2v − 2;
and virtual valuations are uniform on [−0.5, 2.5].

It is easy to see that

R2(φ) = 1,

R2((v, 1, 2)) = v2 − 2v + 2.

If a type (v, 1, 1) arrives at time 1-

• (With probability 1
2) No other agent shows up in that period, and it is allotted

as long as 2v − 2.5 > 1 ⇒ v > 1.75.

• (With probability 1
4) Another agent of type (v′, 1, 1) shows up, it is allotted as

long as v > v′ and v > 1.75; i.e. wp v−1
2.5−1 = 2(v−1)

3 .

• (With probability 1
4) Another agent of type (v′, 1, 2) shows up, and our agent is

allotted as long as 2v− 2.5 > v′2− 2v′+2, i.e. v′ < 1+
√

2v − 3.5; therefore w.p.√
2v − 3.5.

Therefore

a(v,1,1) =

{
1
2 + (v−1)

6 +
√

2v−3.5
4 if v > 1.75

0 otherwise.

Similarly if a type (v, 1, 2) arrives at time 1-

• (With probability 1
2) No other agent shows up in that period, and it is allotted

as long as the agent who arrives in period 2 has a lower valuation, i.e. v − 1.
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• (With probability 1
4) Another agent of type (v′, 1, 2) shows up, and our agent is

allotted as long as v > v′, and the valuation of the agent who arrives in period 2
is lower i.e. w.p. (v − 1)2.

• (With probability 1
4) Another agent of type (v′1, 1) shows up; and our agent is

allotted as long as 2v′ − 2.5 < v2 − 2v + 2 ⇒ v′ < v2−2v+4.5
2 and the agent who

arrives in period 2 has a lower valuation; i.e. wp (v − 1) (v2−2v+2.5)
3 .

Therefore

av,1,2 =
v − 1

2
+

(v − 1)2

4
+

(v − 1)(v2 − 2v + 2.5)
3

.

We only need ensure that a(v,1,2) ≥ a(v,1,1) in the range [1.75, 2]. To see this note that
a(2,1,1) ≈ 0.843; while a(1.75,1,2) ≈ 0.906.

A.3 The C-unit case

In this case, the optimal allocation policy will depend also on the number of units k

left in the system. Therefore the cutoffs will be of the form {Rk
t (·)}C

k=1, which are
defined inductively as:

∀t R0
t (I) = 0; (33)

∀k Rk
T+1 = 0; (34)

R1
T (I) = EAT [(I

⋃
AT )+]; (35)

∀k > 1 Rk
T (I) = EAT [(I

⋃
AT )+ + Rk−1

T (I\(I
⋃

AT )+)]; (36)

∀k Rk
t (I) = EAt

[
I{(Lt(At)

⋃
Lt(I))+>Rk

t+1(A
t
t+1

⋃
It+1)}

×((
Lt(At)

⋃
Lt(I)

)+ + Rk−1
t (I\(Lt(At)

⋃
Lt(I)

)+)
)

+I{(Lt(At)
⋃

Lt(I))+≤Rt+1(At
t+1

⋃
It+1)}

×Rk
t+1(A

t
t+1

⋃
It+1)

]
(37)

It is easily noted the appropriate version of Observation 4 remains true in this
case- if It º I ′t then for any k, t, we have that Rk

t (It) ≥ Rk
t (I

′
t). Further, we have that

Rk
t (It) ≥ Rk−1

t (It). Therefore the proofs of Parts 1 and Part 2 carry over as before.
To obtain the correct version of our proof of part 3 requires one to notice that the

number of units allotted up to time t̄ when the inventory contains (i, t, t̄) is weakly
more than the number of units allotted when the inventory contains (i, t, t̄ + 1).
Conditional on any number of units allotted up to t̄, we once again need the virtual
value to drop sufficiently to ensure that the probabilities of being allotted for for
(i, t, t̄) are less than (i, t, t̄ + 1).
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B The Revelation Principle

This section outlines a revelation principle for this environment. We first formally
state and prove the revelation principle as it applies here. We then discuss why this
is, in our opinion, not restrictive in the sense that any Bayesian-Nash Equilibrium
where our revelation principle does not apply can be ‘transformed’ into one where it
does (i.e. all the bidders are indifferent between the two equilibria, as is the seller).
We conclude with an example which illustrates why we cannot prove a revelation
principle in full generality.

Fix the environment as described in Section 2. Recall that the game takes place
over periods 1 through T . The game form we propose is as follows: in each period
t, there is a message space Mt. An agent with entry time t and exit time t̄ can send
messages over any contiguous subset of periods t through t̄. We denote the history
of all messages received by the seller from each player up to (and including) time t

by ht, and the set of all possible histories by Ht.
The allocation rule is a sequence of functions {ft}T

t=1, where ft is a function from
an element ht ∈ Ht to allocations up to time t (the formal definitions can be seen
in Section 2, we do no repeat notation here). Further suppose that this allocation
rule is feasible, in that over any possible history, the allocation rule allots no more
than C units, and does not allot players in a period in which they do not send a
message. A payment rule P associates with the string of messages sent by a player,
a non-negative payment to be made by him.

A Bayesian-Nash Equilibrium has its usual meaning: suppose that in equilibrium
each type (i, t, t̄) sends messages m = (m1,m2, . . . ,mk), starting some time t′ ≥ t

and finishing some time t′ + k ≤ t̄. Then it must be the case that

E[v(ft′+k(ht′+k)|(i, t, t̄))]− P (m) ≥ E[v(ft̄(h
′̄
t)|(i, t, t̄))]− P (m′).

for any other sequence of messages that a player can send, m′. (The expectation here
is over messages sent by other agents in equilibrium.)

We show the revelation principle for equilibria in which each type (i, t, t̄) is allotted
exactly q units at time t̄ if at all.

Lemma 3 Suppose we have an equilibrium such that each type (i, t, t̄) is allotted q

units at time t̄ if at all. Then there exists a direct revelation mechanism (DRM)
which gives the same expected utility to all buyers, and the same expected revenue to
the seller.

Proof: Let the allocation and payment rules for the direct revelation mechanism
be the same as for the original game. We are left to show that this mechanism is
incentive compatible. To this end suppose that the DRM is not incentive compatible,
and suppose instead type (i, t, t̄) can profitably misreport his type as (i′, t′, t̄′). Then:

• t̄′ ≤ t̄, since by assumption, a buyer reporting exit time t′ gets allotted at time t′,
and a buyer of true type (i, t, t̄) gets no utility from objects allotted after t̄.
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• t′ ≥ t, since an agent arriving at time t cannot report his type as one with entry
time strictly less than t.

But this implies that type (i, t, t̄) could have sent the messages corresponding to
(i′, t′, t̄′), and deviated profitably in the original game, contradicting our hypothesis
that the messages in the original game constituted a Bayesian Nash equilibrium. ¤

Next we show that this result is in some sense generic. We show that any other
equilibrium (i.e. where some types get allotted in quantities other than their require-
ment and/or before their exit time) can be converted into one where all types get
allotted with the same (interim) probability. However in this new equilibrium, each
type gets allotted exactly at their exit time. Further in this new equilibrium, each
type has the same expected utility and the seller has the same expected revenue.
However we may need to expand the message space in order for our construction to
work.

Proposition 2 Suppose there is an equilibrium in the original game where an agent
of type (i, t, t̄) sends messages m(i,t,t̄) in equilibrium. Then there is an equilibrium
(in a potentially modified game with an expanded message space) such that in this
equilibrium:

1. Each type (i, t, t̄) sends messages m′
(i,t,t̄) starting period t through t̄.

2. Messages are prefix-free: for any two types (i, t, t̄), (i′, t, t̄′) s.t. t̄ ≥ t̄′, the mes-
sages sent by the two types from period t through t̄′ are not the same.

3. Each type (i, t, t̄) is allotted at t̄. Further all types have the same expected utility
and the seller has the same expected revenue as in the original equilibrium.

Proof: We shall construct a potential equilibrium with the properties described
above, and proceed to show that it is in fact an equilibrium. So (expanding the
message space if necessary) construct a sequence of prefix-free messages, one for each
possible type. Note that this set of equilibrium messages is ’fully separating’, in the
sense that at no stage can a type be confused for another.

For each type (i, t, t̄), and any possible profile of types of other agents, let the
allocation rule in our new equilibrium reallocate all probabilities of getting a unit
during any period t through t̄ to getting it at exactly t̄, and discard the rest of
the allocations. Doing this for each type gives us an allocation rule, which is feasible
since it allots weakly fewer units than the old rule (which was feasible by assumption).
Further let the payment of each type be the same as in the original mechanism. It is
clear that each type will be indifferent between the old allotment and the new one.

Therefore it is left to show that this new ‘equilibrium’ is in fact one. Once again
suppose not, i.e. suppose that some type (i, t, t̄) can profitably deviate by sending
messages corresponding to (i′, t′, t̄′). By the construction of the allocation rule, it
must be the case that t ≤ t′ and t̄ ≥ t̄′. But then clearly agent (i, t, t̄) could also
have profitably deviated by sending messages corresponding to (i′, t′, t̄′) in the original
game as well. Contradiction. ¤
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Finally we show why there cannot be a revelation principle for equilibria where
types get allotted at times other than their exit time.

Suppose T = 2, C = 1. Suppose there is exactly 1 potential buyer, who has two
possible types: (1, 1, 1) and (1, 1, 2), i.e. the first type has valuation 1 and enters and
exits at time 1; the second type also has valuation 1 and enters at time 1 but exits
at time 2. Suppose M1 = {1, 2}, and M2 = {1}. Suppose further that

f1(1) = 0; f1(2) = 1; f2(1, 1) = f2(2, 1) = 0;

i.e. the allocation rule allots the unit to an agent announcing 2 in the first period,
and nothing otherwise. Further suppose that

P (1) = P (1, 1) = 0; P (2) = 3; P (2, 1) = 0.99.

Consider the following equilibrium: type (1, 1, 1) announces 1 in the first period,
type (1, 1, 2) announces 2 in the first period and 1 in the second. The only deviation
(1, 1, 1) has is to announce 2 in the first period. But this gets him the unit at the price
of 3, which is not profitable. Similarly one can check that (1, 1, 2) cannot profitably
deviate.

However, the direct revelation mechanism that implements this allocation rule will
not be incentive compatible- type (1, 1, 1) can report (1, 1, 2), get the unit in period
1 and pay 0.99, which gets him a surplus of 0.01, whereas announcing (1, 1, 1) gets
him a surplus of 0.

Note however that is easy to construct an ‘equivalent’ equilibrium (all types and
the seller are indifferent)- simply allot type (1, 1, 2) in period 2 rather than period 1.
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