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GETOOR [Adv. Appl. Prob. (1974)1 has recently obtained the joint distri-

bution of these variables in terms of a triple Laplace transform. Here,

the same is obtained explicitly by using renewal theoretic arguments along
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lichkeitstheorie (1975)]. These results are useful in reliability theory
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ENTRANCE-EXIT DISTRIBUTIONS
FOR SEMIREGENERATIVE PROCESSES?
by
ERHAN CINLAR

Northwestern University

1. INTRODUCTION

Let (X,S8) = (Q,g,gt,xt,st,et,Px) be a Markov additive process. Here

X= @,MM ,X ,P¥) is a standard Markov process with state space

=l
( E,E) augmented by a point A (see BLUMENTHAL and GETOOR (1968) for the

definition and other gemeral terminology), and (St) is an increasing right

continuous process with §, = 0 and S_ = 8 for t > ¢ = inf{u:Xu A}

0 -
(w)

which is adapted to (gt), is perfectly additive (that is, St+u

St(w) + Su(etw) for all t, u, and w) and is such that
b4 o o - _ S X(t) - .
(1.1) P {Xu 6, € A, S 8 ¢ B]gt} =P {X €A, 8 €B]

for all x € Eﬁ, t,u € E+, Ae EA’ B¢ §+ (see GINLAR (1972) for the precise

definition). In general gt is larger than gt = q(Xs; s < t)". If Et = Et

for all t, then (St) becomes an additive functional of X. Otherwise, (St)

has conditionally independent increments given K, (this becomes an F-process
according to NEVEU (196la) when E is finite).

Define

(1.2) C_ = infl{t: s_> s},
S t

lResearch supported by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under Grant No. AFOSR-74-2733. The
United States Government is authorized to reproduce and distribute reprints
for governmental purposes.



(1.3) z; =X , Z =X., R =s-S. , R =8, -8

for all s > 0. We are interested in the joint distribution of these
variables. When E is a singleton, (St) becomes an increasing Lévy process
and then our results reduce to those given by KINGMAN (1973) and KESTEN
(1969). When T is finite, GETOOR (1974) computed the triple Laplace

transform

far e7°F Pi{Z; =i, zt =k, R_ ¢ du, R: e dvle UV,

Here we give an explicit derivation of the distribution of (1.3) in general
by using renewal theoretic methods along with results on Lévy systems, and
a change of variable formula out of GETOOR and SHARPE (1973b).

We will assume throughout that (St) is quasi-left-continuous. Then,
it was shown in CINLAR (1975) that there is a Lévy system (H,L,a) which
specifies the jump structure of (X,S) along with the conditional law of
(St) given K_ = G(XS, s > 0)7. Here, (Ht) is a continuous additive func-
tional of X, L is a transition kernel from ( IE,E) into (]E,Q)X(]R+,§+), and
a is a positive Borel function on IE (see the next section for the precise

meaning). Define
x
(1.4) U(x,f) = E £ £(X,,S,)dH_

for x ¢ E and f positive Borel on ]EXIR+. The following proposition is

preparatory to the theorem after it, which is our main result.

(1.5) PROPOSITION. Let A = {a > 0}. There exists a transition kernel

(t,x,A) ~ ut(x,A) from (1R+,§+)X(IE,£) into (IE,E) vanishing on E\A such that



(1.6) U(x,AxB) = f u (x,A)dt
B £

for all x ¢ E, AC A Borel, B ¢ R,

(1.7) MAIN THEOREM. For any positive Borel measurable function f on

EXExR X R,

(1.8)  E[£(Z,Z),R K] = [ 2 a2 £(,5,0,0

+ f U({x,dy,ds) f L(y,dz,t- s+ du)f(y,z,t- s,u)

Ex[0,t] EX R,

for every x ¢ E and (Lebesgue) almost every t G.ﬂ{+. If £(+,+,+,0) =0

identically, then the same is true for every t. O

A number of further results will be given in Section 3 along with the
proofs. For the time being we note the interesting deficiency of the pre-
ceding theorem: the equality is shown to hold only for almost every t.

The difficulty lies with computing the probabilities of events contained

= +
in {Rt = 0, Rt

= 0}. When IE is a singleton, this becomes the infamous
problem resolved by KESTEN (1969). Using his result, we are able to resolve
the matter when X is a regular step process (and therefore, in particular,
if IE is countable). The matter is simpler for the event {R; >0, R: = 0};

in general, the qualifier "almost every t" cannot be removed. But again,

we do not have a complete solution.

To see the significance of the seemingly small matter, and also to jus-
tify the title of this paper, consider a semiregenerative process (ZS;M) in
the sense of MAISONNEUVE (1975b). Here (ZS) is a process, M is a right closed

random set, and (ZS) enjoys the strong Markov property at all stopping times



whose graphs are contained in M. This is a slightly different, but equivalent,
formulation of the '"regenerative systems' of MAISONNEUVE (1974). Then,

M is called the regeneration set, and

(1.9) LS = sup{t < s: t € M}, Ns = inf{t > s: t € M}

are the last time of regeneration before t and the next time of regenera-~
tion after t. 1In accordance with the terminology of the boundary theory

of Markov processes, the processes

- +
(1.10) (z2) = (2, s (@)= (2y)

s s
are called, respectively, the exit and the entrance processes. Under
reasonable conditions on M (see JACOD (1974) and also MAISONNEUVE (1975b)
for the precise results) it can be shown that there exists a Markov addi-
tive process (X,S) such that the entities defined by (1.2),(1.3),(1.9),
(1.10) are related to each other as follows:

(1.11D) M= {s: St = s for some t GZR+},

(1.12) RS =35 - LS; RS = NS - 53
- +
(1.13)  z_ =2z Z_ =27 .
s s

— <+ N
In other words, R, and Rs are the "backward and forward recurrence times"
- + . + . .
and Zs and Zs are the exit and entrance states. So, Rs = 0 implies that
s € M, that is, that s is a time of regeneration.
. +
Conversely, starting with a Markov additive process (Xt,St), if (Zt)

is defined by (1.3) and M by (1.11), the pair (Z:;M) is semiregenerative



in the sense of MAISONNEUVE (1975b).

It was noted by MAISONNEUVE (1974) that semiregenerative processes may
be studied by using the techniques of NEVEU (1961a), (1961b) and PYKE (1961a,b)
via Markov additive processes. We are essentially doing just this by
bringing in "renewal theoretic'" thinking together with the results on
Markov additive processes obtained in CINLAR (1972) and (1975). 1In fact,
our techniques may be used to obtain most of the results given by MAISONNEUVE
(1974),(1975a),(1975b) and by JACOD (1974), but we have limited ourselves to
results which are extensions of their work. Moreover, these results are
related to the last exit —first entrance decompositions for Markov processes
of GETOOR and SHARPE (1973a,b). We are planning to show the precise con-
nections later; roughly, they were working with the conditional expectations

of our additive process (St).

2. PRELIMINARIES

Let (X,8) = (Q,M,M

M =t,Xt,St,Gt,Px) be a Markov additive process as in the

introduction. It was shown in GINLAR (1975) that there is a Lévy system
(H',L"'") for (X,S), where H' is a continuous additive functional of X and L'
is a transition kernel, such that

X
(2.1) E [u <Zt £(X, X ,8 -8 )T

X _#xruis 4 su}:l

t
= EX f dHé f L'(Xs,dy,ds)f(X ,Y,8)
5 s

IEX]&F

for all x, t and all positive E><£>C§* measurable functions f. This was
shown for X Hunt with a reference measure; but the work of BENVENISTE
and JACOD (1973) shows that the same is true for arbitrary standard Markov

processes X.



The process S can be decomposed as (see GINLAR (1972) for this)

2.2) S=A+ Sd + sf

where A is a continuous additive functional of X, Sd is a pure jump
increasing additive process which is continuous in probability with respect
to Px(olgw), and Sf is a pure jump increasing additive process whose jumps
coincide with those of X and therefore the jump times are fixed by X. We

define

- 1
2.3) Ht— Ht+At+t’

and let the positive E-measurable functions a and h be such that

t

(2.4) At = g a(XS)dHS; Hé =

OVt

h(XS)dHS;

(that this is possible follows from BLUMENTHAL and GETOOR (1968, Chapter V)).
Define

(2.5) L(x,*) = h(x)L'(x,*);

(2.6) Ld(x,B) = L(x,{x}xB); Lf(x,AXB) = L(x,(A\ {x})xB);
f X

2.7 RGxh) = Li@AXR)s  Fxy,B) = SRR,

(in fact one starts from F and K and defines Lf; seeQJNLAR(1975)ﬁnthedeﬁvaﬁong.'
Then, (H,K) is a Lévy system for X alone; (H,Lf) is a Lévy system for
the Markov additive process (X,Sf); (H,a) defines A by (2.4); and (H,Ld)

defines the conditional law of §° given K = O(XS; s 2_0)~ by

t
(2.8) Ex[exP(-Asd)lg 1= expl-f a8_ | L4 (x Ldu) (1 - ey,
e o Sm, °

+



Finally, if 17 is a jump time of X, then F(XT_,XT,°) is the conditional
distribution of the magnitude of the jump of Sf at 1 given K .
We call (H,L,a) the Lévy system of (X,S5). The following random time

change reduces the complexity of the future computations. Define

(2.9) G, = inf{s: H, > t},
(2.10) Xt = X(Gt), St = S(Gt),...,
. A A A A - A~ A A
and define Ct’ Zt’ Zt’ Rt’ Rt by (1.2) and (1.3) but from (X,S). Then we

have the following

(2.11) PROPOSITION. (§,§) is a Markov additive process with a Lévy system

A

(#,L,2) where ﬁt =t A L. Moreover,

A

s= ot ~t -+ - _+
(2.12) @ 20LR0,8D = (Z,2],R LR

PROOF is immediate from the definitions involved since H is strictly
increasing and continuous (which makes G continuous and strictly increasing);

see also GINLAR (1975) Proposition (2.35).
Note that the potential U defined by (l.4) is related to (i;é) by

X _ X A A
(2.13) U(x,f) = E { £(X,,S )dH_ = E g £(X,,S )dt.

In view of (2.11) and (2.13), it is advantageous to work with (§,§).
We will do this throughout the remainder of this paper, but will also drop
"~ from the notation. In other words, we may, without loss of any

generality, assume that the Lévy system (H,L,a) is such that Ht =tAZ.



Notations. In addition to the usual notations it will be convenient
to introduce the following: For any t € ]R+ = [0,») we write IRt = (t,»),
the set of all real numbers to the right of t; and IBt = [0,t], the set of
all numbers before t; for B CIR+ we write B-t = {b-t > 0: b € B} and
B+t = {b+t: b € B},

For any topological space G we write G for the set of all its Borel
subsets; we write f € pG to mean that f is a positive G-measurable function
on G. If N is a transition kernel from (E, E) into (F,E)X(G,g), we write
N(x,dy,du) instead of N(x,d(y,u)), and write N(x,f,g) instead of N(x,h)

whenever h has the form h(y,u) = f(y)g(u), that is

(2.15)  N(x,f,8) = [ N(x,dy,du)f(y)g(u).
FXG

If N is a transition kernel from (E, E) into (E, E)*( 11{_'_,5_'_), and if

f € pE XR+, we define the "convolution" of N and f by

(2.16)  Nxf(x,t) = [ N(x,dy,du)f(y,t- u).
EX]Bt

If M and N are two transition kernels from (E,E) into (E,I;I)X(R+,5+), their

convolution is defined by

(2.17) Mx N(x,h) = f M(x,dy,du) f N(y,dz,ds)h(z,u+s), h € pEX R .
EXR, EXR, = =t

The convolution operation is associative: Mx* (N# f) = (M*N)* £, but in

general not commutative.



3. PROOF OF THE MAIN THEOREM

Let (X,S) be a Markov additive process as in the introduction, and
let (H,L,a) be its Lévy system. We may and do assume Ht = t A ¢ without
any loss of generality (see the preceding section).

Let b > 0 be fixed, and define

(3.1) T = inf{t: S, - 8__ > b}.

The following auxiliary result is of interest in itself. Recall that

IRb = (b’oo).

(3.2) PROPOSITION. For all x ¢IE and f € PEXR,,

T

E*[£(X,_,8; )] = EX { £(X,,S)L(X,, E, R )dt.

PROOF. Define

(3.3) S, = A+ ] (5, -8 DIre o _py
. u<t u u- —
Then, S, = S° on {T > t} and S, = s? = Sb. Moreover, given K_ =
S - t T- T~ T ’ =

G(XS, s 3_O)~, T is conditionally independent of X and Sb, and

t
d
M= PYT > t]K } = exp[—g L (XS,IRb)ds]JIt F(X, X, B,).

b

ot 2_0)~. we have

(see QINLAR (1972)). Hence, with 52 = G(Xt’s

X b b
(3.4) E [f(X¢_’ST_)15m] = ]{{f(xt_,st) (-aM,)
+

£(X_,SD )MtLd(Xt,]Rb)dt+ ) f(X

b
£t Lo St__)Mt_F(Xt__,Xt, IRb).
+

]
oY 8

t_’
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Sb

t-? t—)M

Now, the process Wt = f(X -

is predictable; therefore, by

theorems on Lévy systems,

(3.5) EX[E WF(X X, R)] = o {)’ WX _,dy)F(X__,y, R)

x 7 f
E é'wt L' __, E, R )dt.

Putting this into (3.4) while taking expectations, and noting that .

Sb M_  can be replaced by Xt,Slz,Mt since their jump times are

X
t=-?" -2t

countable, we get

E[£(X;_,S;)] = E

4]
o8

£x,som ik, ) + Lix, E, R )dt

b
f(Xt’st)L(Xt’ E, IRb)I{T > t}dt

OV o8

£(X,,S, )L(X , E, R )dt

as desired. O
The following is immediate from the strong Markov property for (X,S);

see GINLAR (1972), p. 103.
(3.6) PROPOSITION. Let T be a stopping time of (gt) and define

X
Qx, ) = E[£(X,5)].

Then, for any f € pI§X§+ and x € IE,

T
U(x,f) = E* [ £(X_,8.)dt + Q*U(x,£). O
0

The next result is essentially the second statement of the main theorem

1.7).
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(3.7) PROPOSITION. Let b > 0, AXBxCXD € £X£X§+X§+,

and
(3.8) r ={z cA, Z eB,RccC, R €b + D}
: t "t > %t > g > Tt -
Then,
(3.9) PX(I‘t) = U(x,dy,ds)1 (t=- s)L(y,B,t+b+D-s)

A><IBt

for every x ¢ E and every t ER, (recall that IBt = [0,t]).

PROOF. Define T as in (3.1), and put

(3.10) £(x,t) = px(rt); g(x,t) = PX(Pt;ST > t).

Then, by the strong Markov property for (X,S8) at T, and by the additivity

of S which implies ST+u = ST + Su°8T,

<)

(3.11) f(x,t)

X
g(x,t) + P (rt; S

il

g(x,t) + Ex[f(xT,t—sT); sT < t]

g(x,t) + [ Q(x,dy,du)f(y,t- u)
E xIB,

where

it

(3.12)  Q(x,k) = E' [k(X;,S)], k € pEXR

Next consider g(x,t). Since T is the time of first jump with magnitude
greater than b, on {ST > t} we have C, =T, and Z_ =X, , Z =ZXp,

- +
Rt =t - ST—’ and Rt = ST - t. So,

(3.13)  g(x,t) = PX{XT_G A, X €B, S, €t-C, S, € t+b+D}.

The stopping time T is totally inaccessible since S is quasi-left-
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continuous. Therefore, by the results of WEIL (1971) on conditioning on

the strict past MT—’ we have

L(X;_,B,b+ D')
LX,, E, k)

(3.14) PX{XT ¢ B, Sp = Sp_ € b+ D'|M )=

for any B € E and D' e §+; here we used the additivity of S8, so that

ST - ST— is conditionally independent of M, sgiven XT—' Putting (3.14)

into (3.13) we obtain

(3.15)  g(x,t) = E'[a(X,_,t- S, )/L(X,_, B, R )]

where

(3.16) h(y,u) = lA(y)lC(u)L(y,B,u + b+ D).

In view of Proposition (3.2), (3.15) implies

(3.17) g =Vxh
where h is as defined by (3.16) and

T
(3.18)  V(x,k) = E* [ k(X_,5 )dt, k € pIEXR,.

Putting (3.17) into (3.11) we obtain
(3.19) £ =V*h + Q#£,
and by Proposition (3.6), we have

(3.20) U#h =V4h + Q& U#% h.
It is now clear from (3.19) and (3.20) that

(3.21) f=U+*h
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is a solution to (3.19). Note that U#* h(x,t) is exactly the right hand
side of (3.9). Therefore, the proof will be complete once we show that
Uxh is the only solution to (3.19). To show this, let f' and f" be two

f' - f" satisfies

bounded solutions to (3.19); then k

(3.22)  k = Q*k.

Let Qn be defined recursively by Q1 = Q, Qn+1 = Q*-Qn through the formula

(2.17). Then, (3.22) implies k = Q,*K ,3nd
3.23)  |k(x,0l=lo *kx,0)]< cq (x, E, B

for every n, where c¢ is the bound for k. On the other hand, T is totally

inaccessible, and its iterates defined by

(3.24) T, =0, T

0 = Tn + To GT

n

n+1

are all stopping times, and STn+l Z.STn + b by the definition of T. Hence,

X
(3.25) Qn(x, E, ]Bt) =P {sTn < t, XTn € E}=+0

as n +  for any fixed t GZR+. This implies through (3.23) that k(x,t) = 0
for all x and t; that is, the only bounded solution of (3.22) is k = 0, and

therefore (3.19) has exactly one solution. O

(3.26) COROLLARY. For any £ € p §>=EX!¥3<§+ such that f(+,*,*,0) =0
the equation (1.8) holds for every x € E and every t GZR+. Moreover, for

all x and t again,

+

p- -+ - _+ -
(3.27) E [f(Zt,Zt,R ,Rt), Zt = Zt]

U(x,dy,ds)Ld(y,t ~s+ du)f(y,y,t-s,u);

[}
S

E xBBy
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-+ - _+ - +
(3.28) Ex[f(Zt,Zt,Rt,Rt); z_ 4 z[]

= f U(x,dy,ds)Lf(y,dz,t-s+-du)f(y,z,t— S,u).
Elet

PROOF. In Proposition (3.7) let D =]Ra. Then, as b+ 0,
L(y,B,t -s+ b+ D) increases to L(y,B,t -~s+ D); and hence, by the monotone
convergence theorem, (3.9) remains true with b= 0 in (3.8) and (3.9) both.
Now, by the usual monotone class arguments, (3.9) holds true for arbitrary
Borel subsets D of ]Ro = (0,»). This is equivalent to the first statement
by the monotone class theorem again. The second statement, namely that
concerning (3.27) and (3.28), is immediate from the first statement coupled

with the definitions (2.6). O

The preceding corollary is the second statement of Theorem (1.7).

There remains the problem of computing the probabilities of the subsets of

+

'{Rt = 0}, namely the event that t is a time of regeneration. To that end,

R . , . -+
we start computing the distribution of (Zt,Zt).

(3.29) PROPOSITION. For any f € pEXE, x € E, and A € R,

oo

(3.30) EX [ aet £(z,zhar
0 t° t

= U(x,dy,ds) la(y)f(y,y)re + L(y,dz,du)f(y,z) (1- e "],
~-As f Au

Ex]R+ ]EXIR+

PROOF. Let ey be the mapping x > e-kx, and recall the definition (1.2)

of (Ct). By the general change of variable formula given by GETOOR and

SHARPE (1973, p.551), for any g € p§+,

(3.31) [ emad -e(s)) = [ glepr" at.

(0,) (0,8.)
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Taking g(t) = f(Xt_,Xt) above, recalling (1.3), and noting that for t > S_
we have Ct = and X = A and h(Xt_,Xt) = 0 by the usual conventions, we

get

(3.32) $hs(3.30) = EX [ £(X, ,X.)d(l - e, (S.)),
s {; ="t 2Pt

where "fhs(+)" stands for the "left-hand side of (*)." By the generalized

version of FUBINI*s theorem,

(3.33) Exfg £(X__,X )d(-e, 5, NIK,] = —g’ £(X__»X )M,

where

X
(3.34) M_=ETle (5)]K,]
L a
a(X_)ds - { L (Xs,l—ek)ds]sll . F(X__X_»e,)

]

exp[-X

Ot

(see GINLAR (1972) for this formula). Now (3.32),(3.33),(3.34) yield

(3.35)  #hs(3.30) = EX [ £(x__,X)M (a(x) + 19X ,1-e,))dt
0

X
+ E E EX_ XM _ F(X X ,1 - ey).

The process (Mt_) is predictable; therefore, by theorems on Lévy systems,

the second term on the right-hand side is equal to

X
E {)’ dt M__ ]éK(Xt_,dy)f(Xt_,y)F(Xt_,y,l - e)

X = f
= E (j;dt MtI{; L™ (X ,dz,1 - e,)£(X ,2)

by the definitions (2.6) and (2.7). Putting this in (3.35) and noting

(3.34), we see that
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(3.36)  2hs(3.30) = EX [ g(X )M dt = E* [ g(X e, (S )dt = Ulx,g,e,)
0 0

where

(3.31) 8 = £, Gal) + 103,1-e)) +f1f(7,02,1- e 2(5,2)

ra(y)f(y,y) + f L(y,dz,1- ek)f(y,z).

With this g, U(x,g,ex) is precisely the right-hand side of (3.30); and

thus the proof is complete. O

Next we consider the problem of inverting the Laplace transform (3.30).

Note that g defined by (3.37) can be written as

(3.38) &) = Mam i,y [ e @we™™ + [[ [L(y,dz,R E(y,2)] e au},
0 0 IE

which has the form A f n(y,du)eflu. Putting this in (3.36) we see that
UGx,g,e,) = A [ UsnGxdwe ",

and this is equal to the right-hand side of (3.30). Inverting the Laplace

transforms on both sides of (3.30), we obtain

(3.39) f Ex[f(Z;,Z-:)]dt = f U(x,dy,B)a(y)f(y,y)
B IE

+ f dt f U(x,dy,ds) fL(y,dz,th_S)f(y,z)

B IEXIBt E

for every B € §+.

We are now ready to give the

(3.40) PROOF of Proposition (1.5). Choose f such that h(y) = f(y,y) is
strictly positive, and let A = {a > 0}. Now the first term on the right

side of (3.39) is U(x,a*h,B), and clearly this is at most equal to the
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left-hand side. It follows that the measure B -+ U(x,a-h,B) is absolutely
continuous with respect to the Lebesgue measure. Let ut(x,ah) be its
Radon-Nikodym derivative with respect to the Lebesgue measure. Since X
is standard, its state space (E, E) is locally compact with a countable
base. Therefore, it is possible to choose this derivative such that

(t,x) -~ ut(x,ah) is 5+><§ measurable.

Now, for k € pA, define ﬁt(x,k) to be ut(x,aﬁ) where k = k/a. By
the special nature of (I, E) again, by theorems on the existence of
regular versions of conditional probabilities, we may take Gt(x,-) to be
a measure on A while retaining the measurability of the mapping

(t,x) ~» Gt(x,A) for each A € A. Finally, let
(3.41)  u (x,A) =u (x,A NA), AceE

The statement (1.5) is true for this transition kernel u. ]
The following is immediate from Proposition (1.5) applied to (3.39).
(3.42) THEOREM. For any f € pEXE and x € E,

(3.43)  EVI£(Z.,ZD) = [u_(x,d0)a()E(y,y)

E
+ f U(x,dy,ds) f L(y,dz,ZRt_s)f(y,z)
ExIB E
t
for (Lebesgue) almost every t ER,. O

In view of Corollary (3.26), the second term on the right side of
(3.43) is equal to the expectation of f(Z;,Zt) on {R: > 0}. Hence, (3.43)
implies that

- < ot + _ . X + +
(3.44) Zt = Zt €A a.s. on {Rt = 0}; E [g(zt); Rt =0] = ut(x’ag)
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for any g € pE, x € E, and almost every t € R+.
The method of the proof of Proposition (3.7) goes through to show
X, - + - +
(3.45) P {Zt € A, Zt € B, Rt €b+C, Rt € D}

= f U(x,dy,ds)lc(t-—s-—b)L(y,B,t-s+-D)

A.th
for all A,B € E, all Cc,D ¢ §+, all t e:m+, for b > 0. 1In particular, this
yields
(3.46) PU{z] =z €A, R >0, Kl =0} = [ U(x,dy,d)Li(y,{t-s])
Ax[0,t)
d .
f us(x,dy)L (y,{t-shds = 0

Ax[0,t)
since the function s - Ld(y,{t-s}) is zero everywhere except on a countable

set. Hence, for any t,

- _ ~_ ot op. ot o
(3.47) Rt—O a.s. on {zt—thA, Rt 0}.

Conversely, Corollary (3.26) and Theorem (3.42) show that

+ -t -
(3.48) Rt =0 a.s. on {Zt = Zt, Rt 0}.

-+ - 4 - +
.S. = = = > > .
It follows that a.s. on {Zt Zt}, either Rt R 0 or Rt 0 and Rt 0

(3.49) PROOF of Theorem (1.7) now follows from these observations put together

with Theorem (3.42) and Corollary (3.26).

4, TFROM ALMOST TO ALL
This section is devoted to showing that under certain reasonable condi-

tions, when X is a regular step process, Theorem (1.7) can be strengthened
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so that (4.8) is true for every t (instead of for almost every t). Un-
fortunately, our technique does not generalize to arbitrary X.

We shall need the following facts concerning the case where X is
trivial: that is, where IE is a singleton {x}. Then, writing ﬁt =

ut(x;{x}), ﬁ(ds) = U(x,{x},ds), etc., we obtain from Theorem (1.7) that

4.1 EE®R,ED] = 0,a£(0,0) + [ TW@s)L(t - s + dw)E(t - s,u)

By

for almost every t.
This is the result which KINGMAN (1973) obtained by inverting a

triple Laplace transform in the case where a > 0. If 4 > 0, then t u

is continuous and ﬁ(ds) ﬁsds, and (4.1) holds for every t (this is due

to NEVEU (1961)). 1If a = 0 and L(R) = 4=, then u_= 0 and (4.1) holds
for every t again (this is due to KESTEN (1969) essentially). If ; = 0
and L( RO) < », then Gt = 0 but the restriction "almost every t'" cannot
be removed in the absence of further restrictions on the smoothness of L.
In fact, if L has a countable support and a = 0, i(]Ro) < o, then (4.1)
fails to hold at every t belonging to the group generated by that support.

In view of this, the only real restriction in the proposition below

is on the process X. Define

(4.2) D=1{x eE: atx) > 0 or Lo(x, R,) = =}

(4.3) PROPOSITION. Suppose X is a regular step process. Then, we may take

t > ut(x,A) to be continuous, and we have

X, o+ - + -+
(4.4) E'[g(Z,R,K); Z_ = Z_ €D]

d
= f ut(x,dy)a(y)g(y,0,0) + f U(x,dy,ds)L (y,t —-s+ du)g(y,t - s,u)
D IDXBt
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for all x ¢ E and all t ¢ IE. O

(4.5) REMARK. Suppose X is a regular step process and (St) is strictly
increasing (which means that (Ct) defined by (1.2) is continuous, which
in turn means that the regeneration set M is without isolated points).
In particular, GETOOR (1974) assumes this holds. (St) can be strictly
increasing only if D = IE. Hence, Proposition (4.3) applies to this

important case.

PROOF of (4.3). The expectation on {R: > 0} is equal to the second
term on the right-hand side of (4.4) by the second statement of Theorem (1.7).

Hence, we need only show that

b. o o - + - +
(4.6) P {zt € A, R, = 0, R, =0, z, = zt}

is continuous in t for any A.GIQ. (This is equal to ut(x,alA) for almost
every t; and therefore the density t - ut(x,alA) can be taken continuous
and equal to (4.6) for all t.)

Let T be the time of first jump for X, and define Ty = 0, t =
h

T + to6_ . Then, T 1is the time of the nt
n T n

jump of X, and T > 7 almost
n n

surely, and X remains constant on each interval [Tn,T }. Therefore,

n+l
(4.6) is equal to

n
="

]
[en]
n
A
rt
A
n

et

o] _ + _
4.7y ) Pzl =z e A, R
n=0 t t t n n+l

_ X - - _ -+
= nzo P {XTn €A R =R =0,5 <t<s }.

Note that, on {S =t - u} we have R, = Rf(e ), and R_ = R (6_ ). By
Tn u Tn t u Tn

the strong Markov property at T
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X[o— +
(4.8) P{R, =R _=0,8 <t«<s lv_}
n n+1l n
= f(XT ,t ST )I[O,t)(ST )
n n n
where
- +
(4.9) £(y,u) = PY{R =R =0, 1) > u}

Starting at y, X stays there an exponential time with parameter
k(y) = K(y, E); and during that sojourn, S has the law of an increasing
Lévy process with drift parameter a(y) and Lévy measure Ld(y,-). it
follows from the results mentioned following (4.1) that
0 if a(y) =0
(4.10) f£(y,t) =
r(y,t)a(y) if a(y) >0
for all t, where r(y,+) is the density (which exists when a(y) > 0) of

the potential measure R(y,*) with

d =1
(4.11) R(y,ex) = [Aa(y) + L7 (y,1-e,)) + k(y)] .
Putting (4.7)-(4.10) together, we see that (4.6) is equal to

o X
(4.12) ) Ela(X_)r(X_,t-S_);X_ e ANA;sS_ <t]
n=0 Tn Tn Tn Tn Tn

= / V(x,dy,ds)a(y)r(y,t - s)
(AN A)x[0,t)

by an obvious definition for V. This is essentially a convolution, and the
function t - r(y,t) is continuous (NEVEU (1961)). Hence, (4.12) is continu-

ous in t, and the proof of Proposition (4.3) is complete. Od
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(4.13) REMARK. As mentioned before, the restriction "almost every t"
cannot be removed on E\IDD without adding other conditions of smoothness.

Similarly for equalities concerning expectations on the event

P +
{zt # zt}.
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