
Jump Bidding and Budget Constraints in All-Pay

Auctions and Wars of Attrition�

Eddie Dekel, Matthew O. Jackson, Asher Wolinskyy

revision: August 10, 2006

Abstract

We study all-pay auctions (or wars of attrition), where the highest bidder wins

an object, but all bidders pay their bids. We consider such auctions when two

bidders alternate in raising their bids and where all aspects of the auction are

common knowledge including bidders�valuations. We analyze how the ability to

�jump-bid,� or raise bids by more than the minimal necessary increment a¤ects

the outcome of the auction. We also study the impact of budget caps on total bids.

We show that both of these features, which are common in practice but absent

from the previous literature, matter signi�cantly in determining the outcome of

the auctions.
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1 Introduction

A wide variety of economic interactions are usefully modeled as an all-pay auction or war-

of-attrition.1 The standard analysis of such competitions is one where bids or committed

resources increase at a given rate per unit time, and players simply decide whether to

stay in or drop out of the auction or contest. In this paper, we consider a dynamic version

of this game that di¤ers from the standard versions in that the players have discretion

over how much they increase their bid by each time they move. Thus, the model can be

thought of as an English-all-pay auction in which the bidders are allowed to �jump-bid�

or as a war-of-attrition situation in which the players are not limited to investing at some

�xed rate per unit of time, but can commit large amounts of resources at once to the

contest. We analyze this model with and without the presence of budget caps on total

expenditures by bidders. We show how the ability to make jump bids, and also how the

presence of budget constraints, alter the equilibrium behavior.

The ability to jump-bid, or commit a large amount of resources at a time to the

contest, changes the nature of equilibrium completely. For instance, when the players

can only invest at a �xed rate, there are equilibria in which the player with the lower

value wins with high probability. This equilibrium behavior changes dramatically if

players are allowed to �jump bid�. The simple intuition is that the higher valued player

can preemptively bid an amount that the lower valued player would not wish to match.

This guarantees that the higher valued player should have a positive expected payo¤

from the auction. In fact, this turns out to guarantee that the higher valued player

wins the auction, even though such a preemptive bid is never made. The speci�cs of the

equilibrium depend on the environment (e.g., what is known about players�valuations,

and whether budgets are �nite) in ways that we discuss in detail.

Budget caps a¤ect the bidding in an interesting way. In the context of a sealed-bid

all-pay auction setting, budget caps that exceed the bidders values do not a¤ect the bid-

ding. However, in a dynamic all-pay setting, even budget caps that exceed the bidders�

valuations can be important. Since past bids become sunk costs, bidders may end up

bidding more than their values, at least o¤-the-equilibrium-path, and budget caps may

a¤ect the equilibrium even when they exceed valuations. Indeed, our analysis shows that

in some situations the bidder with the larger budget wins the auction rather than the bid-

der with the larger valuation, even when budgets greatly exceed valuations, as they alter

play o¤ the equilibrium path, which then in�uences equilibrium outcomes. As budget

1As is well known, the war of attrition is equivalent to a sealed bid, all-pay second-price auction.
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limits operate o¤ the equilibrium path, they might never be reached in equilibrium.

Most of our analysis concerns complete-information all-pay auctions, where bidders�

valuations and any budget constraints are common knowledge. We do this for several

reasons. First, it makes the role of jump-bidding and budget constraints very clear.2

Second, the analysis of equilibrium is already rich and at times subtle, even with com-

plete information. In the closing discussion we provide some results on the incomplete

information case.

As emphasized in the opening footnote, Leininger (1991) already has results that are

essentially the same as most of those in the present paper. His is a complete-information,

sequential, all-pay auction with hetrogenous values and budgets. Since he does not

restrict the bids to a grid (as we do), he considers "-equilibria. He also seems to restrict

attention to Markovian strategies. Although these di¤erences do not matter much for

the main results, the present paper might still be useful as the exposition here di¤ers

from that in Leininger�s paper and as it includes a brief discussion of the incomplete-

information case.3

2 De�nitions

Most of our analysis is of a complete-information setting, where valuations for the object

and budgets are common knowledge. When we depart from this assumption, we will

make it clear.

2.1 Bidders, Values, and Budgets

We concentrate on auctions with two bidders and later comment on the extension to

more bidders.
2Actually, there are at least two di¤erent roles of jump-bidding. The complete information analysis

isolates the jump-bid as a �preemptive� tool. The incomplete information analysis also brings in the

jump-bid as a signaling device.
3Oneil (1986) also analyzes a dynamic all-pay auction with budget constraints but focuses on the

symmetric case with equal valuations and equal budgets. Harris and Vickers (1985) present a model of

race which is also a dynamic all-pay contest with unlimited budgets. Dixit and Nalebu¤ (1991) present

an example that has some aspects of preemptive investment. We have two other papers that analyze

vote buying (Dekel, Jackson and Wolinsky (2006-a,b)) where we use related models. Those models are

more complicated, since the bidders compete for buying the votes of a majority of the voters rather than

just a single object, and so the impact of jump bidding and budget constraints are di¢ cult to isolate,

and a¤ected by the distinct nature of the majority game.
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Let Vi denote bidder i�s private value for the object.

A bidder who bids a total of bi and wins the object has a �nal utility of Vi � bi. A
bidder who bids a total of bi and does not win the object has a �nal utility of �bi.
Let Bi denote i�s budget. Bi takes on values in <+ [ f1g.
A bidder is never allowed to bid more than his or her budget.

There is a smallest money unit " > 0, so bids and budgets (when �nite) are whole

multiples of ".

To simplify the analysis we assume that the Vi�s are not multiples of ". We will let

[Vi]" denote the maximal multiple of " that is smaller than Vi.

We eliminate degenerate cases by assuming that Vi > " for each i.

2.2 A Description of the Auctions

We consider two versions of an all-pay auction. In each version, time proceeds in discrete

periods t 2 f1; 2; : : :g. Bidders alternate in their moves, so that bidder 1 bids on odd
dates and bidder 2 bids on even dates. Bids are nonnegative and can only be increased.

In a jump-bidding all-pay auction, a bidder who is called upon to move can choose

to raise its bid to any higher feasible bid or to leave it unchanged. We will refer to the

latter move as "dropping out" of the auction. The auction ends at the �rst time where

either:4

(i) bidder 1 is called upon to bid and bidder 1�s bid does not exceed bidder 2�s last

bid, in which case bidder 2 wins; or

(ii) bidder 2 is called upon to bid and bidder 2�s bid does not match or exceed bidder

1�s latest bid, in which case bidder 1 wins.

If the auction never ends, then each bidder gets a utility of �1.
A no-jump all-pay auction is as above except that a bidder can increase its outstanding

bid by at most " in each step. This is the discrete version of the "war-of-attrition."

The alternating moves and the tie-breaking in favor of bidder 2 introduce a slight

asymmetry in the auctions.

Unless otherwise stated, the solution concept is subgame-perfect equilibrium.

4This is equivalent (in terms of equilibrium outcomes) to stopping the auction after successive rounds

where each bidder has had a chance to bid and has not changed his or her bid.
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2.3 A Useful Lemma on Dropping Out and Mixing

The following Lemma is useful in a number of our results. We note that it holds regardless

of whether jumps are permitted and/or budgets are �nite or in�nite.

Lemma 1 Consider a subgame starting with a move by bidder i. If i bids (i.e., increases
its standing bid) with positive probability in an equilibrium, then in the equilibrium con-

tinuation j drops out with positive probability at any node that follows a bid by i.

Note that this implies that in any equilibrium, the only (decision) node on the equi-

librium path where either bidder ever has a strictly positive expected payo¤ is at the �rst

node. Note also that, if the bidding continues past the �rst node, it must involve mixing

or dropping out completely at every subsequent node reached on the equilibrium path.

Proof of Lemma 1: Suppose to the contrary that there is a subgame starting at a node
t and an equilibrium in that subgame where i makes a bid with positive probability, and

following some bid that i makes with positive probability at t, j stays in at the next

node, t0, with probability one.

First, consider the case where the equilibrium strategies in this subgame are pure

on the equilibrium path. Let t00 be the �rst subsequent node on the path where some

bidder drops out (such a node exists as this is an equilibrium path and the payo¤ of

an in�nite play is negative in�nity). The bidder who moves at t00 must have 0 expected

continuation utility conditional on being at t00 (or the bidder would strictly prefer to stay

in, and would not be exiting). Since by assumption the strategies are pure on the path,

node t00 is reached with probability 1 in the continuation. If the bidder who moves at

t00 is i, then i has a negative expected utility at t since i�s payment increases between t

and t00 only to attain 0 expected utility at t00 after having already sunk the incremental

payment. If the bidder who moves at t00 is j, then by the same reasoning j has a negative

expected utility conditional on making a bid at t0 which precedes t00. Thus, we reach a

contradiction in both cases.

Next, consider the case where the equilibrium strategies in this subgame may be

mixed on the equilibrium path. In this case there is a set of paths which may occur with

positive probability when the equilibrium is played. We construct a new equilibrium by

selecting from these paths as follows. At node t bidder i makes the bid that leads to

the node t0 where player j stays in with certainty. At node t0 bidder j chooses, from

among the actions played with positive probability in the given equilibrium, an action

that maximizes bidder i�s expected payo¤ in the continuation of this equilibrium. At the
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next node i again selects an action that maximizes j�s expected equilibrium payo¤. The

selection continues in this manner �with the bidder in control breaking own indi¤erences

so as to bene�t the other bidder �at the subsequent nodes up to the Kth node on this

path from t, provided the game does not terminate prior to that. The number K is such

that K" > 2maxfV1; V2g. At all other nodes of the subgame, the behavior of the original
equilibrium remains.

It follows almost directly from its construction that this selection of actions through

K steps starting from t, together with the remaining strategies at other nodes from the

original equilibrium, forms a subgame-perfect equilibrium in the subgame starting at

node t. One can argue this by backwards induction starting from the most distant node

out of the �rst K nodes on the path from t, using the fact that these are paths of the

original given equilibrium.

Consider this new SPE. The �rst K moves in this equilibrium are pure. It must then

be that at least one of the players drops out in these K moves, so that the equilibrium

path itself is entirely pure. This follows since if play did last for K or more moves, then

i�s incremental payo¤ starting at node t would be at most Vi � (K=2)" < 0, which is

less the incremental payo¤ of quitting at t, which would be a contradiction. Therefore,

the argument used above for the case of equilibrium strategies that are pure on the

equilibrium path applies, and we conclude that, contrary to the initial hypothesis, j

cannot stay at node t0 with probability 1.

3 In�nite Budgets

We begin by analyzing all-pay auctions when there are no limits to budgets.

3.1 No jumps and In�nite Budgets

We start with the benchmark case of no jump bidding and unlimited budgets. Without

jump bidding, a bidder�s strategy can simply be speci�ed as a probability of remaining

in the auction as a function of the time.

Proposition 1 In the game with no jump-bidding and in�nite budgets, the set of all
equilibria can be characterized in terms of their equilibrium paths as follows. For any

p 2 [0; 1], there exists an equilibrium in which bidder 1 drops with probability p in the

�rst node. If p = 0, then there is a range of equilibria in which in the next node bidder

2 drops with probability q � "=V1, and if q < 1 then the bidders drop thereafter with

6



probabilities "=V2 and "=V1, respectively. If p 2 (0; 1), then in each subsequent node on
the equilibrium path bidder 2 drops out with probability "=V1 and bidder 1 drops out with

probability "=V2. If p = 1, then this is clearly the end of the equilibrium path.

The proofs of all propositions appear in the appendix.

Note that in a subset of these equilibria, the bidder with the low valuation wins with

higher probability, including an equilibrium in which the low valuation bidder wins with

certainty. Three of the equilibria are Markov perfect (a subgame perfect equilibrium

where each bidder�s probability of staying in the auction is independent of time): the

mixed equilibrium in which the bidders drop with probabilities "=V2 and "=V1 respec-

tively at all nodes, and the two pure equilibria in which one bidder always continues with

probability one and the other always drops out. The Markov-perfect mixed-strategy equi-

librium is also the only symmetric equilibrium, in the sense that each bidder�s behavior

has the same functional form (as dependent on the pair of valuations). Notice that this

equilibrium is one of those in which the low-value bidder wins with higher probability.

Some of the literature on the war of attrition uses reputation e¤ects to re�ne away

the multiplicity of equilibria.5 Such e¤ects can be introduced here by assuming that each

one of the bidders has with small probability an obstinate type who never drops out. The

reputation game that results has a unique equilibrium. This equilibrium involves mixed

strategies and hence its outcome is a distribution. If the probability of the obstinate types

is taken to zero, the equilibrium outcome distribution approaches the outcome in which

the higher valuation bidder wins immediately. We show next that the simple ability to

jump bid will directly single out this as the unique equilibrium outcome, without any

need for augmenting the game with noise (and corresponding beliefs).

3.2 Jump-bidding and In�nite Budgets.

We now consider the case where jump-bidding is allowed and show that in all equilibria

the high-value bidder wins for certain. Thus, the introduction of jump-bidding selects one

out of the range of equilibrium outcomes that arise when jump-bidding is not allowed.

Proposition 2 In all equilibria of the game with jump-bidding and in�nite budgets:

(i) If V2 + " � V1, then bidder 1 bids once to a price of " and then bidder 2 drops out.
5See Fudenberg and Tirole (1986) and Abreu and Gul (1991).
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(ii) If V1+ " � V2, then bidder 1 drops out immediately and bidder 2 wins at a price of
0.

While the presence of jump-bidding narrows down the equilibrium set drastically,

jump-bids are never used on the equilibrium path. It is simply the possibility that

they could be used that is critical. To understand the role of jump-bids it is useful to

examine how they preclude equilibria in which the lower value bidder wins. Suppose that

V1 + " � V2. Clearly, there is no SPE in which 1 wins by bidding ", since by bidding

[V2]" (recall that [Vi]" denotes the largest whole multiple of " that is still smaller than

Vi), bidder 2 can force bidder 1 to drop out (since in order to stay in the auction bidder 1

would have to increase its bid by more than V1). Since [V2]" < V2, bidder 2 would prefer

to win in this way than to let bidder 1 win. But what if V1 is close to V2 and bidder 1

starts with a higher bid, say [V1]"? If bidder 2 responds by bidding [V2]", bidder 1 may

take a large lead again by increasing its bid by [V1]", so it is not immediately clear that

bidder 2 must win in any SPE. To understand why this must be indeed the case, consider

a race in which bidder 1 increases its standing bid by [V1]" in each round and bidder 2

increases its standing bid by [V2]" in each round. Eventually, there must come a point

where in order to stay in the auction, bidder 1 must increase its bid by more than V1.

At this point, in any SPE, bidder 1 would drop out. Anticipating 2�s response, bidder 1

would already drop out in the previous round, and inducting backwards, bidder 2 must

win this race before it starts.

Finally, if [V2]" = [V1]", then there exist multiple equilibria. For instance, there are

equilibria where i always bids the minimal increment to stay in (if it does not exceed i�s

value) and j always exits.

4 Finite Budgets

Now, we consider the impact of limits on bidders�budgets, since this is an obvious feature

of applications and so it is important to know if this feature has an impact on equilibrium

outcomes. The analysis that follows applies when either of the bidders�budgets is �nite

(and it could still be that the other bidder�s budget is in�nite).

The following lemma points out an important di¤erence between the �nite and the

in�nite-budget cases, which will be useful in the subsequent analysis..

Lemma 2 Consider an arbitrary subgame in a game (with or without jump-bidding)
where at least one bidder has a �nite budget and starting with a move by bidder i. All
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equilibrium continuations are in pure strategies (on and o¤ the equilibrium path).

Proof of Lemma 2: Given that at least one bidder has a �nite budget, the subgame
starting at any node is �nite. Consider any equilibrium continuation starting from an

arbitrary node. Consider any last node (on or o¤ the equilibrium path) where some

player mixes, so that in all further subgames, pure strategies are played. By Lemma 1, it

must be that if this player, say i, bids, then the other player must drop out at the next

node (as the other player must drop with some probability by the Lemma, and is playing

a pure strategy by hypothesis). Given that Vi is not a multiple of " this means that for

i to be willing to make such a bid, i must have a strictly positive payo¤ from the bid.

Thus, i cannot mix at the node.

Note that this Lemma is not in contradiction with Lemma 1. In fact, coupled together,

they imply that when at least one of the bidders has a �nite budget, then in any subgame

(where i is the bidder who moves �rst), either bidder i drops out immediately and bidder

j wins at no incremental cost, or bidder i bids enough to stay in the auction and then

bidder j drops out at the next node.

4.1 No Jump-Bidding and Budget Limits

Lemmas 1 and 2 immediately imply that, when jump-bidding is not allowed, the equilibria

in the presence of budget limits di¤er from those in the in�nite budget case. Indeed, the

following proposition establishes that, without jumps, the bidder with the largest budget

wins, regardless of the values.

Proposition 3 In the unique equilibrium in the game with no jump-bidding and at least
one �nite budget, bidder 1 wins at a price of " if B1 > B2, and bidder 2 wins at a price

of 0 otherwise (i.e., if B2 � B1).

The intuition here is straightforward and by backwards induction. Once the auction

has reached bidding within " of the lower budget constraint, it is clear that the higher

budget player has an incentive to stay in, and the other player to drop out. Then, by

induction, the same is true within " of such a node, and this argument rolls backwards

to the beginning of the game.
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4.2 Jump-bidding with Budget Limits

The analysis of equilibria when there is jump-bidding and a cap on at least one bidder�s

budget is the most complex of the various cases that we have analyzed. There is a subtle,

but intuitive, interaction between valuations and budgets that determines which bidder

wins. Let us �rst state the characterization of the winning bidder, and then provide

discussion of the characterization and a more detailed description of the equilibrium

structure.

Proposition 4 In all equilibria in the game with jump-bidding and at least one �nite
budget:

(i) If min fB1; [V1]"g > min fB2; [V2]"g, bidder 1 wins.

(ii) If min fB1; [V1]"g � min fB2; [V2]"g, bidder 2 wins, except if (iii) below applies.

(iii) If B1 > B2, [V1]" � [V2]" and B2 < k[V1]", where k is the minimal integer such that
(k � 1)[V2]" � k[V1]" (setting k =1 if [V2]" = [V1]"), then bidder 1 wins.

Since bidder i cannot bid aboveBi and would not like to bid above Vi, natural intuition

would suggest that the winner is determined by the minimum of budgets and values. Parts

(i) and (ii) of the proposition con�rm that usually this is indeed the case, but Part (iii)

describes an exception. Under certain circumstances, the �rst mover advantage of bidder

1 is translated to a win even thoughmin fB1; [V1]"g < min fB2; [V2]"g, as discussed below.
To understand these results, it is helpful to �rst discuss the impact of �nite budgets,

and then examine the role of the jump-bidding. Given �nite budgets, the auctions are

�nite games whether or not jumps are allowed. In the case of no jumps, we easily solve

the game backwards. At a node where one bidder�s budget would need to be exceeded

in order to continue, that bidder must drop out. Knowing this, when we get within one

bid of exhausting the lower budget, the bidder with the higher budget will continue and

the bidder with the lower budget will drop out. Inducting on this logic, the bidder with

the lower budget will drop out at the �rst opportunity.

Why do things change with jump-bidding? Here, even if a bidder has the lower

budget, if that bidder�s value and budget both exceed the other bidder�s value, then that

bidder can preemptively bid an amount that causes the other to drop out. This ability

operates asymmetrically between the two bidders because of the �rst mover advantage

of bidder 1.

10



Notice that 1�s �rst mover advantage is not limited to situations in which bidder 1

can pro�tably preempt bidder 2 already in the �rst move. The scenarios covered by Part

(iii) include ones in which [V1]" < [V2]" and both valuations are substantially smaller than

B2 < B1. In such a scenario, even the maximal bid that does not exceed 1�s valuation,

[V1]", does not preempt bidder 2 who can respond with a bid that exceeds [V1]" and is still

below [V2]". To understand how bidder 1 might still preempt 2 in this situation, imagine

that the bidders race each other by submitting in each round the maximal bids [V1]" and

[V2]" that do not exceed their respective valuations. If there are no budget constraints,

then since [V1]" < [V2]" eventually they will reach a point where in order to surpass 2�s

bid, bidder 1 will have to bid more than [V1]". This will happen in round k described

in Part (iii) of the proposition. In any equilibrium in this subgame, bidder 1 drops out.

Thus, if this round k is reached before B2 is depleted, then inducting backwards from

this subgame, bidder 1 would already drop out in round k � 1 of this race and hence in
round k�2 and so on to the beginning. Alternatively, if B2 would be depleted along this
race before round k is reached, then bidder 1 would win this race once B2 is depleted and

inducting backwards, bidder 2 would drop out after 1 takes the �rst step in the race.

The following example illustrates the above points.

Example 1 An Example where the low value wins.

Let V1 = 10:5, V2 = 13:5, B2 = 15 < B1 = 20 and " = 1.

If bidder 2 moved �rst, then it is clear that bidder 2 would win, as the bidder could

preemptively jump-bid to 11, after which bidder 1 would drop out.

However, consider what happens when bidder 1 moves �rst. Suppose that bidder 1

bids 6 in the �rst round. Now consider any bid b � 6 by bidder 2, such that 2 stays in
the auction. It must be that b � [V2]" = 13. If 1 then responded with a bid of 16, then
2�s budget will be exceeded and so 1 will win. This gives 1 a strictly positive incremental

payo¤ (as 6 of the bid is already sunk) and so 1 would be willing to make such a bid, and

can thus win the auction outright. While this is not the actual equilibrium continuation,

it does show that 1 can win and thus must stay in the auction. It is then easy to argue

that 1 will win in any continuation. Inducting, it makes no sense for 2 to make any bid

b � 6 and so 2 drops out immediately.
The example points out another feature of the equilibrium behavior. Bidder 1 will

actually bid 3 in the �rst period in all equilibria. If 1 bids 2 or less, then by jumping to

13, bidder 2 would surely win in the continuation. If 1 bids at least 3, then the maximal
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bid that 2 is willing to make still makes it worthwhile for 1 to stay in the auction at the

next round, and then 1 is within striking distance of 2�s budget. In the scenario in which

jump-bidding is not allowed, the winner never pays more than ". But, as the example

shows, when jump-bids are allowed, the winner may have to bid more than the minimum.

In the cases described in Part (ii) of the proposition, it is still the case that bidder 2 wins

at 0 cost. But in the cases described in Parts (i) and (iii), bidder 1 might have to bid a

signi�cant amount. Of course, in all of these cases the loser does not bid. For example,

in a scenario with [V1]" < [V2]" that �ts into Part (iii), if it is the case that B2 is close to

k[V1]", then in order to win bidder 1 would have to start with a bid that is close to [V1]".

The observation that bidder 1 might submit a substantial bid in the �rst round might

seem somewhat surprising given that there is complete information and a certain winner

in all equilibria.

5 Discussion

Our analysis has focussed on alternating moves auctions and under complete information.

We close with a brief discussion of alternative formulations.

5.1 Incomplete Information

As wars-of-attrition with incomplete information are well-studied in the context of �xed

rates of bid increases, we examine the impact of jump-bidding. For simplicity, we examine

a case with in�nite budgets.

Let Fi denote the distribution of Vi, and suppose that the bidder�s values are inde-

pendently distributed. We assume that Fi is atomless and has connected support, and

that the distributions have the same support.

For the purposes of this section, we let bidders bid any amount in <+, rather than
on a discrete grid. Play still alternates, and player 2 needs only to match player 1�s bid

to stay in the auction, while player 1 needs to exceed player 2�s current bid. To keep the

game well-de�ned, we presume that player 1 needs to bid at least b2 + " after the �rst

period in order to stay in the auction.

Proposition 5 There exists a sequential equilibrium, with the following behavior on the
equilibrium path. In the �rst period, bidder 1 bids b(V1) where

b(z) = zF2(z)�
Z z

0

F2(t)dt:
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Bidder 2 responds to b1 by either dropping out if V2 < b�1(b1), and by bidding b�1(b1) if

V2 � b�1(b1), in which case 1 then drops out.

Since in this equilibrium the highest valuation bidder always wins, by revenue equiv-

alence the total expected payments made by the bidders equal the expectation of the

lower value among the two. The equilibrium has an interesting interpretation. Bidder

1 bids as if it is a sealed-bid, all-pay auction, where 1 will win if and only if 1 has the

higher value. Bidder 2 then responds by dropping out if 2 has a value lower than bidder

1�s revealed value, and bidding bidder 1�s revealed value otherwise (in which case 1 sub-

sequently drops out). Given that the actions are consistent with the high value winning,

the equilibrium holds together. The e¢ cient outcome means that the expected revenue

had better be the same as that of a second-price (winner pays) auction, which it is.

There is no reason to suppose that this equilibrium is unique. In the context of a

closely related model (Dekel, Jackson and Wolinsky (2006)), we showed that, when there

is su¢ ciently �little� incomplete information, there is a perfect Bayesian equilibrium

(PBE) outcome that is close to the complete-information outcome. The sense in which

the incomplete information is small is that most of the mass of the distribution Fi is

concentrated on the value ~Vi where ~V2 > ~V1 + ", and the sense in which equilibrium

outcome is close to the complete information outcome is that with large probability bidder

2 wins at zero cost. The model there is di¤erent in some small details, so we cannot just

state this result here without reproving it. However, the model here is su¢ ciently close

to the model there to make it a bit super�uous to repeat the result here. So we only

mention it informally as a result that is likely to hold here as well.

5.2 Simultaneous Moves

Suppose that the players move simultaneously in each period rather than sequentially.

The results for the environment with no jump-bidding are essentially independent of

whether the moves are simultaneous or sequential. For the environment with jump-

bidding the analysis becomes much harder with simultaneous moves and it is not clear

whether all the results survive, in particular whether the uniqueness results still hold.

For example, consider the case in which budgets are in�nite. We can show the following.

Proposition 6 In the simultaneous game with jump-bidding and in�nite budgets:6

6To keep the game as similar as possible to the previous analysis, we let bidder 2 win ties. The game
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(i) If V2 + " � V1, then there exists an equilibrium where bidder 1 bids once to a price

of " and then bidder 2 drops out.

(ii) If V1+" � V2, then there exists an equilibrium where bidder 1 drops out immediately
and bidder 2 wins at a price of 0.

So, the equilibria of Proposition 2 extend to the simultaneous move game, but we have

not been able to rule out the possibility that there are also other mixed-strategy equilibria.

One of the key di¢ culties is that the proof of Lemma 1 relies on the sequentiality of the

moves and hence the lemma cannot be invoked.

5.3 Many Bidders.

In the complete information analysis, we did not use the two-bidders assumption in an

important way and all the results extend in a straightforward manner to the case of mul-

tiple bidders. Due to the complete information, the relevant competition is between the

two strongest bidders and the presence of the others does not matter. In the incomplete

information scenario, the presence of more bidders might a¤ect the result as we know

from other auction contexts.
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7 Appendix

Proof of Proposition 1: Consider an equilibrium path along which play continues

beyond the �rst two periods (i.e., beyond the �rst bid of each of the players) with positive

probability. Let t be a period that is reached with positive probability along this path.

Let �ti denote the probability that bidder i drops out in period t (in which i is called to

move) along this path. Observe the following.

(i) If t > 1, then �ti > 0. This follows from Lemma 1 since otherwise t would not
have been reached.

(ii) If i bids at t > 2, then �t�1j � "=Vi. This follows from i�s 0 incremental payo¤

from t on (implied by (i) above) and the fact that i0s expected bene�t of not dropping

out in t� 2 is �t�1j Vi � ".
(iii) If �t�1j > "=Vi, then �t�2i = 0.

(iv) If t > 3, then �t�1j = "=Vi. From observations (ii) and (iii) above, the only

alternative is �t�1j > "=Vi that implies �t�2i = 0 that together with Lemma 1 implies
�t�3j = 1 in contradiction to the assumption that the play on the path continues beyond

t� 3.
(v) If t > 2, then �ti < 1, since �

t
i = 1 would imply �

t�1
j = 0 in contradiction to (ii)

above.

Thus, if play continues beyond the second period, then (v) implies that the mixing

goes on forever and (iv) implies �22 � "=Vi and for t � 3, �tj = "=Vi. This characterizes
all such equilibria and it immediate to verify that they are indeed equilibria.
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It is also easy to verify that there also exists an equilibrium in which play stops in the

�rst period with bidder 1 dropping out, i.e., �11 = 1, and an equilibrium in which play

stops in the second period, i.e., �11 = 0, �
2
2 = 1.

Proof of Proposition 2: Suppose that Vi � Vj+ ". Let bi and bj denote the latest bids
by i and j.

We prove by induction that, for any k � 0; if bi � bj + k" then bidder j quits in any
SPE in a subgame starting with j�s move.

Initial step: The above holds for k such that k" = [Vj]" + (j � 1)". Obviously, if
bi � bj + [Vj]"+(j� 1)", bidder j quits in any SPE in a subgame starting with j�s move.
Notice that (j � 1)" re�ects the asymmetry between 1 and 2, whereby to win 1 has to
bid strictly more than 2 while 2 has just to match.

Induction step: Suppose that the result holds for some _k > 0, then it also holds for

k � 1; that is, if bi � bj + (k � 1) " then j quits in any SPE in a subgame starting with
its move.

Suppose to the contrary that bi � bj + (k � 1)", and j bids with positive probability
when called upon to move. Let b0j be a bid in the support of bids by j. Clearly b

0
j �

bj + [Vj]" (as otherwise it is better for j to quit). If i were to respond with b0i = bi+ [Vi]",

then

b0i � bj + (k � 1)"+ [Vi]":

Since [Vi]" � [Vj]" + ", it follows that

b0i � bj + k"+ [Vj]" � b0j + k":

By the inductive hypothesis, j drops out and i wins. Thus, i has a strategy which

in response to b0j wins for sure at the next node controlled by i and gives i positive

incremental payo¤. However, by Lemma 1, i must quit with positive probability in any

SPE in the subgame that starts after b0j, which means that i�s incremental payo¤ from

continuing is not positive, yielding a contradiction.

From the above induction, we can conclude that, if Vi � Vj + " and bi � bj, then j
drops out with certainty in any SPE starting with its move.

The proposition follows from noting that this implies that, if V1 � V2 + ", then by

bidding " in the �rst move bidder 1 induces 2 to drop out and wins; and if V2 � V1 + ",
then by matching bidder 1�s �rst bid (which must clearly not exceed V1 and hence be

less than V2), bidder 2 induces bidder 1 to drop out at the next node. Therefore, bidder

1 drops out immediately and bidder 2 wins at a price of 0.

Proof of Proposition 3:
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We o¤er the proof for the case where B1 � B2+". The other case is analogous (noting
that 2 needs only match 1�s bid to keep the auction going, while 1 needs to exceed 2�s

bid).

Step 1. Consider a subgame where 1�s outstanding bid b1 � B2 � ([V1]" � "). In the
unique equilibrium continuation: at any node where 1 moves, 1 remains in the auction,

while at any node where 2 moves 2 quits.

1 is guaranteed a positive payo¤ by continuing to the point where b01 � B2+ ". Thus,
1 will stay in at any node in the subgame. The result then follows from Lemma 2 and 1

Step 2. By induction: Suppose that in any subgame where b1 � B2 � k([V1]" � "), at
any node where 1 moves 1 remains in the auction, while at any node where 2 moves 2

quits. Then in the unique equilibrium continuation starting from any subgame where

b1 � B2 � (k + 1)([V1]" � "), at any node where 1 moves 1 remains in the auction, while
at any node where 2 moves 2 quits.

It follows from the inductive hypothesis that if i remains in the game until b01 =

B2 � k([V1]" � ") then 1 wins, and 2 quits. The incremental cost to i is at most [V1]"
and so i is guaranteed a positive payo¤ by staying in, and again the result follows from

Lemma 2 and 1.

Proof of Proposition 4:
The following lemma is useful.

Lemma 3 Suppose that B2 < B1. Consider a subgame where outstanding bids are b1 and
b2, the auction has not ended, and it is 1�s turn to move. Let k(b1; b2) be the minimal

integer k such that b1 + k[V1]" � b2 + (k � 1)[V2]" (set it equal to 1 if no such k exists).

In any subgame perfect equilibrium if b1 + k(b1; b2)[V1]" > B2, then 1 wins in one step

(and 2 drops out immediately); if b1 + k(b1; b2)[V1]" � B2, then 1 drops out immediately
and 2 wins.

Proof of Lemma 3: Note that we are in a case where [V1]" � [V2]" and b1 � b2 (or

the auction would have ended). Let us proceed by induction on the di¤erence between

B2 and b1. We �rst show that it is true if B2 � b1 � [V1]". In this case we may have

b1+k(b1; b2)[V1]" � B2, only if k(b1; b2) = 1 which implies b1+[V1]" � b2 and hence 1 loses
since it can at most match b2 without exceeding its own value. If b1+k(b1; b2)[V1]" > B2,

then k(b1; b2) > 1. From the minimality of k(b1; b2) it follows that b1 + [V1]" > b2 and,

since by assumption b1 + [V1]" � B2, it follows that by bidding b1 + [V1]", 1 is sure to

win. (This follows since if b1 + [V1]" > B2 then 2 would not be able to match, while if

b1 + [V1]" = B2 then 2 would be able to just match and then lose in the next round.)
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Furthermore, since 2 would drop out immediately following 1�s bid of b1 + [V1]", this bid

guarantees a positive incremental payo¤ to 1. Therefore, in any SPE 1 is increasing its

bid at this subgame so by Lemmas 1 and 2 bidder 2 drops out immediately following 1�s

bid. This establishes the lemma for B2 � b1 � [V1]".
Now, suppose that the lemma holds whenever B2 � b1 � T" and let us show that

it is true when B2 � b1 � (T + 1)". Suppose that b1 + k(b1; b2)[V1]" > B2 and that 1

bids b01 = b1 + [V1]". 2�s best response in the subgame must be either to drop out in

which case 1 wins, or to bid b02 � b2 + [V2]". In that case, we are in a situation where

k(b01; b
0
2) � k(b1; b2) � 1 and hence b01 + k(b01; b02)[V1]" � b1 + k(b1; b2)[V1]" > B2: Since

B2 � b01 � T" it follows from the inductive assumption that 1 wins. Therefore, in any

SPE following b01, bidder 2 drops immediately. Therefore, b
0
1 brings positive incremental

payo¤ to bidder 1. Therefore, in any SPE in the subgame starting with b1 and b2 bidder

1 increases its bid and, by Lemmas 1 and 2, bidder 2 drops out immediately. Suppose

next that b1 + k(b1; b2)[V1]" � B2. To any bid b01 by 1 such that b1 < b01 � b1 + [V1]",

bidder 2 can respond with b02 = b2 + [V2]" so that k(b01; b
0
2) � k(b1; b2) � 1. Therefore,

b01 + k(b
0
1; b

0
2)[V1]" � b1 + k(b1; b2)[V1]" � B2 and it follows from the inductive assumption

that following b02, bidder 1 drops immediately. Therefore, b02 gives bidder 2 positive

incremental payo¤ which means that in any SPE bidder 2 increases its bid at this point

and by Lemmas 1 and 2 bidder 1 drops immediately.

Let us now complete the proof of Proposition 4.

If min fB1; [V1]"g > min fB2; [V2]"g, then by bidding min fB1; [V1]"g bidder 1 would
win for sure (as 2 could either not match the bid, or would not wish to) and so 1 must

have a positive payo¤ at the �rst node (noting that V1 > [V1]"). Thus, 1 must bid in the

�rst node with probability 1. Thus, 1 must win by Lemmas 1 and 2.

If min fB1; [V1]"g � min fB2; [V2]"g, and B1 � min fB2; [V2]"g, then 2 can win for sure
at 2�s �rst move and get a positive payo¤ just by bidding B1 when called on to bid. The

result again follows from Lemmas 1 and 2.

So, consider a case where [V1]" � min fB2; [V2]"g < B1. The result then follows from
Lemma 3.

Proof of Proposition 5: Let us �rst completely specify the behavior o¤ the equilibrium
path.

If 1 bids according to b(z) and 2 responds with a bid of more than b�1(b1) at 2�s �rst

move, then 1 believes that V2 > V1 and drops out.

If 2 responds with a bid in the interval [b1; b�1(b1)), then 1 believes that V2 < V1 and

1 then continues by bidding the minimal amount to stay in the auction at all subsequent

18



nodes, subject to the incremental bid not exceeding V1.

If 2 responds with a bid of at least b�1 (b1), and 1 does not drop out, then 2 be-

lieves that V1 = b�1 (b1), and continues to match all of 1�s subsequent bids, provided 2�s

incremental bid does not have to exceed V2.

First, note that the function b (z) has the property that

V1 = argmax
z
[V1F2(z)� b(z)]

Next, given 1�s behavior, note that 2�s response is optimal, since if 2 bids in [b(z); z),

the only way to win subsequently, would be to jump by more than V1, which 2 believes

to be equal to z.

Consider now 1. Suppose it bids b (z). Following this bid 2 believes that V1 = z and

responds accordingly. If 2 responds with bid z and 1 then jumps again, 2 would continue

like in the complete information and the only way 1 can win is by a jump that exceeds

V2. Thus, 1�s expected payo¤ from bidding b (z) is

V1F2 (z)� b (z) + [1� F2 (z)] [1�s value of continuation after 2�s bid of z]

Now,

[1�s value of continuation after 2�s bid of z]

(
= 0 if z � V1
� maxf0; F2(V1)�F2(z)

1�F2(z) V1 �
R V1
z
t dF2(t)
1�F2(t)g if z < V1

The explanation is as follows. If 2 bid z � V1, then V2 � z and 1 will have to jump by
more than z � V1 to win, so it optimal for 1 to quit and the value of continuation is 0. If
z < V1 and 2 responded with z, 1 will have at some point to jump by more than V2 in order

to win. This will happen only if V2 � V1, which occurs with the conditional probability
F2(V1)�F2(z)
1�F2(z) and the least 1 would pay would be V2 whose (conditional) expectation isR V1

z
t dF2(t)
1�F2(t) .

It follows that

[1�s expected payo¤ from bidding b(z)](
= V1F2(z)� b(z) if z � V1
� V1F2(z)� b(z) + [1� F2(z)]maxf0; F2(V1)�F2(z)1�F2(z) V1 �

R V1
z
t dF2(t)
1�F2(t)g if z < V1

Now, since

V1F2(z)� b(z) + [1� F2(z)][
F2(V1)� F2(z)
1� F2(z)

V1 �
Z V1

z

t
dF2(t)

1� F2(t)
] = V1F2(V1)� b(V1)
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and since, by construction,

V1 = argmax
z
[V1F2(z)� b(z)]

it follows that 1�s expected payo¤ from bidding b(z) is maximized at b(V1).

Proof of Proposition 6: We examine the case where V1 � V2 + ". The other case is
the similar, except that 2 does not need to bid with tied bids. We simply describe the

bidding behavior (at an arbitrary node), which is easily checked to be a best response at

any node. Let the current standing bids be b1 and b2.

� If b1 � b2 > 0, then 1 bids 0 and 2 bids 0 and 1 wins.

� If b1 � b2 = 0, then 1 bids 1 and 2 bids 0, and then at the next stage 1 wins.

� If b1 � b2 = �k", where (k + 1)" < V1, then 1 bids (k + 1)" and 2 bids 0, and then
at the next stage 1 wins.

� Otherwise, 1 bids 0 and 2 bids 0, and 2 wins.
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