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Keywords: Bayesian games, independent types, common knowl-
edge

1. Introduction

This note deals with the private information available to different

economic agents in a Bayesian environment, as described, for example,

by the players’ types in the terminology of Harsanyi [6]. In particu-

lar, we are interested in a condition of subjective independence and

related notions. This condition leads to strong consequences in several

important models of Bayesian games as illustrated by the following

examples.

First, in perfect-monitoring Bayesian repeated games (with arbitrary

discount parameter), at every Bayesian equilibrium the play converges

to the play of a Nash equilibrium of the repeated game in which the

realized types are common knowledge. Second, in Bayesian repeated

games there is a full folk theorem even if monitoring is imperfect. And
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third, the equilibria of one-shot Bayesian games with many players are

ex-post Nash and structurally robust. The Appendix provides more

details on all three models.

Motivated by the strong implication of subjective independence, this

note offers deeper understanding of this condition and related notions.

In particular, we discuss a weaker condition, called “independence un-

der common knowledge,” but show that in the case of three or more

players the two conditions are equivalent. Continuing with the case of

three or more players, we elaborate on the environments in which these

conditions hold, and how they relate to common knowledge.

2. Illustrative examples

The following examples help illustrate the concepts.

Example 1. Independence under common knowledge of weather.

In a two-person Bayesian environment, the weather ω may be either

sunny or rainy and, conditional on the realized weather, player i’s

mood µi is either happy or depressed. Each player privately learns

both the state of the weather and his own mood (for example, “It is

sunny and I am depressed”) and hence each player may be any one of

four possible types.



INDEPENDENCE 3

Let w(·) be the probability distribution over the two forms of weather

(with positive probability on each), and let mi(·|ω) be player i’s (mar-

ginal) distribution of moods given the weather. Assume that the likeli-

hood of any pair of types (ω, µ1) and (ω, µ2) is w(ω)m1(µ1|ω)m2(µ2|ω)

and that all these distributions are commonly known to the players.

In the example above the players’ types are not independent. For

example, knowledge of one’s own type precludes two possible opponent

types. But the weather factors the types in the sense that conditional

on every form of weather the types are independent. Moreover, the

weather is common knowledge. In situations like the above, where a

common-knowledge variable factors the types, we say that types are

independent under common knowledge.

Example 2. Independence under ozone levels.

The possible moods of three players (µ1, µ2, µ3) are correlated in the

following way: either each µi = −1 or 1, or each µi = 2 or 4. All

possible 16 (= 23 + 23) triples are known to be equally likely, but

whatever triple is realized, every player i is informed only of his own

mood, µi.

This example illustrates a situation of subjective independence: when

a player knows his own type, he assesses his opponents’ types to be

independent of each other. For example, conditional on µ1 = 2, µ2 and

µ3 are independent of each other and each takes the value 2 or 4 with

equal probabilities.
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One possible explanation for the situation above is that there is a

variable that the players cannot observe directly, say, the ozone level,

which affects all their moods. When the ozone level is low, the moods

are independently drawn to be 2 or 4 each, but when it is high, the

moods are independently drawn to be −1 or 1 each.

Even though the players in the second example may not be aware of

the existence of ozone (let alone its level), the ozone level factors the

moods (i.e. conditional on it, the types are independent). Moreover,

there are many common-knowledge variables, equivalent to the ozone

level, that factor the moods.

For example, consider a general mood variable G that takes on the

value up when all three moods are in the set {2, 4} and the value down

when all three moods are in the set {−1, 1}. Notice that G is common

knowledge (under the usual assumption that the prior probability dis-

tribution is common knowledge). And, in a similar way to the weather

example, G factors the types.

The existence of such a G is not particular to this example, but is

a consequence of Theorem 1 below. For three or more players, when-

ever types are subjectively independent, there must be some common-

knowledge variable (such as G above) that factors them.

Is G unique? It is, but only up to information equivalence. For

example, the variable P which takes on the value even when all three

moods are in the set {2, 4} and the value odd when all three variables
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are in the set {−1, 1} is also common knowledge and under P , as under

G, the types are independent.

But while G and P are technically different, they are informationally

equivalent: knowledge of the value of one is equivalent to knowledge of

the value of the other.

In general, a coarsest variable that factors the types is not unique,

even up to equivalence (see Example 3). But a consequence of Theorem

3 below is that under subjective independence there is only one (up to

equivalence) variable which satisfies these two conditions: it is common

knowledge and it factors the types. Moreover, this variable is equivalent

to the coarsest common-knowledge variable introduced by Aumann [1].

3. Definitions and main results

All random variables (or just variables) considered in the sequel are

defined over a fixed finite probability space (Ω, p). We assume without

loss of generality that p(ω) > 0 for every ω ∈ Ω.

In addition, there is a fixed finite set of n (≥ 2) players, I =

{1, 2, ..., n}, with a vector of random variables T = (T1, ..., Tn), where

each variable Ti represents the type (information) of player i. It is

assumed that the vector T is publicly known. So when a state ω is

realized, each player i is told that his type ti = Ti(ω). Then, through

his knowledge of the entire vector T , he can make further inferences

about his opponents’ types, about any inferences that the opponents

may make about their opponents, etc.
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The variables of T are independent, if for every vector of values

t = (t1, . . . , tn), p(T = t) =
∏

i p(Ti = ti).

The types are independent conditional on a variable Z if for all pos-

sible values t and z, p(T = t|z) =
∏

i p(Ti = ti|Z = z). When this is

the case, we say that Z factors T and, summing over all possible values

of Z, we may write:

p(T = t) =
∑

z

∏
i p(Ti = ti|Z = z)p(Z = z).

A random variable Y reveals a random variable Z if there exists a

function f such that Z = f(Y ). More precisely, f is a function from the

range of Y to the range of Z, with Z(ω) = f(Y (ω)) for every ω ∈ Ω.

(Equivalently, Z(ω) 6= Z(ω′) implies that Y (ω) 6= Y (ω′).) It is easy to

see that the “Y reveals Z” relationship is a partial order on the set of

random variables.

Two random variables, Y and Z, are (informationally) equivalent,

Y ≈ Z , if they reveal each other (Z(ω) = Z(ω′) if and only if Y (ω) =

Y (ω′)). Y strictly reveals Z if Y reveals Z and they are not equivalent.

As will be clear from the context of the statements that follow, when

we discuss a variable Z, we are often concerned with its equivalence

class, [Z], rather than with the variable itself.

It is easy to see that under the equivalence above and the “Y reveals

Z” relationship, the variables on the space form a (complete) lattice

(there are only finitely many variables under the equivalence relation-

ship). The maximal all-revealing variable is represented by the function
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R, with range in the set of states Ω, defined by R(ω) = ω. The minimal

least-revealing variable may be represented by any constant variable.

For a subgroup of players J ⊆ I we say that a variable Z is J-

common-knowledge, if Z is revealed by every Tj with j ∈ J , i.e., for

every j, Z = fj(Tj) for some function fj. For the special case where Z

is I-common-knowledge, we simply say that it is common knowledge.1

When a common-knowledge variable factors the types, we say that

it is a common-knowledge factorization.

The following are three key notions of information (type) indepen-

dence.

Full independence: the variablefs of T are independent.

Independence under common knowledge: there is a common-

knowledge factorization of T .

Subjective independence: for every player i, the other player’s

types, T−i (= (Tj)j 6=i), are independent conditional on i’s type Ti (or

Ti factors T−i).

Since every constant variable is common knowledge, it is clear that

full independence implies independence under common knowledge. Also,

as follows directly from the definitions above, full independence implies

subjective independence.

1As we clarify below, this is equivalent to the standard definition of common
knowledge described in Aumann [1]
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The connection between independence under common knowledge and

subjective independence is less straightforward. If the number of play-

ers is two, then subjective independence is vacuously true (whereas

independence under common knowledge may fail). For three or more

players, it is not surprising that independence under common knowl-

edge implies subjective independence. But the implication turns out

to go in both directions.

Theorem 1. If the number of players n ≥ 3, then the players’ types

are subjectively independent if and only if they are independent under

common knowledge.

The proof of Theorem 1 is postponed to Section 3.2. We first present

some additional results including Theorems 2 and 3. These Theorems

offer deeper understanding of the relationship between independence

and common knowledge, and are used for the proof of Theorem 1.

3.1. Common Knowledge and Independence. Given the variables

T = (T1, ..., Tn), there are always common-knowledge variables (for ex-

ample, every constant variable). Moreover, if Z is common knowledge

and Z reveals Y , then Y is also common knowledge. So a common-

knowledge variable remains common knowledge as information is re-

moved.

But if one goes in the opposite direction, there is an essentially unique

common-knowledge variable that is most informative in a strong sense.
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A variable Y reveals all common knowledge if it reveals every common-

knowledge variable Z, i.e., for every common-knowledge variable Z

there is a function fZ such that Z = fZ(Y ). To construct a common-

knowledge variable with this strong all-revealing property, we follow

Aumann [1].

Fixing a group J ⊆ I of players, let ∼ be the equivalence relation

defined by ω ∼ ω′ if there exists a chain ω0 = ω, ω1, . . . , ωn = ω′ such

that for every k = 1, . . . , n, there exists a player j ∈ J who is the same

type in states ωk−1 and ωk−1: Tj(ωk−1) = Tj(ωk). We define A[J ] by

the equivalence classes for this relation: A[J ](ω) = {ω′, ω′ ∼ ω}. For

notational simplicity we let A = A[I].

Formally, as defined above, A is a random variable with a range in

the set of all subsets of Ω. But it also describes the common-knowledge

partition defined by Aumann [1].

The following lemma shows that A is common knowledge, reveals all

common knowledge, and is essentially unique.

Lemma 1. The variable A is common knowledge and it reveals all

common knowledge. Moreover, if A′ is another variable with these two

properties, then A′ ≈ A.

Proof. First we show that A is common knowledge: Under the con-

struction of A, note that Ti(ω) = Ti(ω
′) implies A(ω) = A(ω′). Thus,

A is revealed by each Ti.
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Now we show thatA is fully revealing: Let Z be a common-knowledge

variable. For any ω, ω′ such that A(ω) = A(ω′), consider a chain

ω0 = ω, ω1, . . . , ωn = ω′ such that for every k = 1, . . . , n, there ex-

ists i with Ti(ωk−1) = Ti(ωk). For every k, Ti(ωk−1) = Ti(ωk) implies

Z(ωk−1) = Z(ωk), so that Z(ω) = Z(ω′). Hence, A reveals Z.

Finally, if both A and A′ are fully revealing, A reveals A′ and A′

reveals A.

The above lemma may be viewed as stating that there is a “strongest”

common-knowledge variable under the partial order imposed by the “Y

reveals Z” relationship. In general, this is not the case for the factor-

ization property, as we discuss next.

It is true that the trivial all-revealing variable R factors the types

and (being all-revealing) reveals every other type-factorization Z. But

for factorization it is useful to go in the opposite direction. If Y and Z

both factor the types and Y reveals Z, the dependencies of the types

can be explained by Z, and the extra information revealed by Y is

superfluous.

So one would like to find the factorization D that is minimal, i.e., any

variable Y that is strictly revealed by D is not a factorization. However,

the example below shows that, in general, minimal factorizations are

not unique (even up to equivalence).

Example 3. Let Ω consist of all the pairs of integers (i, j), with each

taking the values 1, 2, or 3. With the exception of the pair (1, 1),
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which has probability zero, all other pairs are equally likely so that

p(i, j) = 1/8. Two players are told that their types are the values of i

and j, respectively.

Clearly, the types above are not independent, but consider the follow-

ing two variables, S and H: S(i, j) = weak if i = 1 and S(i, j) = strong

if i = 2 or 3; H is similarly defined through the second coordinate, j.

It is easy to see that both S and H are non-equivalent type factor-

izations and that any variable strictly revealed by either one of them

is no longer a type factorization. Thus, we have two different minimal

factorizations.

We will return to the issue of a unique minimal type factorization

after the presentation of the next theorem. It shows that factoring

types is a stronger condition than revealing common knowledge. The

corollary that follows shows that if Z factors the types and is common

knowledge, then it must have the desired property of being the unique

minimal factorization discussed above.

Theorem 2. If Z factors the types, then Z reveals all common knowl-

edge.

Proof. It suffices to show that Z reveals A. Assume that ω, ω′ ∈ Ω

with Z(ω) = Z(ω′) in order to show that A(ω) = A(ω′). Let z = Z(ω),

tk = Tk(ω), and t′k = Tk(ω′) for k = 1, . . . , n. Since p(t1, t2, . . . , tn, z) >

0 and p(t′1, t
′
2, . . . , t

′
n, z) > 0, the independence of (Ti)i conditional on
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Z implies that for every k = 1, . . . , n− 1:

p(t1, . . . , tk, t
′
k+1, . . . , t

′
n) > 0

so that there exists ω1, . . . , ωn−1 such that (t1, . . . , tk, t
′
t+1, . . . , t

′
n) =

(T1(ωk), . . . , Tn(ωk)) for every k.

Hence, A(ω) = A(ω′) whenever Z(ω) = Z(ω′), which shows that Z

reveals A.

The theorem above shows that independence under common knowl-

edge can only occur by conditioning on A:

Corollary 1. If Z is a common-knowledge factorization, then Z ≈ A.

Proof. By Theorem 2, Z reveals A. But being common knowledge, it

is also revealed by A.

Remark. Combined with Theorem 1, the above corollary shows that

the subjective independence condition is powerful. For example, con-

sider an n-person game G with a vector of types T . Let Z be a common-

knowledge factorization of T with |Z| denoting the number of values

in its range.

For any value z of Z, consider the game Gz in which the players’

types are restricted to those compatible with z. Because Z is common

knowledge, each Gz is a well defined game. Actually, G may be repre-

sented as a game in which first the realization z of Z is announced to

all players, then the subgame Gz is played. Moreover, with Z being a
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type factorization, each of the games Gz is a game with independent

types.

The cardinality of the range of Z, |Z|, tells us how many such sepa-

rate games must be considered to achieve the decomposition above.

The corollary above tells us that if the types are subjectively indepen-

dent, there is only one way to get such common-knowledge factoriza-

tion, namely, by conditioning on the all-revealing common-knowledge

variable A. This is useful, because the identification of A is a relatively

easy task that involves only intersections of sets (as in the construction

of A above). Thus, the need to check multiplications, as required in

studying independence, is eliminated.

In the ozone level example in the introduction, for instance, the

general mood variable G is the only common-knowledge factorization;

every other factorization must be equivalent to it or not be common

knowledge.

As follows immediately from the definition, any variable which is

common knowledge for all the players must be common knowledge for

any subset of players. But as the next theorem shows, under subjective

independence (and hence also when we have independence under com-

mon knowledge), the converse is also true: what is common knowledge

to any subset of two or more players is common knowledge to all. It fol-

lows that any fact which is common knowledge to any group of players



14 OLIVIER GOSSNER, EHUD KALAI, AND ROBERT WEBER

must be common knowledge to any other group (wether overlapping or

disjoint).

Theorem 3. No secret common knowledge. Assume that the players’

types are subjectively independent. Any variable Z is common knowl-

edge to a group of players J if and only if it is common knowledge to

a group of players K, where J and K are any two groups (overlapping

or disjoint) with two or more players each.

Proof. Let J be any group of at least two players, and i be any player.

Since the family (Tj)j∈J is independent conditional on Ti, Theorem 2

implies that Ti reveals A[J ]. Thus, A[J ∪ {i}] = A[J ]. Since this is

true for any J , an induction argument shows that for any group J of

at least two players, A[J ] = A.

3.2. Proofs of Theorem 1. We start with the following:

Lemma 2. If X1 and (X2, X3) are independent conditional on X4, then

X1 and X2 are independent conditional on (X3, X4).

Proof. First note that X1 and X3 are independent conditional on X4,

so that p(x1|x4) = p(x1|x3, x4) when p(x3, x4) > 0. Now, for x3, x4 such

that p(x3, x4) > 0, we have

p(x1, x2|x3, x4) =
p(x1, x2, x3|x4)

p(x3|x4)
=
p(x1|x4)p(x2, x3|x4)

p(x3|x4)

= p(x1|x3, x4)p(x2|x3, x4)
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Proof of Theorem 1. We start with the “if” part. Let i, j, k be three

different players. Since Tk and (Tl)l 6=k,i are independent conditional on

Ti, p(tk|(tl)l 6=k,i, ti) = p(tk|(t′l)l 6=k,i, ti) if p((t′l)l 6=k,i, ti)p((t
′
l)l 6=k,i, t

′
i) > 0.

Similarly, p(tk|(tl)l 6=k,j, tj) = p(tk|(t′l)l 6=k,j, tj) if p((tl)l 6=k,j, tj)p((t
′
l)l 6=k,j, t

′
j) >

0. Thus for any a in the range ofA[{i, j}], p(tk|(tl)l 6=k, a) = p(tI |(t′l)l 6=k, a)

whenever p((tl)l 6=k, a)p((t′l)l 6=k, a) > 0. Hence, Tk and (Tl)l 6=k are inde-

pendent conditional on A[{i, j}]. From Theorem 3, Tk and (Tl)l 6=k are

independent conditional on A. Since this is true for any k, the family

T is independent conditional on A.

For the “only if ”part, assume that Ti and (Tk)k 6=i are independent

conditional on common knowledge Z. For any j 6= i, applying lemma

2 with X1 = Ti, X2 = (Tk)k 6=i,j, X3 = Tj, and X4 = Z shows that Ti

and (Tk)k 6=i,j are independent conditional on (Tj, Z). This proves that

Ti and (Tk)k 6=i,j are independent conditional on Tj since (Tj, Z) and Tj

generate the same partition. Since this is true for every i, j, we have

established subjective independence.
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Appendix A. Implications of subjective independence

We discuss more in details several implications of subjective inde-

pendence.

A.1. Learning in Bayesian repeated games. Prior to the start of

an n-person Bayesian repeated game U , a vector T of n types is drawn

according to a commonly known prior probability distribution. Each

player i is informed only of his own realized type, ti. With the realized

vector of types t fixed, the players proceed to play repeatedly a finite

stage game G = (A = ×Ai, u = (ui)) in periods j = 1, 2, .... For every

player i, Ai denotes his feasible set of actions, and ui(ti, a) denotes his

stage payoff as a function of his type, ti, and the profile of actions of

all the players, a. A player’s objective is to maximize the expected

value of the sum of his stage payoffs, discounted by a fixed positive

parameter λ < 1.

A (behavioral) strategy of player i is a rule that prescribes a proba-

bility distribution over Ai at every stage. This distribution may depend

on his own realized type ti and on the history of past profiles of actions
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chosen by all the players at all previous stages (i.e., perfect monitor-

ing). A vector of individual strategies σ = (σ1, ..., σn) is a Bayesian-

Nash equilibrium of U if for every player i, σi is optimal (under the

uncertainty about the realized opponents’ types) relative to σ−i.

As the game progresses, the players observe the actions chosen by

their opponents. Can they learn over time to play optimally, as if

they each know all the realized types of their opponents? The answer

is positive, in the sense below, provided that T satisfies subjective

independence.

For any vector of realized types t, consider the complete information

repeated game Ct, in which every player knows from the beginning

the entire vector of types. (Formally, think of the game above, but

with prior probability 1 assigned to the vector of signals t.) A vector

of strategies f = (f1, ..., fn) is a Nash equilibrium of Ct, if each fi is

optimal relative to f−i.

For any Bayesian equilibrium σ of the Bayesian game U above, for

every vector of realized types t, and for every period j, let σt,j be the

(random) strategy induced by σ and t on the game, starting at time j.

Assuming subjectively independent types, Kalai and Lehrer [9] show

that with probability one, as j becomes large, σt,j approaches a Nash

equilibrium of the complete information game Ct (see their Theorem

2.1 and follow up discussion). In other words, the players learn to play
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optimally as if they know each other’s realized types (and hence each

other’s realized induced strategies).

A.2. Tight folk theorems for repeated games with imperfect

monitoring. The folk theorem shows that, if players in a repeated

game are sufficiently patient, then every individually rational payoff

vector can be sustained as a (perfect) equilibrium payoff. By definition,

a payoff vector is individually rational when it provides each player with

at least his min max payoff (in mixed strategies) of the one-shot game.

This result was first established for games with perfect monitoring

([2], [4]), in which actions chosen by the players are commonly observed

after each stage of the repeated game. More recently, the folk theorem

has been extended to several classes of repeated games with imperfect

monitoring (see, e.g., [3], [7]), where each player gets to observe at

each stage a (possibly partially informative) signal on the action profile

chosen.

When do such results characterize the full set of equilibrium payoff

vectors of the repeated game? With perfect monitoring, a simple argu-

ment shows that every equilibrium payoff vector must be individually

rational.2 This contrasts with games with imperfect monitoring, for

which several examples have shown that a player cannot necessarily

2Each player can play, at every stage, a best response to the mixed action profile
of the other players, and thus defend in the repeated game his min max payoff in
mixed strategies of the one-shot game.
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guarantee his min max payoff, and that not all equilibrium payoffs are

individually rational.

In a recent paper, Gossner and Hörner [5] show that, for a given

player i, if other players’ signals are independent conditional on player

i’s signal, then player i can guarantee his min max payoff in the re-

peated game.3

Our notion of subjective independence naturally applies to games

with imperfect monitoring, where each player’s signal plays the role

of his type: subjective independence holds in this context whenever,

for every player, conditional on this player’s signal, all other players’

signals are independent.

Under subjective independence of players’ signals, every equilibrium

payoffs of the repeated game is individually rational, and the folk theo-

rem gives a full characterization of equilibrium payoffs of the repeated

game.

A.3. Ex-post Nash stability in Bayesian games with many play-

ers. T is a vector of n types drawn according to a commonly known

prior probability distribution. With private knowledge of their own

realized types, the n players proceed to play just once a finite strate-

gic game G = (A = ×Ai, u = (ui)). Each Ai denotes the actions

available to player i, and each ui(t, a) describes the payoff of player i

3Furthermore, this condition is also necessary in a precise sense: Consider a
distribution of signals such that player i can guarantee his min max for any payoff
function. Then, the other players’ signals are independent conditional on some
garbling of i’s signal.
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under the vector of types t, when the profile of actions a is selected.

We assume that the payoff functions ui are anonymous in opponents:

ui(t, a) = ui(t
′, a′) whenever (t′i, a

′
i) = (ti, ai) and (t′−i, a

′
−i)j can be

obtained from (t−i, a−i)j by permuting the indexes j 6= i.

Would the outcome of the game be ex-post stable? Or would the

players have incentives to revise the choices they made (based solely

on their own types) after they observe (partial or full) hindsight infor-

mation about the realized types and actions of their opponents?

Assuming subjectively independent types and continuous utility func-

tions, Kalai [8] shows that as the number of players increases, the out-

come of the game becomes ex-post stable and fully information-proof:

for any information revealed ex-post, the probability that some player

will have significant incentives to revise his choice is negligible.
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