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Abstract

We study the relationship between a player’s (stage game) minmax payoff and the
individually rational payoff in repeated games with imperfect monitoring. We characterize
the signal structures under which these two payoffs coincide for any payoff matrix. Under
a full rank assumption, we further show that, if the monitoring structure of an infinitely
repeated game ‘nearly’ satisfies this condition, then these two payoffs are approximately
equal, independently of the discount factor. This provides conditions under which existing
folk theorems exactly characterize the limiting payoff set.

1 Introduction

Folk theorems aim at characterizing the entire set of payoff vectors that can be attained at
equilibrium in repeated games. While some of the early literature focused on Nash reversion (see
[Fri71]), it was recognized early on that, under perfect monitoring, players could be held to a
perhaps less intuitive but often strictly lower payoff, the minmax payoff, defined to be

min
α−i∈⊗j 6=i△Aj

max
ai∈Ai

gi (ai, α−i) ,

where ai ∈ Ai are player i’s pure actions, αj ∈ △Aj is player j’s mixed action and gi is player i’s
payoff function.1 That is, the minmax payoff is the lowest payoff player i’s opponents can hold
him to by any choice α−i of independent actions, provided that player i correctly foresees α−i

and plays a best-response to it.
When the folk theorem was later extended to imperfect public monitoring (see [FLM94]),

the minmax payoff thus appeared as a natural bound to focus on. Yet it is known that, unlike
in the case of perfect monitoring, there are games with imperfect public monitoring in which
some player’s individually rational payoff is strictly lower than his minmax payoff. The main
purpose of this paper is to characterize the (public or private) monitoring structures for which
such phenomena occur.

∗We thank Tristan Tomala and Jonathan Weinstein for very useful discussions, as well as audiences at Brown
University, the University of Pennsylvania and Yale University

1See, among others, [AS76], [FM86], [Rub77]
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The minmax payoff is certainly an upper bound on a player’s individually rational payoff (the
lowest payoff he can be held down to), as his opponents can always choose to play the minimizing
mixed strategy profile in every period. Yet in games with imperfect monitoring, private histories
offer some scope for correlation among a player’s opponents, and his individually rational payoff
can sometimes be lower, in the event that player i ’s correlated minmax payoff is strictly below
his minmax payoff (the definition of correlated minmax payoff is obtained by replacing ⊗j 6=i△Aj

by △⊗j 6=i Aj as the domain of the minimization in the definition of the minmax payoff).
There are important known special cases in which the identification of individually rational

payoff and minmax payoff is warranted:
- if there are only two players, as correlated minmax and minmax payoffs then coincide;
- if monitoring is perfect, as all players then hold the same information at any point in

time, so that the probability distribution over player i’s opponents’ actions given his information
corresponds to independent randomizations by his opponents;

- if monitoring is public, but information is semi-standard ([Leh90]);
- if monitoring is public, but attention is restricted to public strategies, as in this case as well

the information relevant to forecasting future play is commonly known.
However, as mentioned, examples of games are known in which a player’s equilibrium payoff

can be strictly below his minmax payoff. A fortiori, the same phenomenon arises in repeated
games with private monitoring, an active area of research in game theory (see [Kan02] for a
survey). In fact, we provide simple examples to show that this is even possible when:

- monitoring is almost-perfect;
- the punished player perfectly monitors his opponents;
- monitoring is public (see also [FT91], exercise 5.10).
In general, individually rational payoffs depend both on the details of the monitoring structure

and the payoff functions, and computing them is a daunting task. The present paper identifies
the general condition on the monitoring structure under which the minmax payoff is indeed the
players’ individually rational payoff. This condition is trivially satisfied in the cases listed above
and precisely characterizes those monitoring structures for which, after every history, each player
can view his opponents’ actions as independent randomizations, conditional on his information.
Roughly speaking, what is needed is that, for all mixed action profiles, the distribution over
player i’s opponents’ ‘signals’ be independent, conditional on player i’s ‘signal’ or a garbling
thereof, where a player’s ‘signal’ includes both his own action and the actual signal he observed.

Because we would like to identify the condition on the signal structure that is necessary and
sufficient for our result, independently of the payoff matrix, we first derive our characterization
in the context of static games with exogenous signals. In this framework, the number of signals
and the number of actions can be treated independently. We precisely determine for which
signal structures there exists at least one payoff matrix (not necessarily the same for all signal
structures) for which, in the game in which players receive a signal before choosing their action,
a given player can be held down to a lower payoff than in the same game without signals.2 Signal
and action sets can no longer be treated independently in the repeated game, considered next,
and thus the condition becomes only sufficient there.

2A complementary problem is to determine for which payoff matrices there exists at least one signal structure
that allows one player to be held down below his minmax payoff. The answer is trivial, as it amounts to
comparing the minmax and the correlated minmax payoff of the payoff matrix. Our question is motivated by the
folk theorems, in which conditions are identified on the signal structure that are sufficient for all games.
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Because a growing literature examines the robustness of folk theorems with respect to small
perturbations in the monitoring structures, starting from either perfect monitoring (see [Sek97],
[EV02], [BO02], [Pic02], [HO06]), or imperfect public monitoring ([MM02], [MM]), we actually
also prove a stronger result. We show that, as the distance of the monitoring structure to
any monitoring structure satisfying the aforementioned condition converges to zero, so does the
distance between the individually rational payoff and the minmax payoff. Further, we show
that this convergence is uniform in the discount factor, provided that the monitoring structure
satisfies some standard identifiability assumptions that are necessary for the result.

As mentioned, almost-perfect monitoring is not sufficient in general for such a result; that
is, the metric defining almost-perfect monitoring is weaker than what is necessary for such con-
vergence. Nevertheless, it is an immediate corollary of our result that convergence obtains in
the case of almost-perfect monitoring if in addition attention is restricted to the canonical signal
structure, in which players signals are (not necessarily correct) action profiles of their opponents.
This provides therefore a converse to Theorem 1 of [HO06].

An important question left open is how to actually determine the individually rational payoff
when it is below the minmax payoff. Such a characterization is obtained under significantly
more restrictive assumptions on the monitoring structure by [GT04]. Similarly, [Leh90] restricts
attention to the case in which information is semi-standard. That is, there exists a partition of
each player’s action set, and, for a given action profile, players publicly observe the element of
the partition corresponding to each player’s action. Another open question is how to generally
construct equilibria that achieve payoffs below the minmax payoff, assuming that the individually
rational payoff is indeed below the minmax payoff. It is important to note that this may help
support efficient outcomes as equilibria of the repeated game, as it enhances the severity of
punishments.

Section two presents examples that motivate our condition. Section three proves that this
condition precisely characterizes the signal structures for which, for any payoff matrix, a player
can guarantee his minmax payoff. Section four extends the analysis to the case of infinitely
repeated games and proves that the individually rational payoff is almost equal to the minmax
payoff when the monitoring structure ‘almost’ satisfies our condition. Section five proves the
main theorem of Section four.

2 The duenna game3

Two lovers (Player 1 and 2) attempt to coordinate on a place of secret rendezvous. They
can either meet on the landscape garden bridge (B) or at the woodcutter’s cottage (C). Unfor-
tunately, the incorruptible duenna (Player 3) prevents any communication between them, and
wishes to disrupt their meeting. Therefore, the rendezvous only succeeds if both lovers choose
the same place and the duenna picks the other place. In all other cases, the duenna exults.

We model this situation as a ‘team’ zero-sum game, where the common payoff to the lovers is
the probability of a successful meeting. Figure 1 displays the probability of a successful meeting,

3This game is sometimes referred to as the “three player matching pennies” game (see [MW98]). We find this
name slightly confusing, given that the “three person matching pennies” game introduced earlier by [Jor93] is a
different, perhaps more natural generalization of matching pennies.
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as a function of the players’ choice (lovers choose row and column; the duenna chooses the
matrix).
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Figure 1: The Duenna game

In the absence of any correlation device, the team can secure a payoff of 1/4, as the unique
equilibrium point calls for all three players to choose both actions with equal probability. Yet if
players 1 and 2 could secretly coordinate, they could achieve a probability of 1/2, by choosing
the action profiles (B,B) and (C,C) with equal probability.

Now we turn to the repeated game, and assume that monitoring is potentially imperfect. This
requires introducing some notation. Let Ωi denote player i’s (finite) set of signal, with generic
element ωi. The distribution of ω : = (ω1, ω2, ω3) ∈ Ω := ⊗iΩi under action profile a ∈ A is
denoted qa, with marginal distribution on Player i’s signal given by qa

i . A monitoring structure
is denoted (Ω, q), where q = {qa : a ∈ A}.

Example 1: (Almost-perfect monitoring) Recall from [MM02] that the monitoring structure
(Ω, q) is ε-perfect if there exist signaling functions fi : Ωi → A−i for all i such that, for all
a ∈ A, i = 1, 2, 3 :

qa ({ω : fi (ωi) = a−i}) ≥ 1 − ε.

That is, a monitoring structure is ε-perfect if the probability that the action profile suggested
by the signal is incorrect does not exceed ε, for all possible action profiles.

Let Ω1 = {ωa
1, ω

′a
1 : a ∈ A} , Ω2 = {ωa

2, ω
′a
2 : a ∈ A}, Ω3 = {ωa

3 : a ∈ A}. Consider

qa ((ωa
1, ω

a
2, ω

a
3)) = qa ((ω′a

1 , ω
′a
2 , ω

a
3)) =

1 − ε

2
, all a ∈ A,

where ε > 0, and set f3 (ωa
3) = a, fi (ω

a
i ) = fi (ω

′a
i ) = a, all i = 1, 2 and a ∈ A. The specifica-

tion of the remaining probabilities is arbitrary. Observe that monitoring is ε-perfect, since the
probability that a player receives either ωa

i or ω′a
i is at least 1 − ε under action profile a.

Yet players 1 and 2 can secure (1 − ε) /2 →ε→0 1/2 (as the discount factor tends to one).
Indeed, they can play B if ωa

i is observed at the previous stage, and C if ω′a
i is observed at the

previous stage, independently of a. Therefore, even under almost-perfect monitoring, the payoff
of player 3 in this equilibrium is bounded away from his minmax payoff.

This shows that the set of equilibrium payoffs under almost-perfect monitoring can be signif-
icantly different from the set of equilibrium payoffs under perfect monitoring. In this example,
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the set of signals is richer under imperfect private monitoring than under perfect monitoring.
Therefore, one may argue that the comparison of the minmax levels is not the most relevant one
here. Indeed, the natural “limit” monitoring structure (as ε → 0) in the example is a monitor-
ing structure that is perfect but that also allows for a private correlation device for Players 1
and 2. Indeed, it is generally true that the minmax level is a continuous function of the signal
distribution for fixed sets of signals (and discount factor). But this severely restricts the set of
monitoring structures that can be considered close to the one usually considered in the literature
on perfect monitoring.

Further, restricting the set of signals does not rule out correlation possibilities such as in
Example 1, as they arise even under the canonical signal structure, the one for which Ωi = A−i,
for all i. It is a consequence of our main result that, if the monitoring structure is almost-
perfect and the signal structure is canonical, then individually rational payoff and minmax payoff
coincide.

Our second example shows that almost perfect monitoring and canonical signals is not enough
to rule out situations in which the individually rational payoff of the repeated game is significantly
lower than the min max of the one-shot game.

Example 2: (Perfect monitoring by player 3, canonical signal structure) Each player’s set
of signals is equal to his opponents’ set of actions: Ωi = A−i, for all i. Player 3’s information is
perfect:

qa
3 (a−3) = 1, ∀a ∈ A.

Player 1 perfectly observes player 2’s action, and similarly player 2 perfectly observes player 1’s
action. Their signal about player 3’s action is independent of the action profile, but perfectly
correlated across them. In particular:

qa
1 ((a2, C)) = qa

1 ((a2, B)) = 1/2,

qa
2 ((a1, C)) = qa

2 ((a1, B)) = 1/2.

Consider the following strategies for player 1 and 2: play both actions with equal probability in
the first period, and in later period, play C if the last signal about player 3 is C, and play B
otherwise. This achieves a payoff of 1/2.

Example 2 shows that it is not enough to require that player 3 have perfect information about
his opponents’ actions, and/or that the signal structure be canonical, to rule out cases in which
a player’s individually rational payoff is lower than his minmax payoff. In Example 2, player 1
and 2’s signal are completely uninformative about player 3’s action, but it is straightforward to
construct more complicated variations (with canonical signal structures) for which their signal
is arbitrarily informative, and yet such that, for a given level of informativeness, the minmax
payoff is bounded away from the individually rational payoff. One may argue that the problem
here is that player 3’s information is not nearly rich enough, as it does not include its opponents’
signal about its own action. This, however, requires a larger set of signals, and takes us back to
our initial example.

The issue is not solved either by requiring that the player’s signals be almost public, a stronger
requirement introduced and studied in [MM]. Indeed, even under public monitoring, it is known
that the individually rational payoff may be lower than the minmax payoff. As mentioned, one
example can be found in [FT91], exercise 5.10. A simpler one is provided by Example 3.
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Example 3: (Public monitoring) Players’ signal sets are identical: Ωi = {ω1, ω2}. Monitoring
is public, that is, signals are identical for all three players. For all a ∈ A:

qa (ω1) = 1 if (a1, a2) = (B,B) or (a1, a2) = (C,C) , and qa (ω2) = 1 otherwise.

Thus, signal ω1 obtains if and only if players 1 and 2 choose the same action, and signal ω2 obtains
otherwise. Observe that players 1 and 2 can infer from the signal whether (a1, a2) = (C,C) or
(B,B) but player 3 cannot. The strategies of player 1 and 2 are as follows: play both actions
with equal probability in odd periods, including the first one; play C (respectively, B) in even
periods if and only the action profile in the previous period was (C,C) (respectively, (B,B)),
and play both actions with equal probability otherwise. Such a strategy guarantees a payoff
approaching 3/8 as the discount factor approaches one.

Finally, we provide an example in which the monitoring is imperfect, signals are not (con-
ditionally) independent, yet players 1 and 2 cannot take advantage of it, independently of the
payoff function for player 3.

Example 4: (A monitoring structure for which the individually rational payoff equals the
minmax payoff) Each of the three players has two signals: Ωi = {ωi, ω

′
i}. Signal ω3 has probability

1/2. The distribution of player 1 and 2’s signals, conditional on player 3’s signal, is given in
Figure 2. Since one and only one of the signal profiles of player 1 and 2 has probability zero,
conditional on either signal of player 3, it is immediate that these conditional distributions are
not product distributions. Yet we claim that, in any game that may be played, along with this
signal structure, player 3 can guarantee his minmax payoff.

5/9

02/9

2/9 0

2/9

2/9

5/9

ω
′

1

ω1

ω2 ω
′

2

ω
′

1

ω1

ω2 ω
′

2

ω3 ω
′

3

Figure 2: Conditional distributions

Why? Observe that player 3 can always decide to ‘garble’ his information, and base his
decision on the garbled information, as summarized by two fictitious signals, ω̃3 and ω̃′

3. In
particular, upon receiving signal ω3, he can use a random device that selects ω̃3 with probability
1/5, and selects ω̃′

3 with probability 4/5; similarly, upon receiving signal ω′
3, he can use a device

that selects ω̃′
3 with probability 1/5 and ω̃3 with probability 4/5. He then takes a decision that is

optimal for his signal given player 1 and 2’s strategies (i.e., maximizes his conditional expected
payoff). It is easy to check that, after such a garbling, the distribution of player 1 and 2’s signals,
conditional on signal ω̃3, is the product distribution assigning probability 1/3 to signal ω1 and
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2/3 to signal ω2. Likewise, the distribution of player 1 and 2’s signals, conditional on signal ω̃′
3,

is the product distribution assigning probability 2/3 to signal ω1 and 1/3 to signal ω2. Observe
finally that, if the distribution of player 1 and 2’s signal is a product distribution, conditional on
each possible signal of player 3, player 3 can guarantee his minmax payoff for whatever payoff
function, since no matter how player 1 and 2 play, the resulting distribution over their action
profiles remains a product distribution.

This last example shows that there is a close connection between the individually rational
payoff and the existence of a garbling of player 3’s signal that satisfies conditional independence
(more precise definitions are introduced in Section 3). To study this connection in its simplest
form, we abstract in the following section from the dynamic nature of repeated games and pose
our problem in the context of static games with exogenous signals. This allows us to treat the
size of the signal space and the size of the action space as independent, a property that no longer
holds in the repeated game.

3 Games with a Signal Structure

In this section, we examine finite one-shot games in which, prior to play, each player receives
a signal ωi ∈ Ωi that follows some exogenous (joint) distribution. Each player can then condition
his play on his signal, if he wishes to. We are interested in characterizing the signal structures
under which some fixed player’s equilibrium payoff may be lower than his minmax payoff. There-
fore, we consider payoff matrices such that all players but player i have the same payoff, which
is the exact opposite of player i’s payoff. Such a game is called a team zero-sum game.4 Given
any set B, △B denotes the set of probability distributions over B, and when B is a subset of a
vector space coB denotes the convex hull of B. Given a collection of sets {Bi}, ⊗iBi denotes
the Cartesian product of these sets.

Consider for example the duenna game. For which signal structures (i.e., distributions) does
there exist (Perfect Bayesian) equilibria for which the payoff exceeds 1/4?

Let us first consider the simplest case, in which player 3 receives no signal.

Lemma 1 If Ω3 is a singleton set, there exists an equilibrium in which players 1 and 2’s payoff
strictly exceeds 1/4 if and only if the signals ω1 and ω2 are not independently distributed.

Proof. The necessity part is obvious. To prove sufficiency, observe first that we can restrict
attention to the case in which players 1 and 2 receive two signals only. Indeed, if player 1 and
2’s signals are not independently distributed, we can always pick some (ω1, ω2) ∈ Ω1 × Ω2 so
that ∆ := Pr {(ω1, ω2)}Pr {(ω′

1, ω
′
2)} − Pr {(ω1, ω

′
2)}Pr {(ω′

1, ω2)} 6= 0, where ω′
j := Ωj\ {ωj}:

i.e., players can always treat all signals but one as a unique signal.5 Reversing the meaning of
signals if necessary, we may assume that ∆ > 0.

Further, we claim that we can assume that Pr {(ω1, ω2)} = Pr {(ω′
1, ω

′
2)} > Pr {(ω1, ω

′
2)} =

Pr {(ω′
1, ω2)}. To see this, observe that players can ‘garble’ their signal by using randomizations

4Team zero-sum games are introduced and studied in [vSK97]
5To do so, observe that if signals are not independently distributed, there exists ω1, ω2 such that

Pr {(ω1, ω2)} 6= Pr {ω1}Pr {(ω2)}. Identify then all signals ω
′

i
6= ωi and consider the resulting information

structure.
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{pi, qi} ⊆ [0, 1]2, i = 1, 2. That is, we define “signals” {ω̃i, ω̃
′
i} as follows: conditional on observing

ωi, player i assigns probability pi to the signal ω̃i (1 − pi to the signal ω̃′
i); similarly, conditional

on observing ω′
i, he assigns probability qi to the signal ω̃′

i (1 − qi to the signal ω̃i). We pick qi,
i = 1, 2, so that Pr {(ω̃1, ω̃2)} = Pr {(ω̃′

1, ω̃
′
2)} and Pr {(ω̃′

1, ω̃2)} = Pr {(ω̃1, ω̃
′
2)}, i.e.

q1 =
1
2
− (1 − p1) Pr {(ω1, ω2)} + Pr {(ω1, ω

′
2)}

Pr {(ω′
1, ω2)} + Pr {(ω′

1, ω
′
2)}

,

q2 =
1
2
− (1 − p2) Pr {(ω1, ω2)} + Pr {(ω′

1, ω2)}

Pr {(ω1, ω′
2)} + Pr {(ω′

1, ω
′
2)}

.

Observe that we can choose p1 and p2 in (0, 1/2) so that q1 and q2 are both in [0, 1].6 In addition,

Pr {(ω̃1, ω̃2)} − Pr {(ω̃1, ω̃
′
2)} =

(1 − 2p1) (1 − 2p2)∆

2 (Pr {(ω1, ω′
2)} + Pr {(ω′

1, ω
′
2)}) (Pr {(ω′

1, ω2)} + Pr {(ω′
1, ω

′
2)})

,

which is strictly positive. Therefore, the common value on the diagonal strictly exceeds the
common value off the diagonal; in other words, the common value on the diagonal exceeds 1

4
.

We are now ready to show that there are strategies which strictly improve upon the minmax
payoff. Player i = 1, 2 plays T if he receives signal ω̃i and B otherwise. Since Pr {(ω̃1, ω̃2)} =
Pr {(ω̃′

1, ω̃
′
2)}, player 3 is indifferent between both his actions, and his payoff is then equal to

Pr {(ω̃1, ω̃2)} > 1/4,

which was to be shown.

Remark 1 Given the previous lemma, one may conjecture that, when Ω3 is a singleton and if
the correlated min max payoff of the one-shot game is strictly below the min max payoff, then the
individually rational payoff for player 3 in the repeated game is less than the min max payoff if
and only if the same holds for the duenna game. This conjecture is incorrect.

What does this suggest for the general case in which player 3 also receives signals? If it is
the case that, conditional on each signal he can receive, player 1 and player 2’s signals are inde-
pendently distributed, player 1 and 2 cannot improve upon player 3’s minmax payoff. Therefore,
conditional independent distributions are part of the distributions for which the minmax payoff
equals the individually rational payoff. This is not the only case, however: if player 1 and 2’s
signals are unconditionally distributed, player 3 can also secure his minmax payoff. After all, he
can always choose to disregard his signal. Observe that this can occur even when there is no
signal of player 3 for which player 1 and 2’s signal would be conditionally independent. Example
4 further shows that we must include a larger class of distributions: namely, player 3 can secure
his standard minmax if the distribution of his signals is sufficient for another distribution of
signals for which conditional independence holds. This class includes the two previous cases
as special cases but is much richer (for instance, it can be shown that the game of Example 4
remains in this class for any prior such that the probability of ω3 is between 1/5 and 4/5).

6Observe that ∆ 6= 0 implies that Pr {(ω1, ω2)} + Pr {(ω1, ω
′

2
)} and Pr {(ω′

1
, ω2)} + Pr {(ω′

1
, ω

′

2
)} are both in

(0, 1).
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In the remainder of this section, we prove that this class of distributions exactly characterizes
the distributions for which the individually rational payoff equals the minmax payoff. That is, for
any signal structure that does not have the property that some garbling of it satisfies conditional
independence (from the point of view of some player i), there exists a finite game in which the
individually rational payoff of player i is strictly lower than his minmax payoff. To this end, one
can verify that the duenna game is no longer sufficient.

Before stating the result, further notation and formal definitions must be introduced. Given
a team zero-sum game G (without signal structure) between player i (fixed throughout) and all
other (‘team’) players, we denote by Γ(q, G) the (zero-sum) game obtained from G by adjoining
the signal structure q (where the set of signals is given by the domain of q). The highest payoff
that player i can secure is denoted vi (G) in the game G, and Vi(q, G) in the game Γ(q, G). The
set of independent distributions M = ⊗j 6=i△Ωj is viewed as a subset of △Ω−i. As usual, the
product of two distributions p and q is denoted p⊗ q.

Definition 1 A family p = (pωi
)ωi

of elements of △M is a garbling of q ∈ △Ω on M for player
i if, letting q ⊗ p ∈ △(Ω ×M) denote the distribution induced by q and p, there is a version of
p⊗ q(ω−i|m) such that:

p⊗ q(ω−i|m) ∈M a.s.

The distribution q ∈ △Ω admits a garbling on M for player i if there exists a garbling of q ∈ △Ω
on M .

In words, upon receiving a signal ωi, player i draws a random m ∈ M according to pωi
,

remembers m and forgets ωi. When (pωi
)ωi

is a garbling of q on M , the new belief of player i
over Ω−i is then p⊗ q(ω−i|m) ∈ M .

Given q ∈ △Ω, let ω be a random variable with law q. We view q(ω−i|ωi) as a random variable
with values in △Ω−i and denote its distribution by µi

q ∈ △(△Ω−i) (note that µi
q depends only

on q, not on the particular choice of ω).

Lemma 2 Let β ∈ △M . There exists a garbling p = (pωi
)ωi

of q ∈ △Ω on M for player i such
that p⊗ q has marginal β on M if and only if for every bounded convex function ψ on △Ω−i,

Eβψ
β ≤ Eµψ

β.

Proof. This is an extension of the theorem of [Bla51] to the infinite-dimensional case. See
[CFM64] and [Str65].

We may now state and prove the main result of this section, establishing that the signal
structures for which the individually rational payoff equals the minmax payoff for all payoff
matrices are precisely those admitting a garbling satisfying conditional independence.

Proposition 3 The distribution q ∈ △Ω admits a garbling on M for player i if and only if, for
every finite game G,

vi(G) = Vi(q, G).
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Proof. We start with the easier “only if” part. Assume that p = (pωi
)ωi

is a garbling of q on M
for player i, and let G be a finite game with actions sets (Aj)j and payoff function gi for player i.
Consider strategies σj : Sj → △Aj for players j 6= i in the game Γ(q, G), and for every m ∈ M ,
let x(m) ∈ ⊗j 6=iAj be the image of m by σ−j given by x(m)(a−i) =

∑

ω−i
m(ω−i) ⊗j σj(ωj)(aj).

For every x ∈ ⊗j 6=i△Aj, let ai(x) be a best response to x for player i. Consider the strategy σi

for player i in Γ(q, G) defined by σi(ωi) =
∫

M
ai(x(m))dpωi

(m). The expected payoff for player i
in Γ(q, G) when σ is the profile of strategies followed is

Edg(σ−i(ω−i), σi(ωi)) =

∫

M

g(ai(x(m)), x(m))d(p⊗ q)(m) ≥ Vi(G).

For the “if” part, endow A := {β, supp β ⊆ M}, subset of the set of distributions over
D = △S−i, with the weak∗ topology. Let B be the set of continuous convex functions on D
bounded by 0 and −1, endowed with the topology of the uniform norm. Both A and B are
compact convex sets.

Since q admits no garbling on M for player i, by Lemma 2,

∀β ∈ A, ∃ψβ ∈ B,Eβψ
β > Eµψ

β. (1)

The map g : A × B → R given by g(β, ψ) = ψβ − Eβψ
β is continuous, so, by the min max

theorem, the two-player zero-sum game in which player I’s action set is A, player II’s action set
is B and the payoff to I is given by g has a value v, and 1 implies v < 0. Hence there exists
ψ ∈ B such that

∀β ∈ A,Eβψ > Eµψ − v. (2)

Letting ψ′ = ψ − Eµψ + v/2 we have Eµψ
′ = v/2 < 0 and ψ′(m) > −v/2 > 0 for all m ∈M .

For every m ∈M , there exists a linear map φm on D such that φm(m) > 0 and φm ≤ ψ. Let
Om be a neighborhood of m such that ψm > 0 on Om. Since M is a compact subspace of D and
∪mOm = M , there exists a finite subfamily M0 ⊂ M such that ψ′′ := maxm∈M0

φm > 0 on M .
Furthermore Eµψ

′′ ≤ Eµψ < 0.
Now consider the game G in which each j 6= i has strategy set Ωj , player i has strategy set

M0, and i’s payoff function gi is given by gi(m0, ω−i) = φm0
(ω−i). For each m in M and m0 ∈M0,

Emgi(m0, ω−i) = φm0
(m) > 0, so that minm∈M maxm0∈M0

gi(m0, m) > 0. On the other hand, in
the game in which signals are distributed according to µ and the payoff function is gi, if players
j 6= i play their signals in G, player i’s best response yields a payoff of Eµ maxm0∈M0

φ(d) ≤
Eµψ(d) < 0.

This indicates that the existence of a garbling that satisfies conditional independence is the
appropriate condition for our purposes. However, in the repeated game, the problem is slightly
more complicated. First, the distribution is itself a function of (past) actions. Therefore, it
must be strengthened to the existence of a garbling providing conditional independence, for each
possible action profile, whether pure or mixed.7 Second, because it is important to include cases
in which conditional independence need not hold exactly (as is typically the case if we consider,
for instance, a monitoring structure that is almost, but not perfect), we must allow for small
departures from conditional independence, which complicates the analysis, especially since we
aim for a bound that is uniform in the discount factor.

7Observe that conditional independence of signals for each pure action profile does not imply conditional
independence for all mixed action profiles.
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4 Repeated Games with Imperfect Monitoring

A stage game G specifies the set of players i = 1, ..., n, each player’s (finite) action set Ai

and, for each player i, a payoff function gi : A := A1 × · · · × An → R. We restrict attention to
games G for which |gi (a)| < 1, all i = 1, . . . , n, a ∈ A (the specific choice of the upper bound is
obviously irrelevant).

Players can use mixed actions αi ∈ △Ai. The domain of gi is extended to mixed action
profiles α ∈ △A in the usual manner:

gi (α) =
∑

a∈A

α (a) gi (a) .

Mixed actions are unobservable. No public randomization device is assumed.
We consider the infinitely repeated game, denoted G∞. In each period, player i observes a

private signal ωi from some finite set Ωi, whose distribution depends on the action profile being
played. Therefore, player i’s information in period t consists of both his action ai and his private
signal ωi. Let si = (ai, ωi) denote this information, or signal for short, and define Si := Ai ×Ωi.
The monitoring structure determines a distribution over private signals for each action profile.
For our purpose, it is more convenient to define it directly as a distribution over S := S1×· · ·×Sn.
Given action profile a ∈ A, qa (s) denotes the distribution over signal profile s = (s1, . . . , sn).
We extend the domain of this distribution to mixed action profiles α ∈ △A, and write qα (s).
Let qα

i denote the marginal distribution of qα over player i’s signals si, and given si ∈ Si and
α ∈ △A such that qα

i (si) > 0, let qα
−i (· | si) denote the marginal distribution over his opponents’

signals, conditional on player i’s signal si. From now on, a monitoring structure refers to such a
distribution q.

Players share a common discount factor δ ∈ (0, 1), but as will be clear, its specific value
is irrelevant (statements do not require that it be sufficiently large). Repeated game payoffs
are discounted, and their domain is extended to mixed strategies in the usual fashion; unless
explicitly mentioned otherwise (as will occur), all payoffs are normalized by a factor 1 − δ.

For each i, the minmax payoff v∗i of player i (in mixed strategies) is defined as

v∗i := min
α−i∈⊗j 6=i△Aj

max
ai∈Ai

gi (ai, α−i) .

A private history of length t for player i is an element of H t
i := St

i . A (behavioral) private
strategy for player i is a family σi = (σt

i)t, where σt
i : H

t−1
i → △Ai. We denote by Σi the set of

these strategies. Player i’s individually rational payoff in the repeated game is the lowest payoff
he can be held down to by any choice σ−i = (σj)j 6=i

of independent choices of strategies in the
repeated game, provided that player i correctly foresees σ−i and plays a best-reply to it. Since
our purpose is to investigate individually rational payoffs and minmax payoffs, there is no need
to introduce a solution concept.

A distribution q on S, or S−i, is a product distribution if it is the product of its marginal distri-
butions: for instance a distribution q on S is a product distribution if and only if q ((s1, . . . , sn)) =
q1 (s1) · · · qn (sn) for all s1, . . . , sn. This class is the key to our characterization.

Theorem 4 If

qα
−i (· | si) ∈ ⊗j 6=i△Sj, ∀α ∈ ⊗j△Aj, ∀si ∈ Si such that qα

i (si) > 0,

11



then player i’s individually rational payoff equals his minmax payoff.

This result is proved in the next section, as an immediate consequence of the first step of the
proof of Theorem 6. To state the next important but straightforward extension of Theorem 4,
one more notation must be introduced. A distribution q on S is in DB

i if q admits a garbling on
⊗j 6=i△Sj for player i.

Corollary 5 If
qα ∈ DB

i , ∀α ∈ ⊗j△Aj,

then player i’s individually rational payoff equals his minmax payoff.

Observe that this corollary generalizes Theorem 4, as if qα
−i (· | si) is in ⊗j 6=i△Sj for all si

in Si, then qα is in DB
i . Also, if qα

−i is a product distribution, that is, if signals of players
j 6= i are unconditionally independently distributed, then qα is in DB

i , as player i can altogether
disregard his signal and take a best-reply to his prior belief. This may occur for distributions
such that qα

−i (· | si) /∈ ⊗j 6=i△Sj, for all si in Si. In fact, DB
i is much ‘richer’ than those special

cases. However, while it is straightforward to check whether
{

qα
−i (· | si) : si ∈ Si

}

⊆ ⊗j 6=i△Sj

by considering each element qα
−i (· | si) ‘in turn’, it is harder to ascertain whether qα ∈ DB

i .
For a given discount factor, it is straightforward to see that the individually rational payoff

is continuous in the monitoring structure. In particular, if q ‘almost’ satisfies the condition in
Theorem 4, or the more general condition in Corollary 5, then the individually rational payoff is
approximately equal to the minmax payoff. Such a result is unsatisfactory because it does not
rule out that, even if qα is arbitrarily close to DB

i (for all mixed action profiles α in △A), there
may exist a discount factor, sufficiently close to one, for which the individually rational payoff is
bounded away from the minmax payoff. Over time, ‘small’ amounts of secret correlation among
player i’s opponents may accumulate, allowing them eventually to successfully coordinate their
play. Indeed, this is in general possible, as the following example demonstrates.

Example 5: (A monitoring structure that satisfies ‘almost’ independence) The payoff matrix
is given by the duenna game. Player 1 and 2’s signal set has two elements, Ωi = {ωi, ω

′
i} . Player

3 receives no signal. The distribution of player 1 and 2’s signals is independent of the action
profile and perfectly correlated. With probability ǫ > 0, the signal profile is (ω1, ω2), and it is
equal to (ω′

1, ω
′
2) with probability 1 − ǫ > 0.

Given ǫ, let HT
i denote the set of private histories of signals of length T for players i = 1, 2, and

let H ′,T
i denote the subset of HT

i consisting of those histories in which the empirical frequency
of signals ωi exceeds the expectation of this number, Tǫ. Observe that, by the central limit
theorem, the probability that a history of length T is in HT

i tends to 1/2 as T → ∞. Define sT
i

as the strategy consisting in playing C for the first T periods and then playing C forever after if
the private history is in H ′,T

i , and playing B forever after if it is not. It follows that the lowest
equilibrium payoff to players 1 and 2 from using the strategy profile (s1, s2) tends to 1/2 as δ → 1
tends to 1/2, as we take T → ∞ but δT → 0. On the other hand, for any fixed δ, players 1 and
2 cannot secure more than 1/4 as ǫ→ 0.

Example 5 shows that, in general, the order of limits is important. While payoff is con-
tinuous in the monitoring structure for a fixed discount factor, the limit of this payoff as the
discount factor tends to one may be discontinuous in the monitoring structure. To rule out such

12



an example, player i’s signal must be sufficiently informative. That is, for player −i’s secret
correlation to dissipate, player i must be able to statistically discriminate among action profiles
of his opponents.

Definition 2 (Identifiability) The conditional distribution qi := {qa
i : a ∈ A} satisfies identifia-

bility if, for all a−i in A−i and αi in △Ai,

q
a−i,αi

i /∈ co
{

q
a′
−i,αi

i : a′−i 6= a−i, a
′
−i ∈ A−i

}

.

That is, qi satisfies identifiability if, for any possibly mixed action of player i, the distribution
over his signals that is generated by any pure action profile of his opponents cannot be replicated
by some convex combination of other action profiles of theirs. Let d denote the total variation
distance between probability measures. The conditional distribution qi satisfies ρ-identifiability

if, for all a−i in A−i and αi in △Ai, and any distribution q′i in co
{

q
a′
−i

,αi

i : a′−i 6= a−i, a
′
−i ∈ A−i

}

,

d (q
a−i,αi

i , q′i) > ρ.

Thus, the concept of ρ-identifiability measures the distance between the distribution qi and the
nearest conditional distribution that fails to satisfy identifiability.

Finally, we need to introduce a measure of the distance between a given conditional distribu-
tion q−i :=

{

qa
−i : a ∈ A

}

and the nearest product distribution. The conditional distribution q−i

is ε-dependent if, for all action profiles α in ⊗j△Aj, there exists q′−i in ⊗j 6=i△Sj such that

E
[

d
(

qα
−i (· | si) , q

′
−i

)]

< ε,

where E [·] denotes the expectations operator. That is, the conditional distribution q−i is ε-
dependent, if those signals for which the conditional distribution of player i is not close to a
product distribution are sufficiently unlikely, given any action profile that corresponds to inde-
pendent randomizations.

Theorem 6 For any ν > 0, if qi satisfies ρ−identifiability, for some ρ > 0, then there exists
ε > 0 such that, if q−i is ε-dependent, then player i’s individually rational payoff is within ν of
its minmax payoff.

Theorem 6 strengthens Theorem 4 and provides a continuity result that is uniform in the
discount factor (observe that the discount factor does not enter the statement of the theorem,
i.e., the value of ε is independent of δ). This theorem is important for the literature on the
robustness of equilibria in a neighborhood of perfect, or imperfect public monitoring. Indeed,
while almost-perfect monitoring structures need not be ε-dependent for small ε (as expected
given Example 1), it is immediate to see that they must be if attention is restricted to canonical
signal structures. Therefore, Theorem 4 provides a converse to Theorem 1 in [HO06].

It is straightforward to extend Theorem 6 to distributions that are close to DB
i provided that

the garbled signal satisfies the identifiability condition (that is, the belief of player i, conditional
on his garbled signal, should satisfy ρ-identifiability. The generalization is straightforward and
omitted.
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Finally, a large literature has considered a restricted class of strategies, namely public strate-
gies, in the context of games with public monitoring. In such games, the minmax payoff in public
strategies in the repeated game cannot be lower than the static minmax payoff, a result which
is not generally true without the restriction on strategies (see the last example of the previous
section). A natural question is to what extent the ε-dependence assumption can be weakened for
such a class of strategies. To be more specific, assume that strategies must be a function of the
history of private signals ωi alone, rather than of the history of all signals si. Observe that this
reduces to public strategies in the case of public monitoring, but is well-defined even under pri-
vate monitoring. Then Theorem 6 remains valid, if we require that only the restriction of q−i to
private signals be ε-dependent. This is a significantly weaker restriction, which is indeed trivially
satisfied if monitoring is public. The proof is a trivial modification of the proof of Theorem 6.

All statements are either trivial or follow from the proof of Theorem 6. The proof of Theorem 6
is rather long, and divided in two parts. In the first part, we replace the private monitoring
structure by another one. Player i’s information is unchanged. His opponents’ information is now
public among them, but it is not simply the information resulting from pooling their individual
signals from the original monitoring structure: doing so would enable them to correlate their
play in many situations in which they would not be able to do so if their strategy were only
based on their own signals. The common information must be ‘poorer’ than that, but we still
need to make sure that any probability distribution over plays that could be generated in the
original monitoring structure by some strategy profile of player i’s opponents (for some strategy of
player i) can still be generated in this alternate monitoring structure. The argument is somewhat
delicate and presented in the next subsection.

By considering the alternate monitoring structure, tools from information theory are brought
to bear. This is done in the second part of the proof, in which we show that, under ε-epsilon
dependence and ρ-identifiability, it takes time to accumulate sufficient public information for
player i’s opponents to successfully correlate their action profile, relative to the time it takes
player i to detect on which of the plays his opponents have coordinated upon. The argument is
presented in Subsection 3.2.

5 Proof of Theorem 6

5.1 Reduction to public strategies

A result that will prove useful here is the following.

Lemma 7 If q is a distribution over some product finite set S = Πk∈KSk, then there exists a
product distribution p ∈ ⊗j△Sj and a ‘residual’ distribution r such that

q = λp+ (1 − λ) r,

for some λ = λ(q) in [0, 1]. Further, for every ν > 0, there exists ε > 0 such that, if d (q, q′) < ε
for some q′ ∈ ⊗j△Sj, then we can choose λ > 1 − ν.

Proof. Indeed, if we define λ as the supremum over all such values in the unit interval for
which we can write q as a convex combination of distributions p and r, with p ∈ ⊗j△Sj, it by
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the maximum theorem it follows that (i) this maximum is achieved, (ii) it is continuous in q. In
fact, since q belongs to a compact metric space, this continuity is uniform, by the Heine-Cantor
theorem. The result follows, since λ = 1 if q ∈ ⊗j△Sj.

Given this result, we can view signals in the repeated game as being drawn in three stages.
Given the action profile (α−i, ai):

- first, the signal si is drawn according to the marginal distribution q
α−i,ai

i . Given si, apply
(7) and write

q
α−i,ai

−i (·|si) = λp
α−i,ai

−i (·|si) + (1 − λ) r
α−i,ai

−i (·|si).

where λ depends on q
α−i,ai

−i (·|si).
- second, a Bernoulli random variable l with Pr {l = 1} = 1 − Pr {l = 0} = λ is drawn;
- third, if l = 0, the signal profile s−i is drawn according to r

α−i,ai

−i (·|si); if instead l = 1, s−i

is drawn according to p
α−i,ai

−i (·|si).

We show in this subsection that player i’s individually rational payoff is no larger under the
original monitoring structure than under an alternate monitoring structure in which player i’s
opponents can condition their strategy on the history of values of si, l, and, whenever l = 0, of
s−i. This is nontrivial because player i’s opponents are not allowed to condition their strategy
on their own signals any longer, unless λ = 0. Yet the conclusion is rather intuitive, for when
λ = 1, the signals of player i’s opponents are independently distributed anyway (conditional
on si). This result will allow us in the next subsection to view the histories used by player i’s
opponents as common.

Before stating the result, further notation must be introduced.
Histories: Recall that a history of length t in the original game is an element of St. The set of

plays is H∞ = SN endowed with the product σ-algebra. We define an extended history of length
t as an element of (S ×{0, 1}× S ′)t, that is, as a history in the original game augmented by the
history of realizations of the Bernoulli variable l. The set of extended plays is H̃∞ = (S×{0, 1})N

endowed with the product σ-algebra.
A private history of length t for player j (in the original game) is an element of H t

j = St
j. A

public history of length t is an element of H t
p := St

p, where Sp : = Si ×{0}×S−i ∪Si ×{1}; that
is, Sp is the set of public signals sp, where sp = (si, 0, s−i) if l = 0 and sp = (si, 1) if l = 1.

Strategies: A (behavioral) private strategy for player j (in the original game) is a family
σj = (σt

j)t, where σt
j : H t−1

j → △Aj. Let Σj denote the set of these strategies. A (behavioral)
public strategy for player j is a family τ j = (τ t

j)t, where τ t
j : H t−1

p → △Aj. Let Σp,j denote the
set of these strategies. Finally, a (behavioral) general strategy for player j is a family σ̃j = (σ̃t

j)t,

where σt
j : (Sp × Sj)

t−1 → △Aj . Let Σ̃j denote the set of these strategies.

Note that both Σp,j and Σj can naturally be identified as subsets of Σ̃j , but Σp,j and Σj

cannot be ordered by set inclusion.
A (pure) strategy for player i is a family σi = (σt

i)t, where σt
i : S

t−1
i → Ai.

Any profile of general strategies σ−i for player i’s opponents, together with a strategy σi for
player i, induces a probability distribution Pσ−i,σi

on H̃∞.
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Proposition 8 For any private strategy profile σ−i, there exists a public strategy profile τ−i such
that, for every pure strategy σi, h

t
i ∈ St

i , s
t+1 ∈ S:

Pτ−i,σi
(ht

i) = Pσ−i,σi
(ht

i) (3)

Pτ−i,σi
(st+1|ht

i) = Pσ−i,σi
(st+1|ht

i) if Pσ−i,σi
(ht

i) > 0. (4)

Proof. We first define a public strategy up to stage t for player j as a family τ t,j = (τ t′

t,j)t′ where

{

τ t′

t,j : St′−1
p → △Aj, if t′ ≤ t;

τ t′

t,j : St−1
p × St′−t+1

j → △Aj , otherwise.

The proof of the Proposition relies on the following lemma. This lemma exhibits a sequence of
strategy profiles for player i’s opponents, up to stage t, based on σ−i, that do only depend on
the first t public signals, and not on the realizations of the first t private signals (conditional
on these public signals). This sequence of strategies is constructed by iterated applications of
Kuhn’s theorem.

Lemma 9 For any private strategies σ−i, there exist strategies (τ t,−i)t = (τ t,j)j 6=i,t where τ t,j is
a public strategy up to stage t for player j and

τ 0,j = σj (5)

τ t
t,j = τ t

t′,j for t′ ≥ t (6)

Pτ t+1,−i,σi
(st+1, . . . , st+n|ht

p) = Pτt,−i,σi
(st+1, . . . , st+n|ht

p) (7)

for every σi, n, (s
t+1, . . . , st+n) ∈ Sn, and ht

p ∈ H t
p.

Proof. Define τ t,−i by induction on t. First let τ 0,−i = σ−i so that (5) is met. Assume τ t,−i

has been defined. Let τ t′

t+1,−i = τ t′

t,−i for t′ ≤ t so that (6) is satisfied.
For each history ht

p and for every sj ∈ Sj , let τ̃ t+1,j [h
t
p, sj] be the private (continuation)

strategy defined by τ̃ t+1,j [h
t
p, sj](s

1
j , . . . , s

n
j ) = τ t,j(h

t
p, sj, s

1
j , . . . , s

n
j ).

The probability qτt,−i(h
t−1
p ),at

i(sj |sp) over Sj defines a mixture of private strategies τ̃ t′

t+1,j [h
t
p, sj],

where at
i is Player i’s action in period t as specified by sp. By Kuhn’s theorem, there exists a

private strategy τ t+1,j [h
t
p] which is equivalent to this mixture. Finally set τ t+n+1

t+1,j (ht
p, s

1
j , . . . , s

n
j ) =

τ t+n+1
t+1,j [ht

p](s
1
j , . . . , s

n
j ). Condition (7) is met by equivalence of the mixed and the behavioral

strategy and because all (sj)j are independent conditional on sp and ht
p.

Back to the proof of Proposition 8, define τ−i by τ t
j(h

t−1
p ) = τ t

t,j(h
t−1
p ), where (τ t,−i)t is given

by Lemma 9.
¿From (6), for every t′, Pτ t′+1,−i,σi

and Pτt′,−i,σi
induce the same probability on H t

p, and

from (7), Pτ t+1,−i,σi
(ht′

i |h
t
p) = Pτ t,−i,σi

(ht′

i |h
t
p) for t′ ≥ t. Thus Pτ−i,σi

(ht
i) = Pτ t,−i,σi

(ht
i) =

Pτ t−1,−i,σi
(ht

i) = . . . = Pσ−i,σi
(ht

i), which gives (3).

Also, Pτ−i,σi
(st+1|ht

i) = Pτ t+1,−i,σi
(st+1|ht

i) =
Pτt+1,−i,σi

(st+1,ht
i
)

Pτt+1,−i,σi
(ht

i
)

=
Pσ−i,σi

(st+1,ht
i
)

Pσ−i,σi
(ht

i
)

= Pσ−i,σi
(st+1|ht

i)

whenever Pσ−i,σi
(ht

i) > 0 which gives (4).

An immediate consequence of Proposition (8) is that the individually rational payoff of player
i is necessarily at least as high under the alternate monitoring structure in which player i’s
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opponents use so-called public strategies, as under the original monitoring structure (whether
we consider the finitely or infinitely-repeated game, and independently of the discount factor).
Note that this already establishes Theorem 2 (and therefore Corollary 3). Indeed, under the
assumption of Theorem 2, we have Pr {l = 1} = 1, so that public strategies only depend on si,
which is known by player i. That is, conditional on his history of private signals, player i can
view the choices of continuation strategies of his opponents as independent. Matters are more
complicated when the monitoring structure is only ε-dependent, as Pr {l = 1} < 1. Nevertheless,
the event {l = 0} is unfrequent for ε small enough.

5.2 Measuring secret correlation and its dissipation

The aim of this section is to prove that, relying on public strategies, and under the conditions
of Theorem 6, little secret correlation can be generated by team members in the course of the
repeated game and if this correlation is used there is enough dissipation of this correlation with
time. This implies that the individually rational payoff of player i is uniformly close to his
minmax payoff in mixed strategies.

In order to measure the amount of secret correlation generated and dissipated by the team in
the course of the repeated game, we rely on the entropy measure of randomness and information.

We start with some reminders on information theory, then derive a bound on the minmax
payoffs based on entropy, and finally utilize this bound to prove the main result.

5.2.1 Reminder on information theory

The entropy of a finite random variable x with law P is by definition:

H(x) = −E[logP (x)] = −
∑

x

P (x) logP (x)

where log denotes the logarithm with base 2, and 0 log 0 = 0. Note that H(x) ≥ 0 and that H(x)
depends only on the law P of x. The entropy of x is thus the entropy H(P ) of its distribution
P , with H(P ) = −

∑

x P (x) logP (x).
If (x,y) is a couple of finite random variables with joint law P , the conditional entropy of x

given {y = y} is the entropy of the conditional distribution P (x|y):

H(x | y) = −E[logP (x | y)].

The conditional entropy of x given y is the expected value of the previous:

H(x | y) =
∑

y

H(x | y)P (y).

We have the following relation of additivity of entropies:

H(x,y) = H(y) +H(x | y).

Finally define the mutual information between x and y as

I(x;y) = H(x) −H(x|y) = H(y) −H(y|x).
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5.2.2 An entropy bound on minmax payoffs

Let σ = (σ−i, σi) be a strategy profile, where σ−i is a profile of public strategies. Suppose that
after stage t, the history for player i is ht

i = (s1
i , . . . , s

t
i). Let ht

p = (s1
p, . . . , s

t
p) be the public history

after stage t. The mixed action profile played by the team at stage t+1 is σt+1
−i (ht

p) = ⊗j 6=iσj(h
t
p).

Player i holds a belief on this mixed action, namely he believes that players −i play σt+1
−i (ht

p)

with probability Pσ(h
t
p|h

t
i). The distribution of the action profile at+1

−i of players −i at stage

t + 1 given the information ht
i of player i is

∑

ht Pσ(h
t
p|h

t
i)σ

t+1
−i (ht

p), element of the set △A−i of
correlated distributions on A−i.

Let X = ⊗j 6=i△Aj be the set of independent probability distributions on A−i. A correlation
system is a probability distribution on X and we let C = △X be the set of correlation systems.

X is identified to a closed subset of △A−i and thus C is compact with respect to the weak∗

topology.
We study the evolution of the uncertainty of player i concerning the public history along the

play of the repeated game.
Given a correlation system c and ai ∈ Ai, let (x, sp) be a random variable with values in

X × Sp such that the law of x is c and the law of (sp, si) given {x = x} is qx,ai(·). The entropy
variation is:

∆H(c, ai) = H(sp | x) −H(si)

The entropy variation is the difference between the entropy gained by the team and the
entropy lost. The entropy gain is the conditional uncertainty contained in sp given x; the entropy
loss is the entropy of si which is observed by player i. If x is finite, from the additivity formula:

H(x, sp) = H(x) +H(sp | x) = H(si) +H(x, sp | si)

and therefore,
∆H(c, ai) = H(x, sp | si) −H(x)

The entropy variation is thus the new entropy of the information possessed by the team and not
by i minus the initial entropy.

Now we define, given a correlation system c, the payoff obtained when player i plays a best
reply to the expected distribution on A−i. Given a correlation system c, the distribution of the
action profile for the team is xc ∈ △A−i such that for each a−i ∈ A−i, xc(a−i) =

∫

X
x−i(a−i)dc(x).

The best response payoff for player i against c is π(c) = maxai∈Ai
gi(xc, ai), and let Bi(c) =

argmax gi(xc, ·) ⊆ Ai.
Consider the set of feasible vectors (∆H(c, ai), π(c)) where ai ∈ Bi(c) in the (entropy varia-

tion, payoff) plane:
V = {(∆H(c, ai), π(c)) | c ∈ C, ai ∈ Bi(c)}

Lemma 10 V is compact.

Proof. Since s is independent of x conditionally on a, the additivity formula gives H(a, s|x) =
H(a|x) +H(s|a) and the entropy variation is:

∆H(c, ai) = H(a|x) +H(s|a) −H(s)
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¿From the definitions of entropy and conditional entropy, recalling that the law of a given {x = x}
is x:

∆H(c) =

∫

X

H(x)dc(x) +
∑

a

xc(a)H(q(·|a)) −H(
∑

a

xc(a)q(·|a))

which is clearly a continuous function of c. ∆H and π are thus continuous on the compact set
C so V is compact.

Define w as the lowest payoff associated to a convex combination of correlations systems
under the constraint that the average entropy variation is non-negative:

w = inf{x2 ∈ R | (x1, x2) ∈ coV, x1 ≥ 0}

For every correlation system c such that x is a.s. constant, ∆H(c) ≥ 0 thus V intersects the
half-plane {x1 ≥ 0}. Since V is compact, so is its convex hull and the supremum is indeed a
maximum. Techniques for computing the set V are developed by Gossner et al., [GLT06]. The set
V need not be convex (see an example in Goldberg [Gol03]) and the supremum in the definition
of w above might not be achieved by a point in V but by a convex combination involving two
points of V with positive weights.

It is convenient to express the number w through the boundary of coV . Define for each real
number h:

u(h) = min{π(c) | (c ∈ C,∆H(c) ≥ h} = min{x2 | (x1, x2) ∈ V, x1 ≥ h}

Since V is compact, u(h) is well defined. Let cav u be the least concave function pointwise greater
than u. Then:

w = cav u(0)

Indeed, u is upper-semi-continuous, non-increasing and the hypograph of u is the comprehensive
set V ∗ = V − R

2
+ associated to V . This implies that cav u is also non-increasing, u.s.c. and its

hypograph is coV ∗.
Here we prove that for every strategy of the team, if player i plays stage-best replies, the

average vector of (payoffs, entropy variation) generated belongs to V . This later implies that no
strategy for the team can guarantee a better payoff than w.

Definition 3 Let σ−i be a public strategy for the team, and define inductively σi,σ−i
as the

strategy of player i that plays stage-best replies to σ−i:
At stage 1, σi,σ−i

∈ argmaxai
gi(σ−i(∅), ai) where ∅ is the null history that starts the game.

Assume that σi,σ−i
is defined on histories of length less that t. For every history ht

i of player i,
let xt+1(ht

i) ∈ △A−i be the distribution of the action profile of the team at stage t + 1 given ht
i

(arbitrary if ht
i has zero probability) and select σi,σ−i

(ht
i) in argmaxai

gi(x
t+1(ht

i), ai).

It is convenient to consider the zero-sum game in which player i’s stage-game payoff given
action profile α is gi(α), as in the original game, while all the other player’s common payoff is
−gi(α). We let γn(σ) denote player i’s payoff in the finitely repeated game with n repetitions,
given strategy profile σ (in the finitely repeated game), and the value of this finitely repeated
game is denoted vn. Similarly, let γδ(σ) denote player i’s payoff in the infinitely repeated game
with discount factor δ, given strategy profile σ, and the value of this infinitely repeated game is
denoted vδ.

19



Lemma 11 For every σ−i, σi,σ−i
defends w in every n-stage game, i.e. for every σ−i, n:

γn(σ−i, σi,σ−i
) ≥ w

Hence for each n, vn ≥ w.

Proof. The proof follows the same lines as some previous papers using entropy methods (see
e.g., [NO99],[NO00], [GV02] and [GT06]). Fix a profile of public strategies σ−i for the team
and let σi = σi,σ−i

. Let st
p, s

t
i be the random signals to the team and to player i under Pσ−i,σi

,
ht

p = (s1
p, . . ., s

t
p) and ht

i = (s1
i , . . ., s

t
i) be the public history and the history of player i after stage

t. Let xt = σt
−i(h

t−1
i ) and ct(ht−1

i ) be the distribution of xt
m conditional on ht−1

i i.e. ct(ht−1
i ) is

the correlation system at stage t after history ht−1
i . Under σ = (σ−i, σi), the expected payoff to

player i at stage t given ht
i is maxai

gi(Eσ[x
t|ht−1

i ], ai) = π(ct) from the definition of σi and thus
γn(σ) = Eσ[ 1

n

∑n
m=1 π(cm)].

H t = H(ht
p | ht

i) is the expected entropy of the secret information to the team after stage t.
From the additivity of entropies:

H(s1
p, . . . , s

t
p|h

t
i) = H(st

i|h
t−1
i ) +H t

= H t−1 +H(st
p|h

t−1
p )

Thus,

H t −H t−1 = H(st
p|h

t−1
p ) −H(st

i|h
t−1
i )

= H(st
p|x

t,ht−1
i ) −H(st

i|h
t
i)

= Eσ,τ∆H(ct(ht−1
i ), at

i)

Then:
t

∑

m=1

Eσ,τ∆H(cm(hm−1
i ), am

i ) = Hn ≥ 0

Therefore the vector (1
t

∑t

m=1 Eσ,τ∆H(cm(hm−1
i ), am

i ), γn(σ, τ)) is in coV ∩ {x1 ≥ 0}.

Corollary 12 For every σ−i the strategy σi
σ−i defends w in every discounted game, i.e. for every

σ−i, λ:
γδ(σ

−i, σi
σ−i) ≥ w

Hence for every δ, vδ ≥ w.

5.2.3 The case of ε-dependence and ρ-identifiability

Here we prove that under ε-dependence, little secret correlation can be generated per stage
for the team. We also show that, under the ρ-identifiability assumption, secret correlation, if
utilized, dissipates. Relying on the previous bound on minmax payoffs, we conclude the proof of
the main theorem.

We compare w with the maximum payoff the team could obtain in a modified game where
sp = si, but the team could use an entropy of εh at each stage. If sp = si, ∆H(c, ai) = −I(x, si),
and the function u′ playing the role of u is:

u′(h) = min{π(c)|(c, ai) s.t. I(x; si) ≤ h}
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Lemma 13 For every εh > 0, there exists ε > 0 such that if the monitoring is ǫ-dependent, for
every (c, ai): ∆H(c, ai) ≤ εh − I(x; si). In particular, u(h) ≥ u′(h+ εh) for all h.

Proof. First note that ∆H(c, ai) + I(x; si) = H(sp|x, si) =
∫

x

∑

si
qx,ai

i (si)H(qx,ai(sp|si))dc(x).
For every x, si,

H(qx,ai(sp|si)) = H(λ(qx,ai

i (si))) + (1 − λ(qx,ai

i (·|si)))H(r−i(·|si))

There exists S ′
i ⊆ Si such that qx,ai

i (S ′
i) ≥ 1−ε and that for si ∈ S ′

i, d(q
x,ai

i (·|si),⊗j 6=i△Sj) ≤ ε and
in particular λ(qx,ai

i (·|si)) ≥ η(ε) by Lemma 7. For si ∈ S ′
i, H(λ(qx,ai

i (si))) ≤ max{H(η(ε)), 1}}
and for all si ∈ S ′

i, H(r−i(·|si)) ≤ log2(S−i × A−i). Hence

∆H(c, ai) + I(x; si) ≤ max(η(ε), 1) + log2(S−i ×A−i)

which proves the first part of the lemma. The second part now follows from the definitions of u
and u′.

Let us finally define the function u′′ that corresponds to u′ when si = a−i, namely when i has
perfect observation of the actions of the opponents.

u′′(h) = min{π(c), (c, ai) s.t. I(x; a−i) ≤ h}

Lemma 14 There exists a continuous function α such that α(0) = 0 and u′(h) ≥ u′′(α(h)) for
all h.

Proof. Let α(h) = max{I(x; a−i)|(c, ai) s.t. I(x; si) ≤ h}. It follows from Carathéodory’s
theorem that the we can restrict to c of support of size at most 3 in the definition of α, and the
sup is actually a max. Assume now c has finite support, I(x; si) = 0 implies that si and m−i

are independent, therefore that c is a mass unit and that I(x; a−i) = 0. Hence α(0) = 0. The
map α is continuous by the maximum principle. That u′(h) ≥ u′′(α(h)) for all h follows from
the definitions of u′, u′′ and α.

We now complete the proof of our main result.
Proof. [Proof of Theorem 6] From Lemma 11 and corollary 12, vn ≥ w and vλ ≥ w, where by
Lemmata 13 and 14, w ≥ cav (u′′ ◦α)(εh). The result follows since cav (u′′ ◦α) is continuous and
εh → 0 as ε→ 0.

References

[AS76] R. J. Aumann and L. S. Shapley. Long-term competition – a game theoretic analysis.
preprint, 1976.

[Bla51] D. Blackwell. Comparison of experiments. In Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, pages 93–102. University of
California Press, 1951.

[BO02] V. Bhaskar and I. Obara. Belief-based equilibria in the repeated prisoners’ dilemma
with private monitoring. Journal of Economic Theory, 102:40–70, 2002.

21



[CFM64] P. Cartier, J.M.G. Fell, and P.-A. Meyer. Comparaison des mesures portées par un
ensemble convexe compact. Bulletin de la Société Mathématique de France, 92:435–445,
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