
Incentives for Quality through Endogenous Routing
Lauren Xiaoyuan Lu · Jan A. Van Mieghem · R. Canan Savaskan

Kellogg School of Management, Northwestern University

July 14, 2006. Revised January 5, 2007

Abstract

We study how rework routing together with wage and piece rate compensation can strengthen

incentives for quality. Traditionally, rework is assigned back to the agent who generates the

defect (in a self routing scheme) or to another agent dedicated to rework (in a dedicated routing

scheme). In contrast, a novel cross routing scheme allocates rework to a parallel agent performing

both new jobs and rework. The agent who passes quality inspection or completes rework receives

the piece rate paid per job. We compare the incentives of these rework allocation schemes in

a principal-agent model with embedded quality control and routing in a multi-class queueing

network. We show that conventional self routing of rework can never induce first-best effort.

Dedicated routing and cross routing, however, strengthen incentives for quality by imposing an

implicit punishment for quality failure. In addition, cross routing leads to workload allocation

externalities and a prisoner’s dilemma, thereby creating highest incentives for quality. Firm

profitability depends on capacity levels, revenues, and quality costs. With ample capacity,

dedicated routing and cross routing both achieve first-best profit rate, while self routing does

not. With limited capacity, cross routing generates the highest profit rate when appraisal,

internal failure, or external failure costs are high, while self routing performs best when gross

margins are high. When the number of agents increases, the incentive power of cross routing

reduces monotonically and approaches that of dedicated routing.

Key words: queueing networks; routing; Nash equilibrium; quality control; piece rate; epsilon

equilibrium.

1 Introduction

This paper investigates how rework routing together with wage and piece rate compensation can

strengthen incentives for quality and improve firm profits in a setting where agents “compete” for

rework. It is motivated by the practice of the service operations firm Memphis Auto Auction,

which is a wholesale automotive liquidator of used vehicles that employs two teams of employees
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Figure 1: Three Rework Routing Schemes: (A) Self Routing, (B) Dedicated Routing, and (C) Cross Routing.

to clean and detail vehicles in parallel. The employees are paid piece rates only if their jobs pass

quality inspection while the quality control leader is paid salary plus a bonus based on overall work

quality. The firm ties compensation to quality through an unconventional rework routing scheme

illustrated in Figure 1C that we call cross routing. This cross routing of rework contrasts with the

two traditional practices that assign rework back to the team who generates the defect (Figure 1A)

or to a dedicated rework team (Figure 1B) and also pay piece rate only to the team whose job

passes quality inspection. We shall show that these three rework routing policies generate different

first-pass quality incentives and that the “competition” for rework implicit in cross routing can

yield superior outcomes.

Our main research goal is to explain how these three routing and incentive schemes compare

in terms of quality and firm profits. Our analysis uses a principal-agent model with endogenous

piece rate, quality control, and routing in a multi-class queueing network. Rework routing impacts

agent incentives to exert quality-improving effort in two important ways. First, self routing gives

agents a second chance to work on a job and earn the piece rate, resulting in a disincentive to exert

first-pass effort. In contrast, dedicated routing and cross routing implicitly punish the agents for

quality failure by allocating rework (and thus the associated piece rate) to another agent, thereby

boosting the incentives for first-pass quality.

Second, whereas self routing gives each agent independent and direct control over the workload

of new jobs and rework, the workload in cross routing is determined by the equilibrium outcome of

the noncooperative effort game played between the two agents. When rework takes less effort than

new jobs, rework is preferred, which prompts the agents to increase their first-pass effort as a result
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of the workload allocation externality arising from the effort game. To illustrate this externality,

consider the strategic interaction between the agents and the flow dynamics of the queueing network.

In a capacity constrained system, both agents are continuously busy working on either new jobs or

rework. To receive more rework, agent 1 increases first-pass effort and sends less rework to agent

2. Keeping his effort unchanged, agent 2 then automatically processes more new jobs and sends

more rework to agent 1. Suffering from reduced pay due to low rework inflow, however, agent 2

increases first-pass effort to counteract. Consequently both agents exert high effort and receive low

rework allocation in equilibrium. This equilibrium exhibits a prisoner’s dilemma, where each agent

has an incentive to exert high effort when the other agent exerts low effort, even though the agents

would jointly benefit from a cooperative outcome of both exerting low effort (i.e., the effort level

under self routing). This shows why noncooperative behavior is crucial for cross routing: when the

agents collude, it is equivalent to self routing. We loosely refer to this noncooperative behavior as

competition.

While higher first-pass effort produces fewer internal and external defects, it does not always lead

to higher profits for the principal. On one hand, inducing first-pass effort benefits the principal by

improving quality and reducing three of the four quality costs in Juran’s cost-of-quality framework

(Juran & Gryna (1993)): internal failure costs, external failure costs, and appraisal costs. On the

other hand, excessively high first-pass effort lowers throughput1 as the agents spend more effort

(processing time) per job on average. Since piece rate compensation cost can be deemed as a form

of prevention costs, our model covers all of the four dimensions of the cost-of-quality framework.

It predicts that the principal would strive for the optimal defect rate (which has a one-to-one

relationship with the induced first-pass effort) to achieve the lowest costs by balancing the cost

of non-conformance with appraisal and prevention costs. Built on this cost minimization view of

quality management, our model adds an additional dimension: throughput and thus revenues also

impact a firm’s quality control policies.

In our model, effort is the first-pass service time chosen by the agents. Both quality and

throughput are determined by the effort choices. Compared to the celebrated multitask principal-

agent model of Holmstrom & Milgrom (1991), this model embeds the intrinsic trade-off between

quantity and quality in a single dimensional decision variable. This is appropriate when the quantity

effort and quality effort are not separable, as displayed in Figure 2.

When service time is observable and also contractible, the moral hazard problem is eliminated.
1The total expected service time (including rework time) is convex in first-pass effort.
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Figure 2: The effort contractibility and separability matrix.

Indeed, in a long-run repeated setting, the principal may fully infer the average service time from

the throughput of the agent taking into account of quality loss. Though service time may be

observable, directly contracting on it can be problematic. For example, in a call center, it is

uncommon to tie agents’ compensation to their handle time per call. The difficulty for contracting

on handle time is two fold: behavioral issues and agent heterogeneity. First, handle time per

call is highly variable so that contracting on them would require a contract involving probability

distribution. However, statistical thinking requires mental sophistication and effort, making a

probabilistic contract impractical to implement. If the call center persists on contracting on a

target handle time, agents may be misguided in terms of the “ideal” time to spend on individual

calls. Because of the challenge of statistical thinking, agents may not be able to treat the target as

an average and would try to meet the target time for every single call. According to Gans, Koole &

Mandelbaum (2003), an incentive scheme that rewards agents for maintaining low average handle

time can lead them to hang up on customers. Second, agents are heterogenous in experience and

skill levels, adding to the challenge of specifying an appropriate target handle time. Therefore,

contracting on handle time is precluded for an operationally excellent call center.

Under dedicated routing and cross routing, assigning rework to a different agent implicitly pun-

ishes the agent for shirking. Such punishment could be replicated by a modified self routing scheme

where the principal executes a monetary punishment whenever a defect is identified. Similarly, she

could also implement a bonus that is paid whenever a job passes quality inspection in the first pass.

Both contracts can achieve first best effort and profits. However, these contracts are not the focus of

this paper. In real life, it is difficult for a principal to “force” rework without or with negative pay.
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In contrast, cross routing of rework is a more “fair” contract in the sense that the principal always

pays the full piece rate per job, but only rewards the agent whose work passes quality inspection.

In a call center, cross routing has the additional benefit of higher utilization of agents because

unresolved issues can be routed to any available agent rather than to the first-contact agent.2

From a methodology perspective, restricting the principal’s contract space to wage plus piece

rate enables us to isolate the incentive effects brought by the different rework routing schemes.

The economic literatures on agency and contract theory mostly focus on incentives using purely

monetary instruments. We take those economic schemes as our benchmark and investigate whether

adding operational instruments (e.g., rework routing in our case) can achieve similar or even superior

outcomes. As such our work marries economics with operations strategy and processing network

design.

Given that quality output and inspection are imperfect, endogenous probabilistic routing of

rework is a central feature of our model. Because the agents’ actual workload allocation of new

jobs and rework is endogenously determined by their effort, a natural tool to characterize the effort

equilibrium arising in the flow system is queueing theory. A deterministic model cannot capture

the inherent variability and flow dynamics of the system. The endogeneity of rework routing also

has a second aspect: The principal compares the financial performance of the three routing schemes

and chooses the most profitable one.

Using an analytical model we establish the following results. Traditional self routing of rework

can never induce agents to exert first-best effort. Dedicated routing and cross routing, however,

offer some remedy by inducing higher effort and quality, which can lead to higher profits for the

principal. As a result, piece rates paid in these two schemes are generally higher when holding

the wage rate constant. Firm profitability depends on capacity levels, revenues, and quality costs.

With ample capacity, dedicated routing and cross routing both achieve first-best profit rate, while

self routing does not. With limited capacity, cross routing generates the highest profit rate when

appraisal, internal failure, or external failure costs are high, while self routing performs best when

gross margins are high. When the number of agents increases, the incentive power of cross routing

reduces monotonically under certain conditions and approaches that of dedicated routing.

The remainder of the paper is organized as follows. Section 2 reviews related literature while
2We learned that at Dell Inc.’s call center for corporate IT service, a credit is awarded to agents for each customer

call that does not fail in seven days after service. Otherwise, it is routed to any agent available, who is eligible to

earn the credit.
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Section 3 lays out the main model. Sections 4 and 5 analyze the networks with ample capacity and

limited capacity, respectively. In each of the two sections, we first derive the first-best benchmark

and then analyze the three rework routing schemes, and finally compare their performance. Section

6 analyzes a project management setting while Section 7 concludes. In the rest of the paper, we

will use superscripts FB, S, D, and C to denote solutions for first best, self routing, dedicated

routing, and cross routing, respectively.

2 Related Literature

This paper contributes to three streams of literature. The first stream is the economics literature

on compensation and job design, which studies the moral hazard problem that arises when an

agent’s effort is imperfectly observed. Compensation is thus often based on output instead of effort.

Holmstrom & Milgrom (1991) explain the trade-offs between inducing effort towards quantity vs.

quality with a multitask principal-agent model. In their model, producing high volume and good

quality is viewed as two tasks of an agent’s job. They argue that it would be costly, if not impossible,

to achieve good quality with piece rate compensation if quality were poorly measured. Instead of

taking a multitask approach, we manifest the intrinsic trade-off between quantity and quality by a

single dimensional decision variable, i.e., the average processing time spent per job. Moreover, we

provide theoretical support that smart routing of rework is capable of inducing quality-improving

effort even under piece rate compensation. Lazear (2000) provides empirical evidence that piece

rate compensation significantly improves productivity. In Lazear’s real-world example, rework is

assigned to the originating agent (i.e., self routing) and quality does not deteriorate after the firm

implements piece rate compensation. He argues that the employees have incentives to get it right

the first time because rework is costly. In contrast, we will show that agents always exert system

suboptimal quality effort under self routing.

Holmstrom & Milgrom (1991) also demonstrate that job design is an important instrument for

the control of incentives. They find that tasks should be grouped such that easily measured tasks

are assigned to one agent and hard-to-measure tasks to the other. Though we use a one-dimensional

principal-agent model, there are two tasks in our model that differ in their measurability: first-

pass work is monitored imperfectly by quality inspection while rework is assumed to have no

uncertainty in quality. Supporting Holmstrom & Milgrom (1991)’s theory that tasks should be

separated according to their measurability characteristics, we show that dedicated routing achieves

6



advantageous incentive power over self routing.

The second relevant stream of literature is on the economics of quality control and inspection in

a game-theoretic setting. These papers mostly consider quality-related contractual issues between

firms and are only tangentially related to our work. For example, Reynier & Tapiero (1995) study

the effect of contract parameters and warranty costs on the choice of quality by a supplier and the

quality control policy by a buyer. Baiman, Fischer & Rajan (2000) focus on how contractibility

of quality-related information impact the product quality and profits of a supplier and a buyer.

Our work studies how rework routing and costs of quality affect the employees’ choice of quality-

improving effort and a firm’s quality inspection policy.

From a methodological perspective, we combine the two previous literatures on principal-agent

models and quality management with that of network flows in general, and queueing networks in

particular. Much of agency theory seeks contracts that maximize a principal’s objective subject to

an agent’s post-contractual opportunistic behavior. However, little is known about quality control

policies, i.e., how precisely should performance be measured? Queueing network models can cap-

ture system dynamics and quality inspection levels and allow us to draw operational insights that

are largely missing in the existing agency literature. By considering capacity-constrained systems,

we allow agents’ effort levels (i.e., processing times) to directly impact system throughput, i.e.,

productivity. Similar work can be found in the literature that studies the impact of decentralized

decision making on process performance in queueing systems. Seminal work by Naor (1969) studies

how pricing can achieve social optimum and prevent performance degradation as a result of cus-

tomers’ self-interested behavior. Many followers (e.g., Mendelson & Whang (1990), Van Mieghem

(2000), Ha (2001), etc.) also design pricing mechanisms to achieve system optimal performance,

but none of these works model quality inspection and rework.

Principal-agent models in queueing systems have been explored in the operations management

literature. A sample of recent papers include Gilbert & Weng (1998), Plambeck & Zenios (2000),

Shumsky & Pinker (2003), Gunes & Aksin (2004), Benjaafar, Elahi & Donohue (2006), Cachon &

Zhang (2006), and Ren & Zhou (2006). Plambeck & Zenios (2000) study incentives in a dynamic

setting where an agent’s effort influences the transition probabilities of a system. Similarly in our

model, probabilistic routing is determined by agents’ effort. But, our model captures system dy-

namics resulting from the strategic interaction between agents, which is not present in Plambeck

& Zenios (2000). Our paper is closely related to Shumsky & Pinker (2003) in that the principal

designs incentives to induce effort in steady state, but differs in two important ways: First, we
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explicitly model the queueing network dynamics and also consider the case where the system is

capacity constrained. Second, the principal in our model hires two agents whose expected utility

rates are interdependent. Therefore, we need to investigate agents’ strategic interactions and derive

the effort Nash equilibrium. Gunes & Aksin (2004) model the interaction of market segmentation,

incentives, and process performance of a service-delivery system using a single-server queue embed-

ded in a principal-agent framework. The novelty of our model lies in that we model two endogenous

queues, i.e., the rework queues that are generated by the agents and the arrival rate of rework is

endogenously determined by the agents’ effort. Ren & Zhou (2006) use a multitask principal-agent

model to study the coordination of capacity and service quality decisions in call center outsourcing.

Sharing a common theme with Gilbert & Weng (1998), Cachon & Zhang (2006), and Benjaa-

far et al. (2006), our paper uses an operational instrument to create incentives in a multi-agent

processing system. In all these papers service rate choice may be observable to the principal but

is not directly contracted upon. Rather, demand allocation schemes (in our case, rework routing

allocation schemes) are used to create competition (in our case, to induce workload allocation ex-

ternalities and thus create incentives). Multi-agent games in queueing systems can also be found in

Cachon & Harker (2002) and Parlakturk & Kumar (2004), whose models, however, do not involve

a principal.

In our motivating example, Memphis Auto Auction employs teams to complete jobs. In this

paper, we will treat teams as agents and ignore the intra team incentive issues that may arise due

to free riding and collaboration. A relevant reference for team incentives is Hamilton, Nickerson &

Owan (2003), which empirically investigates the impact of teams on productivity. They distinguish

individual piece rate used in flow production from group piece rate used in modular production.

They find that group piece rate has a stronger incentive effect on productivity than individual piece

rate due to collaboration among team members.

3 The Model

Operational Flows. Consider an operation where a principal hires two identical risk neutral

agents to complete work (“jobs”) and subsequently inspects their output quality. The principal

sets quality inspection precision p ∈ [0, 1], which is the probability of catching a defect given a bad
output. (A good quality output passes inspection with probability 1.) This inspection precision is

observable to the agents. p can be interpreted as a sampling frequency of inspection. We assume
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that the principal commits to p once announced.

Each agent chooses first-pass effort (service time) t, where t ≥ t and t > 0 is the minimum effort
that can be exerted. The minimum effort assumption prevents the extreme case where the agents

directly move jobs to quality inspection and always do rework. We assume that the agents’ service

time of each job has mean t. This strategic decision variable drives the output quality. We assume

that the agents adopt open-loop strategies and thus the service time decision is one shot.

Let F (t) denote the probability of producing good quality given first-pass effort t, with F (t) = 0

and F (∞) = 1.We assume that F is strictly concave and increasing (i.e., F 00 < 0, F 0 > 0), reflecting
decreasing return on effort, and denote f = F 0 and F̄ = 1−F.Upon identifying defects, the principal
routes the rework either to the originating agent in self routing, to the agent dedicated to rework

in dedicated routing, or to the parallel agent in cross routing. We assume that rework always

generates good output, thus poor quality only results from not catching the first-pass defects. The

overall quality conformance level that an external customer experiences is Q = F (t) + pF̄ (t).

We will show that the incentive effects of the three routing schemes crucially depend on whether

the network is capacitated. With ample capacity, each agent is supplied with a renewal process of

job arrivals. In steady state, the agents have idle time and the throughput is driven by exogenous

demand arrival rate. In contrast, when the system has limited capacity, the agents are continuously

busy and their effort levels directly impact throughput. The motivation for looking at both cases

is that they each represent a different real-world operating system. A system with limited capacity

models a make-to-stock system where agents are scheduled to complete jobs that are either planned

or have arrived previously in bulks. In such systems, the agents are fully utilized (for a fixed period

of time) and response time is often not a critical issue. In contrast, a system with ample capacity

models a make-to-order system where response time is critical.

For tractability, we assume that rework takes r units of time on average, where r is common

knowledge. Since defects have to be corrected as instructed by the principal, we assume that rework

effort is contractible, i.e., no moral hazard problem in rework. We argue that even if agents may

exhibit opportunistic behavior in performing rework, the effect is limited because identified defects

have to be corrected completely. Furthermore, rework has preemptive priority over new jobs. This

priority rule is adopted because of two considerations. First, in a capacitated system, agents can

be always engaged in new jobs. Without the priority rule, defects may never be reworked. Second,

the priority rule simplifies analytics of the model. Finally, we assume that rework takes less time
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than the minimum first-pass effort:

r ≤ t. (A1)

This assumption allows us to focus on the interesting range of parameter values that highlight the

moral hazard problem and the efficacy of “smart” rework routing in inducing effort. We will discuss

the implications of this assumption when comparing the performance of the three routing schemes

in Section 4.3.

We assume that service times and inter-arrival times are independent and exponentially distrib-

uted. Though not considered in this paper, this assumption allows for response time evaluation.

We shall note that these assumptions can be relaxed and that a renewal process for both job arrival

and service times is sufficient for all subsequent results to hold.3

Financial Flows and Incentives. Each agent earns wage rate w, and in addition piece

rate b when completing a new job that passes quality inspection or when completing a rework.

Under dedicated routing, the two agents earn different wage rates w1 and w2. Their average is the

equivalent wage rate for comparison purpose. The agents’ disutility of effort per unit time is a.

Without loss of generality, we normalize the agents’ reservation utility to be 0. In a competitive

labor market, a can also be interpreted as the outside wage rate. The principal earns gross margin

v per completed job that passes quality inspection, pays agents, and incurs three quality costs

classified as in Juran’s cost-of-quality framework: (1) appraisal cost per new job C(p). We assume

C(0) = C 0(0) = 0 and C 0(1) =∞, which implies that in equilibrium the principal chooses an interior
inspection policy, i.e. p ∈ (0, 1). In addition, C 0 > 0, C 00 > 0. Note that these are assumptions

often used in the quality management literature (e.g., Baiman et al. (2000)). (2) internal failure

cost per new job cI . (3) external failure cost per new job cE. (External failure costs are typically

larger than internal failure costs: cE > cI . Otherwise, the principal would have no incentives to fix

defects internally.) We assume that the principal maximizes her long-run average profit rate per

agent, denoted by V, while the agents maximize their long-run average utility rate, denoted by U .

4 Incentives and Routing with Ample Capacity

Ample capacity implies that the principal maintains a sufficient staffing level to complete all jobs

with appropriate response time, and that the agents have idle time in steady state. Hence, the

throughput of the system is driven by the exogenous market demand, which is represented by the
3We thank Harry Groenevelt for pointing this out.
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mean arrival rate of jobs per agent and denoted by λ. The principal focuses on reducing internal and

external failure costs through quality inspection and inducing first-pass effort while controlling for

appraisal costs and compensation costs. Let ρi denote the utilization of agent i. Throughout this

section, we assume that the system is stable in steady state. The stability condition is max
i∈{1,2}

ρi < 1.

4.1 The First-Best Benchmark (Contractible Effort)

When effort t is contractible, the principal’s problem is independent of whether rework is performed

by the originating agent or a different agent. For expositional convenience, we derive the first-best

benchmark using the self routing scheme. The agents spend on average t + pF̄ (t)r time units

per job. Since the job arrival rate is λ per agent, renewal theory yields that the agents’ long-run

average utility rate is λ[b−a(t+pF̄ (t)r)]−w. Though the principal hires two agents, the contracting
problem of each agent is independent and identical. The principal maximizes

V FB = max
0≤p≤1,t≥t,w,b

λ[v − b− F̄ (t)(pcI + (1− p)cE))− C(p)]− w,
subject to λ[b− a(t+ pF̄ (t)r)] + w ≥ 0 (IR).

The individual rationality (IR) constraint specifies the agents’ outside option. Note that the IR

constraint is identical for both agents. Since the principal’s profit rate is monotone decreasing

in w and b, the IR constraint must bind, simplifying the principal’s problem to an optimization

problem of two variables: t and p. Let {tFB, pFB} denote the first-best solution.4 Since ρi =

λ(tFB+pF̄ (tFB)r), the stability condition becomes λ < 1
tFB+pF̄ (tFB)r

.5 For a stable system, Lemma

1 characterizes the first-best solution (all proofs are relegated to the Appendix).

Lemma 1 If cE > cI + ar > a
f(t) , there exists an interior first-best solution {tFB, pFB} given by

f(tFB) =
1

pFBr + 1
a(p

FBcI + (1− pFB)cE)
, (1)

C 0(pFB) = F̄ (tFB)(cE − cI − ar). (2)

The optimal effort depends on the density of the probability function of producing good quality.

This is because the agents face an increasing concave “production function” F (·), the density of
which measures the marginal return of effort. It is simple to show that ∂2V

∂t∂p < 0, i.e., t and p are
4We ignore the issue of uniqueness of solution as all of our subsequent results hold for any interior optimum.
5Obviously, tFB is a function of λ and F. Only for specific instances of F can this inequality be solved explicitly

in terms of model primitives.
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strategic substitutes. The principal can select from infinite pairs of wage rate and piece rate to

satisfy the IR constraint at equality. Since the principal is the Stackelberg leader and the agent

earns zero utility rate in equilibrium, the principal’s objective is identical to a central planner’s.

Therefore, the first-best solution achieves the Pareto optimum for the entire system.

4.2 Optimal Incentives for the Three Networks (Noncontractible Effort)

4.2.1 Self Routing

When effort t is not contractible and the rework is routed back to the originating agent, the principal

maximizes

V S = max
0≤p≤1,w,b

λ[v − b− F̄ (t)(pcI + (1− p)cE))−C(p)]− w,
subject to λ[b− a(t+ pF̄ (t)r)] + w ≥ 0 (IR),

t ∈ argmax
t0≥ t

λ[b− a(t0 + pF̄ (t0)r)] + w (IC).

The additional incentive compatibility (IC) constraint describes the agents’ post-contractual opti-

mization behavior. Since the two agents are completely independent and symmetric, we only need

a single IR and IC constraint.

Lemma 2 With ample capacity and self routing, the agents’ unique optimal effort is

tS =

 f−1( 1pr ) if f(t) > 1
pr

t if f(t) ≤ 1
pr

. (3)

Since the agents have sufficient time to complete all jobs and always earn the piece rate of

each job, the agents’ optimal effort is not impacted by the job arrival rate λ and the piece rate b.

However, the first-pass effort increases when the principal raises the quality inspection precision or

when rework is costly to the agents. The stability condition becomes λ < 1
tS+pF̄ (tS)r

.

4.2.2 Dedicated Routing

Without loss of generality, we assign new jobs to agent 1 and rework to agent 2. To keep the

system’s supply of jobs unchanged, agent 1 is assigned with job arrival rate 2λ. The principal
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maximizes

V D = max
0≤p≤1,w,b

λ[v − b− F̄ (t)(pcI + (1− p)cE))− C(p)]− w1 + w2
2

,

subject to 2λ[(1− pF̄ (t))b− at] + w1 ≥ 0 (IR1), 2λpF̄ (t)(b− ar) + w2 ≥ 0 (IR2)

t ∈ argmax
t0≥t

2λ[(1− pF̄ (t0))b− at0] + w1 (IC1).

Since agent 2’s rework effort is contractible, only IC1 is needed.

Lemma 3 With ample capacity and dedicated routing, agent 1’s unique optimal effort is

tD =

 f−1( apb) if f(t) > a
pb

t if f(t) ≤ a
pb

.

Now agent 1’s optimal effort depends on both p and b. Therefore, the principal can induce

higher first-pass effort not only by increasing the quality inspection precision but also by raising

the piece rate. Agent 1 and 2’s utilizations are ρ1 = 2λt
D and ρ2 = 2λpF̄ (t

D)r, respectively. The

stability condition becomes λ < min{ 1
2tD
, 1
2pF̄ (tD)r

} = 1
2tD
.

4.2.3 Cross Routing

When rework is assigned to the parallel agent, a rework queue is generated and its queue size

depends on the first-pass effort of the originating agent. We now must characterize the rework

equilibrium queues as part of the principal-agent incentive problem. For the multi-class queueing

network illustrated in Figure 1C, we define the following rates for i, j ∈ {1, 2} and i 6= j:

• Agent i0s new job service rate µni = 1
ti

• Agent i0s defect generation rate (or agent j0s rework arrival rate) λij = pF̄ (ti)
ti

• Rework service rate µr = 1
r (same for both agents)

Let a four-dimensional vector (Z1, Z2, Z3, Z4) represent the state of the four queues of the system

(two new job queues and two rework queues). The detailed balance equations are too complex to

be solved analytically in closed form. However, we do not need the limiting distribution of every

single state to compute the utility rate of the agents. It suffices to know the aggregate probabilities

of the agents being idle π0i , working on new jobs π
n
i , and working on rework πri . In steady state,
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the queueing network must satisfy

π0i + πni + πri = 1 (Law of total probability),

λ = µni π
n
i (Balance of agent i0s new job queue),

λjiπ
n
j = µ

rπri (Balance of agent i0s rework queue),

for i, j ∈ {1, 2} and i 6= j. Solving the above equations yields

π0i = 1− λti − λpF̄ (tj)r, πni = λti, πri = λpF̄ (tj)r

Thus, agent i0s long-run average utility rate

Ui(ti, tj) = πni ×
(1− pF̄ (ti))b− ati

ti
+ πri ×

b− ar
r

+ w

= λ[(1− pF̄ (ti))b− ati] + λpF̄ (tj)(b− ar) + w.

Notice that the first term is agent i’s average reward rate from working on new jobs while the

second term is his average reward rate from completing rework generated by agent j.

Lemma 4 With ample capacity and cross routing, the unique Nash equilibrium of the agents’ effort

game is (tC , tC), where tC = tD as in Lemma 3.

Surprisingly, the agents’ optimal effort in equilibrium is independent of each other’s effort and is

solely determined by the principal’s quality inspection and incentive decisions. Because the agents

have idle time in steady state, performing rework simply reduces idle time, but does not impact their

workload of new jobs. Therefore, cross routing imposes no additional effect on the incentives other

than taking away the second opportunity to work on a job. This effect is also present in dedicated

routing, rendering identical optimal effort in both schemes. Moreover, the two agents have no

strategic interactions and behave symmetrically. Since agent i’s utilization ρi = λ(ti + pF̄ (tj)r),

the stability condition becomes λ < 1
tC+pF̄ (tC)r

. The principal maximizes

V C = max
0≤p≤1,w,b

λ[v − b− F̄ (t)(pcI + (1− p)cE))− C(p)]− w,
subject to λ[(1− pF̄ (t))b− at] + w ≥ 0 (IR),

t = tC (IC).

4.3 Comparing the Three Networks: Implicit Punishment

Comparing Equation (1) with (3) allows us to illustrate the importance of assumption (A1). Notice

that when r is large, the difference between f(tFB) and f(tS) becomes small and thus even self
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routing performs close to first best. This supports the intuition that agents have incentives to get

it right the first time when rework is costly. Therefore, assumption (A1) allows us to restrict our

attention to the range of parameter values where agents’ opportunistic behavior is prominent. In

addition, small rework time makes self routing and cross routing implementable in a flow system.

Otherwise, the production line has to be stopped to allow agents to complete rework backlog. The

opposite extreme of the assumption is that r is sufficiently large such that ar > cE − cI . Then,
it is optimal for the principal to eliminate quality inspection (or to scrap the defects) because the

reduction in external failure costs cannot compensate for the high costs of internal repair.

Proposition 1 Self routing can never implement first best. In contrast, dedicated routing imple-

ments first best with contract {pFB, w∗1, w∗2, b∗} and cross routing implements first best with con-
tract {pFB, w∗, b∗}, where b∗ = ar + cI +

1−pFB
pFB

cE, w
∗
1 = 2λ[atFB − (1 − pFBF̄ (tFB))b∗], w∗2 =

2λpFBF̄ (tFB)(ar−b∗), and w∗ = λ[a(tFB+pFBF̄ (tFB)r)−b∗]. Therefore, V FB = V D = V C > V S.

Proposition 1 reflects the weakness of the conventional self routing scheme: Because the agent

has a second chance to work on a job and earn the piece rate, he has a disincentive to exert first-pass

effort and takes his chance at quality inspection. This gaming behavior leads to a lower first-pass

quality level, incurring higher internal and external failure costs to the principal. In contrast, both

dedicated routing and cross routing can attain first best. The optimal piece rate b∗ is chosen to

induce the first-best effort while the wage rates are chosen to meet the agents’ reservation utility

rate. Further notice that w∗ = w∗1+w
∗
2

2 i.e., the wage rate paid under cross routing equals the average

wage rate paid under dedicated routing.

From a central planner’s point of view, dedicated routing and cross routing are superior because

the effort and quality inspection are set at the system optimal level. Because the agents earn their

reservation utility rate under the first-best contracts, the principal achieves the highest possible

profit rate under these two routing schemes. We further compare the three schemes along first-pass

effort, quality output, and piece rate. We will use y(p) to denote a function of p.

Corollary 1 For all p ∈ (0, 1), tFB(p) = tD(p) = tC(p) > tS(p). Therefore, QFB(p) = QD(p) =

QS(p) > QS(p).

Dedicated routing and cross routing provide stronger incentives for quality because assigning

rework to a different agent imposes an implicit punishment on the agents for their quality failure.

This punishment is derived from that the agents lose the effort spent on the jobs that fail quality
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Ample Capacity Limited Capacity

effort

t

piece rate

b

principal’s

profit rate V

effort

t

piece rate

b

principal’s

profit rate V

Self Low Low Low Low Low Depends on

Dedicated High High High Medium Medium quality costs and

Cross High High High High High gross margins

Table 1: Comparing first-pass effort, piece rates, and profit rates of the three schemes.

inspection. Since the piece rate is paid on top of the wage rate, it can be viewed more generally as

a bonus system:

BonusS = piece rate × inflow,
BonusD = piece rate × (inflow − rework sent to others),
BonusC = piece rate × (inflow + rework received from others− rework sent to others).

The implicit punishment is monetary and is evident from the deduction of bonus under dedicated

routing and cross routing.

Corollary 2 For all p ∈ (0, 1), bFB(p) = bD(p) = bC(p) > bS(p) at equal wage rates.

Interestingly, we find that the piece rates paid in cross routing and dedicated routing are higher

than the one paid in self routing because in the former two schemes the agents exert higher effort

in equilibrium and cannot recoup the cost of effort spent on the jobs that have failed inspection. A

summary of the comparison is in Table 1.

4.4 Equilibria with Many Agents

So far we have only considered an operation with two agents. It is interesting to see whether the

results hold in a large operation with many agents. Let N ∈ N denote the number of agents. With
self routing, the system can be scaled up proportionally because the agents are independent of each

other. With dedicated routing and cross routing, however, we need to make further assumptions

on how the system is scaled up and what the routing rule is. For dedicated routing, we treat each

pair of agents as the basic unit and an N-agent system has N/2 such units (restrict N to even

numbers). Obviously, the N -agent system is identical to the two-agent system in terms of profit
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rate. For cross routing, we treat the agents anonymous and route rework to each one with equal

probability. The long run utility rate of agent i is

Ui(ti, t−i) = λ[(1− pF̄ (ti))b− ati] + λ(b− ar) p

N − 1 Σj 6=iF̄ (tj) + w

It follows immediately that tCi = f−1( apb), which is identical to that of the two-agent case. In

summary, when the system has ample capacity, the system can be scaled up proportionally and the

incentive effects of the three routing schemes remain unchanged.

5 Incentives and Routing with Limited Capacity

In contrast to the ample capacity case, the throughput of a capacitated system is endogenous and

depends on the agents’ effort. Therefore, both the agents and the principal face a trade-off between

throughput and quality. Optimizing their utility rate, the agents balance the time allocated to new

jobs versus rework to trade-off earning the piece rate from first-pass success with that from rework.

The principal balances inducing quality-improving effort with increasing throughput. Throughout

this section, we assume that the arrival rate of new jobs are sufficiently large such that the stability

conditions of the previous section cannot be satisfied. Though rework queues are considered, their

stability conditions are automatically satisfied because rework arrival rate pF̄ (ti)/ti is smaller than

rework service rate 1/r.

5.1 The First-Best Benchmark (Contractible Effort)

When working at capacity, the agents are continuously busy6 and spend t+pF̄ (t)r time units per job

on average. In contrast to λ earlier, the average throughput per agent now becomes 1/(t+pF̄ (t)r).

Renewal theory yields that the agents’ long-run average utility rate is b/(t+pF̄ (t)r)+w−a.When
effort t is contractible, the principal maximizes

V FB = max
t≥t,0≤p≤1,w,b

v − b− F̄ (t)(pcI + (1− p)cE)− C(p)
t+ pF̄ (t)r

− w

subject to
b

t+ pF̄ (t)r
+ w − a ≥ 0 (IR).

Since the profit rate is monotone decreasing in w and b, the IR constraint must bind and the

optimization problem reduces to a two-variable problem of t and p.
6The rework agent in dedicated routing has idle time in steady state.
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Lemma 5 Assume an interior first-best solution {tFB, pFB} exists. Then it must satisfy

f(tFB) =
1

pFBr + 1
A(tFB ,pFB)

(pFBcI + (1− pFB)cE)
, (4)

C 0(pFB) = F̄ (tFB)(cE − cI −A(tFB, pFB)r), (5)

where A(tFB, pFB) = v−F̄ (tFB)(pFBcI+(1−pFB)cE)−C(pFB)
tFB+pFBF̄ (tFB)r

.

Notice that the first-order conditions resemble Equations (1) and (2). The only difference is

that the disutility of effort a is replaced with A(tFB, pFB).

5.2 Optimal Incentives for the Three Networks (Noncontractible Effort)

5.2.1 Self Routing

When effort t is not contractible, the principal maximizes

V S = max
0≤p≤1,w,b

v − b− F̄ (t)(pcI + (1− p)cE))− C(p)
t+ pF̄ (t)r

− w,

subject to
b

t+ pF̄ (t)r
+ w − a ≥ 0 (IR),

t ∈ argmax
t0≥t

{ b

t0 + pF̄ (t0)r
+ w − a} (IC).

It turns out that the agents have the same optimal response as in the ample capacity case, i.e., tS

is given by equation (3). In both cases, the agents maximize their average payoff by minimizing

the total expected time spent per job:

tS = argmin
t0≥t

{t0 + pF̄ (t0)r}

Doing so is optimal for the agents because the piece rate of each job is guaranteed given the

opportunity of rework. Consequently, the agents’ optimal effort only depends on the inspection

precision p and the slope of F, thus independent of whether the agents are continuously busy or

have idle time. The following lemma states the result.

Lemma 6 With limited capacity and self routing, the agents’ unique optimal effort is tS as in

Lemma 2.
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5.2.2 Dedicated Routing

Without loss of generality, we assign new jobs to agent 1 and rework to agent 2. The principal

maximizes

V D = max
0≤p≤1,w,b

1

2t1
[v − b− F̄ (t1)(pcI + (1− p)cE))− C(p)]− w1 +w2

2
,

subject to
(1− pF̄ (t1))b

t1
+ w1 − a ≥ 0 (IR1),

pF̄ (t1)

t1
(b− ar) + w2 ≥ 0 (IR2),

t1 ∈ argmax
t0≥t

{ (1− pF̄ (t
0))b

t0
+ w1 − a} (IC1).

Lemma 7 With limited capacity and dedicated routing, the agents’ unique optimal effort is

tD =

 f−1(1−pF̄ (t
D)

ptD
) if tf(t) > 1

p − 1
t if tf(t) ≤ 1

p − 1
.

Different from the ample capacity case, agent 1’s optimal effort does not depend on b. Since

agent 1 is continuously busy in the capacitated system, he does not face the trade-off between

making money and having idle time. He only cares about the expected time spent per piece rate

earned, and thus his successful throughput, which is given by (1− pF̄ (t))/t.

5.2.3 Cross Routing

Unlike in the case of ample capacity, we only need to consider the queueing dynamics of the two

rework queues (because the new job queues are non-empty w.p. 1 when the system is capacitated).

The state of the queueing network is described by (Z3, Z4), where Zi+2 is the rework queue size for

agent i. Figure 3C illustrates the state transitions of this multi-class queueing network. In steady

state, Z3Z4 = 0 because the states where both rework queues are nonempty are transient. Though

we could have solved the limiting distribution for each possible state of (Z3, Z4) using the detailed

balance equation approach, we only need the aggregate probabilities of the agents working on new

jobs πni and on rework π
r
i . In steady state, the queueing network must satisfy

πni + πri = 1 (Law of total probability),

λjiπ
n
j = µ

rπri (Balance of agent i0s rework queue),

for i, j ∈ {1, 2} and i 6= j. Solving the equations yields

πni =
1− ρj
1− ρiρj

, πri =
ρj(1− ρi)

1− ρiρj
,
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Figure 3: State Transition Diagrams of a Capacity Constrained Queueing System under the Three Rework

Routing Schemes

where ρi(ti) = pF̄ (ti)
r
ti
. Agent i’s long-run average utility rate

Ui(ti, tj) =
b

1− ρiρj
[
(1− pF̄ (ti))(1− ρj)

ti
+

ρj(1− ρi)

r
] + w − a.

Lemma 8 With limited capacity and cross routing, if an interior symmetric Nash equilibrium

(tCi , t
C
j ) with t

C
i = tCj = t

C exists, it must satisfy

p[tCf(tC) + F̄ (tC)][ρ(tC)(1− r

tC
) + 1] + ρ(tC)2 − 1 = 0.

Similar to dedicated routing, the equilibrium effort only depends on p. Because we focus on

symmetric Nash equilibrium, we safely suppress the subscripts distinguishing the agents. The

principal’s problem becomes

V C = max
0≤p≤1,w,b

v − b+ F̄ (t)(pcI + (1− p)cE)− C(p)
t+ pF̄ (t)r

− w,

subject to
b

t+ pF̄ (t)r
+ w − a ≥ 0 (IR),

t = tC (IC).

5.3 Comparing the Three Networks: Externality and Prisoner’s Dilemma

In Section 4, we have shown that dedicated routing and cross routing impose an implicit punishment

for quality failure. Here, we will highlight an additional incentive effect of cross routing: workload

allocation externalities and a resulting prisoner’s dilemma.
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Proposition 2 The first-best solution {pFB, tFB} can never be achieved by the three rework routing
schemes. Furthermore, tS(p) < tFB(p) for all p ∈ (0, 1).

The conventional self routing scheme induces lower effort than the first-best situation at any

inspection precision p. As a result, self routing can never achieve first best. Dedicated routing and

cross routing cannot attain first best either. Next we compare the performance of the three routing

schemes in terms of effort, quality, and profit rate.

Lemma 9 For all p ∈ (0, 1), tC(p) > tD(p) > tS(p) and therefore, QC(p) > QD(p) > QS(p).

Similar to the ample capacity case, self routing induces the least effort. In contrast, cross

routing induces even higher effort than dedicated routing. Under cross routing, the two parallel

agents impact each other in two ways: they both generate and perform rework for each other. Since

rework is favorable, each agent would like the other one to send him more rework. Because rework

has priority, agent i has an incentive to pass less rework to agent j so that agent j has more time

to work on new jobs and pass more rework back to agent i.

Externality. The strategic interaction in the effort game results in workload allocation exter-

nalities between the agents. Whenever agent i increases effort, he not only improves his first-pass

success probability, but also forces agent j to spend more time on new jobs and thus generate more

rework for agent i, keeping agent j0s effort unchanged. Analytically,

∂πnj
∂ti

= − 1− ρj
(1− ρiρj)

2

∂ρi
∂ti

> 0,
∂πri
∂ti

= − ρj(1− ρj)

(1− ρiρj)
2

∂ρi
∂ti

> 0.

∂πnj /∂ti > 0 illustrates the workload externality imposed on agent j when agent i increases his first-

pass effort. Since πri is the fraction of time agent i spends on rework in steady state, ∂π
r
i /∂ti > 0

implies that agent i has more rework allocation when he increases his first-pass effort. For the

same reason, agent j increases his first-pass effort to respond to agent i0s action. In the effort Nash

equilibrium, both agents exert higher first-pass effort than under dedicated routing, resulting in

better first-pass quality. Therefore, the workload allocation externalities in the effort game give

cross routing superiority in inducing quality-improving effort.

Lemma 10 For all p ∈ (0, 1) and at equal wage rate,

(i) bC(p) > bS(p);

(ii) When the wage rate is zero, bC(p) > bD(p) > bS(p).
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Lemma 10 states that the principal pays a higher piece rate to compensate for the higher effort

that agents exert under cross routing and dedicated routing. More interestingly, using this piece

rate ranking, we can show that the effort equilibrium of cross routing exhibits a prisoner’s dilemma.

Prisoner’s Dilemma. Notice that cooperative agents would exert tS because it minimizes

the total expected time spent on each job. This cooperative outcome gives agents strictly positive

utility rate because bC(p) > bS(p), thus a better outcome for both agents than the equilibrium

outcome that renders zero utility rate for both agents. Since f(tS) = 1/pr,

∂Ui(ti, t
S)

∂ti
|ti=tS =

b(1− ρ(tS))

[(1− ρ(tS)2)tS]2
[
tS

r
(1 + ρ(tS))(ρ(tS)(1− r

tS
) + 1) + ρ(tS)2 − 1] > 0.

The last inequality follows from that ρ(tS) < 1 and r ≤ tS . Therefore, agent i has an incentive
to unilaterally deviate from the cooperative outcome. (Section 6.1 elaborates on this strategic

behavior and discusses incentives for collusion.) This prisoner’s dilemma works in favor of the

principal because it induces higher first-pass effort and thus leads to higher quality output. We

now compare the principal’s profit rate.

Proposition 3 V FB > max{V S , V D, V C}. The rank order of the principal’s profit rate depends
on the quality costs and the gross margin:

(i) if cI , cE are sufficiently large or C(·) is sufficiently convex, V C > V D > V S .

(ii) if v is sufficiently large, V S > max{V D, V C}.

Being capacity constrained, the principal must take into account the impact of the agents’ effort

on throughput. If she earns a high gross margin per job, the principal has less incentive to induce

effort because higher effort than tS leads to lower throughput and consequently lowers the revenue

rate. Therefore, cross routing underperforms self routing when v is sufficiently large. However,

when the costs of quality are high, it becomes critical for the principal to improve first-pass quality,

making cross routing preferable to self routing.

We illustrate these effects by numerical examples. When the gross margin is high (Figure

4), there exists a threshold of cA (cA indicates how convex C(·) is), below which self routing

generates the highest profit rate. In contrast, when the gross margin is low (Figure 5), cross

routing always dominates the other two schemes. There exists another threshold of cA, above

which V C > V D > V S. These results are consistent with Proposition 3.
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Figure 4: Financial performance depends on the appraisal cost: high gross margin (v = 10). F (t) =

1− e−3(t−1), cI = 0.5, cE = 10, C(p) = cAp
2

1−p , a = 0.5, r = 0.5, w = 0.
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Figure 5: Financial performance depends on the appraisal cost: low gross margin (v = 4). F (t) =

1− e−3(t−1), cI = 0.5, cE = 10, C(p) = cAp
2

1−p , a = 0.5, r = 0.5, w = 0.
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5.4 Equilibria with Many Agents

Similar to the case of ample capacity, the system scales up proportionally under self routing and

dedicated routing and thus their incentive effects remain unchanged. In contrast, we will show that

the incentive effects of cross routing reduce in an interesting way. Under cross routing, agent i’s

long-run average utility rate becomes

Ui(ti, t−i) =
b

1 + (1− ρi
N−1) Σj 6=i

ρj
N−1−ρj

1− pF̄ (ti)
ti

+

(1− ρi
N−1) Σj 6=i

ρj
N−1−ρj

r

+w − a,
where t−i denote the vector (t1, ..., ti−1, ti+1, ..., tN ).

Lemma 11 With limited capacity and cross routing, if an interior symmetric Nash equilibrium

exists, the equilibrium effort tCN must satisfy

p[tCNf(t
C
N) + F̄ (t

C
N)][ρ(t

C
N )(1−

1

N − 1
r

tCN
) + 1] +

1

N − 1ρ(t
C
N )

2 − N − 2
N − 1ρ(t

C
N)− 1 = 0

This result generalizes the equilibrium condition of Lemma 8 to the case of N -agent.

Lemma 12 For any N ≥ 2 and p ∈ (0, 1), tCN(p) > tD(p), where tD(p) is the optimal effort under
dedicated routing as in Lemma 7.

This lemma shows that the incentive power of cross routing is still higher than that of dedicated

routing in a system with many agents. However, as the system grows larger, each agent’s impact on

any other specific agent diminishes. In fact, under a mild condition on the probability function F (·),
we further establish a monotonicity property that the incentive power of cross routing decreases

in the size of the system. The condition is often used in the supply chain contracting literature:

increasing generalized failure rate (IGFR). Lariviere & Porteus (2001) define the generalized failure

rate of a distribution function Φ as ξφ(ξ)/Φ̄(ξ), where φ is the density of Φ and Φ̄ = 1− Φ. IGFR
means that ξφ(ξ)/Φ̄(ξ) is weakly increasing for all ξ such that Φ(ξ) < 1.We also need the decreasing

failure rate (DFR) property, i.e., φ(ξ)/Φ̄(ξ) is weakly decreasing for all ξ such that Φ(ξ) < 1.

Lemma 13 (Monotonicity). Assume that F (·) satisfies IGFR and DFR, and that tf(t) ≥ 1.
For any N ≥ 2, tCN is monotone decreasing in N.

The conditions are sufficient but not necessary for the monotonicity property to hold. A canon-

ical example is of the exponential form: F (t) = 1− βe−(t−t). Because it has constant failure rate,
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it satisfies both IGFR and DFR. Moreover, as long as t ≥ 1/β, tf(t) ≥ 1 is satisfied. Though

increasing failure rate (IFR) implies IGFR, the reverse is not true, thus making it possible for a

distribution function to be both IGFR and DFR. In fact many DFR distribution functions are

IGFR (Lariviere (2006)).

Notice that if we take N to the limit, the equilibrium condition reduces to f(t) = 1−pF̄ (t)
pt , the

solution of which is exactly tD. This suggests that in the limit game, there may exist a symmetric

equilibrium in which all agents play tD. In the literature of large games, the limit of a sequence

of finite games where the number of players increases to infinity can be studied as a game with

continuous players in a rigorous mathematical sense (Green (1986)) or characterized using the

concept of ε-equilibrium, which we adopt here.

Definition 1 (ε-equilibrium). Let ε ≥ 0. If t̂ ∈ RN+ is an ε-equilibrium, there exists no agent i

and no ti ∈ [t,∞) such that Ui(ti, t̂−i)− Ui(t̂i, t̂−i) > ε.

Notice that ε-equilibrium is a weakened notion of Nash equilibrium. If ε = 0, the definition

reduces to that of Nash equilibrium. In words, ε-equilibrium describes the strategy profile that is

within ε of the best payoff of each agent. An immediate question is why the agents would contend

with something less than optimal? One interpretation of ε is that it represents the adjustment cost

of discovering and using the optimal strategy (Radner (1979)). Another interpretation is bounded

rationality of individual agents.

Proposition 4 Let ε ≥ 0. There is an Nε such that, for all N ≥ Nε, there exists an ε-equilibrium

in which each agent chooses tD as in Lemma 7.

This proposition states that in a cross routing system with many agents, it is an approximate

equilibrium for all agents to behave as if rework were routed to a dedicated agent. This result

is intuitive and consistent with the findings with two agents. Earlier we have shown that cross

routing has higher incentives than dedicated routing because both agents can influence each other’s

workload of new jobs and rework in a substantial way. As the number of agents increases, the

influence of each agent vanishes, which is typical of an anonymous large game. The strategic

interactions thus diminish to none and the incentive power of cross routing reduces to implicit

punishment, making it close to dedicated routing. The diminishing incentive power of cross routing

in large systems suggests that it may be preferred for the principal to match agents into cross-

routing pairs to preserve the incentives for quality.
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6 Project Management Setting: Static System

Until now, we have focused on a continuous flow system where jobs are constantly assigned to

agents. To check whether the strategic effects illustrated earlier extend to a static system, we now

consider a project environment where a single job (i.e., project) is assigned to an agent who needs to

complete it within certain period of time. This static setting also allows for a clear demonstration of

the prisoner’s dilemma arising from the effort game under cross routing. It is reasonable to assume

that the agents maximize their utility per job in this context. For analytical purposes, we assume

that there are only two possible effort levels {tH , tL}. With effort levels tH and tL, good quality

output is produced with probabilities πH and πL, respectively. We assume 0 < πL < πH < 1.

As in the main model, rework takes a constant effort r, which is contractible. Further, rework is

relatively less costly, specifically, r < tL. Here we can allow a more general disutility7 of effort g(t),

with g(0) = 0, g0 > 0 and g00 > 0. Further more, we assume that it is optimal for the principal to

induce high effort. This is the more interesting case as quality is crucial to the principal.

6.1 Self Routing

Under self routing, agent i’s utility depends on his effort:

UH = b− g(tH)− p(1− πH)g(r) +w, UL = b− g(tL)− p(1− πL)g(r) + w.

The IC constraint for inducing high effort is UH ≥ UL. Equivalently,

p ≥ p̄S = g(tH)− g(tL)
(πH − πL)g(r)

.

To ensure high effort is implementable using the self routing scheme, we need p̄S < 1 and thus

assume g(r) > g(tH)−g(tL)
πH−πL . This is the more interesting case because self routing would otherwise

be immediately inferior. Since the throughput is limited to one unit, the principal’s problem

becomes minimizing the total cost per agent:

CS = min
0≤p≤1,w,b

b+ (1− πH)(pcI + (1− p)cE) + C(p) +w
subject to b− g(tH)− p(1− πH)g(r) + w ≥ 0 (IR), p ≥ p̄S (IC).

7 In our main model, a linear disutility of effort is assumed because long-run analysis of the agents’ utility rate

requires additivity of disutility.
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6.2 Dedicated Routing

To keep dedicated routing equivalent to the other two schemes, assign two projects to agent 1.

Agent 1’s utility depends on his effort:

UH = 2[(1− p(1− πH))b− g(tH)] +w1, UL = 2[(1− p(1− πL))b− g(tL)] +w2.

The IC constraint for inducing high effort is UH ≥ UL. Equivalently,

p ≥ p̄D = g(tH)− g(tL)
(πH − πL)b

.

The principal’s problem becomes

CD = min
0≤p≤1,w1,w2,b

b+ (1− πH)(pcI + (1− p)cE) + C(p) + w1 + w2
2

subject to 2[ (1− p(1− πH))b− g(tH)] + w1 ≥ 0 (IR1), p ≥ p̄D (IC1),

2p(1− πH)(b− g(r)) + w2 ≥ 0 (IR2).

Since p̄D depends on b, high effort is always implementable as long as the piece rate b is set high

enough. Similar to the ample capacity case of the main model, dedicated routing gives the principal

an additional lever, i.e., b, to induce effort.

6.3 Cross Routing

Under cross routing, agent i’s utility also depends on agent j0s effort:

UHH = b− g(tH)− p(1− πH)g(r) + w, ULH = (1− p(πH − πL))b− g(tL)− p(1− πH)g(r) + w,

ULL = b− g(tL)− p(1− πL)g(r) +w, UHL = (1 + p(πH − πL))b− g(tH)− p(1− πL)g(r) + w,

where the first and second subscripts denote agent i’s and j’s effort level, respectively. The IC

constraint for inducing {H,H} equilibrium outcome is UHH ≥ ULH . Equivalently,

p ≥ p̄C = g(tH)− g(tL)
(πH − πL)b

Similar to dedicated routing, high effort is always implementable as long as the piece rate b is set

high enough. The principal’s problem becomes

CC = min
0≤p≤1,w,b

b+ (1− πH)(pcI + (1− p)cE) + C(p) + w
subject to b− g(tH)− p(1− πH)g(r) + w ≥ 0 (IR), p ≥ p̄C (IC).
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6.4 Comparing the Three Schemes: Prisoner’s Dilemma and Collusion

We first compare the lower bound on the quality inspection precision required to achieve high effort.

It is simple to show that p̄C = p̄D but p̄S can be higher or lower. The equality between p̄C and p̄D

implies that cross assignment of rework and assigning rework to a dedicated agent have equivalent

incentive effects. When p̄C ≥ p̄S , self routing achieves identical performance as cross routing. By
contrast, when p̄C < p̄S, the Nash equilibrium induced between the two agents in cross routing

exhibits a prisoner’s dilemma for any p ∈ ( p̄C , p̄S). This follows from

UHL − ULL = p(πH − πL)b− g(tH) + g(tL) > 0
UHH − ULL = g(tL)− g(tH) + pg(r)(πH − πL) < 0

In other words, even though strategy profile (tL, tL) gives both agents a higher payoff than the

equilibrium payoff, agents will make unilateral deviation to high effort, resulting in a prisoner’s

dilemma. When this occurs, cross routing leads to lower costs to the principal. The next proposition

states the conditions when this would occur.

Proposition 5 CS ≥ CD = CC . The inequality is strict when cI is sufficiently large, when cE is
sufficiently small, or when C(·) is sufficiently convex.

The above results are consistent with Propositions 1 in that self routing is weakly dominated by

the other two schemes. However, it differs from Proposition 3 in that cI and cE play different roles

in determining the rank order. These differences result from that high effort is always assumed to

be desirable in the current model, while the principal is allowed to choose optimal effort earlier.

Finally, we caution that the superior performance of cross routing relies on the restriction that

the agents do not have future interactions. According to the Nash Reversion Folk Theorem (see

Mas-Colell, Whinston & Green (1995)), a collusive outcome (tL, tL) can be supported with Nash

reversion strategies and a sufficiently large discount factor in a repeated game. This suggests that

in practice, it may be beneficial for the principal to maintain a certain level of staff turnover to

prevent collusion.

7 Conclusions and Discussions

This paper investigates how incentives and judicious rework routing can improve quality and prof-

itability of a firm using a principal-agent model integrated into a multi-class queueing network.
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We demonstrate that conventional self routing of rework is always suboptimal in terms of induc-

ing quality-improving effort. In contrast, dedicated routing and cross routing perform better in

inducing effort. However, financial performance depends not only on the first-pass effort induced,

but also on capacity levels, revenues, and quality costs. The more novel cross routing scheme is

applicable in both manufacturing and service operations environment. The merit of this scheme lies

in that the agents influence each other’s workload allocation of new jobs and rework in a way that

leads to higher equilibrium first-pass effort as a result of a prisoner’s dilemma. This works in favor

of the principal when quality is important, i.e., when quality costs are high. When the number of

agents increases, the incentive power of cross routing reduces monotonically and approaches that

of dedicated routing. We have also considered the effect of non-constant rework time by assuming

r = τ − t, where τ is a constant. The results are consistent with our main findings (see our Online
Appendix for details).

We have made two methodological contributions to the agency and operations management

literature. First, we study a multi-agent principal-agent model in a multi-class queueing network

with endogenous queues (recall the job arrival rate of the rework queues is endogenously determined

by the agents’ first-pass effort). To the best of our knowledge, this is the first attempt at modeling

endogenous queueing dynamics in a principal-agent framework. Second, we embed the quantity-

quality trade-off in a single dimensional decision variable, i.e., the average processing time per job.

This is more appropriate than the multitask principal-agent model when quantity and quality are

not separable tasks of an agent’s job.

We have illustrated how rework routing affects incentives in a specific queueing network formu-

lated here. The insights of this paper will find applications in a broader network setting where a

principal uses routing as an operational instrument to create incentives complementing the effects

of monetary incentives. In essence, the decentralized decision making of individual agents in a

queueing network creates externalities between the agents that may work in favor of the principal.

Our model has limitations. First, due to the inherent variability in queueing networks, risk

aversion cannot be easily incorporated given that we conduct long-run analysis. Second, we assume

that agents commit to a single first-pass effort level even though in reality they can adjust effort from

time to time and thus play a dynamic game. Third, our model does not capture customer waiting

costs and inventory holding costs, though they can be incorporated. When customer waiting costs

are considered, pricing of the goods or services sold by the principal will depend on the agents’

effort. Customer waiting also affects the principal’s decision on capacity, i.e., whether to acquire
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adequate staffing to provide good service or maintain high utilization of resources to minimize

cost. Inventory holding costs can be incorporated straightforwardly. We believe this will change

our result in one direction: the principal will have less incentives to induce effort because higher

first-pass effort leads to longer flow time, and thus higher inventory holding costs. Finally, our

model does not cover a few important aspects of manufacturing and service operations. From the

perspective of lean operations, self routing enables quality at the source and allows the workers to

learn from their own mistakes. Since the utilization of agents is not balanced in dedicated routing,

cross routing may be preferred even though the two routing schemes have the same incentive effects.

However, cross routing loses the specialization benefit of dedicated routing.
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Appendix

PROOF OF LEMMA 1. Notice that when t ≥ v
a , V < 0. Therefore, we maximize a continuous function

over a compact set: [t, va ]× [0, 1], implying an optimum exists. C 0(1) =∞ implies pFB < 1. Since the IR

constraint must bind, substitute w = λ[a(t+pF̄ (t)r)− b] into the objective function and the Kuhn-Tucker
conditions are

∂V (tFB, pFB)

∂t
= λ[−a+ f(tFB)(pFB(ar + cI) + (1− pFB)cE)] ≤ 0,

∂V (tFB, pFB)

∂p
= λ[F̄ (tFB)(cE − cI − ar)− C 0(pFB)] ≤ 0.

C 0(0) = 0 implies pFB > 0 because cE − cI > ar gives∂V (t,0)∂p > 0. pFB ∈ (0, 1) implies (pFB(ar +
cI) + (1− pFB)cE) ∈ (ar + cI , cE). When a

f(t) < ar + cI ,
∂V (t,p)

∂t > 0 implying t > t. ¥

PROOF OF LEMMA 2, 3, 4. The Kuhn-Tucker condition is −1 + prf(t) ≤ 0 with equality at interior
solutions. The boundary conditions follows from that f is strictly monotone decreasing. The uniqueness

follows from the second-order condition (SOC) λaprF 00(t) < 0. Proofs of Lemma 3 and 4 are similar and

thus omitted. ¥

PROOF OF PROPOSITION 1. From equation 1, f(tS) > f(tFB), implying tS < tFB, therefore self

routing cannot achieve first best. Since tD = tC = f−1( abp), set p = p
FB and b∗ = a

f(tFB)p
to induce tFB.

The rest follows from that the IR constraints are satisfied at equality. ¥

PROOF OF LEMMA 1. From equation 1, f(tS) > f(tFB), implying tS(p) < tFB(p) = tD(p) =

tC(p). The rest follows from that Q is strictly increasing in t at any p. ¥

PROOFOF LEMMA 2. Because tS = argmin
t0≥t

{t0+pF̄ (t0)r}, wFB(p) = λ[a(tFB(p)+pF̄ (tFB(p))r)−
bFB(p)] = wS(p) = λ[a(tS(p)+pF̄ (tS(p))r)−bS(p)] implies that bFB(p) > bS(p). The rest follows from
bFB(p) = bD(p) = bC(p).¥

PROOF OF LEMMA 5. Notice that when t ≥ v
a , V < 0. Therefore, we maximize a continuous function

over a compact set: [t, va ] × [0, 1], implying an optimum exists. Assuming an interior optimum exists,

optimum {tFB, pFB} is then given by the first-order conditions (FOC). ¥
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PROOF OF LEMMA 6. Evaluating the second derivative of U(t) at tS using f(tS) = 1/pr yields that

U 00(tS) =
bprF 00(tS)

(tS + pF̄ (tS)r)2
+
2b(1− prf(tS))
(tS + pF̄ (tS)r)3

=
bprF 00(tS)

(tS + pF̄ (tS)r)2
< 0.

Because U(t) is strictly concave at any interior critical point, U(t) is strictly pseudoconcave (Avriel, Diewert,

Schaible & Zang (1988)) and thus tS is a unique global maximum. The boundary conditions follows from

that f is strictly monotone decreasing. ¥

PROOF OF LEMMA 7. Evaluating the second derivative of U1(t) at tD using f
¡
tD
¢
= 1−pF̄ (tD)

ptD

yields that

U 001 (t
D) = b[

pF 00(tD)
tD

− 2

(tD)3
(ptDf(tD) + pF̄ (tD)− 1)] = bpF 00(tD)

tD
< 0.

Because U1(t) is strictly concave at any interior critical point, U1(t) is strictly pseudoconcave (Avriel et al.

(1988)) and thus tD is a unique global maximum. The boundary condition follows from that tf(t) + F̄ (t)

is strictly monotone decreasing and F̄ (t) = 1. ¥

PROOF OF LEMMA 8. Assuming an interior solution, the FOC is

∂Ui(ti, tj)

∂ti
=

b(1− ρj)

(1− ρiρj)
2

1

t2i
[p(tif(ti) + F̄ (ti))(1 + ρj(1−

r

ti
)) + ρiρj − 1] = 0.

Let t̂i be the critical point satisfying the FOC. The SOC evaluated at t̂i is

∂2Ui(t̂i, tj)

∂t2i
=

b(1− ρj)

(1− ρiρj(t̂i))
2

1

t̂2i
[pt̂iF

00(t̂i)(1 + ρj(1−
r

t̂i
)) + p(t̂if(t̂i) + F̄ (t̂i))

r

t̂2i
ρj + ρj

∂ρi(t̂i)

∂ti
]

+b(1− ρj)
∂[ 1
(1−ρiρj)2

1
t2i
]

∂ti
[p(t̂if(t̂i) + F̄ (t̂i))(1 + ρj(1−

r

t̂i
)) + ρi(t̂i)ρj − 1].

Substituting ∂ρi(t̂i)
∂ti

= −pr
t̂2i
[t̂if(t̂i) + F̄ (t̂i)] and the FOC into the SOC gives

∂2Ui(t̂i, tj)

∂t2i
=

b(1− ρj)

(1− ρiρj(t̂i))
2

1

t̂2i
[pt̂iF

00(t̂i)(1 + ρj(1−
r

t̂i
))] < 0.

The inequality follows from the fact that F 00(·) < 0 and that (1 + ρj(1− r
t̂i
)) > 0. Because it is strictly

concave at any interior critical point, Ui(ti, tj) is strictly pseudoconcave in ti (Avriel et al. (1988)), implying

t̂i is a unique global maximum. ¥

PROOF OF PROPOSITION 2. Let A(t, p) = v−b−F̄ (t)(pcI+(1−p)cE)−C(p)
t+pF̄ (t)r

and B(t, p) = t + pF̄ (t)r.

From equation 4, f(tS) > f(tFB) implying tS(p) < tFB(p), therefore self routing cannot achieve first best.

Claim: At any fixed p, V FB is uniquely maximized at tFB.

∂V 2(tFB)

∂t2
=
F 00(tFB)(pcI + (1− p)cE)

B(tFB, p)
+ prF 00(tFB)

A(tFB, p)

B(tFB, p)
< 0
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Since V (t) is strictly concave at any interior critical point, V (t) is strictly pseudoconcave (Avriel et al.

(1988)), and tFB(p) is a unique global maximum. Since the agents’ optimal effort in dedicated and cross

routing only depend on p and are different from the FOC of tFB, first best cannot be implemented by these

two schemes. ¥

PROOF OF LEMMA 9. To show tS(p) < tD(p), substituting tS(p) into the FOC of tD(p) yields

that w
tS(p)

[ptS(p)f(tS(p)) + pF̄ (tS(p))− 1] = w
tS(p)

[ t
S(p)
r + pF̄ (tS(p)− 1] > 0. We show tD(p) < tC(p)

by contradiction. Suppose tD(p) ≥ tC(p) and it follows from the FOC of tD(p) that ptC(p)f(tC(p)) +

pF̄ (tC(p)) − 1 ≥ 0. Then, p[tC(p)f(tC(p)) + F̄ (tC(p))][1 + (1 − r
tC(p)

)ρ(tC(p))] + ρ(tC(p))2 − 1 ≥
1 + (1− r

tC(p)
)ρ(tC(p)) + ρ(tC(p))2 − 1 = ρ(tC(p))

tC(p)
(tC(p) + pF̄ (tC(p)r− r) > 0, contradicting the FOC

of tC(p). The rest follows from that Q is strictly increasing in t at any p.¥

PROOF OF LEMMA 10. Because tS = argmin
t0≥t

{t0 + pF̄ (t0)r}, wC(p) = a − bC(p)
tC(p)+pF̄ (tC(p))r

=

wS(p) = a − bS(p)
tS(p)+pF̄ (tS(p))r

implies that bC(p) > bS(p). Because wD(p) = a[tD(p)+pF̄ (tD(p))r]−bD(p)
2tD(p)

,

then zero wage rate implies bD(p) = a[tD(p) + pF̄ (tD(p))r]. The inequality follows from Lemma 9. ¥

PROOF OF PROPOSITION 3. First we compare the principal’s profit rate at any p,

V C(p)− V S(p) = (tC(p)− tS(p))
(v − C(p))(prF (tC(p))−F (tS(p))

tC(p)−tS(p) − 1)
(tC(p) + pF̄ (tC(p))r)(tS(p) + pF̄ (tS(p))r)

+
(pcI + (1− p)cE)(tCF̄ (tS(p))− tSF̄ (tC(p)))
(tC(p) + pF̄ (tC(p))r)(tS(p) + pF̄ (tS(p))r)

.

(i) Since tC(p) > tS(p), it follows that F (t
C(p))−F (tS(p))
tC(p)−tS(p) < f(tS(p)) = 1

pr and t
CF̄ (tS(p)− tSF̄ (tC(p) >

0. Therefore, V C(p)−V S(p) > 0 when pcI +(1−p)cE is large enough or when v−C(p) is small enough,
i.e., if cI or cE are sufficiently large or if C(·) is sufficiently convex. Hence, V C = V C(pC) > V C(pS) >
V S(pS) = V S. The first inequality follows from the optimality of V C . (ii) V C(p) − V S(p) < 0 if v is

large enough. Hence, V C = V C(pC) < V S(pC) < V S(pS) = V S. The last inequality follows from the

optimality of V S. Comparing V D with V C and V S is similar and thus omitted. ¥

PROOF OF LEMMA 11.

∂Ui(ti, t−i)
∂ti

=
b(1− ρi)

(1 + (1− ρi
N−1) Σj 6=i

ρj
1−ρj )

2

1

t2i

½
p[tif(ti) + F̄ (ti)][1 +

Nti − r
(N − 1)ti Σj 6=i

ρj
N − 1− ρj

]

−1− (1− ρi
N − 1) Σj 6=i

ρj
N − 1− ρj

¾
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Let t̂i be the critical point satisfying the FOC. The SOC evaluated at t̂i is

∂2Ui(t̂i, t−i)
∂t2i

=
b

(1 + (1− ρi
N−1) Σj 6=i

ρj
N−1−ρj )

2

1

t̂2i

½
pt̂iF

00(t̂i)[1 +
Nti − r
(N − 1)ti Σj 6=i

ρj
N − 1− ρj

]

+p[t̂if(t̂i) + F̄ (t̂i)]
1

N − 1
r

t̂2i
Σ
j 6=i

ρj
N − 1− ρj

+
1

N − 1
∂ρi
∂ti
Σ
j 6=i

ρj
N − 1− ρj

¾

+b

∂( 1

(1+(1− ρi
N−1 ) Σj 6=i

ρj
N−1−ρj )

2

1
t̂2i
)

∂ti

½
[p(t̂if(t̂i) + F̄ (t̂i)][1 +

Nti − r
(N − 1)ti Σj 6=i

ρj
N − 1− ρj

]

−1− (1− ρi
N − 1) Σj 6=i

ρj
N − 1− ρj

¾
=

b

(1 + (1− ρi
N−1) Σj 6=i

ρj
1−ρj )

2

1

t̂2i
pt̂iF

00(t̂i)[1 +
Nti − r
(N − 1)ti Σj 6=i

ρj
N − 1− ρj

] < 0.

The last equality follows from the FOC above and that ∂ρi
∂ti
= − r

t2i
p[tif(ti)+ F̄ (ti)]. The inequality follows

from the fact that F 00(·) < 0 and that ρj < 1. Because it is strictly concave at any interior critical point,
Ui(ti, tj) is strictly pseudoconcave in ti (Avriel et al. (1988)), implying t̂i is a unique global maximum.

Assuming a symmetric equilibrium gives the equation. ¥

PROOF OF LEMMA 12. If tD(p) = t, we are done because tCN(p) is interior. Now consider interior

tD(p). Suppose to the contrary tD(p) ≥ tCN (p) and it follows from the FOC of tD(p) that p[tCNf(t
C
N) +

F̄ (tCN)] ≥ 1 (for simplicity, we use tcN to denote tCN (p).) Let gN(t) denote the FOC of the symmetric

equilibrium for the N -agent system.

gN (t
C
N ) ≥

1

N − 1
prF̄ (tCN)

tCN
[1 +

prF̄ (tCN)

tCN
− r

tCN
] > 0,

contradicting the optimality condition of tCN . ¥

PROOF OF LEMMA 13. To show tCN ≥ tCN+1, it suffices to show gN decreases in both N and t. For

convenience of notation, we treat N as a real number.

∂gN(t)

∂N
=

1

(N − 1)2
prF̄ (t)(prf(t)− 1)

t
≤ 0

for any t ≥ tD becausef(t) ≤ f(tD) ≤ f(tS) = 1/pr. Lemma 12 shows that tD < tCN for all N ≥ 2.
Therefore, for the range of the equilibrium solutions, gN decreases inN. Hence gN(tCN+1) ≥ gN+1(tCN+1) =
gN(t

C
N) = 0. What is left to show is that gN decreases in t.

∂gN(t)

∂t
= p2rF 00(t)F̄ (t)(1− r

(N − 1)t)−
p2[tf(t) + F̄ (t)]2r

t2

+ptF 00(t) +
pr[tf(t) + F̄ (t)]

t2
prf(t) +N − 2

N − 1
≤ p2rF 00(t)F̄ (t)(1− r

(N − 1)t)−
p2[tf(t) + F̄ (t)]2r

t2
+ p[tF 00(t) +

tf(t) + F̄ (t)

t
]
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(b/c f(t) ≤ 1/pr and r ≤ t). Since the first two terms are negative, the third term being negative is a

sufficient condition for ∂gN (t)
∂t ≤ 0, which is equivalent to −F 00(t)f(t) ≥ 1

t +
F̄ (t)
t2f(t)

. Now let us invoke the DFR

assumption and from the definition of DFR we have −F 00(t)f(t) ≥ f(t)
F̄ (t)

. If f(t)
F̄ (t)
≥ 1

t +
F̄ (t)
t2f(t) , equivalently, if

tf(t)
F̄ (t)

( tf(t)
F̄ (t)
− 1) ≥ 0, then the third term of ∂gN (t)

∂t is negative. Satisfying the condition calls for the IGFR

property and tf(t) ≥ 1 so that tf(t)
F̄ (t)
≥ tf(t)

F̄ (t)
= 1.¥

PROOF OF PROPOSITION 4. Let t∗i denote the optimal effort when all other agents choose t
D. It

suffices to show Ui(t∗i , t
D
−i) − Ui(tDi , tD−i) ≤ ε. Claim. t∗i ≥ tD. To show this, substitute tD into the

equilibrium condition given all other agents choose tD. Because p[tDf(tD) + F̄ (tD)] = 1 (If tD = t, we

are done.) the condition becomes gN (tD) = 1
N−1

prF̄ (tD)
tD

[1 + prF̄ (tD)
tD

− r
tD
] > 0. Because the agent’s

problem is strictly pseudoconcave as shown in Lemma 11, t∗i ≥ tD. Now

Ui(t
∗
i , t

D
−i)− Ui(tDi , tD−i)

=
b

1 +
1− pr

N−1
F̄ (t∗

i
)

t∗
i

1− pr
N−1

F̄ (tD)

tD

prF̄ (tD)
tD

[
1− pF̄ (t∗i )

t∗i
+
1− pr

N−1
F̄ (t∗i )
t∗i

1− pr
N−1

F̄ (tD)
tD

pF̄ (tD)

tD
]− b

tD + prF̄ (tD)

≤ b

1 + pF̄ (tD)
tD

[
1− pF̄ (tD)

tD
+

1

1− pr
N−1

F̄ (tD)
tD

pF̄ (tD)

tD
]− b

tD + prF̄ (tD)

because 1− pr
N−1

F̄ (t∗i )
t∗i
≥ 1− pr

N−1
F̄ (tD)
tD

and
1−pF̄ (t∗i )

t∗i
≤ 1−pF̄ (tD)

tD
.ChooseN1 large enough s.t.

pr
N1−1

F̄ (tD)
tD
≤

1
2 . Then

1

1− pr
N−1

F̄ (tD)

tD

≤ 1 + 2 pr
N−1

F̄ (tD)
tD

. It follows that

LHS ≤ b

1 + pF̄ (tD)
tD

[
1− pF̄ (tD)

tD
+
pF̄ (tD)

tD
+ 2

pr

N − 1
F̄ (tD)

tD
pF̄ (tD)

tD
]− b

tD + prF̄ (tD)

=
1

N − 1
2rb(pF̄ (t

D)
tD

)2

1 + pF̄ (tD)
tD

.

Now choose N2 large enough s.t. LHS ≤ ε. Let Nε = max(N1, N2). ¥

PROOF OF PROPOSITION 5. Since all the IR constraints bind, the principal’s problems under dedi-

cated and cross routing are identical, implying CD = CC . The principal’s problem under cross routing is

equivalent to

min
0≤p≤1

g(tH) + p(1− πH)g(r) + (1− πH)(pcI + (1− p)cE) + C(p)

The FOC is C 0(p̂) = (1−πH)(cE−cI−g(r)). Then, b = g(tH)−g(tL)
(πH−πL)p and w = g(tH)+p(1−πH)g(r)−b.

The principal’s problem under self routing is equivalent to

min
0≤p≤1,w,b

g(tH) + p(1− πH)g(r) + (1− πH)(pcI + (1− p)cE) + C(p)
s.t. p ≥ p̄S.
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Then w and b are determined by w = g(tH) + p(1− πH)g(r)− b.If p̄S ≤ p̂, then CS = CC . If p̄S > p̂,
then CS > CC . This occurs when cI is sufficiently large, when cE is sufficiently small, or when C(·) is
sufficiently convex, as evident from the FOC of p̂. ¥
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Online Appendix

Dependent Rework Time

We now relax the assumption that the rework time has a constant mean r. We let r depend on the

first-pass effort t, i.e., r = τ− t, where τ is a constant. In this subsection, we will delve directly into
the results without laying out the optimization problems of the principal and the agents. Note that

these problems are identical to the ones presented earlier except that the rework time r is replaced

with τ − t wherever appropriate. We summarize the agents’ optimal effort in Table 2.
With ample capacity, we show that dedicated routing and cross routing can implement the

first-best effort and quality inspection precision and enables the principal to achieve the first-best

profit rate, while self routing cannot. With limited capacity, while the agents’ problems remain well

behaved, the comparison of the three rework routing schemes becomes analytically less tractable. To

verify that our main results presented earlier still hold with dependent rework time, we conducted

a numerical study. Our numerical results are consistent with the main results earlier. When the

gross margin is high, Figure 6 shows that there exists a threshold of cA below which self routing

leads to highest profit rate. In contrast, when the gross margin is low, Figure 7 shows that cross

routing always dominates the other two routing schemes. These numerical findings are consistent

with results in Proposition 3.

Ample Capacity Limited Capacity

Self f−1(1−pF̄ (t
S)

p(τ−tS) ) f−1(1−pF̄ (t
S)

p(τ−tS) )

Dedicated f−1( apb) f−1(1−pF̄ (t
D)

ptD
)

Cross f−1( apb)
τpρ(tC)[tCf(tC) + F̄ (t

C
)− (tC)2τ ][ 1

τ−tC−
1−pF̄ (tC)

tC
]

−(1− ρ(tC)2)[1− ptCf(tC)− pF̄ (tC)] = 0

Table 2: The agents’ optimal effort under dependent rework time (assuming interior solutions)

38



A: Effort  t B: Quality Inspection Precision p

C: Piece Rate b D: Profit Rate V
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Figure 6: Equilibrium performance depends on the appraisal cost: high gross margin (v = 10). F (t) =

1− e−3(t−1), cI = 0.5, cE = 10, C(p) = cAp
2

1−p , τ = 2, a = 0.5, w = 0.
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Figure 7: Equilibrium performance depends on the appraisal cost: low gross margin (v = 4). F (t) =

1− e−3(t−1), cI = 0.5, cE = 10, C(p) = cAp
2

1−p , τ = 2, a = 0.5, w = 0.
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