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Abstract. This short survey discusses recent �ndings on the robustness of
Nash equilibria of strategic games with many semianonymous players. It
describes the notion of structural robustness and its general consequences , as
well as implications to particular games, such as ones played on the web and
market games.

1. Main Message and Examples

In strategic games with many semianonymous players, all Nash equi-
libria are structurally robust.1 The equilibria survive under alterations that
permit changes in the order of play, information revelation, revisions of choices,
communication, commitments, delegation, and more.
Large economic and political systems and distributive systems such as the Web

are examples of environments that give rise to such games. Immunity to alterations
means that Nash equilibrium predictions are valid even in games whose structure
is largely unknown to modelers or to players.

Example 1. Ex-post stability2 illustrated in Match Pennies.
Simultaneously, each of k males and k females chooses one of two options, H

or T . The payo¤ of every male is the proportion of females his choice matches
and the payo¤ of every female is the proportion of males her choice mismatches.
(When k = 1 this is the familiar match-pennies game.) Consider the mixed-strategy
equilibrium where every player chooses H or T with equal probabilities.
Structural robustness implies that the equilibrium must be ex-post Nash: it

should survive in alterations that allow players to revise their choices after observing
their opponents�choices. Clearly this is not the case when k is small. But as k
becomes large, the equilibrium becomes arbitrarily close to being ex-post Nash.3
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1See Aumann and Shapley (1974) for a survey of large cooperative games, and Schmeidler
(1973) (and follow-up literature) for the existence of pure strategy equilibria in large strategic
games. The subject reported here, robustness of equilibria in large strategic games, was developed
in Kalai (2004) and Kalai (2005).

2Ex-post Nash is used in several areas of economics. Cremer and McLean (1985), Green and
La¤ont (1987) and Wilson (1987) are early examples. See Bergemann and Morris (2005) for
additional notions of robustness.

3Prob[some player can improve his payo¤ by more than � ex-post] decreases to zero at an
exponential rate.
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Example 2. Invariance to sequential play illustrated in a Computer Choice
game.
Simultaneously, each of n players chooses one of two computers, I or M . But

before choosing, with .50-.50 i.i.d. probabilities, every player is privately informed
that she is an I-type or an M -type. The payo¤ of every player is :1 if she chooses
the computer of her type (zero otherwise) plus :9 times the proportion of opponents
whose choices she matches.4 Consider the favorite-computer equilibrium (FC)
where every player chooses the computer of her type.
Structural robustness implies that the equilibrium must be invariant to sequen-

tial play: it should survive in alterations where the (publicly observed) computer
choices are made sequentially. Clearly this is not the case for small n, where
any equilibrium must involve herding. But as n becomes large FC becomes an
equilibrium in all sequential alterations, which is a consequence of the Structural
Robustness Theorem below.5

The general de�nition of structural robustness, presented next, accommodates
the above examples and more.

2. Structural Robustness

A mixed-strategy (Nash) equilibrium � (= (�1; :::; �n)) of a one-simultaneous-
move n-person strategic game G is structurally robust if it remains an equilibrium
in every alteration of G. Such an alteration is described by an extensive game,
A, and for � to remain an equilibrium in A means that every adaptation of � to
A, �A, must be an equilibrium in A.
Consider any n-person one-simultaneous-move Bayesian game G, like the Com-

puter Choice game above.

De�nition 1. An alteration of G is any �nite extensive game A with the fol-
lowing properties:
1. A includes the (original) G-players: The players of A constitute a su-

perset of the G-players (the players of G).
2. Unaltered type structure: At the �rst stage of A, the G-players are as-

signed a pro�le of types by the same prior probability distribution as in G. Every
player is informed of his own type.
3. Playing A means playing G: With every �nal node of A, z, there is an

associated unique pro�le of G pure-strategies, a(z) = (a1(z); :::; an(z)).
4. Unaltered payo¤ s: The payo¤s of the G-players at every �nal node z are the

same as their payo¤s in G (at the pro�le of realized types and �nal pure-strategies
a(z)).
5. Preservation of original strategies: Every pure strategy ai of a G-player

i has at least one A adaptation. That is, an A-strategy aAi that guarantees (w.p.
1) ending at a �nal node z with ai(z) = ai (no matter what strategies are used by
the opponents).

4Identical payo¤s and prior probabilities are assumed only to ease the presentation. The
robustness property holds without these assumptions.

5Prob[some player, by deviating to her nonfavorite computer, can achieve an � improvement
at her turn] decreases to zero at an exponential rate.
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In the Computer Choice example, every play of an alteration A must produce a
pro�le of computer allocations for the G-players. Their preferences in A are deter-
mined by their preferences over pro�les of computer allocations in G. Moreover,
every G-player i has at least one A-strategy IAi (which guarantees ending at a �nal
node where she is allocated I), and at least one A-strategy MA

i (which guarantees
ending at a �nal node where she is allocated M).

De�nition 2. An A (mixed) strategy-pro�le, �A, is an adaptation of a G
(mixed) strategy-pro�le �, if for every G-player i, every �Ai is an A-adaptation of
�i. That is, for every G pure-strategy ai, �i(ai) = �Ai (a

A
i ) for some A-adaptation

aAi of ai.

In the Computer Choice example, for a G-strategy where player i randomizes
.20 to .80 between I and M , an A adaptation must randomize .20 to .80 between
a strategy of the type IAi and a strategy of the type MA

i .

De�nition 3. An equilibrium � of G is structurally robust if in every alteration
of G, A, and in every adaptation of �, �A, the strategy of every G-player i, �Ai , is
best response to �A�i.

Remark 1. The Structural Robustness Theorem, discussed later, presents an as-
ymptotic result: the equilibria are structurally robust up to two positive numbers
(�; �), which can be made arbitrarily small as n becomes large. The notion of
approximate robustness is the following.
An equilibrium is (�; �)-structurally-robust if in every alteration and every adap-

tation as above, Prob[visiting an information set where a G-player can improve his
payo¤ by more than �] � �.6

For brevity sake, the next section discusses full structural robustness. But all
the presented observations also hold for the properly de�ned approximate coun-
terparts. For example, the fact that structural robustness implies ex-post Nash
also implies that approximate structural robustness implies approximate ex-post
Nash. The implications of approximate (as opposed to full) structural robustness
are important, due to the asymptotic nature of the Structural Robustness Theo-
rem.

3. Implications of Structural Robustness

Structural robustness of an equilibrium � in a game G is a strong property,
because the set of G-alterations that � must survive is rich. The simple examples
below are meant to suggest the richness of its implications, with the �rst two
examples showing how it implies the notions already discussed.

Remark 2. Ex-post Nash and being information-proof.7

G with revisions, GR, is the following n-person extensive game. The n players
are assigned types as in G (using the prior type distribution of G and informing
every player of his own type). In a �rst round of simultaneous play, every player

6�-improvement is computed conditional on being at the information set. To gain such im-
provement the player may coordinate his revision: at the information set together with all the
forthcoming ones.

7Dubey and Kaneko (1984) o¤er related results: restricted to extensive games of complete and
perfect information, no re�nement of player information can destroy any pure-strategy equilibria.
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chooses one of his G pure-strategies; the types realized and pure-strategies chosen
are all made public knowledge. Then, in a second round of simultaneous play, the
players again choose pure strategies of G (to revise their �rst-round choices). The
payo¤s are as in G, computed at the pro�le of realized types with the pro�le of
pure strategies chosen in the second round.
Clearly GR satis�es the de�nition of an alteration (with no additional players),

and every equilibrium � of G has the following GR adaptation, �NoRe v: in the �rst
round the players choose their pure strategies according to �, just as they do in G;
in the second round nobody revises his �rst round choice.
Structural robustness of � implies that �NoRe v must be an equilibrium of GR,

i.e., � is ex-post Nash.
Moreover, the above reasoning continues to hold even if the information revealed

between the two rounds is partial and di¤erent for di¤erent players. The fact that
�NoRe v is an equilibrium in all such alterations shows that � is information-
proof : no revelation of information (even if strategically coordinated by G-players
and outsiders) could give any player an incentive to revise.8 Thus, structural
robustness is substantially stronger than all the variants of the ex-post Nash con-
dition.

Remark 3. Invariance to order of play.

G played sequentially, GS, is the following n-person extensive game. The n
players are assigned types as in G. The play progresses sequentially, according to
a �xed publicly-known order. Every player, at his turn, knows all earlier choices.
Clearly, GS is an alteration of G, and every equilibrium � of G has the following

GS adaptation: At his turn, every player i chooses a pure strategy with the same
probability distribution �i as he does in the simultaneous-move game G. Structural
robustness of � implies that this adaptation of � must be an equilibrium in every
such GS.
Moreover, the above reasoning continues to hold even if the order of play is

determined dynamically, and even if it is strategically controlled by G-players and
outsiders. Thus, a structurally robust equilibrium is invariant to the order of play
in a strong sense.

Remark 4. Invariance to revelation and delegation.

G with delegation, GD, is the following (n + 1)-players game. The original
n G-players are assigned types as in G. In a �rst round of simultaneous play,
every G-player chooses between (1) self-play and (2) delegate-the-play and report
a type to an outsider, player n+1. In a second round of simultaneous play all the
self-players choose their own G pure-strategies, and the outsider chooses a pro�le
of G pure-strategies for all the delegators. The payo¤s of the G players are as in
G; the outsider may be assigned any payo¤s.
Clearly, GD is an alteration of G, and every equilibrium � of G has adaptations

that involve no delegation.
In the Computer Choice game, for example, consider an outsider with incentives

to coordinate: his payo¤ equals one when he chooses the same computer for all
delegators, zero otherwise. This alteration has a new (more e¢ cient) equilibrium,

8In the non-approximate notions, being ex-post Nash is equivalent to being information proof.
But in the approximate notions information proofness is substantially stronger.
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not available in G: everybody delegates and the outsider chooses the most-reported
type.
Nevertheless, as structural robustness implies, FC remains an equilibrium in GD

(nobody delegates in the �rst round and they choose their favorite computers in
the second). Moreover, FC remains an equilibrium under any scheme that involves
reporting and voluntary delegation of choices.

Remark 5. Partially speci�ed games.

Structurally robust equilibria survive under signi�cantly more complex alter-
ations than the ones above. For example, one could have multiple opportunities to
revise, to delegate, to a¤ect the order of play, to communicate and more. Because
of this strong invariance property, such equilibria may be used in games which are
only partially speci�ed.

Example 3. A game played on the Web.
Suppose that instead of being played in one simultaneous move, the Computer

Choice game has the following instruction: "Go to Web site xyz before the end of
the week, and click in your computer choice." This instruction involves substantial
structural uncertainty: In what order would the players choose? Who can observe
whom? Who can talk to whom? Can players sign binding agreements? Can players
revise their choices? Can players delegate their choices? And so forth.
Because it is una¤ected by the answers to such questions, a structurally robust

equilibrium � of the one-simultaneous-move game can be played on the Web in a
variety of ways without losing the equilibrium property. For example, players may
make their choices according to their �i probabilities prior to the beginning of the
click-in period, then go to the Web and click in their realized choices at individually
selected times.

Remark 6. Competitive prices in Shapley-Shubik market games.

For a simple illustration, consider the following n-trader market game.9 Accord-
ing to individual independent prior probability distributions, each trader is born to
be one of two types: a banana owner or an apple owner. Each trader knows his
own type, and his payo¤ depends on his own type and the fruit he ends up with,
as well as on the distribution of types and fruit ownership of his opponents (exter-
nalities allowed). In one simultaneous move, every player has to choose between
(1) keeping his fruit and (2) trading it for the other kind.
The banana/apple price is determined proportionately (with one apple and ba-

nana added in to avoid division by zero). For example if 199 bananas and 99 apples
were traded, the price of bananas to apples would be (199 + 1)=(99 + 1) = 2, i.e.,
every apple trader gets two bananas and every banana trader gets 0:5 apples.
With a small number of traders, the price is unlikely to be competitive. If

players are allowed to re trade after the realized price becomes known , they would,
and a new price would emerge.
However, when n is large, approximate structural robustness implies being ap-

proximately information-proof. So even when the realized price becomes known,

9See Shapley and Shubik (1977); Dubey and Geanakoplos (2003) and McLean, Peck and Postle-
waite (2005) o¤er additional recent references .
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no player has signi�cant incentive to re trade, i.e., the price is approximately com-
petitive (Prob[some player can �-improve his expected payo¤ by re trading at the
observed price] � �).10

Remark 7. Embedding a game in bigger worlds.

Alterations allow the inclusion of outside players who are not from G. Moreover,
the restrictions imposed on the strategies and payo¤s of the outsiders are quite
limited. This means that alterations may describe bigger worlds in which G is
embedded. Structural robustness of an equilibrium means that the small-world
(G) equilibrium remains an equilibrium even when the game is embedded in such
bigger worlds.

Remark 8. Self-puri�cation.

Schmeidler (1973) shows that in a normal-form game with a continuum of anony-
mous players, every strategy can be puri�ed, i.e., for every mixed-strategy equilib-
rium one can construct a pure-strategy equilibrium.11

The ex-post Nash property above constitutes a stronger (asymptotic) result.
Since the resulting play of a mixed strategy equilibrium yields pure strategy pro�les
that are Nash equilibria (of the perfect information game), one does not need to
construct pure-strategy equilibria: simply playing a mixed-strategy equilibrium
yields pure-strategy pro�les that are equilibria.12

Remark 9. "As if" learning.

Kalai and Lehrer (1993) show that in playing an equilibrium of a Bayesian re-
peated game, after a su¢ ciently long time the players best-respond as if they know
their opponents�realized types and, hence, their mixed strategies.
But being information-proof, at a structurally robust equilibrium (even of a one

shot game) players best respond (immediately) as if they know their opponents�
realized types, their mixed strategies and even the pure strategies they end up
with.

4. Sufficient Conditions for Structural Robustness

Theorem 1. Structural Robustness (rough statement): The equilibria of large
one-simultaneous-move Bayesian games are (approximately) structurally robust if
1. the players�types are drawn independently, and
2. payo¤ functions are anonymous and continuous.

10This is stronger than classical results relating Nash equilibrium to Walras equilibrium (e.g.,
Dubey, Mas Colell and Shubik (1980)). First, being done under incomplete information, the
above relates Bayesian equilibria to Rational-Expectations equilibria (rather than Walras). Also
the competitive property described here is substantially stronger, due to the immunity of the
equilibria to alterations represented by extensive games. Allowing for spot markets, coordinating
institutions, trade on the Web, etc., the Nash-equilibrium prices of the simple simultaneous-move
game are sustained through the intermediary steps that may come up under such possibilities.

11Ali-Khan and Sun (2002) survey some of the large follow-up literature.
12The approximate statement is: for every (�; �) for su¢ ciently large n, Prob[ending at a pure

strategy pro�le that is not an � Nash equilibrium of the realized perfect information game] �
�. Since both � and � can be made arbitrarily small, this is asymptotic puri�cation. The
model of Schmeidler, with a continuum of players, requires non standard techniques to describe a
continuum of independent random variables (the mixed strategies of the players). The asymptotic
result stated here, dealing always with �nitely many players, does not require any non-standard
techniques.
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Payo¤ anonymity means that in addition to his own type and pure strategy,
every player�s payo¤ may depend only on aggregate data of the opponents�types
and pure strategies. For example, in the Computer Choice game a player�s payo¤
may depend on her own type and choice, and on the proportions of opponents in
the four groups: I-types who chose I, I-types who chose M, M-types who chose I,
and M-types who chose M.
The players in the games above are only semianonymous, because there are no

additional symmetry or anonymity restrictions other than the restriction above .
In particular, players may have di¤erent individual payo¤ functions and di¤erent
prior probabilities (publicly known).

The continuity condition relates games of di¤erent sizes and rules out games of
the type below.

Example 4. Match the Expert.
Each of n players has to choose one of two computers, I or M. Player 1 is

equally likely to be one of two types: "an expert who is informed that I is better"
( I-better) or "an expert who is informed that M is better" (M-better). Players
2; :::; n are of one possible "nonexpert" type. Every player�s payo¤ is one if he
chooses the better computer, zero otherwise.13

Consider the equilibrium where player 1 chooses the computer he was told was
better and every other player chooses I or M with equal probabilities. This equilib-
rium fails to be ex-post Nash (and hence, fails structural robustness), especially as
n becomes large, because after the play approximately one-half of the players would
want to revise their choices to match the observed choice of player 1.14

This failure is due to discontinuity of the payo¤ functions. The proportions of
I-better types and M-better types in this game must be either (1=n; 0) or (0; 1=n),
because only one of the n players is to be one of these types. Yet, whatever n is,
every player�s payo¤ is drastically a¤ected (from 0 to 1 or from 1 to 0) when we
switch from (1=n; 0) to (0; 1=n) (keeping everything else the same).
As n becomes large, this change in the type proportions becomes arbitrarily small,

yet it continues to have a drastic e¤ect on players�payo¤s. This violates a condition
of uniform equicontinuity imposed simultaneously on all the payo¤ functions in the
games with n = 1; 2; ::: players.
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