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Abstract

“My own behavior baffles me. For I find myself not doing what I really want to do but
doing what I really loathe.” Saint Paul

What behavior can be explained using the hypothesis that the agent faces temptation
but is otherwise a “standard rational agent”? In earlier work, Gul–Pesendorfer [2001] use
a set betweenness axiom to restrict the set of preferences considered by Dekel, Lipman,
and Rustichini [2001] to those explainable via temptation. We argue that set betweenness
rules out plausible and interesting forms of temptation including some which may be
important in applications. We propose a pair of alternative axioms called DFC, desire
for commitment, and AIC, approximate improvements are chosen. DFC characterizes
temptation as situations where given any set of alternatives, the agent prefers committing
herself to some particular item from the set rather than leaving herself the flexibility of
choosing later. AIC is based on the idea that if adding an option to a menu improves
the menu, it is because that option is chosen under some circumstances. From this
interpretation, the axiom concludes that if an improvement is worse (as a commitment)
than some commitment from the menu, then the best commitment from the menu is
strictly preferred to facing the menu. We show that these axioms characterize a natural
generalization of the Gul–Pesendorfer representation.



1 Introduction

What potentially observable behavior can we explain using the hypothesis that the agent
faces temptation but is otherwise a “standard rational agent”? We use the phrase
temptation–driven to refer to behavior explainable in this fashion.

By “temptation,” we mean that the agent has some current view of what actions she
would like to choose, but knows that at the time these choices are to be made, she will be
pulled by conflicting desires. For clarity, we refer to her current view of desirable actions
as her commitment preference since this describes the actions she would commit herself to
if possible. We interpret and frequently discuss this preference as the agent’s view of what
is normatively appropriate, though this is not a formal part of the model.1 We refer to the
future desires that may conflict with the commitment preference as temptations. We view
this conflict as independent of the set of feasible options in the sense that whether one
item is more tempting than another is independent of what other options are available.
Thus we do impose a certain structure on the way temptation affects the agent. Also, we
allow the possibility that the extent or nature of temptation is random, but do not allow
similar randomness regarding what is normatively preferred. While there is undoubtedly
an element of arbitrariness in this modeling choice, we choose to rule out uncertainty
about what is normatively preferred to separate temptation–driven behavior from the
desire for flexibility which such uncertainty would generate. We retain uncertainty about
temptation for two reasons.2 First, as we will see, some behavior which is very intuitive
as an outcome of temptation is (unexpectedly) difficult to explain without uncertainty
about temptation. Second, we believe uncertainty about temptations is likely to be
important in applications.3

Our approach builds on earlier work by Gul–Pesendorfer [2001] (henceforth GP) and
Dekel–Lipman–Rustichini [2001] (DLR). DLR consider a rather general model of prefer-
ences over menus, from which choice is made at a later date. (A menu can be interpreted
either literally or as an action which affects subsequent opportunities.) DLR show that
preferences over menus can be used to identify an agent’s subjective beliefs regarding her
future tastes and behavior. The set of preferences considered by DLR can be interpreted
as allowing for a desire for flexibility, concerns over temptation, or both considerations,
as well as preferences with entirely different interpretations.4

GP were the first to use preferences over menus to study temptation. To see the
1See Noor [2006a] for a critique of such interpretations.
2Also, allowing uncertainty about normative preferences poses severe identification problems. See

Section 6 for details.
3It is true that uncertainty about what is normatively appropriate may also be important in appli-

cations as well; see Amador, Werning, and Angeletos [2006].
4For examples of different motivations, see Sarver [2005] or Ergin and Sarver [2005].
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intuition for how this works, recall that temptation refers to desires to deviate from
the commitment preference. The commitment preference is naturally identified as the
preference over singleton menus, since such menus correspond exactly to commitments
to particular choices. Thus temptation can be identified by seeing how preferences over
non–singleton menus differ from what would be implied by the commitment preferences if
there were no temptation. That is, if {a} � {b}, so the agent prefers a commitment of a to
a commitment of b, then if there were no temptation (or other “nonstandard” motives),
we would have {a, b} ∼ {a} since she would choose a from {a, b}. With temptation,
though, {a} may be strictly preferred to {a, b}.

Using this intuition, GP focus on temptation alone by adding a set betweenness axiom
to the DLR model. As we explain in more detail in subsequent sections, this axiom has
the implication that temptation is one–dimensional in the sense that for any menu,
temptation only affects the agent through the “most tempting” item on the menu. This
rules out many intuitive kinds of temptation–driven behavior. For example, it rules out
uncertainty about temptation where the agent cannot be sure which item on a menu will
be the most tempting one or how strong the temptation will be. We give examples in
Section 3 to illustrate such possibilities.

We believe that uncertainty about temptation is important for applications. In reality,
an agent cannot easily “fine tune” her commitments. That is, it is difficult to find a way
to commit oneself to some exact course of action without allowing any alternative possi-
bilities. Instead, real commitments tend to be costly actions which alter one’s incentives
to engage in “desired” or “undesired” future behaviors. Casual observation suggests that
such commitments often involve overcommitment (spending more ex ante to commit to
a certain behavior than turns out ex post to be necessary) or undercommitment (finding
out ex post that the change in one’s incentives was not sufficient to achieve the desired
effect). Neither phenomenon seems consistent with a model without uncertainty.

Similarly, much of the real complexity of achieving commitment comes from the mul-
tidimensional character of temptation. To see the point, first suppose the only possible
temptation is overspending on current consumption. In this case, the agent can avoid
temptation by committing herself to a minimum level of savings. Now suppose there are
other temptations that may strike as well, such as the temptation to be lazy and avoid
dealing with needed home repairs or other time–consuming expenditures. In this case,
the commitment to saving may worsen the agent’s ability to deal with other temptations.

As GP argue, it was natural for them to begin the study of temptation by narrowing to
a particularly simple version of the phenomenon. Our goal is to use the DLR framework
to build on their analysis and carry out the logical next step in the study of temptation,
namely identifying the broadest possible set of temptation–driven behavior.

We explore how to model temptation along so as to be able to study behavior that
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follows from this feature. Just as it is insightful to distinguish between risk and ambiguity,
it is instructive to identify behavior due to temptation. Naturally, other factors may lead
to similar behavior and we cannot say that the behavior we identify proves the agent
was tempted, only that it is consistent with temptation. But our results do specify
what behavior is not a consequence of temptation (as we define it). Some of our results
also characterize specific forms of temptation, such as uncertainty about the strength of
temptation. In the opposite direction, one could extend the form of temptation to allow
temptation to depend not only on the tempting item but on the whole set of available
items, which would allow for even richer behavior than what we identify.

After simplifying by means of a finiteness axiom, we carry out this next step by adding
a pair of axioms to DLR. We show that these axioms characterize a natural generalization
of the GP representation. The first axiom, DFC or desire for commitment, simply says
that given any set of alternatives, the agent at least weakly prefers to commit herself
to some option from this set rather than retaining the flexibility to choose from the set
later. In this sense, DFC is exactly the statement that there is no value to flexibility but
the agent may fear being tempted to choose “inappropriately.”

The second axiom, AIC or approximate improvements are chosen, identifies a cir-
cumstance in which the preference for commitment is strict. The key to the axiom is
what additional implications we deduce from the fact that adding an option, say β, to
a menu x improves the menu. We interpret such an improvement as saying that β is
chosen under some conditions. Hence, we draw the conclusion that if β is worse than the
normatively best α ∈ x, then the agent strictly prefers commitment to α over facing the
menu. (The axiom asks for this to holds for perturbations well.) Given the interpretation
of the axioms and the intuitive nature of the representation they generate, we conclude
that DFC and AIC yield a natural way to identify from the large set considered by DLR
those preferences which are temptation–driven.

We also give some special cases of the main representation and the additional axioms
which correspond to these. We explain how these special cases have natural interpreta-
tions as restrictions on the kinds of temptation faced by the agent.

As briefly mentioned above, our analysis is based on a simplified version of DLR,
the development of which is another contribution of the present paper. To maintain a
unified focus, the text focuses almost entirely on the issue of temptation and the Appendix
contains a complete explanation of how we add a finiteness requirement to DLR.

In the next section, we present the basic model and state our research goals more
precisely. In the process, we sketch the relevant results in DLR and GP. In Section 3, we
give examples to motivate the issues and illustrate the kinds of representations in which
we are interested. In Section 4, we give representation results. Because DFC is a simpler
axiom than AIC and because it is a convenient step in the analysis, we also state the
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representation generated by adding only this axiom. Section 5 contains characterizations
of some special cases. In Section 6, we briefly discuss directions for further research.

2 The Model

Let B be a finite set of prizes and let Δ(B) denote the set of probability distributions on
B. A typical subset of Δ(B) will be referred to as a menu and denoted x, while a typical
element of Δ(B), a lottery, will be denoted by β. The agent has a preference relation �
on the set of closed nonempty subsets of Δ(B) which is denoted X.

The basic representation on which we build is what we will call a finite additive EU
representation. This adds a finite state requirement to what DLR called an additive EU
representation. Formally, we say that a utility function over lotteries, U : Δ(B) → R is
an expected–utility function if

U(β) =
∑
b∈B

β(b)U(b)

for all β (where U(b) is the utility of the degenerate lottery with probability 1 on b).

Definition 1 A finite additive EU representation is a pair of finite collections of expected–
utility functions over Δ(B), w1, . . . , wI and v1, . . . , vJ such that the function

V (x) =
I∑

i=1
max
β∈x

wi(β) −
J∑

j=1
max
β∈x

vj(β)

represents �.

DLR, as modified in the corrigendum (Dekel, Lipman, Rustichini, and Sarver [2005],
henceforth DLRS), characterize this class of representations without the finiteness re-
quirement. Theorem 6 in the appendix extends DLR and DLRS by characterizing the
set of preferences with a finite additive EU representation.5

DLR interpret the different utility functions over Δ(B) as different states of the
world, referring to the I states corresponding to the wi’s as positive states and J states

5In addition to finiteness, the finite additive EU representation differ from DLR’s additive EU repre-
sentation in three respects. First, DLR included a nonemptiness requirement as part of the definition of
an additive EU representation. Consequently, their axiom differ from those of Theorem 6 by including
a nontriviality axiom. Second, DLR required that none of the utility functions be redundant. Third, in
the infinite case, it is not without loss of generality to have equal weights on all the wi’s and vj ’s, so the
representation in DLR also specifies a measure on the (infinite) index sets I and J .

4



corresponding to the vj’s as negative states. To understand this interpretation most
simply, suppose there are no negative states — i.e., J = 0. Then it seems natural to
interpret the wi’s as different utility functions the agent might have at some later date
when she will choose from the menu she picks today. At the point when she will make
this choice, she will know which of these wi’s is her utility function and, naturally, will
choose the item from the menu which maximizes this utility. Her ex ante evaluation of
the menu is the expected value of the maximum. If the wi’s are equally likely, we obtain
the value above.6 This interpretation was originally offered by Kreps [1979, 1992] who
first considered preferences over sets as a model of preference for flexibility. Obviously,
though, the presence of the negative states makes this interpretation awkward.

One way to reach a clearer understanding of this representation, then, is to rule out
the negative states. DLR show that Kreps’ monotonicity axiom does this.

Axiom 1 (Monotonicity) If x ⊂ x′, then x′ � x.

It is straightforward to combine results in DLR with Theorem 6 to show the following.7

Observation 1 Assume the preference � has a finite additive EU representation. Then
� has a representation with J = 0 if and only if it satisfies monotonicity.

Intuitively, monotonicity says that the agent always values flexibility. Such an agent
either is not concerned about temptation or, at least, values flexibility so highly as to
outweigh such considerations. In this case, the finite additive EU representation is easy
to interpret as describing a forward–looking agent with beliefs about her possible future
needs.

GP’s approach provides an alternative interpretation of the finite additive EU repre-
sentation by imposing a different restriction on that class of preferences. They recognized
that temptation and self–control could be studied using this sets of lotteries framework if
one does not impose monotonicity. If the agent anticipates being tempted in the future
to consume something she currently doesn’t want herself to consume, this is revealed by
a preference for commitment, not flexibility. GP’s [2001] representation theorem differs
from Observation 1 by replacing monotonicity with an axiom they call set betweenness.

6The interpretation of the wi’s as equally likely is only for intuition. As is standard with state
dependent utility, we can change the probabilities in essentially arbitrary ways and rescale the wi’s to
leave the overall utility unchanged. Hence the probabilities cannot be identified. See, however, the third
comment in the preceding footnote.

7If � has a representation with J = 0, it will also have other representations with J > 0. To see
this, note that we can add a vj satisfying vj(β) = k for all β to any representation and not change the
preference being represented. This is why DLR imposed a requirement that no “redundant” states are
included. For the purposes of this paper, it is simpler to allow redundancy.
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Axiom 2 (Set Betweenness) If x � y, then x � x ∪ y � y.

To understand this axiom, consider a dieting agent’s choice of a restaurant for lunch
where x, y, and x∪y are the menus at the three possible restaurants. Suppose x consists
only of a single healthy food item, say broccoli, while y consists only of some fattening
food item, say french fries. Since the agent is dieting, presumably x � y. Given this, how
should the agent rank the menu x ∪ y relative to the other two? A natural hypothesis
is that the third restaurant would lie between the other two in the agent’s ranking. It
would be better than the menu with only french fries since the agent might choose broccoli
given the option. On the other hand, x ∪ y would be worse than the menu with only
broccoli since the agent might succumb to temptation or, even if she didn’t succumb,
might suffer from the costs of maintaining self–control in the face of the temptation.
Hence x � x ∪ y � y.

The relevant representation in GP is the following.

Definition 2 A self–control representation is a pair of functions (u, v), u : Δ(B) → R,
v : Δ(B) → R, such that each is an expected utility function and the function VGP defined
by

VGP (x) = max
β∈x

[u(β) + v(β)] − max
β∈x

v(β)

represents �.

It is easy to see that this is a finite additive EU representation with one positive state
and one negative state where w1 = u + v and v1 = v. Thus it comes as no surprise
that the axioms GP use for this representation include those we use in Theorem 6 to
characterize finite additive EU representations.8 Hence we can paraphrase their result as

Theorem 1 (GP, Theorem 1) � has a self–control representation if and only if it has
a finite additive EU representation and satisfies set betweenness.

To interpret GP’s representation, note that u represents the commitment preference
— the preference over singletons — as VGP ({β}) = u(β) for any β. For any menu x and
any β ∈ x, let

c(β, x) =
[
max
β′∈x

v(β′)
]
− v(β).

8Specifically, their axioms are the same as those we use in Theorem 6 except that they have set
betweenness instead of our finiteness axiom. One can show that set betweenness implies finiteness. It is
worth noting that they consider a more general setting than us in that they assume B is compact, not
finite.
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Intuitively, c is the foregone utility according to v from choosing β from x instead of
choosing optimally according to v. It is easy to see that

VGP (x) = max
β∈x

[u(β) − c(β, x)].

In this form, it is natural to interpret c as the cost of the self–control needed to choose
β from x. Given this, v is naturally interpreted as the temptation utility since it is what
determines the self–control cost.

To interpret these results, consider the set of preferences with a finite additive EU rep-
resentation. Intuitively, the subset of these preferences which are monotonic corresponds
to those agents who value flexibility but are not affected by temptation. It seems natu-
ral to call such preferences flexibility–driven, as both the axiom and the representation
it generates seem to describe such an agent. In other words, defining flexibility–driven
preferences as those which can be explained by flexibility considerations alone, it seems
natural to conclude that monotonicity characterizes these preferences.

Analogously, we refer to preferences which can be explained solely by a concern about
temptation as temptation–driven. It seems natural to say that the preferences that satisfy
set betweenness are temptation–driven preferences. However, set betweenness does not
appear to be as complete a statement of “temptation–driven preferences” as monotonicity
is for “flexibility–driven.” In fact, it is not hard to give examples of behavior which
seems temptation–driven but which violates set betweenness. This suggests that set
betweenness is stronger than a restriction to temptation–driven preferences. Our goal in
this paper is to identify and give a representation theorem for the full class of temptation–
driven preferences.

3 Motivating Examples and Some Alternative Rep-
resentations

In this section, we give two examples to illustrate our argument that set betweenness is
stronger than a restriction to temptation–driven preferences. We also use these examples
to suggest other representations that may be of interest.

Example 1.

Consider a dieting agent who would like to commit herself to eating only broccoli.
There are two kinds of snacks available: chocolate cake and high–fat potato chips. Let b
denote the broccoli, c the chocolate cake, and p the potato chips. The following ranking
seems quite natural:

{b} � {b, c}, {b, p} � {b, c, p}.
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That is, if the agent has both broccoli and a fattening snack available, the temptation
of the snack will lower her utility, so {b, c} and {b, p} are both worse than {b}. If she
has broccoli and both fattening snacks available, she is still worse off since two snacks are
harder to resist than one.

Two snacks could be worse than one for at least two reasons. First, it could be that
the agent is unsure what kind of temptation will strike. If the agent craves a salty snack,
then she may be able to control herself easily if only the chocolate cake is available as an
alternative to broccoli. Similarly, if she is in the mood for a sweet snack, she may be able
to control herself if only the potato chips are available. But if she has both available,
she is more likely to be hit by a temptation she cannot avoid. Second, even if she resists
temptation, the psychological cost of self–control seems likely to be higher in the presence
of two snacks than in the presence of one.9

This preference violates set betweenness. Note that {b, c, p} is strictly worse than
{b, c} and {b, p} even though it is the union of these two sets. Hence set betweenness
implies that two temptations can never be worse than each of the temptations separately.
In GP, temptation is one–dimensional in the sense that any menu has a most tempting
option and only this option is relevant to the self–control costs.

It is not hard to give generalizations of GP’s representation that can model either of
the two reasons stated above for two snacks to be worse than one. To see this, define
utility functions u, v1, and v2 by

u v1 v2

b 3 2 2
c 0 0 6
p 0 6 0

Define V1 by the following natural generalization of GP:

V1(x) =
1
2

2∑
i=1

[
max
β∈x

[u(β) + vi(β)] − max
β∈x

vi(β)
]
.

Equivalently, let

ci(β, x) =
[
max
β′∈x

vi(β ′)
]
− vi(β).

Then

V1(x) =
1
2

2∑
i=1

max
β∈x

[u(β) − ci(β, x)].

Intuitively, the agent doesn’t know whether the temptation that will strike is the one
described by v1 and cost function c1 (where she is most tempted by the potato chips)

9GP [2001, 1408–1409] mention this possibility as one reason why set betweenness may be violated.

8



or v2 and cost function c2 (where she is most tempted by the chocolate cake) and gives
probability 1/2 to each possibility. It is easy to verify that this gives V1({b}) = 3,
V1({b, c}) = V1({b, p}) = 3/2, and V1({b, c, p}) = 0, yielding the ordering suggested
above.

Alternatively, define V2 by a different generalization of GP:

V2(x) = max
β∈x

[u(β) + v1(β) + v2(β)] − max
β∈x

v1(β) − max
β∈x

v2(β). (1)

Here we can think of cost of choosing β from menu x as

c(β, x) =
[
max
β∈x

v1(β) + max
β∈x

v2(β)
]
− v1(β) − v2(β),

so that V2(x) = maxβ∈x[u(β) − c(β, x)]. It is not hard to see that this cost function has
the property that resisting two temptations is harder than resisting either separately.
More specifically, it is easy to verify that V2({b}) = 3, V2({b, c}) = V2({b, p}) = −1, and
V ({b, c, p}) = −5, again yielding the ordering suggested above.

We note that there is one odd feature of this representation. If the agent succumbs
to either temptation, he still suffers a cost associated with the temptation he does not
consume. That is, the self–control cost associated with choosing either snack from the
menu {b, c, p} is 6, not zero. Arguably, it should be feasible for the agent to succumb to
temptation and incur no self–control cost. We return to this issue in the conclusion.

Example 2.

Consider again the dieting agent facing multiple temptations, but now suppose the two
snacks available are high fat chocolate ice cream (i) and low fat chocolate frozen yogurt
(y). In this case, it seems natural that the agent might have the following rankings:

{b, y} � {y} and {b, i, y} � {b, i}.

In other words, the agent prefers a chance of sticking to her diet to committing herself to
violating it so {b, y} � {y}. Also, if the agent cannot avoid having ice cream available,
it’s better to also have the low fat frozen yogurt around. If so, then when temptation
strikes, the agent may be able to resolve her hunger for chocolate in a less fattening way.

Again, GP cannot have this. To see why this cannot occur in their model, note that

VGP ({b, y}) = max{u(b) + v(b), u(y) + v(y)} − max{v(b), v(y)}

while VGP ({y}) = u(y) = u(y) + v(y) − v(y). Obviously, max{v(b), v(y)} ≥ v(y). So
VGP ({b, y}) > VGP ({y}) requires max{u(b) + v(b), u(y) + v(y)} > u(y) + v(y) or u(b) +
v(b) > u(y) + v(y). Given this,

max{u(b) + v(b), u(i) + v(i), u(y) + v(y)} = max{u(b) + v(b), u(i) + v(i)}.
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Since
max{v(b), v(i), v(y)} ≥ max{v(b), v(i)},

we get VGP ({b, i, y}) ≤ VGP ({b, i}). That is, we must have {b, i} � {b, i, y}.10

To see this more intuitively, note that {b, y} � {y} says that adding b improves the
menu {y}. As discussed in the introduction, we interpret this as saying that the agent
considers it possible that she would choose b from the menu {b, y}, an interpretation we
share with GP. However, in GP, the agent has no uncertainty about temptation, so this
statement means she knows she will definitely choose b from {b, y}. Consequently, she
will definitely not choose y whenever b is available.11 Hence the only possible effect of
adding y to a menu which contains b is to increase self–control costs. Hence GP require
{b, i, y} � {b, i}.

This intuition suggests that uncertainty about temptation is critical to rationalizing
this preference. The following simple generalization of GP to incorporate uncertainty
allows the intuitive preference suggested above. Let

u v
b 6 0
i 0 8
y 4 6

and let
V3(x) =

1
2

max
β∈x

u(β) +
1
2

{
max
β∈x

[u(β) + v(β)] − max
β∈x

v(β)
}

. (2)

Intuitively, there is a probability of 1/2 that the agent avoids temptation and chooses
according to the commitment preference u. With probability 1/2, the agent is tempted,
however, and has a preference of the form characterized by GP. This gives V3({b, y}) =
5 > 4 = V3({y}) and V3({b, i, y}) = 5 > 3 = V3({b, i}), in line with the intuitive story.

The three representations used in these examples share certain features in common.
First, all are finite additive EU representations. While we do not wish to argue that the
axioms needed for such a representation are innocuous, it is not obvious that temptation
should require some violation of them (though see Section 6). Second, in all cases, the
representation is written in terms of the utility functions for the negative states and u,
the commitment utility. Equivalently, we can write the representation in terms of the
commitment utility and various possible cost functions where these costs are generated
from different possible temptations.

10This conclusion does not follow from set betweenness alone. It is easy to give examples of pref-
erences which satisfy set betweenness and avoid this problem but which do not have an additive EU
representation.

11Note that this conclusion relies on the assumption that temptation does not lead the agent to violate
independence of irrelevant alternatives. That is, we are assuming that if the agent would choose b over
y from one set, she would never choose y when b is available. See Section 6 for further discussion.
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Intuitively, the different negative states from the additive EU representation identify
the different temptations. The various positive states then correspond to different ways
these temptations might combine to affect the agent. However, all the positive states
share a common view of what is “normatively best” as embodied in u. In this sense,
there is no uncertainty about “true preferences” and hence no “true” value to flexibility,
only uncertainty about temptation.

A general representation with these properties is

Definition 3 A temptation representation is a function VT representing � such that

VT (x) =
I∑

i=1
qi max

β∈x
[u(β) − ci(β, x)]

where qi > 0 for all i,
∑

i qi = 1, and

ci(β, x) =

⎡
⎣∑

j∈Ji

max
β′∈x

vj(β′)

⎤
⎦ −

∑
j∈Ji

vj(β)

where u and each vj is an expected–utility function.

Note that
∑

i qi = 1 implies that VT ({β}) = u(β), so u is the commitment utility.

Intuitively, we can think of each ci as a cost of self–control, describing one way the
agent might be affected by temptation. In this interpretation, qi gives the probability
that temptation takes the form described by ci.

We can think of this as generalizing GP in two directions. First, more than one
temptation can affect the agent at a time. That is, the cost of self–control may depend
on more than one temptation utility. Second, the agent is uncertain which temptation
or temptations will affect her.

We also study one less interpretable representation which is useful as an intermediate
step.

Definition 4 A weak temptation representation is a function Vw representing � such
that

Vw(x) =
I′∑

i=1
qi max

β∈x
[u(β) − ci(β, x)] +

I∑
i=I′+1

max
β∈x

[−ci(β, x)]

where qi > 0 for all i,
∑

i qi = 1, and

ci(β, x) =

⎡
⎣∑

j∈Ji

max
β′∈x

vj(β′)

⎤
⎦ −

∑
j∈Ji

vj(β)
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where u and each vj is an expected–utility function.

Obviously, a temptation representation is a special case of a weak temptation repre-
sentation where I ′ = I.

As we will see, the weak temptation representation makes a natural midway point
between the temptation representation and the finite additive EU representation. On
the other hand, it lacks the natural interpretation of the temptation representation.12

4 Results

The following axiom seems to be a natural part of a definition of temptation–driven.

Axiom 3 (DFC: Desire for Commitment) A preference � satisfies DFC if for every
x, there is some α ∈ x such that {α} � x.

Intuitively, this axiom seems to be a necessary condition to say that a preference is
temptation–driven. The axiom says that there is no value to flexibility associated with
x, only potential costs due to temptation leading the agent to choose some point worse
for her diet than α.

On the other hand, this axiom only says that flexibility is not valued. It does not
say anything about when commitment is valued. The second axiom identifies a key
circumstance in which commitment is strictly valuable, that is, when there is some α ∈ x
such that {α} � x.

To get some intuition for the axiom we will propose, consider the following example,
similar to Example 2, where the three goods are broccoli (b), low fat frozen yogurt (y),
and high fat ice cream (i). Assume that {b} � {y} � {i}, so that broccoli is best for the

12One way to interpret the weak temptation representation is that it is a limiting case of temptation
representations. To see this, fix a weak temptation representation with I > I ′ and any ε ∈ (0, 1).
We can define a (strict) temptation representation with I “states” by shifting ε of the probability on
the first I ′ states to the remaining I − I ′ states, adjusting the cost functions at the same time. More
specifically, define q̂i = qi − ε/(I − I ′) for i ≤ I ′ and q̂i = ε/(I − I ′) for i = I ′ + 1, . . . , I. For ε > 0
sufficiently small, q̂i > 0 for all i. For i ≤ I ′, let ĉi = ci. For i = I ′ + 1, . . . , I, define new cost functions
ĉi = (1/q̂i)ci. Consider the payoff to any menu as computed by this temptation representation minus
the payoff as computed by the original weak representation. It is easy to see that this difference is
proportional to ε and so converges to 0 as ε ↓ 0. In this sense, we have constructed a sequence of
temptation representations converging to the weak representation.
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agent’s diet and ice cream is worst. As we argued earlier, it seems plausible that adding
y to the menu {b, i} improves the menu since y is a useful compromise when tempted.
So assume that {b, i, y} � {b, i}. As suggested in the introduction and as we argue at
greater length below, if adding an item to a menu improves the menu, this should be
interpreted as implying that the added item is sometimes chosen from the menu. That
is, we should conclude from {b, i, y} � {b, i} that y is sometimes chosen from the menu
{b, i, y}. Hence with this menu, the agent will sometimes break her diet, choosing y
instead of b. Consequently, she should strictly prefer committing herself to the broccoli.
That is, we should conclude {b} � {b, i, y}. In addition, if y is sometimes chosen over
b and i, it should also be sometimes chosen from the menu {b, y}. Thus the dieter
sometimes breaks her diet with this menu too, implying {b} � {b, y}. These implications
are the content of our next axiom when applied to this example: since adding y improves
the menu {b, i}, we require that {b} is strictly preferred to both {b, i, y} and {b, y}.

More generally, suppose we have a menu x with the property that adding β to x
strictly improves the menu for the agent in the sense that x ∪ {β} � x. (So think of
x = {b, i} and β = y.) In such a case, we say β is an improvement for x. How should we
interpret this property? In principle, there are many reasons why adding an element to
a menu might improve the menu. For example, a menu may be “prettier” with certain
lines added to it. An agent may simply like having options, even knowing she would
never choose them. More related to temptation, adding a particularly disgusting dessert
option might make it easier for a dieter to avoid dessert since reading the menu makes
dessert unappetizing.

Our goal is to characterize agents who face temptation but are otherwise “standard
rational agents.” As such, we consider an agent for whom the items on a menu have a
certain appeal which is menu–independent, an appeal which may create internal conflicts
which the agent has to resolve. Thus we assume that the normative appeal and the
extent of temptation of any given item is independent of the other items in the menu.

In light of this, it seems natural to assume that adding an element to a menu does
not make it easier to choose other elements or create value separately from choice (as
in the case of a “prettier” menu). That is, the only effect adding an unchosen element
can have is to increase self–control costs. With this principle, we interpret x ∪ {β} � x
as saying that the agent at least considers it possible that she would choose β from the
menu x ∪ {β}. We emphasize that this is only an interpretation, not a theorem. We are
arguing that our definition of temptation strongly suggests this interpretation, not that
it “proves” it.13,14

13Gul and Pesendorfer [2005] also argue for this interpretation of β improving x.
14It is difficult if not impossible to draw definitive conclusions about choices the agent would make

from a menu based on preferences over menus. At best, we can interpret preferences over menus as
suggesting that the agent perceives her future choice in a particular way. For example, consider an
agent whose preference over menus has a temptation representation. We interpret the representation as
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Under this interpretation of the preference, what else should be true? Suppose α is
the best item for her diet in x (i.e., is optimal according to the commitment preference)
and {α} � {β}. (In terms of the example, think of α = b.) So α ∈ x is strictly better
for the agent’s diet than β and yet she considers it possible she would choose β from the
menu x ∪ {β}. Thus the agent must consider it possible that her choice from the menu
x∪{β} is inconsistent with her commitment preference. Hence she should strictly prefer
committing herself to α rather than facing the menu x∪{β}. That is, commitment must
be strictly valuable in the sense that {α} � x ∪ {β}.

Similarly, consider some x′ ⊆ x. (Think of x′ = {b}.) If the agent considers it possible
that she would choose β from x ∪ {β}, surely she also considers it possible she would
choose β from x′ ∪ {β}.15 Again, if the best α ∈ x′ for her diet satisfies {α} � {β}, we
should conclude that the agent would strictly prefer the commitment {α} to facing the
menu x′ ∪ {β}.

To summarize, we interpret x ∪ {β} � x to mean that β is sometimes chosen from
x∪{β} and hence from x′∪{β} for any x′ ⊆ x. If the best α ∈ x′ satisfies {α} � {β}, this
implies that the agent does not always choose from x′∪{β} according to her commitment
preferences. Therefore, commitment is strictly valuable for x′ ∪ {β} in the sense that
{α} � x′ ∪{β}. Since the key to this intuition is that x∪{β} � x implies β is sometimes
chosen from x∪{β}, we summarize this by saying improvements are (sometimes) chosen.

The axiom we need is slightly stronger. In addition to applying to any β which is
an improvement for x, it applies to any β which is an approximate improvement for x.
Because of this, we call the axiom AIC, approximate improvements are chosen. Formally,

saying that the agent assigns probability qi to being tempted according to cost function ci. It seems
natural, then, to say that if the agent has menu x, then with probability qi, the agent will choose a β ∈ x
which maximizes u(β) − ci(β, x). However, this conclusion is purely an interpretation of the model, not
a theorem which can be proven. The only primitive in the model is a preference over menus, so we
have no information about choice from the menu with which to confirm this interpretation. GP resolve
this problem by extending the preference over menus to menu–choice pairs, but this approach has a
severe problem. To state it most simply, let x = {a, b, c} and let �∗ denote this extended preference.
Suppose (x, a) �∗ (x, b) �∗ (x, c). GP interpret this to say that a is chosen from menu x. While this
conclusion seems natural, how are we to interpret (x, b) �∗ (x, c)? There is no choice which can reveal
this preference to us. If x is the set of choices available, neither b nor c would be chosen by the agent.
Asking the agent to compare (x, b) to (x, c) is like asking the agent which she prefers: being offered x
but forced to choose b or being offered x but forced to choose c. In what sense is x the available set
if the agent must choose something other than a from the set? Because of these problems, we avoid
hypotheses on choice from menus to maximum extent possible.

15As an aside, we remark that this argument relies on a kind of independence of irrelevant alternatives.
That is, we are arguing that if β is chosen from a set in some situation, then it is chosen from any subset
containing it in that same situation. As we discuss in Section 6, this is not necessarily an appropriate
assumption for modeling temptation.
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define β to be an approximate improvement for x if

β ∈ cl ({β′ | x ∪ {β′} � x})

where cl denotes closure. Let B(x) denote the set of best commitments in x. That is,

B(x) = {α ∈ x | {α} � {β}, ∀β ∈ x}.

Then we have

Axiom 4 (AIC: Approximate Improvements are Chosen) If β is an approximate
improvement for x, x′ ⊆ x, and α ∈ B(x′) satisfies {α} � {β}, then {α} � x′ ∪ {β}.

Theorem 2 � has a temptation representation if and only if it has a finite additive EU
representation and satisfies DFC and AIC.

As mentioned earlier, the weak temptation representation, while not as interpretable
as the temptation representation, is a natural intermediate point between the finite ad-
ditive EU representation and the temptation representation. More specifically, in the
course of proving Theorem 2, we also show

Theorem 3 � has a weak temptation representation if and only if it has a finite additive
EU representation and satisfies DFC.

5 Special Cases

In this section, we characterize the preferences corresponding to two special cases of
temptation representations. Specifically, we characterize the “no uncertainty” represen-
tation V2 in (1) of Example 1 and the “uncertain strength of temptation” representation
V3 in (2) of Example 2. These special cases are of interest in part because of the way
the required conditions relate to GP’s set betweenness axiom. Also, these special cases
can be thought of as narrowing the “allowed” forms of temptation in easily interpretable
ways.

First, consider a representation of the form

VNU (x) = max
β∈x

⎡
⎣u(β) +

J∑
j=1

vj(β)

⎤
⎦ −

J∑
j=1

max
β∈x

vj(β)

15



which we call a no–uncertainty representation. Equivalently,

VNU(x) = max
β∈x

[u(β) − c(β, x)]

where

c(β, x) =

⎡
⎣ J∑

j=1
max
β′∈x

vj(β′)

⎤
⎦ −

J∑
j=1

vj(β).

Note that this representation differs from the general temptation representation by as-
suming that I = 1 — that is, that the agent knows exactly which temptations will
affect her. Hence we call this a no–uncertainty representation. This representation, then,
generalizes GP only by allowing the agent to be affected by multiple temptations.

If the preference has a finite additive EU representation with one positive state, then
we can rewrite it in the form of a no–uncertainty representation by a generalization of the
change of variables discussed in Section 2. Specifically, suppose we have a representation
of the form

V (x) = max
β∈x

w1(β) −
J∑

j=1
max
β∈x

vj(β).

The commitment utility u is defined by u(β) = V ({β}) = w1(β) − ∑
j vj(β). Hence we

can change variables to rewrite V in the form of VNU .

The no–uncertainty representation turns out to correspond to a particular half of set
betweenness. Specifically,

Axiom 5 (Positive Set Betweenness) � satisfies positive set betweenness if when-
ever x � y, we have x � x ∪ y.

For future use, we define the other half similarly:

Axiom 6 (Negative Set Betweenness) � satisfies negative set betweenness if when-
ever x � y, we have x ∪ y � y.

The following lemma characterizes the implication of positive set betweenness.16

Lemma 1 Suppose � has a finite additive EU representation. Then it has such a rep-
resentation with one positive state if and only if it satisfies positive set betweenness.

16See also Kopylov [2005] who gives a generalization to I positive states and J negative states.
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To see the intuition, suppose � satisfies positive set betweenness and suppose x � y.
Then x ∪ y is bounded “on the positive side” in the sense that x � x ∪ y. Hence the
flexibility of being able to choose between x and y has only negative consequences. That
is, the flexibility to choose between x and y cannot be better than x, though it can,
conceivably, be worse than y. Hence the uncertainty the agent faces regarding her tastes
is entirely on the negative side. This implies that there may be multiple negative states
but can only be one positive one.

Using the change of variables discussed above, this lemma obviously yields

Theorem 4 � has a no–uncertainty representation if and only if it has a finite state
additive EU representation and satisfies positive set betweenness.

One can modify the proof of Lemma 1 in obvious ways to show

Lemma 2 Suppose � has a finite state additive EU representation. Then it has such a
representation with one negative state if and only if it satisfies negative set betweenness.

Theorem 1 is obviously a corollary to Lemmas 1 and 2.

A second special case takes Lemma 2 as its starting point. This representation has one
negative state but many positive states which differ only in the strength of temptation
in that state. Specifically, we define an uncertain strength of temptation representation
to be one which takes the form

VUS(x) =
∑

i

qi max
β∈x

[u(β) − γic(β, x)]

where qi > 0 for all i and
∑

i qi = 1 and

c(β, x) = [max
β′∈x

v(β′)] − v(β).

In this representation, the temptation is always v, but the strength of the temptation
(as measured by γi) is random. The probability that the strength of the temptation is
γi is given by qi. In a sense, this representation allows uncertainty but to the minimum
possible extent.

We have

Theorem 5 � has an uncertain strength of temptation representation if and only if it has
a finite state additive EU representation and satisfies DFC and negative set betweenness.
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6 Conclusion

There are several interesting issues left to explore. In the previous section, we gave two
specializations of the general representation to more specific assumptions on the nature
of temptation. Naturally, there are numerous other possible directions of interest along
similar lines.

One case of particular interest addresses a potential concern mentioned in the dis-
cussion of Example 1. Our general representation allows cost functions that depend on
more than one temptation in the sense that we have

ci(β, x) =

⎡
⎣∑

j∈Ji

max
α∈x

vj(α)

⎤
⎦ −

∑
j∈Ji

vj(β)

where Ji need not be a singleton. In general, such a representation will have the property
that there is no choice the agent can make which will reduce ci to 0. One might prefer
to assume that if the agent gives in to temptation, the self–control cost is zero. But if Ji

is not a singleton and the vj’s are maximized at different points in x, this is impossible,
arguably implying that these representations include considerations other than tempta-
tion such as regret.17 This motivates considering a restriction to what we call a simple
representation, a temptation representation with the property that Ji is a singleton for all
i. We conjecture that � has a simple representation if and only if it has a finite additive
EU representation and satisfies weak set betweenness:

Axiom 7 (Weak Set Betweenness) If {α} � {β} for all α ∈ x and β ∈ y, then
x � x ∪ y � y.

Another issue which may be of interest is introducing uncertainty about what is
normatively desirable as well as about temptation. To some extent, however, this problem
is too easily solved. More specifically, any finite additive EU representation can be written
as a temptation representation with uncertainty about normative preferences. To see the
point, return to the general finite additive EU representation where

V (x) =
I∑

i=1
max
β∈x

wi(β) −
J∑

j=1
max
β∈x

vj(β).

Partition the set {1, . . . , J} into I sets, J1, . . . , JI in any fashion. Use this partition to
define I cost functions

ci(β, x) =

⎡
⎣∑

j∈Ji

max
β′∈x

vj(β ′)

⎤
⎦ −

∑
j∈Ji

vj(β),

17We thank Todd Sarver for this observation.
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just as in the definition of a temptation representation. Define ui so that ui +
∑

j∈Ji
vj =

wi. Obviously, then, we can write

V (x) =
I∑

i=1
max
β∈x

[ui(β) − ci(β, x)].

Interpreting the I states as equally likely, this looks like a temptation representation
where the normative preference, ui, varies with i. On the other hand, it is not clear what
justifies interpreting the ui’s as various possible normative preferences. In our temptation
representation, u represents the commitment preference and thus is identified. Note that
the inability to identify the ui’s above leads to a more general inability to identify which
temptations are relevant in what states since the partition above was arbitrary.

This observation points to another important direction to extend the current model.
Our assumption that the normative preference is state independent allows the possibility
of identifying at least some aspects of the representation in the sense that these aspects
are uniquely determined (up to some transformation). It is not hard to show that the
representation is identified in a natural sense if, for example, the u and the various vj ’s are
affinely independent in the sense that these functions (viewed as vectors in RK where K is
the number of pure outcomes) and the vector of 1’s are linearly independent. With such
identification, it is possible to consider how changes in preferences correspond to changes
in the representation (i.e., analogs to the correspondence between increased willingness
to undertake risk and a lower Arrow–Pratt measure of risk aversion). For example, DLR
show that one preference has an additive EU representation with a larger set of negative
states than another if and only if it values commitment more in a certain sense. Since
temptation representations have more structure than additive EU representations, there
may be new comparisons of interest.

Finally, our characterization of behavior which can be explained by temptation is
carried out within the set of preferences which have a finite additive EU representation,
a set characterized in Theorem 6 in the appendix. While some of the axioms required
seem unrelated to issues of temptation, two of the necessary conditions, continuity and
independence (see appendix for definitions), arguably eliminate some temptation–related
behavior. Hence it may be useful to consider weaker forms of these axioms.

Regarding continuity, GP show that at least one common model of temptation requires
continuity to be violated. To be specific, suppose the agent evaluates a menu x according
to

max
β∈Bv(x)

u(β)

where Bv(x) is the set of v maximizers in x. Intuitively, the agent expects her choice
from the menu to be determined by her later self with utility function v, where her later
self breaks ties in favor of the current self. As GP demonstrate, in the absence of very
specific relationships between u and v, such a representation cannot satisfy continuity.
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Regarding independence, there are several temptation–related issues which may lead
to violations of this axiom. For example, guilt may lead the agent to prefer randomization,
a phenomenon inconsistent with independence. To see the point, consider a dieter in a
restaurant faced with a choice between a healthy dish and a tempting, unhealthy dish.
Independence implies that such a dieter would be indifferent between this menu and one
which adds a randomization between the two. However, with such an option available,
the dieter can choose the lottery and have some chance of consuming the unhealthy dish
with less guilt than if it had been chosen directly. Hence the indifference required by
independence is not compelling.18

Also, there is a sense in which independence implies that the agent’s choices satisfy
a kind of “independence of irrelevant alternatives.” To understand this, note that we
represent the agent as if she would face cost function ci with probability qi. Subject to
the caveats mentioned in footnote 14, suppose we interpret the agent who faces menu x
as choosing some β which maximizes u(β)− ci(β, x) with probability qi. Substituting for
ci, this means that the agent maximizes a certain sum of utilities which is independent
of x. Hence if β is chosen over α from menu x, β is chosen over α from any menu, a kind
of IIA property. This conclusion is driven by the linearity of the representation — this
causes the maxβ∈x vj(β) terms to be irrelevant to the maxβ∈x u(β) − ci(β, x) expression.
This linearity comes from independence.

As Noor [2006b] suggests by example, this IIA property is not a compelling assump-
tion for temptation. For a diet–related version of his example, suppose the menu consists
only of broccoli and frozen yogurt. Arguably, the latter is not very tempting, so the agent
is able to stick to her diet and orders broccoli. However, if the menu consists of broccoli,
frozen yogurt, and an ice cream sundae, perhaps the agent is much more significantly
tempted to order dessert and opts for the frozen yogurt as a compromise. See also the
related criticism of independence in Fudenberg and Levine [2005].

Related to the discussion of guilt two paragraphs above, issues of guilt and its flip
side, feeings of “virtuousness,” may be important aspects of temptation and pose new
modeling challenges. To see the point, we again let b denote broccoli, y frozen yogurt, and
i ice cream and assume {b} � {y} � {i}. Suppose the agent knows she will choose y from
any menu containing it. Then it seems plausible that {y, i} � {y} � {b, y}. Intuitively,
the first preference comes about because the agent can feel virtuous by choosing frozen
yogurt over the more fattening ice cream, a feeling which the agent cannot get from
choosing yogurt when it is the only option. Similarly, the second preference reflects
the agent’s guilt from choosing frozen yogurt when broccoli was available, a feeling not

18We thank Phil Reny for suggesting this example. The example has a strong resemblance to the
“Machina’s mom” story in Machina [1989]. The resemblance suggests that the issue is more about
having preferences over procedures for decision making, perhaps driven by temptation, than about
temptation given otherwise standard preferences, the case we study here.
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generated by consuming frozen yogurt when there is no other option. Note that the first of
these preferences contradicts our main axiom, DFC, since it implies {y, i} � {y} � {i}.
This story also runs contrary to the motivation for our AIC axiom: here, adding i
improves the menu {y} but does so because it is not chosen. While the preference
{b} � {y} � {b, y} is consistent with our general representation, it is not consistent with
a simple representation. In particular, with guilt, an agent who succumbs to temptation
does not avoid all costs. We suspect that an adequate treatment of these issues requires
moving beyond the class of finite additive EU representations.

21



A Notational Conventions

Throughout the Appendix, we use u, vj , etc., to denote utility functions as well as
the vector giving the payoffs to the pure outcomes associated with the utility function.
When interpreted as vectors, they are column vectors. Let K denote the number of pure
outcomes, so these are K by 1. We write lotteries as 1 by K row vectors, so β ·u = u(β),
etc. Also, 1 denotes the K by 1 vector of 1’s.

B Existence of Finite Additive EU Representations

It is simpler to work with the following equivalent definition of a finite additive EU
representation.

Definition 5 A finite additive EU representation is a pair of finite sets S1 and S2 and
a state–dependent utility function U : Δ(B) × (S1 ∪ S2) → R such that (i) V (x) defined
by

V (x) =
∑
s1∈S

max
β∈x

U(β, s) −
∑
s∈S2

max
β∈x

U(β, s)

represents � and (ii) each U (·, s) is an expected–utility function in the sense that

U(β, s) =
∑
b∈B

β(b)U(b, s).

The relevant axioms from DLR are:

Axiom 8 (Weak Order) � is asymmetric and negatively transitive.

Axiom 9 (Continuity) The strict upper and lower contour sets, {x′ ⊆ Δ(B) | x′ � x}
and {x′ ⊆ Δ(B) | x � x′}, are open (in the Hausdorff topology).

Given menus x and y and a number λ ∈ [0, 1], let

λx + (1 − λ)y = {β ∈ Δ(B) | β = λβ′ + (1 − λ)β′′, for some β′ ∈ x, β ′′ ∈ y}

where, as usual, λβ′ +(1−λ)β′′ is the probability distribution over B giving b probability
λβ′(b) + (1 − λ)β ′′(b).
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Axiom 10 (Independence) If x � x′, then for all λ ∈ (0, 1] and all x̄,

λx + (1 − λ)x̄ � λx′ + (1 − λ)x̄.

We refer the reader to DLR for further discussion of these axioms.

The new axiom which will imply finiteness requires a definition. Given any menu x,
let conv(x) denote its convex hull.

Definition 6 x′ ⊆ conv(x) is critical for x if for all y with x′ ⊆ conv(y) ⊆ conv(x), we
have y ∼ x.

Intuitively, a critical subset of x contains all the “relevant” points in x. It is easy to
show that the three axioms above imply that the boundary of x is critical for x, so every
set has at least one critical subset.

Axiom 11 (Finiteness) Every menu x has a finite critical subset.

Theorem 6 � has a finite additive EU representation if and only if it satisfies weak
order, continuity, independence, and finiteness.

Necessity is straightforward. The sufficiency argument follows that of DLR and DLRS
by constructing an artificial “state space,” SK , then restricting it to a particular subset.
To do this, write B = {b1, . . . , bK}. Let SK = {s ∈ RK | ∑

si = 0,
∑

s2
i = 1}. In line

with our notational conventions, we write elements of SK as K by 1 column vectors. For
any set x ∈ X, let σx denote its support function. That is, σx : SK → R is defined by

σx(s) = max
β∈x

β · s.

As explained in DLR, our axioms imply that if σx = σx′, then x ∼ x′.

To prove sufficiency, fix any sphere, say x∗, in the interior of Δ(B). By finiteness,
x∗ has a finite critical subset. Let xc denote such a subset. We claim that we may as
well assume xc is contained in the boundary of x∗. To see this, suppose it is not. For
every point in xc, associate any line through this point. Let x̂c denote the collection of
intersections of these lines with the boundary of x∗. Obviously, x̂c is finite. Also, it is
easy to see that conv(xc) ⊆ conv(x̂c). In light of this, consider any convex y ⊆ x∗ and
suppose x̂c ⊆ y. Then

xc ⊆ conv(xc) ⊆ conv(x̂c) ⊆ y ⊆ x∗.
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So y ∼ x∗. Hence x̂c is a finite critical subset of x∗ which is contained in the boundary
of x∗. So without loss of generality, we assume xc is contained in the boundary of x∗.

Since x∗ is a sphere, there is a one–to–one mapping, say g, from the boundary of x∗

to SK where g(β) is the s such that β is the unique maximizer of α · s over α ∈ x. That
is, g(β) is the s for which we have an indifference curve tangent to x∗ at β. Let

S∗ = g(xc) = {s ∈ SK | g(β) = s for some β ∈ xc}.

Let
x =

⋂
β∈xc

{α ∈ Δ(B) | α · g(β) ≤ β · g(β)}.

That is, x is the polytope bounded by the hyperplanes tangent to x∗ at the points in xc.

Lemma 3 xc is critical for x.

Proof. Obviously, xc ⊂ x. Fix any convex y such that xc ⊆ y ⊆ x. We show that y ∼ x.

To show this, fix any ε > 0 and let

yε = conv

⎛
⎝xc ∪

⎡
⎣ ⋂

β∈xc

{α ∈ y | α · g(β) ≤ β · g(β) − ε}
⎤
⎦
⎞
⎠ .

Note that xc ⊆ yε ⊆ y. Also, yε → y as ε ↓ 0 since xc ⊆ y ⊆ x.

We claim that

Claim 1 For every ε > 0, there exists λ < 1 such that

λconv(xc) + (1 − λ)yε ⊆ x∗.

We establish this geometric property shortly. First, note that with this claim, the
proof of the lemma can be completed as follows. Fix any ε > 0 and λ ∈ (0, 1) such that
λconv(xc) + (1 − λ)yε ⊆ x∗. Because xc ⊆ yε, we have

xc ⊆ λconv(xc) + (1 − λ)yε ⊆ x∗.

Since xc is critical for x∗ and λconv(xc) + (1 − λ)yε is convex, this implies λconv(xc) +
(1 − λ)yε ∼ x∗. The fact that xc is critical for x∗ also implies conv(xc) ∼ x∗. Hence
independence requires yε ∼ x∗. Since this is true for all ε > 0, continuity implies y ∼ x∗.
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But this argument also works for the case of y = x, so we see that x ∼ x∗. Hence y ∼ x,
so xc is critical for x.

Proof of Claim 1. First, note that it is sufficient to prove this for the case of y = x since
this makes the set on the left–hand side the largest possible. Next, note that it is then
sufficient to show that for every ε > 0, there exists λ < 1 such that every extreme point
of λconv(xc) + (1 − λ)xε is contained in x∗. Since each such extreme point must be a
convex combination of extreme points in xc and xε, this implies that a sufficient condition
is that there is a λ < 1 such that for every α1 ∈ xc and α2 ∈ ext(xε), λα1 +(1−λ)α2 ∈ x∗

where ext(·) denotes the set of extreme points. Since xε is a convex polyhedron, it has
finitely many extreme points. Also, xc is finite. Since there are finitely many α1 and
α2 to handle, it is sufficient to show that for every α1 ∈ xc and α2 ∈ ext(xε), there is a
λ ∈ (0, 1) such that λα1 + (1 − λ)α2 ∈ x∗.

Equivalently, we show that for every α1 ∈ xc and α2 ∈ xε, there exists λ ∈ (0, 1) such
that (λα1 + (1 − λ)α2) · s ≤ σx∗(s) for all s ∈ SK . That is,

(1 − λ)(α2 · s − α1 · s) ≤ σx∗(s) − α1 · s, ∀s ∈ SK . (3)

Since α1 ∈ x∗, we have σx∗(s) ≥ α1 ·s for all s ∈ SK . By construction, there is a unique s,
say ŝ = g(α1), such that this inequality holds with equality. For all s �= ŝ, σx∗(s) > α1 · s.
Also, by definition of xε, α2 ∈ xε implies that α2 · ŝ ≤ α1 · ŝ − ε. Hence for any λ ∈ [0, 1],
equation (3) holds at s = ŝ. For any s �= ŝ, if α2 · s ≤ α1 · s, again, equation (3) holds
for all λ ∈ [0, 1]. Hence we can restrict attention to s such that α2 · s > α1 · s and
σx∗(s) > α1 · s. Given this restriction, it is clear that if α2 · s ≤ σx∗(s), again, equation
(3) holds for all λ ∈ [0, 1].

Let Ŝ = {s ∈ SK | α2 · s > σx∗(s) > α1 · s}. From the above, it is sufficient to show
the existence of a λ ∈ (0, 1) satisfying equation (3) for all s ∈ Ŝ. A sufficient condition
for this is that there exists λ ∈ (0, 1) such that

(1 − λ)(σΔ(B)(s) − α1 · s) ≤ σx∗(s) − α1 · s, ∀s ∈ Ŝ.

Obviously, σΔ(B)(s) − α1 · s is bounded from above. Hence it is sufficient to show that
the right–hand side of the inequality is bounded away from zero for s ∈ Ŝ.

To see that this must hold, suppose there is a sequence {sn} with sn ∈ Ŝ for all n
with σx∗(sn) − α1 · sn → 0. Clearly, this implies sn → ŝ. But then

lim
n→∞

α2 · sn = α2 · ŝ ≤ σx∗(ŝ) − ε = lim
n→∞

σx∗(sn) − ε,

implying that we cannot have sn ∈ Ŝ for all n, a contradiction. Hence such a λ must
exist.
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Lemma 4 If y is any set with σy(s) = σx(s) for all s ∈ S∗, then y ∼ x.

Proof: Fix any such y. Without loss of generality, assume y is convex. (Otherwise,
we can replace y with its convex hull.) Clearly,

y ⊆ {β | β · s ≤ σx(s) ∀s ∈ S∗}

since otherwise y would contain points giving it a higher value of the support function
for some s ∈ S∗. But the set on the right–hand side is x, so y ⊆ x. Obviously, then if
xc ⊆ y, the fact that xc is critical for x implies y ∼ x.

So suppose xc �⊆ y. As noted, we must have y ⊆ x. So let yλ = λx + (1 − λ)y.
Obviously, yλ converges to x as λ → 1. For each β ∈ xc, there is a face of the polyhedron
x such that β is in the (relative) interior of the face. Also, y must intersect the face of
the polyhedron and so yλ must intersect the face. As λ increases, the intersection of yλ

with the face enlarges as it is pulled out toward the boundaries of the face. Clearly, for
λ sufficiently large, β will be contained in the intersection of yλ with the face of x which
contains β. Take any λ larger than the biggest such λ over the finitely many β ∈ xc. Then
xc ⊆ yλ ⊆ x. Since xc is critical for x, this implies λx + (1 − λ)y ∼ x. By independence,
then, y ∼ x.

Lemma 5 For any y and ŷ such that σy(s) = σŷ(s) for all s ∈ S∗, we have y ∼ ŷ.

Proof. Fix any such y and ŷ. For any λ ∈ [0, 1), define uλ : S∗ → R by

uλ(s) =
σx(s) − λσy(s)

1 − λ
.

Because σy(s) = σŷ(s) for all s ∈ S∗, it would be equivalent to use σŷ instead of σy. Let

zλ = {β ∈ Δ(B) | β · s ≤ uλ(s), ∀s ∈ S∗}.

Obviously, λσy(s)+(1−λ)uλ(s) = σx(s) for all s ∈ S∗. This implies that for all λ ∈ (0, 1),
λy + (1 − λ)zλ ⊆ x. To see this, note that for any α ∈ y and β ∈ zλ,

λα · s + (1 − λ)β · s ≤ λσy(s) + (1 − λ)uλ(s) = σx(s), ∀s ∈ S∗.

But x = ∩s∈S∗{γ | γ · s ≤ σx(s)}, so λα + (1 − λ)β ∈ x.

Note also that uλ(s) → σx(s) as λ ↓ 0. We claim that this implies that there is a
λ ∈ (0, 1) such that for every s ∈ S∗, there exists β ∈ zλ with β · s = uλ(s). To see
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this, suppose it is not true. Then for all λ ∈ (0, 1), there exists ŝλ ∈ S∗ such that for all
β ∈ zλ, β · ŝλ < uλ(ŝλ) so

⋂
s∈S∗\{ŝλ}

{β | β · s ≤ uλ(s)} =
⋂

s∈S∗
{β | β · s ≤ uλ(s)}.

Because S∗ is finite, this implies that there exists ŝ ∈ S∗, a sequence {λn} with λn ∈ (0, 1)
for all n, λn → 0 such that for all n,

⋂
s∈S∗\{ŝ}

{β | β · s ≤ uλn(s)} =
⋂

s∈S∗
{β | β · s ≤ uλn(s)}.

But uλn → σx as n → ∞. Hence the limit as n → ∞ of the right–hand side, namely x,
cannot equal the limit of the left–hand side, a contradiction.

Hence there is a λ ∈ (0, 1) such that for every s ∈ S∗, there is a β ∈ zλ with
β · s = uλ(s). Choose such a λ and let u = uλ and z = zλ. Obviously, for every s ∈ S∗,
there is α ∈ y with β · s = σy(s). Hence given our choice of λ, for every s ∈ S∗, there is
γ ∈ λy+(1−λ)z such that γ·s = λσy(s)+(1−λ)u(s) = σx(s). Hence σλy+(1−λ)z(s) = σx(s)
for all s ∈ S∗. Hence Lemma 4 implies λy + (1 − λ)z ∼ x. The symmetric argument
with ŷ replacing y implies λŷ + (1 − λ)z ∼ x. So λy + (1 − λ)z ∼ λŷ + (1 − λ)z. By
independence, then, y ∼ ŷ.

DLR show that weak order, continuity, and independence imply the existence of a
function V : X → R which represents the preference and is affine in the sense that
V (λx + (1 − λ)y) = λV (x) + (1 − λ)V (y). Fix such a V . Let U = {(σx(s))s∈S∗ | x ∈
X} ⊂ RM where M is the cardinality of S∗. Let σ|S∗ denote the restriction of σ to
S∗. Define a function W : U → R by W (U) = V (x) for any x such that σx|S∗ = U .
From Lemma 5, we see that if σx|S∗ = σx′|S∗, then x ∼ x′ so V (x) = V (x′). Hence W
is well–defined. It is easy to see that W is affine and continuous and that U is closed,
convex, and contains the 0 vector. It is easy to show that W has a well–defined extension
to a continuous, linear function on the linear span of U . Since U is finite dimensional, W
has an extension to a continuous linear functional on RM . (See Lemma 6.13 in Aliprantis
and Border [1999], for example.) Since a linear function on a finite dimensional space
has a representation by means of a matrix, we can write

W (U) =
∑
s∈S∗

csUs

where the cs’s are constants and U = (Us)s∈S∗. Hence

V (x) = W ((σx(s))s∈S∗) =
∑
s∈S∗

cs max
β∈x

β · s.

Hence we have a finite additive EU representation.
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C Proof of Theorem 3

The following lemma is critical.19

Lemma 6 Suppose � has a finite additive EU representation of the form

V (x) =
I∑

i=1
max
β∈x

wi(β) −
J∑

j=1
max
β∈x

vj(β).

Define u by u(β) = V ({β}), so u =
∑

i wi − ∑
j vj. Suppose � satisfies DFC. Then there

are positive scalars ai, i = 1, . . . , I, and bij, i = 1, . . . , I, j = 1, . . . , J and scalars ci,
i = 1, . . . , I such that

∑
i ai =

∑
i bij = 1 for all j and

wi = aiu +
∑
j

bijvj + ci1

for all i.

Proof. Suppose not. Let Z denote the set of KI by 1 vectors (z′
1, . . . , z

′
I)

′ such that

zi = aiu +
∑
j

bijvj + ci1, ∀i

for scalars ai, bij, and ci satisfying the conditions of the lemma. So if the lemma does not
hold, the vector (w′

1, . . . , w
′
I)

′ /∈ Z. Since Z is obviously closed and convex, the separating
hyperplane theorem implies that there is a vector p such that

p ·

⎛
⎜⎜⎝

w1
...

wI

⎞
⎟⎟⎠ > p ·

⎛
⎜⎜⎝

z1
...
zI

⎞
⎟⎟⎠ , ∀

⎛
⎜⎜⎝

z1
...
zI

⎞
⎟⎟⎠ ∈ Z.

Write p = (p1, . . . , pI) where each pi is a 1 by K vector. So

∑
i

pi · wi >
∑

i

pi · zi, ∀

⎛
⎜⎜⎝

z1
...
zI

⎞
⎟⎟⎠ ∈ Z.

Equivalently, ∑
i

pi · wi >
∑

i

aipi · u +
∑
j

∑
i

bijpi · vj +
∑

i

cipi · 1

19This result can be seen as a generalization of the Harsanyi aggregation theorem (Harsanyi [1955]).
See Weymark [1991] for an introduction to this literature.
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for any ai, bij, and ci such that ai ≥ 0 for all i, bij ≥ 0 for all i and j, and
∑

i ai =
∑

i bij = 1
for all j. Since ci is arbitrary in both sign and magnitude, we must have pi · 1 = 0 for all
i. If not, we could find a ci which would violate the inequality above.

Also, for every choice of ai ≥ 0 such that
∑

i ai = 1,

max
i

pi · u ≥
∑

i

aipi · u

with equality for an appropriately chosen (a1, . . . , aI). Similarly, for any non–negative
bij’s with

∑
i bij = 1,

max
i

pi · vj ≥
∑

i

bijpi · vj

with equality for an appropriately chosen (b1j, . . . , bIj). Hence the inequality above im-
plies ∑

i

pi · wi > max
i

pi · u +
∑
j

max
i

pi · vj.

Write pi as (p1i, . . . , pKi). Without loss of generality, we can assume that |pki| ≤ 1/K
for all k and i. (Otherwise we could divide both sides of the inequality above by
K maxk,i |pki| and redefine pi to have this property.) Let β denote the probability dis-
tribution (1/K, . . . , 1/K). For each i, let αi = pi + β. Note that αki = pki + 1/K and
so αki ≥ 0 for all k, i. Also, αi · 1 = pi · 1 + β · 1 = 1. Hence each αi is a probability
distribution. Substituting αi − β for pi,∑

i

αi · wi −
∑

i

β · wi > max
i

αi · u − β · u +
∑
j

max
i

αi · vj −
∑
j

β · vj.

By definition of u,
∑

i wi = u +
∑

j vj. Hence this is∑
i

αi · wi −
∑
j

max
i

αi · vj > max
i

αi · u.

Let x = {α1, . . . , αI}. Then

V (x) ≥
∑

i

αi · wi −
∑
j

max
i

αi · vj > max
i

αi · u = max
α∈x

u(α).

But this contradicts DFC.

We now prove Theorem 3. The necessity of � having a finite additive EU representa-
tion is obvious. For necessity of DFC, suppose � has a weak temptation representation.
For any menu x and any i = 1, . . . , I ′, let αi denote a maximizer of u(β) +

∑
j∈Ji

vj(β)
over β ∈ x. Then

Vw(x) =
∑I′

i=1 qi[u(αi) +
∑

j∈Ji
vj(αi)] −

∑I′
i=1 qi

∑
j∈Ji

maxβ∈x vj(β)
+

∑I
i=I′+1 maxβ∈x[−ci(β, x)]

≤ ∑I′
i=1 qi[u(αi) +

∑
j∈Ji

vj(αi)] −
∑

i qi
∑

j∈Ji
vj(αi)

=
∑I′

i=1 qiu(αi)
≤ maxβ∈x u(β)
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where the first inequality uses ci(β, x) ≥ 0 for all i, β, and x and the last one uses qi > 0
and

∑I′
i=1 qi = 1. Hence DFC must hold.

For sufficiency, let V denote a finite additive EU representation of �. By Lemma 6,
we can write this as

V (x) =
∑

i maxβ∈x[aiu(β) +
∑

j bijvj(β) + ci] −
∑

j maxβ∈x vj(β)
=

∑
i maxβ∈x[aiu(β) +

∑
j bijvj(β)] − ∑

j maxβ∈x vj(β) +
∑

i ci

where u(β) = V ({β}). But

u +
∑
j

vj =
∑

i

wi =
∑

i

aiu +
∑

i

∑
j

bijvj +
∑

i

ci1.

Since
∑

i ai =
∑

i bij = 1 for all j, this says

u +
∑
j

vj = u +
∑
j

vj +
∑

i

ci1,

so
∑

i ci = 0.

Let I+ denote the set of i such that ai > 0. For each i ∈ I+, let qi = ai. Let M
denote the number of (i, j) pairs for which bij > 0. For each such (i, j), let k(i, j) denote
a distinct element of {1, . . . ,M}. For each i ∈ I+ and each j such that bij > 0, define a
utility function v̂k(i,j) = [bij/ai]vj and let k(i, j) ∈ Ji. For each i /∈ I+ and each j with
bij > 0, define a utility function v̂k(i,j) = bijvj and let k(i, j) ∈ Ji. So for i ∈ I+,

wi = aiu +
∑
j

bijvj = qi[u +
∑
j∈Ji

v̂j ].

For i /∈ I+,
wi =

∑
j

bijvj =
∑
j∈Ji

v̂j.

Also,
∑

j maxβ∈x vj(β) =
∑

j

∑
i bij maxβ∈x vj(β)

=
∑

i∈I+

∑
j∈Ji

qi maxβ∈x v̂j(β) +
∑

i/∈I+

∑
j∈Ji

maxβ∈x v̂j(β).

Hence
V (x) =

∑
i∈I+

qi max
β∈x

[u(β) − ci(β, x)] +
∑
i/∈I+

max
β∈x

[−ci(β, x)]

where

ci(β, x) =

⎡
⎣∑

j∈Ji

max
β′∈x

v̂j(β ′)

⎤
⎦ −

∑
j∈Ji

v̂j(β).

Hence V is a weak temptation representation.
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D Proof of Theorem 2

First, we show necessity. Obviously, if � has a temptation representation, it has a weak
temptation representation, so DFC and existence of a finite additive EU representation
are necessary. Hence the following lemma completes the proof of necessity.

Recall that
B(x) = {α ∈ x | {α} � {α′}, ∀α′ ∈ x}.

Lemma 7 If � has a temptation representation, then it satisfies AIC.

Fix � and a temptation representation, VT . Let β be an approximate improvement
for x. Fix any x′ ⊆ x and α ∈ B(x′) such that {α} � {β}. (If no such x, β, x′, and α
exist, AIC holds trivially.) By definition of an approximate improvement, there exists a
sequence βn converging to β such that x ∪ {βn} � x for all n.

For any menu z, we can write

VT (z) =
∑

i

qi max
γ∈z

⎡
⎣u(γ) +

∑
j∈Ji

vj(γ)

⎤
⎦ −

∑
i

qi

∑
j∈Ji

max
γ∈z

vj(γ).

Clearly, then, the fact that VT (x ∪ {βn}) > VT (x) implies that for each n, there is some
i with

u(βn) +
∑
j∈Ji

vj(βn) > max
γ∈x

⎡
⎣u(γ) +

∑
j∈Ji

vj(γ)

⎤
⎦ .

Otherwise, all the maximized terms in the first sum would be the same at z = x as at
z = x∪{βn}, while the terms being subtracted off must be at least as large at z = x∪{βn}
as at z = x. Let i∗n denote any such i. Because there are finitely many i’s, we can choose
a subsequence so that i∗n is independent of n. Hence we can let i∗ = i∗n for all n. Hence

u(βn) +
∑

j∈Ji∗

vj(βn) > max
γ∈x

⎡
⎣u(γ) +

∑
j∈Ji∗

vj(γ)

⎤
⎦

for all n, implying

u(β) +
∑

j∈Ji∗

vj(β) ≥ max
γ∈x

⎡
⎣u(γ) +

∑
j∈Ji∗

vj(γ)

⎤
⎦ .

Clearly, then, since x′ ⊆ x,

u(β) +
∑

j∈Ji∗

vj(β) ≥ max
γ∈x′

⎡
⎣u(γ) +

∑
j∈Ji∗

vj(γ)

⎤
⎦ .
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Subtract
∑

j∈Ji∗ maxγ∈x′∪{β} vj(γ) from both sides to obtain

u(β) − ci∗(β, x′ ∪ {β}) ≥ max
γ∈x′

[u(γ) − ci∗(γ, x′ ∪ {β})]

where ci∗ is the self–control cost for state i∗ from the temptation representation.

Recall that α ∈ B(x′). Hence we have

VT (x′ ∪ {β}) =
∑

i qi maxγ∈x′∪{β} [u(γ) − ci(γ, x′ ∪ {β})]
= qi∗ [u(β) − ci∗(β, x′ ∪ {β})] +

∑
i �=i∗ qi maxγ∈x′∪{β} [u(γ) − ci(γ, x′ ∪ {β})]

≤ qi∗ [u(β) − ci∗(β, x′ ∪ {β})] +
∑

i �=i∗ qi maxγ∈x′∪{β} u(γ)
= qi∗ [u(β) − ci∗(β, x′ ∪ {β})] + (1 − qi∗)u(α)
≤ qi∗u(β) + (1 − qi∗)u(α)
< u(α)

where the two weak inequalities follow from ci(γ, x′ ∪ {β}) ≥ 0 and the strict inequality
follows from qi∗ > 0 and {α} � {β}. Hence {α} � x′ ∪ {β}, so AIC is satisfied.

Turning to sufficiency, for the rest of this proof, let � denote a preference with a finite
additive EU representation V which satisfies DFC and AIC.

Before moving to the main part of the proof of sufficiency, we get some special cases
out of the way. First, it is easy to see that if � has a finite additive EU representation,
then it has such a representation which is nonredundant in the sense that no wi or vj is a
constant function and no two of the wi’s and vj’s correspond to the same preference over
Δ(B). On the other hand, this nonredundant representation could have I = 0, J = 0,
or both. We first handle these cases, then subsequently focus on the case where I ≥ 1,
J ≥ 1, no state is a constant preference, and no two states have the same preference over
lotteries.

If I = J = 0, the preference is trivial in the sense that x ∼ x′ for all x and x′. In this
case, the preference is obviously represented by the temptation representation

V (x) = max
β∈x

[u(β) + v(β)] − max
β∈x

v(β)

where v and u are constant functions. If I = 0 but J ≥ 1, then we have

V (x) = A −
∑
j

max
β∈x

vj(β)

for an arbitrary constant A. Let w1 denote a constant function equal to A and define
u = w1 − ∑

j vj. Then

V (x) = max
β∈x

[u(β) +
∑
j

vj(β)] −
∑
j

max
β∈x

vj(β),
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giving a temptation representation. Finally, suppose J = 0. To satisfy DFC, we must
then have I = 1, so V (x) = maxβ∈x w1(β) + A for an arbitrary constant A. Let v1 be a
constant function equal to A and define u = w1 − v1. Then obviously

V (x) = max
β∈x

[u(β) + v1(β)] − max
β∈x

v1(β),

giving a temptation representation.

The remainder of the proof shows the result for the case where the finite additive EU
representation has I ≥ 1 positive states and J ≥ 1 negative states, none of which are
constant and no two of which correspond to the same preference over menus. Following
GP, we refer to this as a regular representation.

Recall that B(x) is the set of α ∈ x such that {α} � {α′} for all α′ ∈ x. Define a
menu x to be temptation–free if there is an α ∈ B(x) such that {α} ∼ x.

Lemma 8 Suppose � satisfies AIC and has a regular, finite additive EU representation
given by

V (x) =
∑

i

max
β∈x

wi(β) −
∑
j

max
β∈x

vj(β).

Fix any interior β and any x such that x ∪ {β} is temptation–free and β /∈ B(x ∪ {β}).
Then there is no i with

wi(β) = max
α∈x∪{β}

wi(α).

Proof. Suppose not. Suppose there is an interior β, an x such that x∪{β} is temptation–
free and β /∈ B(x ∪ {β}), and an i with

wi(β) = max
α∈x∪{β}

wi(α).

Because β /∈ B(x ∪ {β}), we know that u(β) < maxα∈x u(α), where u is defined by
u(γ) = V ({γ}) as usual. By hypothesis, the additive EU representation is regular so wi

is not constant. Because wi is not constant and β is interior, for any ε > 0, we can find a
β̂ within an ε neighborhood of β such that wi(β̂) > wi(β). Hence wi(β̂) > maxα∈x wi(α).
Obviously, if ε is sufficiently small, we will have u(β̂) close to u(β) and hence u(β̂) <
maxα∈x u(α).

Let Ĵ denote the set of j such that

max{vj(β), vj(β̂)} > max
α∈x

vj(α).

For each j ∈ Ĵ , we can find a γj such that vj(γj) > vj(β) and wi(γj) < wi(β). To see
that this must be possible, note that the selection of j implies that wi and −vj do not
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represent the same preference. By hypothesis, the additive EU representation is regular
so wi and vj do not represent the same preference and neither is constant. Hence the vj

indifference curve through β must have a nontrivial intersection with the wi indifference
curve through β. Hence such a γj must exist.

Let x′ denote the collection of these γj’s. (If Ĵ = ∅, then x′ = ∅.) Let βλ =
λβ + (1 − λ)β̂. By construction, for all λ ∈ (0, 1), wi ranks βλ strictly above any α ∈ x.
Also, since wi(β) > wi(γj) for all j, there is a λ̄ ∈ (0, 1) such that wi(βλ) > wi(γj) for
all j for all λ ∈ (λ̄, 1). Also, for every j /∈ Ĵ , vj ranks some point in x (and hence in
x′ ∪ x) at least weakly above both β and β̂ and hence above βλ. Finally, for every j ∈ Ĵ ,
vj(γj) > vj(β). Hence there is a λ̄′ ∈ (0, 1) such that vj(γj) > vj(βλ) for all j ∈ Ĵ and all
λ ∈ (λ̄′, 1). Let λ∗ = max{λ̄, λ̄′}. For λ ∈ (λ∗, 1), then,

wi(βλ) > max
α∈x′∪x

wi(α)

vj(βλ) ≤ max
α∈x′∪x

vj(α), ∀j

Hence
V (x′ ∪ x ∪ {βλ}) = wi(βλ) +

∑
k �=i

max
α∈x′∪x∪{βλ}

wk(α) −
∑
j

max
α∈x′∪x

vj(α).

Since the wi comparison of βλ to any α ∈ x or any γj is strict, this expression is

> max
α∈x′∪x

wi(α) +
∑
k �=i

max
α∈x′∪x∪{βλ}

wk(α) −
∑
j

max
α∈x′∪x

vj(α).

Obviously, this is

≥
∑
k

max
α∈x′∪x

wk(α) −
∑
j

max
α∈x′∪x

vj(α) = V (x′ ∪ x).

Hence x′ ∪ x ∪ {βλ} � x′ ∪ x for all λ ∈ (λ∗, 1). Since βλ → β as λ → 1, this implies β is
an approximate improvement for x′ ∪ x. But then AIC implies that x ∪ {β} cannot be
temptation–free, a contradiction.

To complete the proof of Theorem 2, we use the following result from Rockafellar
[1970] (Theorem 22.2, pages 198–199):

Lemma 9 Let zi ∈ RN and Zi ∈ R for i = 1, . . . , m and let � be an integer, 1 ≤ � ≤ m.
Assume that the system zi · y ≤ Zi, i = � + 1, . . . , m is consistent. Then one and only
one of the following alternatives holds:

(a) There exists a vector y such that

zi · y < Zi, i = 1, . . . , �
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zi · y ≤ Zi, i = � + 1, . . . , m

(b) There exist non–negative real numbers λ1, . . . , λm such that at least one of the numbers
λ1, . . . , λ� is not zero, and

m∑
i=1

λizi = 0

m∑
i=1

λiZi ≤ 0.

It is easy to use this result to show that if we have some equality constraints, we
simply drop the requirement that the corresponding λ’s are non–negative.

Fix � with a regular finite additive EU representation which satisfies DFC and AIC.
We use Lemma 9 to show that there exists a1, . . . , aI , b11, . . . , bIJ , and c1, . . . , cI such
that

aiu +
∑
j

bijvj + ci1 = wi, ∀i

∑
i

ai = 1

∑
i

bij = 1, ∀j

−bij ≤ 0, ∀i, j

−ai < 0, ∀i.

Because DFC implies that a weak temptation representation exists, the part of the system
with only weak inequality constraints is obviously consistent. To state the alternatives
implied by the lemma in the most straightforward way possible, let λik denote the real
number corresponding to the equation

aiu(k) +
∑
j

bijvj(k) + ci = wi(k)

where k denotes the kth pure outcome. We use μ̄ to correspond to the equation
∑

i ai = 1,
μj for the equation

∑
i bij = 1, ϕij for −bij ≤ 0, and ψi for −ai < 0. Hence Lemma 9

implies that either the ai’s, bij’s, and ci’s exists or there exists λik, μ̄, μj , ϕij, and ψi such
that

ϕij ≥ 0, ∀i, j

ψi ≥ 0, ∀i, strictly for some i∑
k

λiku(k) + μ̄ − ψi = 0, i = 1, . . . , I
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∑
k

λikvj(k) + μj − ϕij = 0, i = 1, . . . , I; j = 1, . . . , J

∑
k

λik = 0, i = 1, . . . , I

∑
i

∑
k

λikwi(k) + μ̄ +
∑
j

μj ≤ 0

Assume, then, that no ai’s, bij’s, and ci’s exist satisfying the conditions postulated.
Then by Lemma 9, there must be a solution to this system of equations. Note that we
cannot have a solution to these equations with λik = 0 for all i and k. To see this,
note that the third equation would then imply μ̄ = ψi for all i and hence μ̄ > 0. Also,
from the fourth equation, we would have μj = ϕij and hence μj ≥ 0 for all j. But then
the last equation gives μ̄ +

∑
j μj ≤ 0, a contradiction. Since

∑
k λik = 0, this implies

maxi,k λik > 0. Without loss of generality, then, we can assume that λik < 1/K for all i
and k. (Recall that there are K pure outcomes.) Otherwise, we can divide through all
equations by 2K maxi,k |λik| and redefine all variables appropriately.

Rearranging the equations gives
∑
k

λiku(k) + μ̄ = ψi ≥ 0, ∀i with strict inequality for some i

∑
k

λikvj(k) + μj = ϕij ≥ 0, ∀i, j

∑
i

∑
k

λikwi(k) + μ̄ +
∑
j

μj ≤ 0

For each i, define an interior probability distribution αi by αi(k) = (1/K)−λik. Because
λik < 1/K for all i and k, we have αi(k) > 0 for all i and k. Also,

∑
k αi(k) = 1−∑

k λik =
1. Letting β denote the probability distribution (1/K, . . . , 1/K), we can rewrite the above
as

u(β) + μ̄ ≥ u(αi), ∀i with strict inequality for some i

vj(β) + μj ≥ vj(αi), ∀i∑
i

wi(β) + μ̄ +
∑
j

μj ≤
∑

i

wi(αi).

The first inequality implies
u(β) + μ̄ ≥ max

i
u(αi) (4)

with a strict inequality for some i. The second inequality implies
∑
j

vj(β) +
∑
j

μj ≥
∑
j

max
i

vj(αi). (5)
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Turning to the third inequality, recall that
∑

i wi = u+
∑

j vj. Hence the third inequality
is equivalent to

u(β) +
∑
j

vj(β) + μ̄ +
∑
j

μj ≤
∑

i

wi(αi).

Summing equations (4) and (5) yields

u(β) +
∑
j

vj(β) + μ̄ +
∑
j

μj ≥ max
i

u(αi) +
∑
j

max
i

vj(αi)

so∑
i

wi(αi)−
∑
j

max
i

vj(αi) ≥ u(β)+
∑
j

vj(β)+μ̄+
∑
j

μj−
∑
j

max
i

vj(αi) ≥ max
i

u(αi). (6)

Let x = {α1, . . . , αI}. Then

V (x) ≥
∑

i

wi(αi) −
∑
j

max
i

vj(αi) ≥ max
i

u(αi).

By DFC, maxi u(αi) ≥ V (x). Hence

V (x) =
∑

i

wi(αi) −
∑
j

max
i

vj(αi) = max
i

u(αi).

Hence x is a temptation–free menu. Note that the first equality in the last equation
implies that αi maximizes wi for all i. Also, the second equality together with equation
(6) implies that the weak inequalities in equations (4) and (5) must be equalities. In
particular, then,

u(β) + μ̄ = max
i

u(αi).

However, recall that

u(β) + μ̄ ≥ u(αi), ∀i with strict inequality for some i

That is, there must be some k for which u(αk) < maxi u(αi). Hence x �= B(x). But αi

maximizes wi for every i, contradicting Lemma 8.

Hence there must exist such ai, bij, and ci. It is easy to use the proof of Theorem 3
to complete the construction of a temptation representation.

E Proof of Lemma 1

Proof. (Necessity.) We show that if � has a finite additive EU representation with only
one positive state and x � y, then x � x ∪ y. It is not hard to see that

V (x ∪ y) =
∑

i

max
{
max
β∈x

wi(β), max
β∈y

wi(β)
}

−
∑

j

max
{
max
β∈x

vj(β), max
β∈y

vj(β)
}

.
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When there is only one positive state, I = 1, so we can rewrite this as

V (x ∪ y) = max {maxβ∈x w1(β), maxβ∈y w1(β)}
− ∑

j max {maxβ∈x vj(β), maxβ∈y vj(β)} .

Hence
V (x ∪ y) ≤ max

{
maxβ∈x w1(β), maxβ∈y w1(β)

}

− max
{ ∑

j maxβ∈x vj(β),
∑

j maxβ∈y vj(β)
}

≤ max
{

maxβ∈x w1(β) − ∑
j maxβ∈x vj(β),

maxβ∈y w1(β) − ∑
j maxβ∈y vj(β)

}
= max {V (x), V (y)} = V (x).

Hence x � x ∪ y.

(Sufficiency.) Suppose � has a finite additive EU representation and satisfies positive
set betweenness. Assume, contrary to our claim, that this representation has more than
one positive state. So � has a representation of the form

V (x) =
I∑

i=1
max
β∈x

wi(β) −
J∑

j=1
max
β∈x

vj(β)

where I ≥ 2. Without loss of generality, we can assume that w1 and w2 represent different
preferences over Δ(B) — otherwise, we can rewrite the representation to combine these
two states into one. Let x̂ denote a sphere in the interior of Δ(B). Let

x =
[

I⋂
i=1

{β ∈ Δ(B) | wi(β) ≤ max
β′∈x̂

wi(β ′)}
] ⋂ ⎡

⎣ J⋂
j=1

{β ∈ Δ(B) | vj(β) ≤ max
β′∈x̂

vj(β′)}
⎤
⎦ .

Because x̂ is a sphere and because I and J are finite, there must be a wi indifference
curve which makes up part of the boundary of x for i = 1, 2. Fix a small ε > 0. For
i = 1, 2 and k = 1, . . . , I, let εi

k = 0 for k �= i and εi
i = ε. Finally, for i = 1, 2, let yi equal[

I⋂
k=1

{β ∈ Δ(B) | wk(β) ≤ max
β′∈x̂

wk(β′) − εi
k}

] ⋂ ⎡
⎣ J⋂

j=1
{β ∈ Δ(B) | vj(β) ≤ max

β′∈x̂
vj(β′)}

⎤
⎦ .

Because I and J are finite, if ε is sufficiently small,

max
β∈yi

wk(β) = max
β∈x

wk(β), ∀k �= i

and
max
β∈yi

vj(β) = max
β∈x

vj(β), ∀j.

Hence x ∼ y1 ∪ y2. Also,
max
β∈yi

wi(β) < max
β∈x

wi(β).

Hence x � yi, i = 1, 2. Hence y1 ∪ y2 � yi, i = 1, 2, contradicting positive set between-
ness.
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F Proof of Theorem 5

Proof. Necessity is obvious. For sufficiency, assume � has a finite additive EU represen-
tation and satisfies DFC and negative set betweenness. We know from Lemma 2 that it
has only one negative state. Using this and Lemma 6, we see that � can be represented
by a function V of the form

V (x) =
I∑

i=1
max
β∈x

[aiu(β) + biv(β)] − max
β∈x

v(β)

where ai ≥ 0 and bi ≥ 0 for all i and
∑

i ai =
∑

i bi = 1. (The argument in the proof of
Theorem 3 showing that

∑
i ci = 0 applies here as well.)

We can assume without loss of generality that ai > 0 for all i. To see this, suppose
a1 = 0. Then we can write

V (x) =
I∑

i=2
max
β∈x

[aiu(β) + biv(β)] − max
β∈x

(1 − b1)v(β).

If b1 = 1, then bi = 0 for all i �= 1. Because a1 = 0 and
∑

i ai = 1, we then have
V (x) = maxβ∈x u(β). This is a VUS representation with I = 1 and γ1 = 0. So suppose
b1 < 1. Let v̂ = (1 − b1)v and for i = 2, . . . , I , let b̂i = bi/(1 − b1). Note that

∑I
i=2 b̂i = 1.

Hence we can rewrite V as

V (x) =
I∑

i=2
max
β∈x

[aiu(β) + b̂iv̂(β)] − max
β∈x

v̂(β).

Continuing as needed, we eliminate every i with ai = 0.

Given that ai > 0 for all i, let qi = ai and let γi = bi/ai. With this change of notation,
V can be rewritten in the form of VUS .
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