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Abstract

We study an in�nitely-repeated �rst-price auction with common values. Initially, bid-
ders receive independent private signals about the objects� value, which itself does not
change over time. Learning occurs only through observation of the bids. Under one-sided
incomplete information, this information is eventually revealed and the seller extracts es-
sentially the entire rent (for large discount factors). Both players�payo¤s tend to zero as
the discount factor tends to one. However, the uninformed bidder does relatively better
than the informed bidder. We discuss the case of two-sided incomplete information, and
argue that, under a Markovian re�nement, the outcome is pooling: information is revealed
only insofar as it does not a¤ect prices. Bidders submit a common, low bid in the tradition
of �collusion without conspiracy�.
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1 Introduction

Imagine an auction in which several lots of 1961 Chateau Palmer, a red Bordeaux, are
successively put up for sale.1 The value of these lots is identical, but not commonly known.
Bidders include both wine experts and less experienced buyers. All bids are revealed after each
sale. How should buyers behave? What is the pattern of prices over time? How much is each
bidder�s proprietary information worth? How well does the seller perform?
To provide some insights into these questions, we analyze an in�nitely-repeated game between

two players. In each period, a single object is sold via a �rst-price sealed-bid auction. All objects
have the same value. Each player receives a private signal once (at the beginning of time) that
is correlated with the common value. All bids are observed, so it is a Bayesian game (i.e. with
incomplete information only). Players maximize average discounted payo¤s, and the analysis
primarily focuses on the case of low discounting.
In a static framework, proprietary information plays two roles: it helps determine one�s own

value for the unit being sold, and it helps predict the other bidders�actions. The value of this
information, and its e¤ect on equilibrium bids and pro�ts, has been subject to much analysis and
is by now well-understood when the setting is symmetric, or when only one bidder has private
information (Milgrom and Weber (1982); Engelbrecht-Wiggans, Milgrom, and Weber (1983)).
In the multi-period case, bids transmit information that is relevant for future play, allowing

bidders to re�ne their estimate of the units�value, as well as to better predict their opponents�
future bids. Thus, bidders face a trade-o¤: if a bidder�s proprietary information indicates that
the units are all of high quality, he would like to increase his chance of winning the object by
bidding more aggressively, but doing so may prove costly later on, as other bidders may compete
away the value of the information released through the bid.
In light of this intuition, we focus on several attributes of the model. In particular, we are

interested in the bidders�equilibrium strategies per se; in the implied value of private information
within such a model; and in the resulting implications for the seller�s revenue.
We are not, however, interested in the rich collusive opportunities inherent to repeated inter-

actions, which are present in our game just as in standard repeated games. Therefore, we restrict
attention to equilibria in which strategies should depend only on beliefs (about the signals or
types of all players) and not on payo¤-irrelevant details of histories. In the case of one-sided
incomplete information, this is particularly easy to achieve, by requiring the uninformed player
to be �myopic�and maximize his �ow payo¤. In e¤ect, we then consider the game between an
informed, long-run bidder with proprietary information and an in�nite sequence of uninformed,
short-run bidders. Our results are most striking in this simple framework:
When only one bidder has proprietary information, all information is revealed in �nite time,

although the time required grows without bound as the discount factor tends to one. The informed
player�s average discounted total payo¤ then tends to one; further, in any undominated equilib-

1See Ashenfelter (1989) for more detail on this example and others.
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rium, the uninformed player�s average discounted total payo¤ converge to zero (as the discount
factor tends to one), while the auctioneer�s revenue converges to his �rst-best pro�t. In addition,
the informed bidder�s total payo¤ is small relative to that of the uninformed bidder.
That is, in any such equilibrium, the informed bidder discloses all of his proprietary infor-

mation in �nite time. The delay increases with the bidders�patience, but information revelation
occurs �quickly� relative to the discount factor. Once information is revealed, bids equal the
commonly known value of the object, and continuation payo¤s are therefore zero (just as in
Bertrand competition with symmetric costs). So, provided bidders are su¢ ciently patient, both
bidders do poorly overall and the seller fares very well. While both bidders�payo¤s converge to
zero, the payo¤ of the informed bidder does so faster than that of the uninformed.
The intuition for this result starts with the fact that the uninformed bidder�s actions have no

informational content. Therefore, he has an incentive to break any ties in his favor. This leaves
an informed bidder who received an optimistic signal no choice but to eventually bid strictly more
than what he would have bid if his private signal was bad news, thereby eventually revealing
some of his private information. The informed bidder�s temporal trade-o¤ is that by delaying
this revelation, he is able to win with a lower bid, as pessimism makes the uninformed bidder
more cautious in the future.
We show that none conclusion holds without the re�nements used, myopia and weak dom-

inance. We also show that our results remain valid when the horizon is long, but �nite, even
without discounting, generalizing thereby a result by Engelbrecht-Wiggans and Weber (1983)
discussed below, or when there is more than one uninformed player.
We provide additional detail and intuition in the particularly simple case of binary signals.

In line with the empirical literature, we �nd that equilibrium winning bids tend to decline until
the information is fully revealed.
When there is two-sided uncertainty, we show by means of examples that similarly precise

predictions require much stronger re�nements. Because those re�nements are less obvious, and
their consequences more predictable, we restrict ourself to a discussion of the results, and refer
the interested reader to the working paper for additional details. In that case as well, we can
show:
When both bidders have proprietary information (and discounting is low), bidders�pro�ts are

at least as large as if they were both repeatedly bidding the lowest expected value that any type of
either player could possibly have for the object.
That is, the average equilibrium bid is less than or equal to the most pessimistic expectation

that any type of either player could have. The intuition for this result is very similar to the
ratchet e¤ect identi�ed in games with one-sided incomplete information by Freixas, Guesnerie
and Tirole (1985) and Hart and Tirole (1988).2 Although the equilibrium payo¤s are as if all

2Our result validates La¤ont�s intuition that �in this type of dynamic game a ratchet e¤ect often happens as

the bidders in the auction want to hide some of their private information to be in a more favorable position in

the next stages.�(La¤ont 1997)

3



bids were �pooling�, we note that almost all information may potentially still be disclosed in
equilibrium. Sellers should therefore tend to prefer a one-time batch sale (replicating the static
outcome) to a sequential auction if bidders are patient enough, or alternatively if the frequency
of auctions is high enough. It is however possible for this ordering to be reversed, even in a
symmetric version of the model. Loosely, this is because there is no winner�s curse in such a
pooling equilibrium: winning has no adverse implications for beliefs.
In order to facilitate comparison, we begin with the static case of the model. Here we

completely characterize the equilibrium, which has not previously appeared. In this one-shot
environment, bids fully reveal players�types. More precisely, successive types of a given player
continuously randomize over contiguous (but non-overlapping) intervals. We solve explicitly for
the expected revenue of the seller. Although our conclusion will be that the dynamic auction
induces low revenue levels, it is interesting to observe that for some prior beliefs the auctioneer
would still prefer a sequential to a static (batch-sale) auction; see Section 5.
Finally, we consider the special case of binary types (i.e. high or low signals only) in sub-

stantially greater detail. In this setting we give explicit formulations of the bidding functions
and their (stochastic) evolution over time in the case of both one-sided and two-sided incomplete
information. Furthermore, if the prior beliefs in the two-sided case are the same (i.e. symmetric
across bidders), we characterize the equilibrium for all discount factors. The equilibrium is fully
separating �meaning high types make themselves known immediately �if players are impatient
and the prior is pessimistic; it is fully pooling if players are patient and the prior is pessimistic;
and it is semi-pooling otherwise, meaning that high types separate with non-degenerate proba-
bility in a given period.
While it is outside the scope of this paper to fully develop the implications of our model

for auction design, in Section 6 we brie�y describe some of the di¤erent instruments that are
available to the seller.

1.1 Literature

Related literature begins with an important early paper of Ortega-Reichert (1967), which
describes the symmetric, pure-strategy equilibrium of a two-object, two-bidder, �rst-price se-
quential auction in a private value model. Bidders�signals for the two objects are independently
distributed conditionally on a state variable whose distribution is commonly known. Because
the second item�s signal is only revealed after the �rst sale, there is no ratchet e¤ect and the
bidders�private information is revealed by their �rst bid.
Engelbrecht-Wiggans andWeber (1983) investigate what is a special case of our model.3 They

analyze a �nite-object, common-value sequential auction between a perfectly informed bidder and
an uninformed bidder in which the units�value �high or low �is perfectly correlated over time.

3We learned a great deal from their analysis.
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As in our model, because the informed bidder cannot exploit his information without revealing
it for the next stages, the uninformed bidder�s payo¤ exceeds the informed bidder�s payo¤ when
the horizon is long enough. If it is likely that units are of high value, a one-stage batch sale
generates a higher expected revenue than the sequential procedure.
Hausch (1986) re-examines Ortega-Reichert�s model when the single private signal is received

before, rather than after the �rst auction. For some parameters, players have an incentive to use
mixed strategies to hide some of their information. As a consequence, simultaneous sales may
be better for the seller.
Bikhchandani (1988) examines a �nitely repeated, two-bidder second-price auction with com-

mon values. The players�signals are additive and identically and independently drawn from a
common distribution. Players�signals are conditionally independent. One of the bidders has a
privately known type. The strong type�s signal is higher than the ordinary type�s signal. Be-
cause winning is especially bad news for the uninformed player when his opponent is of the high
type, the winner�s curse is intensi�ed for the uninformed player, forcing him to submit lower bids
in equilibrium. This weakens the winner�s curse for the informed bidder of the ordinary type
and decreases his serious bids. The ordinary type has therefore an initial incentive to mimic the
strong type. Similarly, Kwiek (2002) considers the e¤ect of reputation on bidding in second-price
auctions. Reputation a¤ects the perception of a player�s bidding behavior, but does not a¤ect
the value of the object to both bidders. Therefore, it is quite di¤erent from private information
as understood in this paper.
In a recent paper, De Meyer and Saley (2002) analyze the limit of a �nitely repeated �rst-price

auction with one informed bidder and one uninformed bidder. There are two possible states of
the world, and the players transact directly with each other (so it is a zero-sum game). They
show that the price distribution asymptotically approximates a Brownian motion. Kyle (1985)
examines the informational content of prices and the value of information to an insider in a
model of sequential auctions in which buyers choose quantities and the price clears the market.
To prevent the (unique) insider�s actions from being perfectly informative, and to guarantee
that an equilibrium in pure strategies exists, he introduces noise trading. In contrast, we are
able (without adding noise) to directly characterize the mixed strategy equilibrium arising when
incomplete information is one-sided.
Hon-Snir, Monderer and Sela (1998) study a repeated �rst-price auction with independent

private values, though they do not assume that players are fully rational (noting that �equilibrium
analysis of repeated �rst-price auctions in the framework of repeated games with incomplete
information is complex�). Instead they consider a broad class of learning schemes, and they are
able to show that information is eventually fully revealed. Similarly, Oren and Rothkopf (1975)
develop a behavioral model of how competitors react to solve for the bidding strategies.
Virág (2003) studies a �rst-price �nitely repeated common value auction between two players,

with one-sided incomplete information. He assumes that bids are not observed, only the identity
of the winner. In addition, the uninformed bidder �nds out the exact value of the object as
soon as he wins it once. Therefore, information is complete once the uninformed bidder has
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won, and it follows that dynamics are very di¤erent from the ones in this paper. Abdulkadiro¼glu
and Chung (2003) assume that bidders collude and investigate the resultant mechanism design
problem faced by the auctioneer.
Finally, a general analysis of repeated games with incomplete information is carried out by

Aumann, Maschler and Stearns (1966-68).
The empirical literature on repeated auctions is extensive. Beginning with Ashenfelter (1989),

many papers have documented the declining-price anomaly in sequential auctions of identical
objects.4 Van den Berg, van Ours and Pradhan (2001) study a repeated �rst-price auction
of Dutch roses. Ashenfelter (1989) and Ginsburgh (1998) investigate wine auctions. Pezanis-
Christou (2000) reports an analysis of price behavior in a sequence of �sh auctions with retailers
and wholesalers who are di¤erentially informed (as in our model) and in which there is uncertain
supply (equivalent to impatience). Collusion in repeated auctions, including in the California
electricity markets and other areas, has also been subject to many studies. For instance, Baldwin,
Marshall, and Richard (1997) report collusion at timber sales, while Pesendorfer (2000) suggests
evidence of collusive behavior in �rst-price auctions for milk.

1.2 Outline of the paper

Section 2 presents the formal description of our model. Section 3 details the equilibrium
for the static case (� = 0); this is not required in the remainder. Section 4 characterizes the
equilibrium with one-sided incomplete information, and introduces an example for illustrative
purposes. Section 5 considers two-sided incomplete information and includes the main result. It
also extends the example, for arbitrary discount factors. Finally, Section 6 concludes. Proofs of
the results are relegated to an appendix.

2 The Model

This paper considers an in�nitely-repeated game between two risk-neutral bidders with
quasilinear utility, player 1 and player 2. In every period t = 0; 1; : : : one indivisible unit is sold
using a sealed-bid �rst-price auction. In case of a tie, each player wins with equal probability.
We assume common values:
Bidders value each unit identically.
All units auctioned o¤ have the same value, represented by the random variable V . That is,

we assume perfect correlation over time:
The value of the units from one period to the next is unchanging.

4Note, however, that Raviv (2003) actually �nds evidence for increasing prices in certain sequential auctions.
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Before the game starts, each bidder i (i 2 f1; 2g) receives a signal Si concerning the value of
the object. The signal can take m+1 di¤erent values for player 1, and n+1 di¤erent values for
player 2, that is, S1 2 M = f0; 1; : : : ;mg and S2 2 N = f0; 1; : : : ; ng. Signals are also referred
to as types. Players never observe the realization of V . Thus, conditional on signals S1 = j and
S2 = k, we may safely identify V with its expectation, and we denote this value by v (j; k). A
high (low) signal is statistical evidence for a high (low) value of the object. This is formalized
by:
The valuation v (j; k) is strictly increasing in each of its arguments. The variables S1 and S2

are themselves independent.5

We let p (j; k) denote the ex ante probability that S1 = j and S2 = k. The corresponding
marginal distributions are p1(j) =

Pn
k=0 p(j; k) and p2(k) =

Pm
j=0 p(j; k). Finally, we denote by

Ek[v(j; k)] the expected value of a type j player 1,

Ek[v(j; k)] =

Pn
k=0 p(j; k)v(j; k)Pn

k=0 p(j; k)
,

and similarly for Ej[v(j; k)].
Players maximize their payo¤, which is the discounted sum of their pro�ts in each auction,

using a common discount factor � 2 [0; 1). Therefore, their utility does not exhibit �diminishing
marginal returns�for winning more units. We emphasize that players do not learn the value of
a unit upon buying it. Learning, therefore, is restricted to inferring one�s rival�s information.
Bids are observable. A bid is a serious bid if it is equal to the highest bid with strictly positive
probability, and is a losing bid otherwise.
Players maximize their payo¤, which is the discounted sum of their pro�ts in each auction,

using a common discount factor � 2 [0; 1). Therefore, their utility does not exhibit �diminishing
marginal returns�for winning more units. We emphasize that players do not learn the value of
a unit upon buying it. Learning, therefore, is restricted to inferring one�s rival�s information.
Bids are observable. A bid is a serious bid if it is equal to the highest bid with strictly positive
probability, and is a losing bid otherwise.
The set of histories of length t < 1, Ht, is de�ned to be the set of t � 1 pairs of elements

of R+ (with H0 being a singleton set containing the �empty history�). A strategy for player 1
(resp. player 2) is a measurable mapping �1 :M �[tHt ! � (resp. �2 : N �[tHt ! �), where
� is the set of distribution functions on R+. We say that player i�s type k submits a bid b with
positive probability if b is in the support of his distribution function. An in�nite history is a
countably in�nite sequence of pairs of elements of R+; the set of these is denoted H. Given an

5This is, for instance, the environment of Maskin and Riley (2000). A more primitive assumption that leads

to the same outcome is that S1 and S2 are independently pairwise a¢ liated with V , in the sense of Milgrom and

Weber (1982). Note that we do not require independence for any of the results concerning one-sided incomplete

information, even when it arises as a degenerate subcase of two-sided incompleteness.
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in�nite history h 2 H, let bit (h) be player i�s bid in period t. Player 1 type j�s reward in period
t along history h, given that player 2 is of type k, is then

r1j;t (h) =
�
v(j; k)� b1t (h)

��
IW 1

t
+
1

2
ITt

�
;

where IA denotes the indicator function of the set A, and W 1
t denotes the event that player 1

wins in period t, i.e.
W 1
t :=

�
b1t (h) > b

2
t (h)

	
:

Similarly, Tt := fb1t (h) = b2t (h)g is the event that they tie. Player 2�s reward is de�ned anal-
ogously. The prior distribution on types and a strategy pro�le � = (�1; �2) induce a proba-
bility distribution over in�nite histories in the usual manner, and if we denote by E� (�) the
associated expectation over types and histories, then player i type j�s payo¤ is de�ned as
(1� �)E�

�P1
t=0 �

trij;t (h) jj
�
, his average discounted sum of rewards, conditional on his own

type and given some strategy pro�le �. Abusing standard terminology, we refer to continuation
games as �subgames�.
The solution concept used is Perfect Bayesian Equilibrium (P.B.E.) with the standard re-

strictions as de�ned by requirements B(i)-(iv) in Fudenberg and Tirole (1991, pp. 331-2). As
explained below, this solution concept puts essentially no restriction on the set of equilibrium
outcomes, when the discount factor tends to one. We further wish to prune any equilibrium
which depends on payo¤ irrelevant information, and therefore assume that continuation play
only depends on (all players�) current beliefs. That is, if there exist two histories after which
every type of every player entertains the same beliefs about his opponent, then the actions that
follow these histories are the same as well. We refer to this assumption as Markov stationarity.
While we describe the results of this game in the case of two-sided uncertainty in Section

5, the paper focuses for the most part on the case of one-sided uncertainty (Section 4). In this
case, it is convenient to re-interpret the model and the solution concept as follows: Player 1 is
a long-lived bidder who faces a sequence of short-run bidders, called Player 2. Player 1, the
informed player, receives one of m + 1 possible signals, while Player 2, the uninformed player,
receive none. Indeed, Markov stationarity implies that Player 2 maximizes his (instantaneous)
reward. Fix any history, and consider the decision of the uninformed player. His continuation
payo¤ only depends on his posterior, but his posterior only depends on the informed player�s
action (and his prior). Therefore, Player 2�s optimal action must maximize his reward. It is
worth pointing out that the converse is not true: there are equilibria in which Player 2�s action
after every history, yet the equilibrium fails to be Markov stationary. Since strong predictions
can be obtained under the weaker solution concept, we shall assume myopia:
In the case of one-sided uncertainty, Player 2�s action maximizes his reward after every

history.
Henceforth, we shall omit to explictly repeat this re�nement whenever it is used - it is main-

tained throughout Section 4 up to but excluding Subsection 4.1. Another re�nement, weak
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dominance, is then introduced and results are discussed with and without it. Section 5 returns
to the case of two-sided uncertainty and discusses the results in that case.

3 Static Benchmark

Our main result implies that, in the in�nitely-repeated auction, the average expected revenue
of the auctioneer, as the discount factor tends to one, tends to the relatively low value � (de�ned
above). It is therefore important to derive the corresponding revenue for the static common-
value auction with independent types, which is equivalent to the in�nitely-repeated auction with
� = 0. Existence of an equilibrium in this �nite-type environment (using the Vickrey tie-breaking
rule) is established by Maskin and Riley (2000, Proposition 2). In this section, we are able to
derive explicit formulas for the equilibrium strategies and the expected revenue of the auctioneer,
allowing a direct comparison with the sequential auction (large �) to be made for any particular
prior distributions. This section can be safely skipped by the reader solely interested in the
repeated game.
Without loss of generality, we normalize v (0; 0) to 0. Because there are only two play-

ers, the supports of the bidding distributions of two di¤erent types of the same player inter-
sect in one point if these types are consecutive. For each player and every pair of consecutive
types of this player, let � (�) be this bid, where arguments are picked in any way such that
� (1) � � � � � � (m+ n). Let S1i denote the support of the bid distribution of player 1�s type
i, and analogously S2j for player 2�s type j. If � is the index that corresponds to the inter-
section of the supports of player 1�s (resp. player 2�s) type i and i + 1 (resp. type j and
j + 1), let m (�) = i + 1 and n (�) = max

�
j 2 N j � (�) 2 S2j

�
(resp. n (�) = j + 1 and

m (�) = max [i 2M j � (�) 2 S1i ]). Let � (0) = 0, m (0) = n (0) = 0, and denote the high-
est bid in either player�s support by � (m+ n+ 1). Let p (i) (resp. q (j)) be the probability
that player 1 (resp. player 2) is of type i (resp. of type j), and let Fm(�) (resp. Gn(�)) be
the bid distribution of player 1�s type m (�) (resp. player 2�s type n (�)) on [� (�) ; � (�+ 1)].
Let P (i) =

Pi
l=0 p (l), Q (j) =

Pj
l=0 q (l), and de�ne recursively s (�) by s (0) = 0 and, for

all 1 � � � m + n + 1, for � � 1 the largest integer for which s (�� 1) has been de�ned
so far, if min [x j x = P (i) > s (�� 1) for some i] 6= min [x j x = Q (j) > s (�� 1) for some j],
then s (�) equals the lowest of these minima. Otherwise, s (�) = s (�+ 1) equals their common
value. Let v (�) := v (m (�) ; n (�)). We show in the appendix that � (�) satis�es the recursion
� (0) = 0, and, for all 1 � � � m+ n+ 1 :

� (�) =

��1X
l=0

(s (l + 1)� s (l)) v (l) :

We prove (in the appendix) that:
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Theorem 1 If � = 0, the expected revenue R for the seller is given by

R =

m+nX
l=0

(1� s (l))2 (v (l + 1)� v (l)) ,

and the distribution functions used by the players are given by, for b 2 [� (�) ; � (�+ 1)],

p (m (�))Fm(�) (b) = s (�+ 1)
v (m (�) ; n (�))� � (�+ 1)

v (m (�) ; n (�))� b �
m(�)X
j=0

p (i) and

q (n (�))Gn(�) (b) = s (�+ 1)
v (m (�) ; n (�))� � (�+ 1)

v (m (�) ; n (�))� b �
n(�)X
j=0

q (j) .

4 One-sided Incomplete Information

This section derives properties common to all equilibria in the case in which the type space is
a singleton for exactly one of the players. So suppose thatM = f0; 1; : : : ;mg, with m � 1, while
n = 0. Accordingly, we refer to player 1 as the informed player, or player I, and to player 2 as the
uninformed player, or player U , and we write v (j) or vj instead of v (j; 0), where (j; 0) 2M �N ,
as well as pjt for the probability assigned to type j by the uninformed player, in period t (given
some history ht clear from the context). Without loss of generality, we assume that all types in
M are assigned strictly positive probability. Also, let vUt =

P
pkt vk denote the expected value of

a unit. In addition, let ht = (hIt ; h
U
t ), where h

I
t is the history of bids by the informed player along

ht, and hUt is the history of bids by the uninformed bidder. Given a history ht, let kt denote
the lowest type of the informed player assigned positive probability. The lowest element in the
support of (player I�s) type k bid distribution is denoted �kt ; the lowest element in the support of
player I�s bid distribution among all types assigned positive probability, �It ; the lowest element
in the support of player U�s bid distribution, �Ut .
Similarly, the highest element in the support of (player I�s) type k bid distribution is denoted

�kt ; the highest element in the support of player I�s bid distribution among all types assigned
positive probability, �It ; the highest element in the support of player U�s bid distribution, �

U
t .

Finally, the continuation payo¤ of Player I�s type k after history ht is denoted �kh(t) or �
k
t for

short, and the continuation payo¤ of Player U is denoted �kh(t) or �
U
t for short.

As discussed in Section 2, Player 2 is assumed to maximize his (instantaneous) reward. As
will be clear from the �rst lemma, this guarantees that the uninformed player always bids at
least as much as vkt, the lowest value conceivable given ht. Therefore, bidding strictly more than
his signal is a dominated action for Player I�s type kt in the supergame. Such dominated actions
are ruled out whenever Re�nement R is invoked.
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Re�nement R (weak dominance): For all histories ht, �
kt
t � vkt.

This re�nement is standard in the literature: it is used, for instance, by Maskin and Riley (2003),
and in a closely related context, by Engelbrecht-Wiggans and Weber (1983), who note that it
is implied by trembling-hand perfectness. We characterize below the equilibria with or without
this re�nement.
By assumption, the uninformed bidder plays a myopic best-response to his beliefs. This

implies that the uninformed bidder will �break�any tie occurring with positive probability in
his favor, provided only that doing so yields a positive payo¤. We avoid introducing additional
notation for in�nitesimal bids by adopting the convention that, whenever incomplete information
is one-sided, ties are won by the uninformed player.6

Given an equilibrium, let H�
t be the subset of t�histories Ht (including the null history) that

have positive probability under the equilibrium strategies. For i > 0, let

Ti := inf
�
t 2 N0; pit+1 2 f0; 1g , 8ht+1 2 H�

t+1

	
;

that is, Ti is the length of the longest �nite history having positive probability under the equi-
librium strategies in which uncertainty about type i persists until period t (included). The main
result of this section is:

Theorem 2 9�0 < 1, 8� 2 (�0; 1):

(i) T := maxj�1 Tj <1 if � > �� for some �� < 1; lim�!1 T =1; lim�!1 �
k
0 = 0, all k 2M ;

(ii) Under R, lim�!1 �
T = 1; lim�!1 �

U
0 = 0; lim�!1 �

U
0 =(1 � �) = 1; lim�!1 �

k
0=�

U
0 = 0, all

k 2M .

That is, uncertainty about types can only persist for �nitely many periods, although this
number of periods increases without bound as the informed player become more patient (under
R1, the patience of the uninformed player plays no role). At the same time, the informed
player�s payo¤ tends to zero. Although lim�!1 T = 1, �T ! 1, under R. That is, although
patient higher types may mimic lower types for a long time, this time is still short relative to
their discount factor. In addition, lim�!1 �

U
0 = 0 and lim�!1 �

k
0=�

U
0 = 0: although each player�s

average payo¤ tends to zero when the discount factor tends to 1 (which is unsurprising given
the previous conclusion), the uninformed bidder fares better than the informed bidder. Indeed,
the proof shows that, in equilibrium, the informed bidder may win at most once before at least
some information is revealed (and bids jump upward), while the uninformed bidder is likely to

6We follow Engelbrecht-Wiggans and Weber (1983) in this convention.
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win many units cheaply. Along any equilibrium path, once the informed bidder fully reveals his
private information, both bidders submit bids equal to the object�s value.
The proof is divided in several steps.

Lemma 1 8ht 2 H�
t , �

U
t � �It and �Ut � �

kt
t , so that �

kt
t = 0.

Proof: The proof is by induction on the number of types K remaining in the support of the
uninformed player�s beliefs.
Consider any history ht 2 H�

t such that K = 1, so that the informed player is believed to be
some type k with probability one. We �rst argue that �kt = 0. Consider any period t0 � t.
Either �It0 � vUt0 and k�s reward in period t

0 is nonpositive, or �It0 < v
U
t0 . In the latter case, the

uninformed can secure a strictly positive reward by bidding (�It0 + v
U
t0 )=2, for instance. This

implies that the uninformed does not submit a losing bid in that period, so that �Ut0 � �It0,
implying that k�s reward must be 0 in this case as well. Therefore, �kt = 0, which implies in
particular that �Ut � vUt (since type k could pro�tably bid (vUt + �Ut )=2 otherwise).
We now claim that �Ut � �kt . If �kt � vUt , then the result follows from �Ut � vUt . If �kt � vUt , then
�kt must be a losing bid, for k�s reward (and thus his continuation payo¤) is strictly negative
otherwise. The claim follows, as well as �Ut � �It , since �kt � �kt = �It .
Assume that the result holds whenever the number of types in the support of the uninformed
player�s beliefs is K � 1 or less, and consider any history ht 2 H�

t such that the support of the
uninformed player�s belief has exactly K elements. Let k = kt. We �rst argue that �

kt
t = 0.

Consider any period t0 � t. Either �It0 � vk and k�s reward in period t0 is nonpositive, or �It0 < vk.
In the latter case, the uninformed can secure a strictly positive reward by bidding (�It0 + vk)=2,
for instance. This implies that the uninformed does not submit a losing bid in that period, so
that �Ut0 � �It0, implying that kt0�s reward must be 0 in this case as well. If kt0 = k, his reward
is therefore 0, while if kt0 > k then by the induction hypothesis, �

kt0
t0 = 0, so that �

k
t0 = 0, and

therefore, type k�s reward is 0 in this case as well. Therefore, �kt = 0, which implies in particular
that �Ut � vk (since type k could pro�tably bid (vk+�Ut )=2 otherwise). The remaining conclusions
follow as in the case K = 1.
As mentioned above, this lemma implies that �Ut � vkt for any history ht 2 H�

t . Therefore,
if beliefs are degenerate on some type k, the uninformed player�s payo¤ must be nonpositive,
implying that the informed player must bid at least vk. However, since the lemma also establishes
that the uninformed player must win all units if his beliefs are degenerate, he cannot bid more
than vk. Thus, both players submit the bid vk with probability one in this case.
As a second remark, this lemma also implies that any serious bid rules out type kt, so that,

in the continuation game, type k � kt does not submit more than k� kt additional serious bids.
This implies that his payo¤ is bounded above:

�kt � (1� �)
k�1X
i=kt

(vk � vi) :

12



This implies that lim�!1 �
k
0 = 0, all k 2M , as asserted in Theorem 2.

Lemma 2 8ht 2 H�
t , �t := �

U
t = �

I
t � vUt .

Proof: Suppose �rst that �Ut > �It , contrary to the claim. Then the uninformed player
would strictly gain by bidding

�
�Ut + �

I
t

�
=2 rather than �Ut (using R1). If �

U
t < �It instead,

then consider the lowest type k whose bid support includes �It . His continuation payo¤ is 0, by
Lemma 1. Therefore, he would gain by bidding

�
�Ut + �

I
t

�
=2 rather than �It .

Therefore, by bidding �t, the uninformed player wins with probability one (recall that he
wins ties). His reward must be positive, so that �t � vUt .
Observe that Lemma 2 implies that the highest type �kt in the support of the uninformed

player�s belief can secure a reward of (1� �)(v�kt � vUt ) which is strictly positive as long as beliefs
are nondegenerate on �kt. This gives an upper bound on the number of consecutive periods (say,
T̂
�kt) in which type �kt is willing to submit losing bids. Given Lemma 1, this implies that the
support of the uninformed player�s beliefs must shrink in �nitely periods. In particular, since
the lowest type k0 only submits losing bids, there exists some sequence of losing bids such that,
after T̂ �k0 + 1 periods, type �k0 is ruled out by the uninformed, and the probability assigned to
type k0 has not decreased. The argument can therefore be repeated from this point on, yielding
an upper bound on the number of periods in which the highest remaining type in the support
of the uninformed player�s beliefs is willing to submit losing bids. By induction, there exists a
horizon T̂ and a sequence (of length T̂ ) of losing bids such that, conditional on this sequence,
the uninformed player assigns probability one to type k0. Therefore, each type but the lowest
one can secure a strictly positive payo¤: �k0 � �T̂

�
vk � vk0

�
.

This argument holds more generally: given any history ht 2 H�
t such that beliefs are not

degenerate on �kt, there exists an integer T̂t and a sequence of losing bids of length T̂t, such that,
given any history following ht in which the informed player�s bids are given by this sequence, the
uninformed player assigns probability one to type kt. Therefore, �

k
t > 0 for all k > kt. There is

an important caveat to this discussion. While T̂t is �nite, it depends on the probability assigned
to the lowest type that is still in the beliefs�support after history ht 2 H�

t (more precisely, on
the spread v�kt � vUt ). Therefore, it does not follow from this that T (the upper bound over all
histories until all uncertainty is resolved) is �nite, because there may well be histories after which
the belief assigned to such types is arbitrarily small.
Nevertheless, an important consequence of our discussion is:

Lemma 3 8ht 2 H�
t , �

U
t = �

kt
t .

Proof: Suppose not, i.e., given Lemma 1, suppose that �Ut > �
kt
t . This implies that at least

one type of the informed bidder must submit with positive probability a bid in the interval�
�
kt
t ; �

U
t

i
. Pick such a bid b and consider the lowest type k̂ submitting this bid. Since b > �ktt ,
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we have k̂ > kt. Since b is a losing bid, and k̂ is the lowest type assigned positive probability
in the continuation game, it follows that type k̂�s payo¤ from submitting such a bid is zero, a
contradiction given the argument in the text.
As we know from Lemma 1 that the informed player wins only �nitely many times, the

undiscounted game between him and a sequence of short-run players is well-de�ned (results so
far have not used strict discounting). However, the same line of reasoning shows that this game
admits no equilibrium, as long as the prior is nondegenerate. To see this, consider any history
on the equilibrium path specifying an in�nite sequence of losing bids by the informed player,
along which the probability assigned to the lowest type is non-decreasing. This is possible, since
we have seen that this type only submits losing bids. We claim that there exists T̂ such that,
along that sequence, this probability is one for all t > T̂ . Indeed, the highest type -who can
secure a strictly positive payo¤ by submitting �0- must submit a serious bid with probability
one in some period T̂1, for otherwise he would be willing to lose forever, resulting in a payo¤
of 0. From time T̂1 + 1 on, the same argument applies to the second-highest type still assigned
positive probability, etc.
This implies that the payo¤ of the second lowest type, type 1, must be at least v1 � v0,

since he can submit losing bids until period T̂ and win at least once by bidding slightly more
than v0 in the following period. At the same time, in equilibrium, he must submit a serious bid
with positive probability before period T̂ . Yet in any such period t, the uninformed player must
bid strictly more than �tU with positive probability, implying that the expected payo¤ from the
serious bid is strictly less than v1 � v0 (the continuation payo¤ being necessarily zero).7
The next lemma proves that the in�nitely repeated game actually ends (in the sense that

all information is revealed and actions become static), endogenously, in [boundedly] �nite time.
Roughly, this is because the informed player (unless he is the lowest type) must enjoy his infor-
mation rents at some point, but to do so he must make a serious bid and thus give up some of
that same information. Due to the discount factor, he is only willing to wait for some well-de�ned
period before all of this occurs. Slightly paradoxically, the speci�c argument we employ requires
� large enough in order to yield that information is revealed in �nite time, but of course for small
� we expect it to occur even more rapidly, since the incentives are even stronger for the informed
bidder not to wait; indeed, as we saw above, for � = 0 the game is essentially over immediately.

Lemma 4 There exists �� < 1, 8� > ��, T <1.

Proof: As the priors are nondegenerate, vU0 < �v := v�k, where �k := �k0 is the highest type.
The uninformed player is never willing to bid more than his expectation, so �0 < �v and hence
�
�k > 0. This (along with � < 1) implies that at least type �k makes a serious (i.e. potentially
winning) bid by some time T1 with probability one. Meanwhile, type 0 never makes a serious

7The same argument applies if payo¤s are evaluated according to the overtaking criterion. The limit of means

criterion is consistent with our characterization, but also with other equilibrium outcomes.
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bid. Thus, the support of player U�s beliefs is necessarily strictly smaller at time T1 + 1 than at
time 0, no matter what sequence of bids has been observed.
So consider the beginning of period T1 + 1: suppose �rst that only losing (more precisely,

nonserious) bids have been observed so far from the informed player. By the reasoning above,
there is a new highest type �k0 := �kT1+1 <

�k. Since type 0 only makes losing bids, there is at
least some subsequence of such bids (by the informed) so that the new expected value vUT1+1 is
bounded away from v�k0 by the original prior on type 0.

8 Since type �k0 could have made precisely
those bids if he so chose, this places a lower bound on ��k

0
T1+1

> 0 and hence a uniform upper
bound on the number of subsequent periods in which he is willing to continue to submit losing
bids, just as above. Call this T2.
If, on the other hand, we consider a history along which the informed submits a serious bid

by period T1 (WLOG we shall assume it is in period T1 itself), we cannot uniformly bound the
posteriors at that point. In particular it is possible that after certain separating bids we have
vUT1+1 arbitrarily close to v�k (where

�k might really be some �kT1+1 < �k0, but it makes no di¤erence
to the argument). In this case the reasoning above does not go through directly, but note that
we can still place a uniform lower bound on the highest types�payo¤ as follows.
Instead of separating in period T1, �k could have pooled (submitted a losing bid) and then

placed the highest equilibrium bid in each of the subsequent two periods. Now [conditional on
observing losing bids] the highest bid must be decreasing over time.9 Hence �T1+1 5 �T1 and
(after seeing a bid of �T1+1) �T1+2 5 vUT1+2 5 v�k�1 < v�k, where the last inequality follows because
type �k was expected to separate in period T1. Therefore �

�k
T1
> �(v�k � �T1) + �

2(v�k � v�k�1),
whereas by submitting the highest bid in period T1 (which the highest type, by single crossing,
must be willing to do) type �k achieves ��kT1 = (v�k � �T1) + �C, where C is his continuation value.
Thus for � close enough to 1, we get a [strictly positive] lower bound on C that is uniform since
it depends only on the initial parameters of the model. As before, this implies an upper bound
T 02 on the number of additional periods in which the highest type is willing to pool.
It is now clear that we can continue this process: after T1+max fT2; T 02g periods the support

of beliefs has strictly decreased twice, and so on. In each case we follow one or the other of
the lines of reasoning above, depending on whether or not separation has occurred within the
�subgame�. Finally, then, we have shown that beliefs are necessarily degenerate by some �xed
time T .
The �nal lemma is the key of the result. The central step is to show that, in a precise sense,

either the spread of serious bids �t � �Ut is small, or information is revealed quickly. Indeed, as
the uninformed player must be indi¤erent between bidding �t and �t, it must be that the value

8In fact this must be true �on average�, in a well-de�ned sense, but we shall not need this stronger statement.
9Otherwise whichever type k was the lowest type willing to submit the highest bid in the following period

(and was thus expecting a zero continuation value) would strictly prefer to submit the highest bid in the current

period instead.
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of the unit conditional on winning with �t is su¢ ciently large, relative to the value conditional
on winning with �Ut , to compensate for the di¤erence in bids. In fact, a partial converse to
this holds as well. As a consequence, it must be that lim�!1 T = 1, for otherwise, given some
history ht, the second lowest type of the informed player could secure a payo¤ arbitrarily close
to (1� �)(vk� vkt) simply by waiting. Yet the value of T gives a lower bound (independent of �)
on the probability with which this type must submit a serious bid in one of the periods before,
and in turn, this gives a lower bound on the spread of serious bids in this period, and thus an
upper bound, strictly below (1� �)(vk � vkt), on the payo¤ that this type can get by submitting
such a bid. For � close enough to one, this gives the desired contradiction.
Once we have deduced this relationship between the speed of information revelation and the

bid spread, we �nally (for the �rst and only time) invoke re�nement R, which pins down the
lower end � of serious bids. This allows us to take the �nal steps in the proof, and in particular
to show that T is �soon�relative to �, which in turn determines all long-run payo¤s.

Lemma 5 Under R, lim�!1 �
T = 1; lim�!1 �

U
0 = 0; lim�!1 �

U
0 =(1� �) =1; lim�!1 �

k
0=�

U
0 = 0,

all k 2M .

Proof: Recall that �Ut is the lowest serious bid of the uninformed player, and �t his highest
bid (given Lemma 2). As always pkt is U�s belief in period t (after seeing only losing bids so far)
about I being of type k; we introduce p̂kt to denote U�s probability of facing a type k given that
he won with a bid of �t. Thus p̂kt is an appropriately weighted average of the p

k
t+1 values that

follow the di¤erent nonserious bids in period t. Analogously, we use kt for the [unconditional]
probability that the informed player is of type k and that he submits a serious bid (i.e. strictly
above �Ut ) in period t, and thus separates, and we use t for the sum of these across k. The
following claim formalizes the intuition that if the uninformed is willing to make a spread of bids,
then he must be compensated for doing so via a correspondingly greater expected value for the
object.
Claim 1: �t � �Ut > " implies t > "=�v.
Proof First note that from Bayes Rule we have p̂kt = (p

k
t � kt )=(1� t). Meanwhile, U

must be indi¤erent between bidding �t and �
U
t , so

P
k p

k
t vk � �t = (1 � t)

�P
k p̂

k
t vk � �Ut

�
=P

k(p
k
t � kt )vk � (1 � t)�Ut (using the above), and hence

P
k 

k
t vk = �t � (1 � t)�Ut . Thus

t�v =
P

k 
k
t �v >

P
k 

k
t vk = �t � (1 � t)�Ut = �t � �t and the result follows. This is of course

not necessarily a tight bound.H
Applying this single-period reasoning to the game as a whole, we see that T cannot remain

bounded as � increases. Otherwise, two mutually contradictory events would necessarily ensue:
the higher types of the informed player would be separating with noticeable (i.e. bounded away
from zero) probability in at least some periods (since T is bounded); and their payo¤ in any
period in which they�re willing to separate would be arbitrarily close to what they could obtain
from being thought to be the lowest type for sure (which occurs in period T +1, but � is going to
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1). This latter, combined with what we just observed, implies that there must be arbitrarily little
separation in any given period, giving us the contradiction. This is formalized in the following
result.
Claim 2: lim�!1 T =1 and lim�!1 �

k
0 = 0, all k 2M .

Proof We begin with an immediate partial converse to the preceding claim. Namely, if
the spread �t � �Ut is small, then the uninformed would strictly prefer to bid �t, paying only
slightly more but winning against an additional �kt of mass with value �v > v

U
t = �t, unless 

�k
t

is concomitantly small, or p�k is very large. But now suppose that lim�!1 T < 1: since type 1
(or more generally type kt + 1) can always pool until period T + 1, and at that point secure a
payo¤ of v1 � v0, his unnormalized (but discounted) payo¤ must tend toward exactly v1 � v0 as
� ! 1. [We know that �Ut � v0 so he cannot hope to achieve anything greater.] Furthermore,
since he wins at most once, he must expect to win almost for sure at a price of essentially v0, and
of course very quickly relative to �. Similarly, type 2 can always mimic type 1, gaining v2 � v0,
and then (out of equilibrium) bid just above v1, gaining an additional v2 � v1. Continuing, we
�nd that the highest type �k must also win at the cheapest possible price (i.e. vkt) every time he
places a serious bid in equilibrium. But since (by single crossing) he must be willing to bid �t in
every period t < T , this implies that �t ! vkt as � ! 1, and hence that (along an equilibrium
trajectory followed by type �k) �t � �Ut ! 0 and so t ! 0. This is a contradiction, as by
de�nition he separates entirely by time T , which was supposedly bounded independently of �.
Therefore lim�!1 T = 1, from which it is obvious that the [normalized] payo¤ of the informed
is vanishing.H
The next link in the chain of reasoning is to put an upper limit on the amount of time (relative

to �) before �almost all�of the mass of higher types has dissipated, implying that the spread in
bids is small (using the �rst lemma above) and therefore that it is cheap to win (using R). This
will allow us to conclude that (as players become more and more patient) �T ! 1 despite T !1.
We start with the following claim concerning dissipation of mass.
Claim 3: 8ht 2 H�

t there is a uniform upper bound (depending only on pktt ) on the number
S of consecutive periods t0 in which t0 can exceed any given " > 0.
Proof On �rst glance, since t is an unconditional probability of separation, it might

seem that
Pt+S

t0=t t 5 1 � pktt for any S, using the fact that the lowest type never separates.
But upon re�ection, although this will lead us in the right direction, it is not true: if there is a
miniscule probability of the lowest type, then it is perfectly possible for the unconditional chance
of separation to be extremely high, and yet (conditional on pooling) the new unconditional chance
of separation in the subsequent period to be equally high. This cannot continue ad in�nitum,
however. In particular, suppose that t0 = " in periods t0 = t; t+1; :::; t+S. Then we must have
(1 � ")S(1 � pktt ) = ", i.e. there must be su¢ cient mass of the higher types remaining for the

unconditional probability of separation to feasibly be ". Thus S 5 ln
�
"=(1� pktt )

�
= ln(1 � ")

serves as our bound; note that as " increases the maximum S decreases, as expected. We have
ignored the question of whether all higher types separate with equal probabilities, but it is
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irrelevant since we consider total mass only. Finally, note that although there may be multiple
sequences of losing (pooling) bids, the argument holds along any individual one of them and the
same S is binding in each case.H
Unfortunately, S(") does (naturally) depend on pktt at any particular time t, and we cannot

put a uniform lower bound on this latter number across all equilibrium histories (di¤erent losing
bids may lead to di¤erent posteriors). But we do know (via an application of the pigeonhole
principle) that there is at least one sequence of losing bids for which the posterior on the lowest
type is no lower than the prior. Furthermore, in equilibrium the choice of losing bid cannot a¤ect
the future distribution used by U (as otherwise all types k of the informed, conditional on bid-
ding nonseriously, would make whatever losing bid caused the most favorable future outcomes).
Speci�cally, it can�t a¤ect either �t0 or �t0 for t

0 > t , and thus if �t � �t exceeds " along some
such sequence it necessarily does so along all such sequences. In the end, then, we are able to
obtain bounds S�(") for each �subgame�(de�ned by a belief support �) that are uniform in the
original priors. There are a �nite number of types and thence also of possible supports �, so we
may take an overall S�(") = max� S�(").
We may now proceed to prove part (ii) of the theorem: Under R, lim�!1 �

T = 1; lim�!1 �
U
0 =

0; lim�!1 �
U
0 =(1 � �) = 1; lim�!1 �

k
0=�

U
0 = 0, all k 2 M . Fix some small " > 0. From the

lemmas above, we know that there is a maximum number of periods S�(") (bounded uniformly
in �) for which t can exceed "=�v and hence for which �t � �t can exceed ". We now �nally
apply our weak dominance re�nement to pin down �Ut ; as �

U
t = �

kt
t , and �

U
t � vkt (as argued

below Lemma 1), by R, since �ktt � vkt, it must be that in fact �Ut = vkt. So after some history
ht 2 H�

t , any type k can be assured of waiting at most S
�(") periods before being able to win

with probability one at a price of no more than vkt + ". Taking � ! 1 and noting that this holds
for any " > 0, we see that the limit of the unnormalized (but discounted) payo¤ for type k must
be arbitrarily near (and therefore equal to)

Pk�1
k0=0(vk � vk0).10

By de�nition, at least one type is willing to pool for T periods. Since we know that each
type k wins at most k units, and the preceding paragraph implies that they win at least k units,
they must indeed win exactly k times, and each time receive almost the full vk � vk0 (where
�almost�means closer and closer as � approaches 1). Hence it is impossible that lim�!1 �

T < 1,
as then at least one type for at least one unit would not receive the full vk � vk0. After T , beliefs
are degenerate and instantaneous payo¤s are zero for both I and U , so lim�!1 �

T = 1 implies
immediately that lim�!1 �

U
0 = 0. However, since lim�!1 T =1 and lim�!1 �t = �t pointwise in

t (which is clear from the description of I�s unnormalized payo¤s), the uninformed wins many
units (in expectation) at a price boundedly below his expected value. As a consequence, his own
unnormalized payo¤ is unbounded �unlike for the informed player. This completes the proof.

10Technically, the argument holds directly only for k = 1, but just as in Lemma x above, it is easy to extend it

from there to all k.
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4.1 The role of the re�nement(s)

For all the results of the previous section, we have assumed that Player 2 is myopic (that is,
that he maximizes his instantaneous reward). In addition, some results have been derived under
re�nement R, weak dominance. How necessary are these re�nements? As we will argue, none of
the conclusions of Theorem 2(i) is valid in the absence of myopia, and none of the conclusions
of 2(ii) is valid in the absence of R, even if myopia is strengthened to Markov stationarity (that
is, even if attention is restricted to strategy pro�les that only depend on the current uninformed
player�s beliefs).
If myopia is dropped, the folk theorem is valid, even if R is imposed: any strictly positive

payo¤ pair
�
�U ; �I

�
such that �U + �I < vU0 is an equilibrium payo¤ pair provided the discount

factor is su¢ ciently close to one. In the equilibrium outcome described in Theorem 2, payo¤s
tend to zero as � tends to one. Therefore, this equilibrium can be used as a threat to enforce
other equilibrium behaviors. The construction follows closely Ausubel and Deneckere (1989) and
is omitted. This can be done with or without information revelation.
The second re�nement (weak dominance) plays a more subtle role. Roughly speaking, the

logic of the proof of Theorem 2(ii) is as follows. As long as uncertainty persists, the upper
extremity of the bid supports must decrease at the geometric rate of discounting. By R, the
lower extremity cannot exceed the signal of the lowest type assigned positive probability. This
yields a lower bound on the length of the uninformed bidder�s bid support. In turn, this yields a
lower bound on the probability with which the informed bidder reveals his private information in
a given period, and thus, an upper bound on the time at which all uncertainty must be resolved.
If R is dropped, a counterexample satisfying myopia (and even Markov stationarity) can be

found for each of the claims of Theorem 2(ii). Without R, there is a continuum of equilibria.
Each of them is characterized by the value, in each period, of the lower extremity of the (serious)
bid support, which can be chosen anywhere between vkt and v

U
t . In some, information revelation

occurs at an arbitrarily small rate (so that �T ! 0, rather than �T ! 1). Similarly, the
unnormalized payo¤ of the uninformed player, �U0 =(1 � �), can be chosen anywhere between 0
and in�nity, while the normalized payo¤, �U0 , need not tend to 0. In the simple example in which
the objects�value is either 1 with probability p, or 0 (see below), it can be shown that there exists
a Markov stationary equilibrium in which the uninformed player�s payo¤ equals �, when players
are su¢ ciently patient, if and only if � 2 (0; p� (1� e�p)) (observe that the upper bound from
the folk theorem, p, cannot be attained with myopia). The proof is available from the authors.

4.2 The robustness of the results

What if the horizon is �nite? If the horizon is long enough relative to discounting, nothing
changes. More precisely, any equilibrium satisfying R remains an equilibrium for the �nitely
repeated game that lasts at least T periods (where T is de�ned as above). Results are however
di¤erent when the horizon is short relative to discounting. Take for instance the case of no
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discounting (the results remain valid for � close enough to one). Engelbrecht-Wiggans and
Weber (1983) examine the case of two types. On the one hand, as they observe, re�nement R is
necessary to avoid a continuum of equilibria. This conclusion remains valid with �nitely many
types. For instance, it is an equilibrium outcome for both players to bid vU0 (with probability
one) in every period but the last, and behave as in the static auction in the last period, in which
the highest bid is precisely vU0 . The payo¤ of the uninformed player is then 0, independently of
the length of the game, a result that contrasts sharply with their characterization in the two-type
case (with R). On the other hand, myopia is not necessary in the two-type case, and probably
not in the �nitely many type case either, as the equilibrium characterization may be obtained by
backward induction alone.11 Proving this appears however di¢ cult, and we will therefore assume
both myopia and R in what follows.
Consider therefore the undiscounted, N -�nitely repeated game, and assume re�nement R.

Lemmas 1 and 2 remain valid. In fact, we have the following generalization of Engelbrecht-
Wiggans and Weber (proof available from the authors). The notation follows the in�nite horizon
case with discounting.

Theorem 3 Under R,

(i)

lim
N!1

�U0
N
= vU0 � v0; lim

N!1
�k0 =

i=k�1X
i=0

(vk � vi) :

For all history ht 2 H�
t :

(ii) the support of serious bids of type k > kt is independent of k and, given kt (i.e. the

support of beliefs at time t), is independent of t.

(iii)

�kt � �U , N � t � k � kt:

This implies that, in equilibrium, the lowest type submits a losing bid with positive probability
(in fact, with probability one) in every period, while the second lowest one does so with positive
probability in every period (conditional on having done so in all previous periods) up to (but not
including) the last period, the third lowest one does so in every period up to the penultimate
period, etc. This is a new feature relative to the results of Engelbrecht-Wiggans and Weber.
There are two main di¤erences with the discounted case. First, while in the discounted case,

the discount factor �endogenously�pins down how long uncertainty persists, i.e. the value of
T , here uncertainty about the informed player�s type may persist until the last period. Second,

11That is, as long as equilibrium uniqueness can be established at each stage of the backward induction.

20



this implies that the expected fraction of periods in which the uninformed player wins the object
cheaply tends to one, so that his average payo¤ tends to vU0 � v0 rather than 0.
The basic idea behind the proof is that, although uncertainty may be resolved before the end

of time12, it cannot be the case that it necessarily will be. Otherwise, in that �nal period T of
uncertainty, any type that was supposed to separate would strictly prefer to wait and do so more
cheaply in the following period, without incurring any delay cost. Meanwhile, it can�t be that
three (or more) types are still in the belief support of the uninformed in the true �nal period N .
This would imply that the highest of those types is expecting to win (at most) once more, when
he would prefer to win in the previous period (more cheaply), not yielding full information about
his exact type, and then again in the �nal period (even if more expensively at that point). Since
type k of the informed can�t win more than k times (exactly analogously to the discounted case:
he gives away information with each serious bid, causing all future bids to jump), this implies
that he expects to win precisely k times. Of course, the uninformed wins the rest of the units,
and prices are relatively low while uncertainty persists (which is potentially throughout), so this
pins down the payo¤s.
What if there is more than one uninformed player? As before, a folk theorem obtains if

uninformed players are not myopic. If they are myopic, Lemma 1 and 2 remain valid, and in
addition each uninformed player�s payo¤ is zero, since competition in each period dissipates
rewards. Therefore, all statements in Theorem 2 relative to this payo¤ must be accordingly
modi�ed. In addition, observe that this zero payo¤ condition gives an additional boundary
condition which pins down the lower end of the uninformed players�bid support (as a function of
his posterior belief conditional on observing a losing bid). It turns out that this su¢ ces to further
characterize the equilibrium outcome. For example, in the case in which the object is either worth
1, with probability p, or worth 0, it is no longer true that �T ! 1, but instead �T ! 1� p. The
other conclusions in Theorem 2 remain valid. The level of the (payo¤-irrelevant) losing bid(s) of
the informed player is undetermined, as the competition between uninformed players is su¢ cient
to pin down their lowest serious bid. This means that re�nement 2 is neither automatically
satis�ed nor ruled out by multiple uninformed players.

4.3 A simple example

To better understand the logic behind this result, it is useful to concentrate on a special
case. We consider in what follows the case m = 1, i.e. in which the informed player can be either
a high type or a low type only, and we normalize values to v (0) = 0, v (1) = 1.
If the informed bidder gets a low signal, he bids 0 in every period (by R). Therefore, as soon

as a strictly positive bid is observed, all information is revealed, and bids are 1 from then on.
It remains to determine strategies for histories such that all bids by the informed player have

12In fact with very high probability it will be.
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been zero so far, and all notations that follow are conditioned on such a history. We let pt be
the probability that the value is 1 in period t. By de�nition p0 = p, which we assume in [0; 1)
to avoid trivialities. Let �t denote the highest bid in the support of either player and Ut is the
bid distribution in period t used by the uninformed bidder. Let Ht denote the bid distribution
in period t used by the informed bidder with a high signal. We claim that:

1. if 1 � pt < �, then the informed player with high signal must bid 0 with strictly positive
probability. If he does not, then given his equilibrium bid, his continuation payo¤ is zero
(because his signal will be known) and his payo¤ in period t must therefore be his payo¤ in
the static auction given beliefs pt, that is (1� pt) (1� �). On the other hand, by bidding 0
instead, he will be able to win the unit in period t+1 at negligible cost, as the uninformed
bidder will wrongly believe that he faces an informed player with low signal. His payo¤
from doing so is therefore � (1� �), which must be lower than his equilibrium payo¤, an
immediate contradiction.

2. If 1� pt � �, then the informed bidder with high signal cannot bid 0 with positive proba-
bility: by doing so, he could hope for no more than � (1� �), while he gets (1� pt) (1� �)
by bidding pt immediately.

3. The equilibrium sequence fptg is weakly decreasing and gets below 1 � � in �nite time.
This follows from observations 1 and 2, Bayes� rule, the obvious fact that an informed
bidder with low signal bids zero in equilibrium, and the fact that the informed bidder
with high signal is only willing to bid zero with positive probability �nitely many times:
by waiting t periods before submitting a strictly positive bid, the high-signalled informed
bidder cannot achieve a payo¤ larger than �t (1� �), while he can get (1� p) (1� �) by
bidding p immediately.

Let T denote the �rst period t in which 1 � pt � �. As long as the informed bidder has bid
0 and until period T , the informed bidder submits either a bid of 0 (with positive probability),
or continuously randomizes his bid over some support [0; �t]. Meanwhile, the uninformed bidder
submits either a bid of 0 (with discrete probability), or continuously randomizes over the same
support [0; �t]. If the informed bidder has bid 0 in every period up to T , then his strategy
assigns zero probability to a bid of 0 in period T (he only continuously randomize over [0; �T ]),
and his private information is thereby revealed. As soon as his private information is revealed,
bids remain constant.
We can solve for the equilibrium strategies. Because the informed bidder with high signal is

willing to bid 0 before, we must have, for t < T ,

1� �t = �
�
1� �t+1

�
, or 1� �t = �T�t (1� �T )

In addition, because of Bayes�rule,

1� pt+1 =
1� pt
1� �t

.
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In period T , as the high-signalled informed player only submits strictly positive bids, it follows
that pT = �T . Therefore, the probability 1� pT is given by:

1� pT =
1� p0�

1� �T�1
� �
1� �T�2

�
� � � (1� �0)

=
1� p0

� (1� �T ) �2 (1� �T ) � � � �T (1� �T )
;

and thus:
1� pT = (1� p)1=(T+1) ��T=2:

The time T must satisfy 1 > 1� pT � �. Therefore, T satis�es:

�(T+1)(T+2)=2 � 1� p < �T (T+1)=2.

As the family of sets
nh
�(n+1)(n+2)=2; �n(n+1)=2

�o
n2N

partitions the unit interval [0; 1), this estab-

lishes the existence and uniqueness of:

T = min
n
t 2 N; 1� p � �(T+1)(T+2)=2

o
:

Observe that, in accordance with the previous theorem, lim�!1 T = 1, but lim�!1 �
T = 1.

Payo¤s and bid distributions are derived in the appendix. Figure 2 illustrates the equilibrium
strategies.

�� ��
-

(up to t = T )
I bids 0

I bids > 0
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IH U
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��
��

��*

0
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Figure 2: (Random) equilibrium bid trajectory

IL,IH : low- and high-signalled informed bidder ; U : uninformed bidder

Since Ashenfelter (1989), several papers have studied or documented the �declining price
anomaly�. The price trajectory can be determined in this example. The expected maximum bid
(conditional, as usual, on the informed bidder having bid 0 up to t� 1) is

Et =
�
1� �T�t (1� pT )

�2
;
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which is decreasing in t. The unconditional expectation Ft of the winning bid in period t � 1,
t � T , is given by:

Ft = 1� �T (1� pT )
��t � 1
��1 � 1

�
1�

�
1� �T�t (1� pT )

�2�
;

which is decreasing in t as well. Of course, for t > T , it is equal to the prior, p, and is larger
than the corresponding expectation for all t � T . Details can be found in the appendix.

5 Two-sided Incomplete Information

Under one-sided incomplete information, patient players achieve a very low payo¤. There-
fore, the incentive to completely reveal one�s private information, thereby becoming de facto
uninformed, should be low when incomplete information is two-sided. By induction, one may
therefore expect equilibrium bids to be uninformative, so that, by Markov stationarity, a player
should repeatedly submit the same bid over time. Clearly, it cannot be an equilibrium for the
two players to submit repeatedly two bids that di¤er across players, as one of the players�payo¤
would be zero. Thus, one could reasonably suspect the equilibria of the game with two-sided
incomplete information to be �pooling�equilibria, in which both players submit the same bid b�

independently of their type, where b� is low enough to be individually rational even for the lowest
type. That is, since conditional on winning in such circumstances there is no winner�s curse, the
bid should not exceed �, where � is de�ned as

� := min hEk[v(0; k)]; Ej[v(j; 0)]i .

Thus � is the smallest expected value that any type of any player has for the object.13

Our main theorem, below, states that the equilibrium outcome is indeed very di¤erent in
the case of two-sided incomplete information than it is in the case of one-sided incompleteness.
Existence is straightforward to prove, while the characterization of what equilibrium outcomes
can occur �although more involved �follows the basic reasoning above. Highest types will not
want to separate because of the drastic nature of the one-sided outcome that would ensue. If
other types either fully or partially separate (where the latter is construed to mean that a subset
of types separates, i.e. the posterior belief support of the opponent is strictly smaller), then an
inductive argument tells us that some sort of pooling must occur, and if � is large enough, then
all of these possible pooling outcomes must be very similar; otherwise all types of the player
would have a strict preference for one over another. All of this holds whether or not a player
expects his opponent to separate or pool in the current period, since of course he has no way

13Technically, it should be � = min hEk[v(j�; k)]; Ej [v(j; k�)]i, where j� = min hj : p1(j) > 0i and k� =

min hk : p2(k) > 0i, but we can normalize both of these to be type 0 without loss of generality.
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to a¤ect that at this point. Note that the revenue implications of our result are most easily
discussed in the context of the binary case introduced in the previous section, so we hold o¤ on
speci�cs in that regard until the continuation of the example.
We require two types of re�nements here: the �rst is Markovian in the sense that it forces

behavior to be measurable with respect to the coarsest summary statistic, and second are two
technical assumptions that apply in certain speci�c circumstances. We also maintain re�nement
R from the one-sided case, applicable only when beliefs are degenerate for one player.14

Abusing notation slightly, let �ki (s) denote the weight given to pure strategy s by type k
of player i in a mixed pro�le �. Also, let EP (s; ��i) denote the total expected discounted
probability of winning when using strategy s against ��i.
Markov stationarity: Actions chosen depend only on current beliefs. Further, for some C >

0, if s and s0 are in the support of player i in an equilibrium �, and jEP (s; ��i)� EP (s0; ��i)j < �,
then

��� �ki (s)

�ki (s)+�
k
i (s

0)
� �k

0
i (s)

�k
0
i (s)+�

k0
i (s

0)

��� < C� for all k; k0 such that �ki (s)+�ki (s0) > 0 and �k0i (s)+�k0i (s0) >
0.
The second half of the statement above rules out the possibility that beliefs are used to

separate actions that are �payo¤-equivalent�. It says that if two strategies yield almost the
same result in terms of probabilities (and hence also payments), then they must be used in
similar proportions by any types who use either of them at all. Without this assumption, beliefs
themselves can be used solely to mark time and are thus not necessarily as coarse as possible.
In the discussion below, we illustrate this possibility by means of counterexamples.
Continuity: If along some equilibrium path, the beliefs of both players have well-de�ned

limits, then so do the supports of bidding strategies.
Convexity: Suppose that after some history ht, player i�s type k is assigned probability one.

If both b and b0 > b are equilibrium bids for player i in period t, then any bid b00 2 (b; b0) also
leads to degenerate beliefs on k.15

Examples of equilibria that do not satisfy these latter assumptions (thereby illustrating their
�necessity�for our result) are available from the authors. Note that our equilibrium in the case
of one-sided uncertainty trivially satis�es the technical re�nements, and can be easily seen to
satisfy the full Markov condition given that no such s and s0 6= s exist for the informed player.
Finally, we extend our tie-breaking rule in the one-sided case �namely that all ties are won

by the uninformed. Note that in that case it was merely a convenience in order to avoid the
introduction of a smallest unit of account. In particular, without that rule, the uninformed

14In fact, we shall simply assume without further ado that the payo¤s in the one-sided case act as terminal

payo¤s in the two-sided case if beliefs have become degenerate on the highest type, which never happens in

equilibrium anyway.
15Thus a related but generally stronger type of restriction that would work equally well concerns monotonicity

of belief updating: if some bid b0 leads to degenerate (i.e. unchanged) beliefs on type k, then any bid b00 < b0

should not lead to beliefs on higher types of player i.
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would bid " above the lowest serious bid �I of the informed, the lowest type kt of the informed
doesn�t want to win at a price above his valuation anyway, and higher types of the informed are
indi¤erent between losing for sure versus winning and revealing [some of] their information (so
they will continue to make losing bids b 5 �I with the appropriate probability.
So the natural analogue in the two-sided case is that if neither belief is degenerate (or both

are), then each player has a 50% chance of winning in the case of a tie, while if only one player
has degenerate beliefs (about his opponent), then that player loses ties (since he is �informed�).
This is fully incentive-compatible and merely avoids the inconvenience of introducing a unit of
account. Therefore we adopt such a convention, which will be necessary in subgames that mimic
the one-sided case.
Then we have the following:

Theorem 4 8" > 0 9�0 < 1: 8� 2 (�0; 1), if p1(m); p2(n) < 1 then

i) there exists an equilibrium: in particular, for any bid b� 2 [0; �] (where � is de�ned as

above), the outcome in which all types of both players bid b� in every period is supported by a

P.B.E. (satisfying R, Markov, Continuity, and Convexity)16;

ii) furthermore, in any P.B.E. satisfying R, Markov, Continuity, and Convexity, there is a

b� 2 [0; �] such that all types of both players receive equilibrium payo¤s within " of the payo¤s

corresponding to the outcome that involves pooling forever at b�.

Proof. See the appendix.

So the theorem states that as long as neither player is believed with probability one to be
his highest possible type, then the equilibrium outcome must, at least in terms of payo¤s (and
therefore also revenue for the seller), be essentially pooling at some level no larger than �. If
beliefs do not satisfy the condition of the theorem, i.e. they are one-sided degenerate on either
type m or type n, then the equilibrium play must be as in the truly one-sided model described
in Section 4 (in particular, not pooling and essentially fully revenue-extracting). But as the
theorem states, if beliefs are one-sided degenerate on some lower type k of player 2 (say), then
there are instead pooling equilibria at bids less than or equal to � = v(0; k). This shows clearly
the distinction between knowledge (certainty) and mere belief. Finally, we point out that the
theorem does apply in the degenerate belief case that p1(j) = 1 and p2(k) = 1, as long as both
j < m and k < n.

16Of course, as per its de�nition, R (like Convexity) only applies when beliefs on one side have become degen-

erate.
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5.1 A simple example, continued

We extend the binary (i.e. m = n = 1) example developed in Section 4 to two-sided
incomplete information. We will suppose that the parameters are symmetric, i.e. p (j; k) =
p (k; j), v (j; k) = v (k; j), for all j 2M , k 2 N . Let p = Pr fSi = 1g denote the probability that
a player observes a high signal. We continue assuming that types are independently distributed
(so that p is indeed unconditional on one�s own signal) and normalize v (1; 1) = 2, v (0; 0) = 0 and
set v (0; 1) = 1.17 To simplify the exposition, we will only describe symmetric Markov stationary
equilibria18 in which bids are at least as high as what the object is commonly known to be worth
(an assumption we refer to as no underbidding). This latter condition may be interpreted as
a boundary condition that drives the payo¤ of one of the low types down to zero; clearly it is
bene�cial for the seller.19 To get a better understanding of the role of discounting, we describe
equilibrium strategies for all � 2 [0; 1].
We call a mixed action pro�le separating if the low types of each player bid 0 (with probability

one) and the high types continuously randomize over some interval [0; �], with � > 0; as semi-
pooling if low types bid a common bid p0, while high types randomize on [p0; �], � > p0, with
an atom at p0; and as pooling if both types of both players make a common bid p0. We say
that separation occurs if player i�s posterior, upon observing some particular bid (which we may
then call a separating bid) by his opponent, is degenerate upon one speci�c type. Any other
event is referred to as pooling (even when the posterior di¤ers from the prior). As mentioned
previously, we restrict attention to equilibria in which strategies are symmetric. If a high type
separates (and thus becomes the uninformed player in the continuation subgame), we follow the
equilibrium described in Section 4, except of course that all bids are shifted upward by 1. Note
that this implies that all payo¤s are the same as in the usual one-sided game.
If the discount factor is low (� < 1

2
) and the probability of the high signal is low (p < 1� 2�),

then mimicking a low type (i.e. bidding 0) is not pro�table for a high type: by bidding p, he can
win immediately at low cost, whereas mimicking the low type only pays o¤ later, and delay is
costly. The outcome in this case (in the �rst period) is thus identical to the outcome of the static
game. However, if p is large (p = 1 � 2�), winning immediately is too costly. Therefore, the
high-signalled player mixes between a pooling bid (losing with higher probability but inducing
his opponent to be more pessimistic, which is good for later pro�ts) and a separating bid (reaping
lower but immediate pro�ts). If both players choose to submit the pooling bid, the high-signalled
player faces a similar trade-o¤ in the following period, and identical reasoning applies until either
a separating bid is observed, or the common belief drops below the threshold (1� 2�) in which
17We have actually veri�ed that the results admit natural extensions to the case without independence and

with arbitrary v (0; 1) 2 (v (0; 0) ; v (1; 1)).
18By a (Markov stationary) symmetric equilibrium, we mean an equilibrium in strategies that specify the same

mixed actions whenever beliefs are symmetric.
19Note in particular that it selects the highest (that is, at �) fully pooling outcome in Theorem 3.
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case play is as described before.
Equilibrium behavior for large discount factors (� � 1=2) is more intriguing. No matter how

large the discount factor, there exists a pooling equilibrium only if p is not too large.20 Indeed, if
p is large relative to the discount factor, then being uninformed in a one-sided continuation game
is a relatively pro�table situation, as it implies winning often an object whose expected value
is high (this follows from the limiting properties of the uninformed player�s payo¤ �U relative
to p and �). Submitting a separating bid is therefore attractive, even if it involves eventually
bidding the true value of the object. Hence, if p is large relative to �, the trade-o¤ between
the endless bene�ts from a pooling bid and the larger, �nite-time rewards from a separating
bid induces high-signalled players to semi-pool. In fact, if both realized bids are pooling, high-
signalled players keep semi-pooling, and posterior beliefs asymptotically approach some limiting
value. If the initial prior itself is below or equal to this threshold, players fully pool in all periods.
Of course, when the discount factor tends to 1, this threshold also tends to 1 (so non-pooling
outcomes disappear), in agreement with Theorem 3.
We summarize the previous discussion in the following Theorem.

Theorem 5 If m = n = 1 and players are symmetric, there is a unique equilibrium distribution

over outcomes (i.e. in�nite histories) for all p and all � < 1. In equilibrium, while beliefs remain

nondegenerate: for � < 1=2, actions are separating if 1� p = 2� and semi-pooling otherwise; for
� = 1=2, actions are pooling if �U (p) 5 � � 1=2 and semi-pooling otherwise.

Proof. See the appendix.

This theorem is illustrated in Figure 3. The auctioneer�s revenue in the static auction is
2p2, while it is p in the pooling equilibrium.21 Therefore, the expected revenue in the static
auction exceeds the expected revenue in the dynamic auction (for � large enough) provided that
the likelihood of the high signal is large enough.22 The reason why pooling may generate larger
revenues than the static equilibrium has been already described: since players learn nothing from
winning, the winner�s curse disappears, and the pooling bid is therefore larger than the lower
extremity of the bidding support in the static equilibrium.

20Observe that this is consistent with Theorem 3: for �xed p, there exists �� large enough such that the outcome

is pooling if � > ��.
21The outcome in the separating equilibrium is the same as in the static auction, but the revenue is higher: it

is (1� �)S + �V , where S = 2p2 is the expected static revenue and V = 2p is the expected value of the object.
22Keep in mind, however, that we have been assuming no underbidding in this section; therefore, what is

derived here is an upper bound to the seller�s payo¤ in a pooling equilibrium.
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Figure 3: Phase portrait for p1 = p2

We have also considered the case of asymmetric priors: i.e., the case of p2 > p1. We do not go
into the details here (they are available from the authors upon request), but it is perhaps worth
pointing out that, although bidding is typically fairly complex, there is continuity with both the
symmetric case and the static case (i.e. as � goes to 0, equilibrium play converges to the static
equilibrium). For � � 1=2, the equilibrium involves pooling below a boundary connecting the
diagonal (i.e. the symmetric case) to either the edge that corresponds to p1 = 0 (for � < 2=3) or
to the edge corresponding to p2 = 1 (for � � 2=3). The implications for revenue are similar to
the symmetric case: the seller�s payo¤ in the pooling region, p1 (which is certainly lower than the
overall expected value of p1+ p2), may or may not be lower than the revenue in the static game,
p21+p

2
2. Intuitively, the more asymmetric that the two players are (either in terms of type-spaces

or priors), the more con�dently can we say that expected revenue is lower in the dynamic version
of the auction.

5.2 Discussion of the re�nements

There are two potential problems with the basic reasoning at the beginning of this sec-
tion. First, measurability with respect to beliefs does not adequately capture the idea behind
Markovian stationarity: namely, measurability with respect to a coarsest su¢ cient variable. The
following example illustrates the problem.
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Example 1: Player i = 1; 2 has two equiprobable signals: vH > vL � 0 and it is
common knowledge that the object is worth at least 1. In the �rst T periods, the
support of player 1�s bid is f1=3; 1=2g, while player 2 bids bt � 1 independently of
his type. In period t � T , player 1�s type vH bids 1=2 with probability mt= (mt + 1),
where mt is the (t+ 1)-th prime number, while type vL bids 1=3 with probability
mt= (mt + 1). After period T , along any equilibrium path, both players repeatedly
bid 0. If any other bid is submitted by player i = 1; 2, his opponent assigns henceforth
probability 1 player i being of type vH , and the equilibrium with one-sided incomplete
information follows. For each T and each bounded sequence fbtg, we can choose �
large enough such that the payo¤ from following the equilibrium strategies exceeds
the payo¤ from submitting any other bid.

For any t0 � T , it is easy to see that the set of equilibrium histories
S
tHt�t0 can be

mapped one-to-one into the set of possible beliefs about player 1 after equilibrium
histories Ht0. Therefore, measurability with respect to beliefs imposes no additional
restriction, for these equilibrium strategies. Observe that, for any " > 0, we can
choose � su¢ ciently close to 1, and T and fbtg su¢ ciently large, so that the payo¤
of player 1 -and the payo¤ of player 2�s low type- are below ".

In this example, beliefs are used as a device to mark histories, and, in our opinion, are not
directly �payo¤-relevant�: information is really never revealed, as all types of all players are
willing to follow any sequence of actions on the equilibrium path. Ruling out multiple losing bids
is not su¢ cient to eliminate the problem, as the next example shows.

Example 2: Player i = 1; 2 has two equiprobable signals: vH > vL � 0 and it is
common knowledge that the object is worth at least 1. In periods 0, 3,. . . , 3t for
t 2 N0, player 1wins the object, while in other periods player 2 wins the object. If
a player submits an out-of-equilibrium bid, his high type is assigned probability one
and the game proceeds in all periods as under one-sided incomplete information. If
no out-of-equilibrium is ever submitted, bidding in periods 0, 3, 6. . . is independent
from the bidding in the other periods. Speci�cally, bidding in periods 0, 3, 6 : : : is
recursively de�ned as follows. Player 2 bids 0 in all these periods. In period 0, player
1 continuously randomizes over the interval [3=8; 5=8] centered around c0 = 1=2, of
length l0 = �=4. While the support of the bid distribution is independent of his type,
the speci�c distribution function is type-dependent. In period 3, player 1 continuously
randomizes over the interval of length l1 = �=16 centered around c1, where c1 solves
b0 + �c1 = c0 + �c0, and b0 2 [3=8; 5=8] is the equilibrium bid observed in period 0.
More generally, in period 3 (t+ 1), player 1 continuously randomizes over the interval
of length lt = �=4t+2 centered around ct+1, where ct+1 solves bt + �ct+1 = ct + �ct and
bt is the equilibrium bid observed in period 3t. (See Figure 4)
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It is easy to see that player 1 equilibriums bids in all such periods belongs to the
interval (0; 1), as the length of the union over all bid supports is bounded above
by
P1

t=0 2
t=4t+1 = 1=2. In addition, the construction guarantees that player 1 is

indi¤erent over all sequences of bids.

Finally, as the space of nondegenerate beliefs with two types, (0; 1), and the space of
sequences of equilibrium bids, included in [0; 1]N0, are equinumerous, it follows that
one can pick distribution functions such that the posterior probability about player
1�s high type uniquely marks any equilibrium history.

A similar construction is performed in the other periods, with player 2 winning. As
a result, player 2 wins 2=3 of the time, while player 1 wins only 1=3 of the time. Of
course, this division was quite arbitrary: in particularly, for any " > 0, we can pick
� > 1 and construct an equilibrium such that player 1�s payo¤ is less than or equal
to ".

6
bids

time0 3 6 9

1=4

1=2

3=4

1

Figure 4: Example 2

-

In view of example 2, one could still hope for a weak characterization of Markov stationary
equilibrium payo¤s, by focusing on (a lower bound on) the sum of the players�payo¤s, rather
on each player�s payo¤. Yet it is possible to build on example 2 to construct examples in which
both players�payo¤s are arbitrarily low, by using the strategies described in the example as
the continuation strategies in a subgame, inducing one of the players�high type to reveal his
information with very high probability in the initial period.
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Observe also that example 2 does not rely on the fact that the support of beliefs never
changes. With three types for each player, for instance, some information could be eventually
revealed, if, at time T > 0 say, player i�s intermediate and high type submit one bid, while
player i�s low type submits another (and continuation strategies are pooling in either case). By
choosing T large enough, the same features obtain.23 To eliminate such equilibria, we therefore
need to strengthen Markov stationarity beyond actions being measurable with respect to beliefs
only. The second part of this Markov assumption strengthens the original myopia idea to be sure
that strategies cannot be arbitrarily chosen across [indi¤erent] types in such a way as merely to
mark time.
We view the Convexity restriction as potentially more serious, although it arises only in

subgames in which one of the player�s beliefs is degenerate on some type which is not the highest
possible. It is illustrated in the following example.

Example 3: Player i = 1; 2 has two possible signals: vH > vL � 0, which are equally
likely for player 1, but player 2 is correctly believed to have signal vL with probabil-
ity one. In every period t � 0, player 1�s type vL bids 0, while player 1�s type vH
either bids 0 with positive probability, or continuously randomizes over some interval
(�t; �t), where �t > �t > 0. Player 2 bids either 0 with positive probability, or �t
with positive probability, or continuously randomizes over the interval (�t; �t). If any
other bid is submitted by player i = 1; 2, his opponent assigns henceforth probability
1 player i being of type vH , and the equilibrium with one-sided incomplete informa-
tion follows. The distributions and the extremities of the support are determined
by various indi¤erence conditions (including intertemporal ones). This equilibrium
resembles the equilibrium of the game with one-sided incomplete information, but
player 2, who is �uninformed�, cannot bid " rather than 0 to break the tie in his
favor, because player 1 would believe him to be a high type. Therefore, player 1�s
high type is willing to bid 0 forever, as the probability of winning with such a bid is
always positive, and there is no �nal time after which uncertainty resolves. If player
2 submits the bid 0 with very low probability however, player 1�s high type may be
exactly indi¤erent between �separating�, by bidding b 2 (�t; �t), and pooling with
a bid of 0. Observe in particular that bidding �t � " rather than �t + " is not at-
tractive, as player 2 bids �t with discrete probability. As for player 2, bidding �t is
preferable to bidding �t � " because the posterior belief associated with the latter
bid is bad for him. Although uncertainty may last forever, all information is revealed
with probability one, and, for some (equilibrium) choices of f�t; �tg, it is revealed
rapidly relative to �, so that the payo¤s of patient players are arbitrarily low and the
auctioneer�s revenue arbitrarily close to its �rst-best maximum. Indeed, as for the

23This version of the example illustrates why it is necessary to use limits rather than exact equality in the

Markov assumption.
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other assumptions, bidders�payo¤s can easily be made as small as 0 or as large as
one-half their expected value (i.e. as if pooling at a bid of 0).

This equilibrium violates the intuition that a player�s bidding support should be a convex
set. A gap is generated in player 2�s support by the use of threatening beliefs. To rule out such
equilibria, we do not need to impose convex supports, but simply rule out a speci�c kind of
non-monotonic beliefs associated with out-of-equilibrium bids; this is B2 above.

6 Concluding Comments

How could an auctioneer reduce or eliminate the tacit collusion exhibited by the equilibrium
under two-sided incomplete information? A reserve price is an instrument that, used wisely,
would allow the auctioneer to fare better. If he can commit to a reserve price policy, then as the
discount factor tends to one, his optimal expected revenue tends toward his revenue from setting
an optimal �xed reserve price. Players whose signal is su¢ ciently high pool at a level slightly
above the reserve price, while players with lower signals remain idle. Therefore, the auctioneer�s
expected revenue is still lower than in the static auction. Finding the optimal sequence of
reserve prices in a repeated auction is a formidable task; �rst steps have been taken by McAfee
and Vincent (1997) and by Caillaud and Mezzetti (2003).
Another commonly used procedure in auctioneering is giving the winner the option to pur-

chase future units at the current price (see Cassady 1967). It is clear that such a procedure
eliminates the pooling equilibrium, as at least one player would have an incentive to bid a penny
more and exercise his option. However, this procedure is not perfect for the seller either, as a
player with a low signal may exercise his option and win all units at a price below their real
value (assuming that bids are observed before the option decision is made). An analysis of the
buyer�s option in the context of repeated auctions, as well as risk aversion and the relationship
of each to the declining price anomaly, may be found in Black and de Meza (1992).24

The auctioneer may also choose to vary the number of items in every lot put up for sale.
Ashenfelter (1989) suggests that, in wine auctions, smaller lots are often o¤ered before larger
lots, in an attempt to disguise the price decline. Using data from Christie�s, Ginsburgh and van
Ours (2003) point to the fact that a sequence of lots each of which contains the same number of
items seems to generate more revenue than lots with varying number of items.
The auctioneer could also decide, every time that bids are tied, to give the unit to the same

(predetermined) bidder; this would obviously destroy the speci�c pooling equilibrium described
in this paper. Another conceivable approach is for the seller to choose not to reveal bids at all.
Many other tacks are possible, but, as mentioned, a careful analysis of their e¤ect on equilibrium

24Ashenfelter�s (1989) survey also discusses both reserve prices and the buyer�s option.
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strategies and seller�s revenue is beyond the scope of this paper (for repeated auctions design,
see Abdulkadiro¼glu and Chung (2003)).
As in Kyle (1985) and the literature on insider trading, we have restricted attention to the case

in which the values of the units are perfectly correlated. This seems to be the most challenging
case for information revelation. Indeed, suppose that the value of each unit is an independent
draw from some (possibly time-dependent) distribution, for which the static �rst-price auction
admits a unique equilibrium. Then the only equilibrium that is stationary in the repeated game
speci�es that the static auction be played in each period.
We have restricted attention to the two player case. The pooling equilibrium remains an

equilibrium when there are more than two players, but we have not proved uniqueness. As
soon as a single player has revealed his information, all other players�private information must
be eventually revealed, as such an uninformed bidder cannot be disciplined into pooling (given
stationarity) and thus, informed bidders must eventually act. Such information revelation occurs
�quickly�relative to the discount factor, which in turn allows players to enforce tacit collusion
when none of them has revealed any information. The intuition for uniqueness appears robust:
if none of the opponents reveals his private information, then pooling is certainly optimal with
low discounting, while if some of them do reveal theirs, it is then still better to pool and become
the informed player, for uninformed bidders have a zero payo¤ if there is more than one of them.
We have veri�ed that the approach outlined in this paper also works within the framework

of private values (rather than common) and of second-price auctions (rather than �rst-price).
However, it is clear that considerable work remains to be done in order to provide an integrated
theory of repeated auctions.
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7 Appendix

7.1 Static case

Proof of Theorem 1: Because player 1�s type m (�) is indi¤erent between bidding � (�) and
� (�+ 1), 0@n(�)�1X

j=0

q (j) + q (n (�))Gn(�) (� (�))

1A (� (�+ 1)� � (�))
= q (n (�))

�
Gn(�) (� (�+ 1))�Gn(�) (� (�))

�
v (m (�) ; n (�)) ;

and, similarly, because player 2�s type n (�) is indi¤erent between bidding � (�) and � (�+ 1),0@m(�)�1X
i=0

p (i) + p (m (�))Fm(�) (� (�))

1A (� (�+ 1)� � (�))
= p (m (�))

�
Fm(�) (� (�+ 1))� Fm(�) (� (�))

�
v (m (�) ; n (�)) :

Therefore, upon dividing,

q (n (�))
�
Gn(�) (� (�+ 1))�Gn(�) (� (�))

�Pn(�)�1
j=0 q (j) + q (n (�))Gn(�) (� (�))

=
p (m (�))

�
Fm(�) (� (�+ 1))� Fm(�) (� (�))

�Pm(�)�1
i=0 p (i) + p (m (�))Fm(�) (� (�))

:

For � � m + n + 1, de�ne x (�) =
Pm(�)�1
i=0 p (i) + p (m (�))Fm(�) (� (�)) and y (�) =

Pn(�)�1
i=0 q (j) +

q (n (�))Gn(�) (� (�)). It follows that:

x (�+ 1)� x (�)
x (�)

=
y (�+ 1)� y (�)

y (�)
,

and thus, because x (m+ n+ 1) = y (m+ n+ 1) = 1, x (�) = y (�), for all � � m+n+1. Because for
all � (�+ 1), either Gn(�) (� (�+ 1)) or Fm(�) (� (�+ 1)) equals 1, this establishes that s (�) = x (�)
can be de�ned recursively as: s (0) = 0, and, for P (i) =

Pi
l=0 p (l), Q (j) =

Pj
l=0 q (l), recall

that s (�) is recursively de�ned by s (0) = 0 and, for all 1 � � � m + n + 1, for � � 1 the largest
integer for which s (�� 1) has been de�ned so far, if min fx � 1 j x = P (i) > s (�� 1) for some ig 6=
min fx = Q (j) > s (�� 1) for some jg, then s (�) equals the lowest of these minima. Otherwise,
s (�) = s (�+ 1) equals their common value. Obviously, s (m+ n+ 1) = 1.
Consider again the indi¤erence of player 2�s type n (�) between bids � (�) and � (�+ 1) :

m(�)X
i=0

p (i) (v (i; n (�))� � (�)) + p (m (�))Fm(�) (� (�)) (v (m (�) ; n (�))� � (�))

=

m(�)X
i=0

p (i) (v (i; n (�))� � (�+ 1)) + p (m (�))Fm(�) (� (�+ 1)) (v (m (�) ; n (�))� � (�+ 1)) :
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It follows that, for all 0 � � � m+ n :

s (�)

s (�+ 1)
=
v (m (�) ; n (�))� � (�+ 1)
v (m (�) ; n (�))� � (�) ;

and therefore, � (0) = 0, and, for all 1 � � � m+ n+ 1 :

� (�) =
��1X
l=0

(s (l + 1)� s (l)) v (m (l) ; n (l)) :

In the same way, we determine the distribution functions. If b 2 [� (�) ; � (�+ 1)],

p (m (�))Fm(�) (b) = s (�+ 1)
v (m (�) ; n (�))� � (�+ 1)

v (m (�) ; n (�))� b �
m(�)X
j=0

p (i) ,

q (n (�))Gn(�) (b) = s (�+ 1)
v (m (�) ; n (�))� � (�+ 1)

v (m (�) ; n (�))� b �
n(�)X
j=0

q (j) :

We can now compute the expected revenue R. For 0 � � � m + n, let R (� (�) ; � (�+ 1)) be the
expected revenue from bids b 2 [� (�) ; � (�+ 1)]. Since

Pn(�)
j=0 q (j)+q (n (�))Gn(�) (b) =

Pm(�)
j=0 p (i)+

p (m (�))Fm(�) (b), it follows that

R (� (�) ; � (�+ 1)) = s (�+ 1)2
�
v (�)� � (�+ 1)

v (�)� b

�
(2b� v (�))

�����(�+1)
�(�)

= s (�+ 1)2 (2� (�+ 1)� v (�))� s (�)2 (2� (�)� v (�)) ;

where for simplicity, v (�) = v (m (�) ; n (�)). It follows that

R =

m+nX
�=0

R (� (�) ; � (�+ 1))

= 2� (m+ n+ 1)�
m+nX
l=0

�
s (l + 1)2 � s (l)2

�
v (l)

=

m+nX
l=0

2 (s (l + 1)� s (l)) v (l)�
m+nX
l=0

�
s (l + 1)2 � s (l)2

�
v (l)

= v (m+ n+ 1)�
m+nX
l=0

s (l) (2� s (l)) (v (l + 1)� v (l)) (summation by parts)

=

m+nX
l=0

(1� s (l))2 (v (l + 1)� v (l)) : �
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7.2 Binary one-sided case (calculations)

Additional details for the 2�1 case: The equilibrium bid distributions along histories
ht 2 H 0

t are given by:

Ut (b) = �
T�t 1� pT

1� b and ptHt (b) = �T�t
1� pT
1� b � (1� pt) :

De�ne �I (p) and �U (p) to be the payo¤ of the informed and uninformed bidder, respectively,
given belief p. Obviously, �I (p) = (1� �) �T (1� pT ) = (1� �) �T=2 (1� p)

1

T+1 , where we de�ne
T = min

n
t 2 N ; 1� p � �(T+1)(T+2)=2

o
. It is simple to verify that �I (p) is decreasing in p,

limp!0 �I (p) = 1 � �, limp!1 �I (p) = 0, and �I (p) is decreasing in �. Observe that 1 � pt =�
��t=2 (1� p)

1

T+1

�T+1�t
, and, denoting the odds ratio pt= (1� pt) by lt, we have (pt � �t) =pt =

lt+1=lt. By bidding 0 repeatedly, the uninformed player gets:

�U (p) = (1� �) p
�
p0 � �0
p0

�
1 + �

p1 � �1
p1

�
1 + �

p2 � �2
p2

�
� � �+ �

pT�1 � �T�1
pT�1

����
= (1� �) �T

"
TX
t=1

�
(t�2)(T+1�t)

2 (1� p)
t

T+1

#
� (1� p)

�
1� �T

�
.

Observe that, because T = min
n
t 2 N ; 1� p � �(T+1)(T+2)=2

o
, �T ! 1 as � ! 1. Notice also that

�U (p) = (1� �) p
�
l1
l0
+ �

l2
l0
+ � � �+ �T�1 lT

l0

�
� p

�
1� �T

�
;

so that �U (p)! 0 as � ! 1.
Finally, we study the variations of the expected bids. Let ht, ut be the densities correspond-

ingly respectively to the distributions Ht and Ut. The density of the maximum bid, mt, is given
by

mt (b) = u (t) (1� pt + ptHt (b)) + ptht (b)Ut (b) =
2�2(T�t) (1� pT )2

(1� b)3
;

and its expectation (conditional, as usual, on the informed bidder having bid 0 up to t� 1) is

Et = 2�2(T�t) (1� pT )2
Z 1��T�t(1�pT )

0

tdt

(1� t)3

= 2�2(T�t) (1� pT )2
 
1

2
+
1� 2�T�t (1� pT )
2
�
�T�t (1� pT )

�2
!

=
�
1� �T�t (1� pT )

�2
;
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which is decreasing in t. Next, observe that the unconditional expectation of the winning bid in
period t � 1, t � T , Ft, satis�es

Ft = 1�
t�1Y
i=0

(1� �i) (1� Et)

= 1� (1� pT ) (1� Et)
t�1X
i=0

�T�i

= 1� �T
�
1� pT

� ��t � 1
��1 � 1

�
1�

�
1� �T�t (1� pT )

�2�
;

which is decreasing in t as well. Of course, for t > T , it is equal to the prior, p, and is larger than
the corresponding expectation for all t � T .

7.3 Two-sided incomplete information

Proof of Theorem 3: We �rst prove existence by showing that a fully pooling equilibrium
outcome (from the �rst period on) exists at any bid level b� � �. To see that this is the case,
simply pick some such b� and assume that any player who bids strictly more than b� is thought
to be the highest type possible of that player (i.e. either m or n respectively), so that bids
immediately jump to a strictly larger level and the one-sided separating equilibrium follows.25

For large enough �, Theorem 2 implies that his continuation payo¤s are (at most) approaching
zero26, whereas all types of both players �except possibly the lowest types �are making strictly
positive pro�ts along the equilibrium path, and in particular pro�ts that are bounded away from
zero independently of �. For a type 0 who expects zero pro�ts anyway (which only occurs if
b� = �), bidding above b� leads to a loss in the current period (because his expected value for
the good must be exactly �) and continuation payo¤s of at most zero, because all bids from
then on will be above his value. Hence there is no incentive for him to deviate either. This
particular updating is not unreasonable (the highest type has the strongest incentive to try to
win at any stage), but note that the equilibrium outcome survives with much weaker protocols:
any revised distribution that �rst-order stochastically dominates the prior (i.e. such that high
bids are �good news�about one�s opponent�s type) will lead to larger expected values and thus
typically a higher pooling bid in the continuation. For high enough �, this outweighs any possible
one-shot gains. Finally, note that all of these equilibria trivially satisfy our assumptions.
We prove the second half of the theorem by induction on the total number l = m0 + n0 of

types who are actually present, where m0 (resp. n0) is the number of types in the support of

25Of course, if the deviant player is not actually of the highest type, then he�s not willing to make the high bids
required in the continuation game, but that simply means that he will make sure he loses in every period, and
thereby earn nothing. His opponent, however, will continue to believe that he is the highest type.
26We choose the continuation equilibrium which satis�es R and hence for which this is true.
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player 2�s (resp. 1�s) beliefs about player 1 (resp. 2). In fact, we will need to prove a slightly
stronger statement than is given in the theorem: we also claim that in any equilibrium the total
discounted probability of winning is arbitrarily close to 1=2 for each player (so in fact it really
does look very much like pooling). We proceed in several steps.

1. The basis of the induction is l = 2, in which case the condition in the statement of the
theorem implies that we must have p1(j) = p2(k) = 1, with j < m and k < n. Since belief supports
are singletons here, beliefs can never change in equilibrium and thus by Markov stationarity any
equilibrium must involve the same strategies in every period. Neither player is willing to lose
forever unless his opponent is bidding at least � = v(j; k), and neither player is willing to bid �
if his opponent is bidding less than � (since bidding � yields zero pro�t but by deviating and
winning at a lower price he could get a positive pro�t).27 Hence they must be making the same
bid b� � �, and by the above argument we know that all such pooling outcomes are indeed
supported by equilibria. Therefore in this case we must actually have full pooling immediately,
and " is irrelevant since the bound on payo¤s is exact.

2. We now assume l > 2 and that the inductive hypothesis holds. If in equilibrium the
support of beliefs never changes, then either we have full pooling from period 0 onward, or one of
the players has a degenerate belief. The reasoning is as follows: if this condition holds, all types
of each player are using the same strategies in every period, so by taking � arbitrarily small in
the Markov assumption, we see that all types must in fact be using those same strategies with
exactly the same probabilities, meaning that beliefs themselves (not just the supports thereof)
never change. Hence, by the �rst part of Markov, the equilibrium itself must be stationary. No
type of either player is willing to lose forever (unless perhaps he is the only possible type on
his side, in which case the other player�s beliefs are indeed degenerate), so both players must
be making only serious bids. If each player is making only a single serious bid, then they are
the same and full pooling occurs from period 0 onward (at some bid b� � �). But if a player
is making more than one serious bid, and is doing the same thing in every period, then single-
crossing would imply that not all of his types can be indi¤erent between all equilibrium bids �
unless he has only one type, as claimed.

3. If the support of beliefs never changes, and one of the players (say player 1) has degenerate
beliefs, then once again we have full pooling from period 0 on. This must also be a stationary
equilibrium, and l > 2 implies that there are at least two types of player 1, so he can�t be losing
with probability one in every period. But now single-crossing applied to the various possible types
of player 1 implies that he must be making only a single bid b� � � (where the inequality follows
since player 1�s lowest type is willing to make the bid b� and it wins with positive probability).
Player 2 behaves myopically within his equilibrium bidding support, so he will never bid below b�

and of course he can�t be bidding only above b�. If he bids both b� and some b > b� with positive

27Note that they cannot be using nontrivial mixed strategies either, as standard results from the analysis of
Bertrand competition with symmetric constant marginal costs tell us that these only exist if demand is nonzero
at arbitrarily high prices, and in our context there is a lower bound of 0 on bids. More precisely, you could make
a negative bid, but the seller wouldn�t pay you if you won.
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probability, then Convexity implies that bidding (b� + b)=2 leads to the same beliefs and hence
the same continuation value, in which case he would strictly prefer it to bidding b, given player
1�s behavior (i.e. pooling at b�). But this would contradict that b is in his equilibrium bidding
support, so in fact he too must bid only b�, as claimed.

4. Therefore either we are done, or there is some positive probability that at least one player�s
belief support changes. Without loss of generality we will take it to be player 2, i.e. there is some
chance that player 1 partially separates. Let t� be the �rst such period in which this occurs. We
will further assume for the moment that no bids by player 1 in period t� are made by only his
highest possible type, m. We will prove soon that this highest type is never willing to separate by
himself, so this assumption will in fact be valid in any equilibrium. If player 1 does make a bid b̂
that causes player 2�s belief support to change, then by this assumption we still have p1(m) < 1,
and thus the inductive hypothesis applies, with some corresponding �e¤ective pooling bid level�
b�. Finally, we note that in this eventuality at least two types of player 1 have non-overlapping
strategy supports, so by the Markov re�nement those strategies must lead to nontrivially distinct
probabilities of winning, and hence must di¤er very quickly (relative to �). Thus we may take
�t

� � 1 in what follows.
5. But this means that all types of player 1, whether or not they bid b̂ in equilibrium (in

period t�), know that they could in fact bid b̂ and thereby receive payo¤s very close to those
corresponding to pooling at b�: this follows since after bidding b̂ the probability of winning for
each type of each player must be essentially 1=2 in the sequel. Now consider some type j of player
1 who does bid b̂: for any other bid b in the combined support of player 1�s period 0 bidding
strategy, either type j also makes that bid in equilibrium, or he does not. In the former case
he�s obviously indi¤erent between the two, and in the latter case the bid b also leads to a change
in player 2�s belief support, so the same reasoning as above applies in reverse; in particular for
large � the �e¤ective pooling bid level�that corresponds to b must be very close to the actual
b� corresponding to b̂. Either way, for large �, all types of player 1 must be almost indi¤erent
between all bids in player 1�s bidding support, whether or not they make them in equilibrium.
Thus, for any " > 0, we can choose � su¢ ciently close to 1 so that each type of player 1 expects
pro�ts within " of his pro�ts in the b� pooling equilibrium. It is also clear at this point that the
analogous discounted probabilities of winning must be arbitrarily close to 1=2 for any bid that
player 1 makes in equilibrium, since there are in fact multiple types of player 1 in player 2�s belief
support, and single-crossing implies that they couldn�t all be nearly indi¤erent otherwise.28

6. It remains only to show that the highest types do not make fully separating bids, i.e. bids
that would completely reveal their type. First, it is clear that if there is any probability that
player 1 makes a partially separating bid (i.e. one that causes player 2�s belief support to change)
in period t� that leads to beliefs other than degenerate on type m, then the highest type cannot

28Note that none of this analysis depended on whether or not player 2 was pooling, or indeed in any way on
what player 2 was doing. This is because player 1 can�t a¤ect player 2�s behavior, and the inductive hypothesis
applies with boundedly positive probability (given that p2(n) < 1).
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be willing to fully separate. This is because the inductive hypothesis implies that (at least with
positive probability, depending on player 2�s action) such a bid would be followed by something
essentially like pooling, and the type m would make boundedly positive pro�ts in such a situation
�since he is in fact the highest type �which for large � is preferable to the vanishingly small
pro�ts that he receives according to Theorem 2 after separating.29 Similarly, there can be no
chance that player 2 makes a bid that leads player 1 to have a strictly smaller belief support
(other than degenerate on type n), as otherwise player 1 type m would strictly prefer to pool in
period 0 and hope for that bid (which again by induction would lead to something like pooling
forever) rather than separate and get very little.

7. Therefore, either player 1 type m does not separate in period t� (and we�re done), or all
equilibrium bids by each player are made by all types of that player, except possibly for some
additional bids made only by type m (and/or type n respectively). This must go on in every
period, since if there were ever a chance of receiving an essentially pooling outcome in the future,
both highest types would prefer to wait for the possibility of that. Now since p1(m); p2(n) < 1,
the probability that no highest type ever separates is bounded away from zero, and both players
know this (whatever their own type). Conditional on that event, at least one of the players must
have a discounted expected probability of winning that is at least 1=2.30 But then, for large
enough �, the highest type of that player would prefer to facilitate that outcome, which gives
him strictly positive surplus since all types of that same player are willing to make those same
bids (and there are in fact some lower types), than to make a revealing bid and hence receive an
arbitrarily small payo¤. Since our supposition (toward a contradiction) is that player 1 type m
is willing to separate in period t�, it must be that player 2 type n does not make fully separating
bids in equilibrium. In particular, player 1�s belief support never changes, and thus player 1
type m must actually be making some separating bids in every period, or the Markov re�nement
would apply and we would be done (as in steps 2-3).

8. Since all types j < m of player 1 are willing to make all of player 1�s equilibrium bids
(other than type m�s separating bids) in every period, we can once again apply single-crossing,
and in this case we deduce that they must all be pooling on a single bid �t in each period; call
this strategy ŝ. Furthermore, we can apply the same reasoning to player 2, since all of his types
are making all bids in equilibrium: single-crossing implies that in each period they must all be
making a single bid �t. Since player 1 type m is willing to separate in any given period, but he
is also willing to play ŝ (which is played by lower types as well), it must be that ŝ yields a total

29Technically, Theorem 2 shows that for any �xed prior beliefs, as � goes to 1, bidders�pro�ts go to 0. However,
it can be shown that this limit is in fact uniform in the priors; this is clearly seen in the speci�c calculations for
the binary case, as detailed in the appendix. Also, note that technically Theorem 2 does not apply if player 2
happens to fully separate in the same period, but in that case type m gets a payo¤ of exactly 0, which is indeed
bad.
30It does not follow that this player, conditioning on his opponent never revealing as a highest type, sees a

discounted probability p = 1=2; but it does follow that in that case he sees a p that is boundedly greater than 0,
which is all that we require.
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discounted probability of winning that is positive but very near 0. Hence �t must be greater than
�t in most periods, but not all periods, and in particular there must be arbitrarily late periods t
in which �t � �t but �t+1 > �t+1. If player 1 type m is indi¤erent between separating in period
t, versus pooling in period t (and receiving a boundedly positive instantaneous payo¤) and then
separating in period t + 1, it must be that �t+1 � �t (for such periods) is uniformly bounded
below (away from 0).31 This contradicts the Continuity assumption, since beliefs are obviously
converging over time.
Thus player 1 type m is never willing to separate after all, and the proof is complete. �

7.4 Symmetric binary types

Proof of Theorem 4: For a separating equilibrium to exist, the only incentive constraint
to verify is that high types have no incentive to mimic low types. By deviating, a high type
gets a payo¤ of (1� �) (1� p) =2 + � (1� �). By abiding by the equilibrium strategy, he gets
(1� �) (1� p) : Therefore, it is necessary and su¢ cient that 2� � 1� p. For a pooling equilibrium
to exist, the only incentive constraint to verify is that a high type does not want to deviate
and bid slightly more. By deviating, he can get up to 1 � � + ��U (p), and by abiding by the
equilibrium, he gets 1

2 . Therefore, a necessary and su¢ cient condition for a pooling equilibrium
to exist is that 1� � + ��U (p) � 1

2 .
Consider now a semi-pooling equilibrium. Let  be the probability that one�s opponent is of

the high type and makes a bid larger than p0 (a separating bid), which is both the lowest bid (the
pooling bid) and the posterior belief about the opponent�s type, conditional on the pooling being
observed. Then, for high types to be indi¤erent between the pooling bid and a slightly higher
bid, we need:

V (p) = ��I
�
p0
�
+ (1� )

�
(1� �) 1

2
+ �V

�
p0
��

| {z }
payo¤ from bidding p0

(1)

= (1� )
�
(1� �) + ��U

�
p0
��| {z }

payo¤ from bidding p0+", for small ">0

;

where V (p) is the value given belief p, and V (p0) is the value given p0 (uniqueness will be shown),
and Bayes�rule gives that

p0 =
p� 
1�  , or 1�  =

1� p
1� p0 .

31Indeed, for many parameter values, it won�t be possible to make him indi¤erent at all.
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Rearranging gives

1� p =
��I (p0)

(1� �) 12 + � (�U (p0) + �I (p0)� V (p0))
�
1� p0

�
; (2)

V (p) =
��I (p0)

�
1� � + ��U (p0)

�
(1� �) 12 + � (�U (p0) + �I (p0)� V (p0))

:

We show that such an equilibrium cannot exist for � < 1=2 and 2� � 1�p (the latter clearly implies
the former), nor can it exist for � � 1=2 and 1� �+ ��U (p) � 1

2 (same remark). Consider the �rst
case. Observe that a (decreasing) sequence (p; p0; p00; : : :) of consecutive semi-pooling equilibria
cannot have an accumulation point, for by picking a term arbitrarily far in the sequence, its
value V (p) would be arbitrarily close to 1

2 , while the deviation payo¤ for a high type would be
arbitrarily close to 1� �+ ��U (p) > 1

2 , a contradiction (this argument covers also the case where
the alleged accumulation point is 0); therefore, any sequence of consecutive equilibria must have
a largest term, after which, by necessity, the equilibrium is separating. Pick the largest such
term. Equation (1) implies that

�
p� p0

�
��I

�
p0
�
+ (1� p)

�
� (1� �)

�
1� p0

��
= (1� p)

�
(1� �) 1

2
+ ��U

�
p0
��
:

Because �I (p0) � 1� � and �U (p0) � 0, this requires

1� p0 (2� p) � 1� p
2�

:

However, this is impossible if 2� < 1� p, and only possible for 2� = 1� p if p0 = 0, that is, if the
equilibrium is in fact separating. Consider now the second case. Suppose �rst that there is a
sequence (p; p0; p00; : : :) with in�nitely many terms that are semi-pooling. Then we can pick terms
such that the payo¤ must be arbitrarily close to 1=2 and 1� � + ��U (p), implying that the limit
of such a sequence cannot be such that 1 � � + ��U (p) < 1

2 . We can then suppose without loss
of generality that, if a semi-pooling exists with 1 � � + ��U (p) < 1

2 , then (conditional on both
players making a pooling bid), players pool (forever) at belief p0. Equation (1) then implies that

�
p� p0

�
��I

�
p0
�
+ (1� p) 1

2
= (1� p)

�
1� � + ��U

�
p0
��
, (1�)

which is impossible because 1 � � + ��U (p0) < 1 � � + ��U (p) < 1
2 , and �

I (p0) � 0. In fact, the
same argument rules out a semi-pooling equilibrium with p such that 1 � � + ��U (p) = 1

2 . This
establishes the second claim. It may be worthwhile at this point to observe that, if a semi-pooling
equilibrium exists for 1 � � + ��U (p) > 1

2 , then the sequence of continuation plays (conditional
on players making the pooling bid) is an in�nite sequence consisting exclusively of semi-pooling
equilibria. If there is a limit, it must obviously satisfy 1� �+ ��U (p) = 1

2 , so this limit is unique.
As pooling equilibria cannot exist for 1 � � + ��U (p) > 1

2 , all we have to show is that such a
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sequence cannot be �nite, i.e. such that there exists p, after which (conditional on both players
making pooling bids) the equilibrium is pooling (i.e., p0 is such that 1 � � + ��U (p0) � 1

2). This
immediately follows from (1�).
We are left with establishing existence (and uniqueness) of semi-pooling equilibria for � < 1=2

and 2� > 1 � p, as well as for � > 1=2 and 1 � � + ��U (p) > 1
2 . As shown, if such a semi-pooling

equilibrium exists, then it must belong to a sequence of semi-pooling equilibria which is �nite in
the �rst case, ending up with a separating equilibrium, and in�nite in the second case, converging
to the unique p solving 1� � + ��U (p) = 1

2 .
Consider �rst � < 1=2 and 2� > 1 � p. We show that (2) determines uniquely (V (p) ; p) as a

function of (V (p0) ; p0), and that the (�rst coordinate of the) sets of consecutive solutions of (2),
with boundary conditions given by (p; (1� �) (1� p)) for p 2 (0; 1� 2�] partition (1� 2�; 1). To
see this, suppose that V (p0) is decreasing in p0 and smaller than (1� �). It follows from the �rst
equation of (2) that (1� p) = (1� p0) is decreasing in p0. This follows from the fact that

(1� �) 12 + �
�
�U (p0) + �I (p0)� V (p0)

�
��I (p0)

= 1 +
�U (p0)

�I (p0)
+
(1� �) 12 � �V (p

0)

��I (p0)

is increasing (�U and 1=�I are increasing and positive, and so is (1� �) 12 � �V (p
0), because 1

2 > �,
and, by hypothesis, (1� �) � V (p0), and V (p0) is decreasing. The fact that is (1� p) = (1� p0) is
decreasing in p0 implies in particular that p increases with p0, but also, from (10), since

V (p) =

�
1� 1� p

1� p0

�
��I

�
p0
�
+
1� p
1� p0

�
(1� �) 1

2
+ �V

�
p0
��
;

as ��I (p0) � (1� �) 12 � (1� �)
1
2+�V (p

0), and both ��I (p0) and (1� �) 12+�V (p
0) are decreasing in

p0, that V (p) decreases with p0 (as a weighted average of two decreasing functions with increasing
weight on the smaller one).Because V (p) is decreasing, it follows in particular that V (p) � 1� �,
provided that V is continuous, which follows by induction as well once it is established for the
�rst iteration. It is immediate to verify that for p0 = " > 0 arbitrarily small, and associated
V (p0) = (1� �) (1� p0), there exists (p; V (p)) solving (2) arbitrarily close to (1� 2�; 2� (1� �)).
Because (the projection on the �rst coordinate space of) the image by (2) of the interval (0; 1� 2�]
is an interval (1� 2�; p�], for some p� > 1� 2�, and the value V is continuous on that interval, it
follows by induction that the intervals of probabilities constructed this way have neither �gaps�
nor �overlaps�, and that V is continuously decreasing in p. Observe that, as p0 = 1 is a �xed point
of the �rst equation of (2), the union of these intervals never stretches above one. Conversely,
because, for p0 � 2� (1� �) (which is certainly a probability that is �reached�, since it belongs to
the ��rst�interval),

1� p = ��I (p0)

(1� �) 12 + � (�U (p0) + �I (p0)� V (p0))
�
1� p0

�
<

1� p0
1 + (1� �) (1� 2�) ;

for any p < 1 is eventually included in the union of intervals recursively obtained by application
of (2). This proves that for every p > 1� 2�, there exists one and only one equilibrium outcome,
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specifying in particular that players semi-pool as long as they have pooled, until the common
belief p is less than 1� 2�, at which point separation occurs.
Let us now study the case � � 1=2 and 1 � � + ��U (p) > 1

2 . De�ning q = 1= (1� p), w =

V (p) = (1� p), and f (q) = 1 � � + ��U (1� 1=q), we get from (2) the following pair of di¤erence
equations (

qn+1 � qn =
(f(qn)� 1��

2 )qn��wn
��I(qn)

wn+1 = f (qn) ;

where calendar time is reversed, that is, qn corresponds to the posterior belief given semi-pooling
and a prior belief qn+1. Observe that the unique critical point of this system is �x := (�q; �w) =�
(1� �p)�1 ; w (�p)

�
, where �p is the unique root of 1 � � + ��U (p) = 1

2 . For later use, observe also
that this system is equivalent to the second-order di¤erence equation

qn+1 � qn =
(f (qn)� (1� �) =2) qn � �f (qn�1)

��I (qn)
;

from which it is apparent that qn > qn�1 > �q implies that also qn+1 > qn > �q (because in that
case (f (qn)� (1� �) =2) qn � �f (qn�1) > (1� �)

�
f (qn)� 1

2

�
). Computing the Jacobian evaluated

at this �xed point, we get: "
1 + f 0(�q)�q+f(�q)�(1��)=2

��I(�q) � 1
�I(�q)

f 0 (�q) 0

#
;

whose roots are real conjugate, one of which has modulus strictly less than one, the other one has

modulus strictly larger than one. Indeed, the discriminant is positive because
�
1 + f 0(�q)�q+f(�q)�(1��)=2

��I(�q)

�2
>

4f 0 (�q) =�I (�q), as the term which is squared exceeds
�
1 + f 0 (�q) =�I (�q)

�2 (using f (�q)� (1� �) =2 > 0
and �q=� > 1), and the ordering of moduli is easily established using the same bounds. Therefore,
�x is a hyperbolic �xed point, the map de�ned by the system of di¤erence equations has a saddle
point at �x, and so has its inverse map (the eigenvalues of the inverse matrix are the inverses of
the eigenvalues). By the stable manifold theorem (see Devaney (1989)), there exists a neigh-
borhood of �x such that, for each q in this neighborhood, there exists a unique w such that the
limit of the system starting from (q; w) is �x. Because qn = (1� pn)�1 is strictly increasing in pn,
and wn = f (qn�1) is similarly increasing in pn�1, we may therefore conclude that, using standard
calendar time, there exists a neighborhood of �p, such that, for each pn in this neighborhood,
there exists a unique pn+1 in this neighborhood, such that the sequence (pk) going consecutively
through pn and pn+1 tends to �p. Evidently, pn+1 > �p. As p�n is monotonic since q�n is, and �p is
the unique �xed point of the second-order di¤erence equation, it follows that through all points
p 2 (�p; 1) such a sequence exists, and uniqueness follows from trivial continuity and monotonicity
observations. �
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