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Abstract

We study the design of profit maximizing single unit auctions under the assumption that the seller
needs to incur costs to contact prospective bidders and inform them about the auction. With inde-
pendent bidders’ types and possibly interdependent valuations, the seller’s problem can be reduced
to a search problem in which the surplus is measured in terms of virtual utilities minus search costs.
Compared to the socially efficient mechanism, the optimal mechanism features fewer participants,

longer search conditional on the same set of participants, and inefficient sequence of entry.



1 Introduction

Almost all the auction literature assumes that the set of bidders is either exogenous or determined
in advance before the auction begins. However, auctions based on this assumption are in general
suboptimal if the seller incurs costs when contacting prospective bidders. In this paper we study
profit maximizing auctions in the presence of these costs. We characterize the order in which
bidders are approached, and study the inefficiencies that arise due to the sequential nature of the

process and due to the bidders’ private information about their values.

We consider a seller of a single indivisible good who faces a finite set of bidders. The types
of the bidders are independently drawn, with ex post valuations interdependent across bidders as
in Myerson [11]* Initially, prospective bidders are not even aware of the seller’s intention to sell
the good. To attract their attention and allow them to participate, the seller must contact them and
provide them with all the necessary information—in Section 2 we discuss several interpretations
of this assumption. After being contacted by the seller and informed about the good for sale,
each bidder privately learns his type before deciding whether or not to participate in the seller’s
mechanism. Given that contacting prospective bidders is costly, it is generally not optimal to
contact all bidders at once. For instance, if the expected valuation of an early bidder turns out to
be sufficiently high, it is best to end the mechanism immediately and sell him the good without
incuring further costs. Hence the seller desigrsearch mechanisiiat, contingent on history,
specifies the order in which prospective bidders are contacted, the time at which the process ends,

and the payments made by the participating bidders.

In Section 2, we introduce the model and notations for search mechanisms. In Section 3.1,
we prove one of the main results, Theorem 1: the seller’s problem can be reduced to a standard
search problem in which the payoff from search is measured in terms of the winner’s’ virtual utility
rather than his actual utility. This result is nontrivial despite its well known counterpart in the static
framework; the main complication in the proof is that the bidders’ incentive constraints depend on

the dynamic stochastic nature of the seller’s optimal search problem.

The optimal search mechanisms we study here give rise to new types of distortions that are

1Our model can be interpreted as a procurement model where a buyer wishes to buy a good from one of several
suppliers whose types are independently drawn from bidder-specific distributions, and whose costs are interdependent.



completely absent in static mechanism design problems. In Sections 4.1-4.3, we present three
of these distortions: we show that asymmetry of information leads to fewer participants, longer

search conditional on the same set of participants, and inefficient sequence of entry.

Section 4.4 presents another feature of optimal search auctions: When the ex post values
of bidders are interdependent, the seller wants to delay the participation of “influential” bidders,

whose types have a strong effect on the willingness of others to pay for the good.

Our findings extend existing results in traditional mechanism design theory by endogenizing
the set of participants through a stochastic, history-contingent, search proéedyazson [11]
has characterized the optimal (profit maximizing) auctions in the case where the seller incurs no
search cost when contacting potential bidders, so there is no loss to assume that they all partic-
ipate. Hence his solution arises as a special case in our framework. McAfee and McMillan [9]
characterize optimal search mechanisms in the special case where bidders are ex ante symmetric
in terms of the search cost and the distribution of their types. Hence the sequence of entry and the
resulting distortions which play a major role in our paper do not matter in their model. We allow
bidders to be ex ante asymmetric so the sequence of entry is important, and we find some features
of the optimal sequence in Sections 3.2, 4.3, and 4.4. Moreover, McAfee and McMillan assume
that there is no discounting so that it does not hurt the seller to contact only one bidder at a time.

We allow discounting so the seller may need to conduct parallel search.

Two other papers have also applied search theory to auction design. Burguet [4] considers
a procurement model with private-value ex ante symmetric bidders who must decide whether or
not to participate before knowing their types. Iné@rer, Spiegel, and Zheng [6], we generalize
Burguet’s results, in the context of an auction model, by allowing for the entry of multiple bidders
at each stage and allowing for both interdependent valuation and asymmetric bidders. Unlike these
two papers, which assume ex ante participation constraints, this paper uses interim participation

constraints, as bidders are privately informed about their types during their participation decisions.

20ur analysis may also contribute to the optimal search literature by highlighting a new parallel search problem
where the ex post social surplus from selling the good to a bidder depends on the signals of other potential bidders,
whether they have participated or not. We have not found any work in that literature that considers this problem.
Weitzman [16] and Vishwanath [15] considered only private values. Even for private values, the literature has no
general characterization of optimal search procedures that allow multiple entrants per period, which we consider.



Other than McAfee and McMillan [9] and Burguet [4], we are the only ones optimizing over
the rules of the auctions (as opposed to comparing specific auction formats) given the constraints of
costly participation. Other important works on mechanism design with information acquisition or
costly participation include Bergemann and Pesendorfer [1], Bergemannaimog¥i [2], Levin
and Smith [8], and Ye [18]. (See Bergemann ardliviaki [3] for a recent survey.) Unlike these
papers, which assume that the agents’ participation decisions are made independently of each
other, this paper allows an agent’s entry decision to depend on the history of a mechanism. With
this dynamic feature, our paper is somewhat related to Compte and Jehiel [5] and Rezende [13],

who analyze the effect of information acquisition conducted during an exogenous bidding process.

There are a few other interesting papers on exogenous mechanisms with information ac-
quisition or costly participation, including Gal, Landsberger, and Nemirovski [7], Stegeman [14],
Pesendorfer and Wolinsky [12], and Wolinsky [17]. Unlike this paper and the aforementioned
mechanism design literature, the participation or information acquisition decisions in these papers

are not coordinated by a principal.

2 The Model

2.1 Search costs

A seller wants to sell an indivisible good to one out of a finite/seft prospective bidders. Initially,
bidders do not know the seller’s intention to sell the good and are not aware of the auction setting
(the rules in the seller’'s mechanism, who the other bidders are, how their valuations are distributed,
etc.). In order to bring this information to a biddés attention, the seller incurs a bidder-specific
fixed costc; > 0, which we callsearch cost While learning the information, the bidder also

privately learns his type (which affects his ex post valuation for the good).

The coste; has several possible interpretations. First, if the seller's good is very complex
(e.g., the controlling block of a state-owned enterprise), the seller may need to meet potential
bidders in person and describe the good in detail. Moreover, the seller may need to pre-screen

potential bidders to make sure that they meet certain criteria (e.g., ensure that the privatized state-



owned enterprise will be controlled by a qualified buyer who will be able to manage it properly).
Second, although we consider an auction environment, our framework can be easily modified to
a procurement environment in which a procurer wishes to procure an indivisible good from a
set of potential suppliers. If the procurer’'s needs are complex and hard to describe, he would
need to understand exactly what each supplier can offer. For instance, consider a firm that wants
to outsource a custom-made component; in some cases, rather than sending the description to a
prospective supplier and asking for a price quote, it could be more efficient to ask for a description
of the supplier's manufacturing facilities and explain what type of steps need to be taken with these

specific facilities in order to produce the good. The supplier can then provide a%juote.

2.2 Utility functions and types

The value of the good to the sellerig. For each biddet, nature draws &/pex; from a commonly
known distributionF;, with density f; and supporiX; = [z;, 7;], with f; > 0 over the interior of

X;. Types are independent acras#\ vector of realized types
T = (2;)ier € XierX; = X
is called arealized stateAs in Myerson [11], given any, bidder:’s value of the good is equal to

wi(w) = mi+ Y eij(xy),
jel\i
wheree;; is a commonly known real function that reflects bidgisrinfluence on biddei’s value.
Hence, biddei’s value for the good depends not only on his own type but also on the types

of other bidders through the functiogs;;(-)} Everyone’s discount factor i € (0, 1]. If

je:"
bidderi paysp! dollars in period;, then his utility from the viewpoint of perioslis §* ~*u;(z) —
Yoo, ot*plif he gets the good in period > s, and— > " 6'*pl if he never gets it. The seller

uses the same discount factor to evaluate his present discounted profit.

3Another example might be a movie producer looking for a location to shoot a new movie. In order to get price
guotes from the various potential locations, the producer needs to examine the exact facilities that each location can
offer. Only then can the producer tell which facilities it would need and obtain a price quote.



2.3 Search mechanisms

When the seller needs to incur costs when contacting specific bidders, it is in general suboptimal
(both socially and from the seller’s viewpoint) to commit in advance to a fixed set of participants
without knowing the bidding history. Hence the seller picks a contingent plan that, based on the
incumbents’ messages, specifies whether the seller should stop the mechanism and keep the good
or to allocate it to an incumbent bidder, or whether the seller should continue and invite new
bidders. Coupled with a payment scheme, such a contingent plan is salieéch mechanism

Note that parallel search is allowed since the seller can invite several entrants at once.

At the start of a search mechanism, in period 1, the seller contacts a set of entrants. If an
entrant agrees to participate, he signs with the seller a binding contingency contract. Since he is
privately informed before signing the contract, a bidder’s participation constraint is irftéanh
period-1 entrant then sends the seller a message. Given these messages, either the mechanism
stops and the seller keeps the good or allocates it to one of the period-1 entrants, or the mechanism
continues to period 2 and more entrants are invited. Depending on the information disclosure
policy that the seller adopts as part of the mechanism design problem, each period-2 entrant is told
none, or part, or all of the messages sent by previous entrants. Given this information, each period-
2 entrant decides whether to participate; if he does, he sends the seller a message. Depending on
the messages sent in periodand?2, the mechanism either continues and a new set of entrants
is invited to participate in period, or the mechanism stops. In the latter case, the seller keeps
the good or allocates it to one of the period-1 or period-2 entrants. The mechanism continues in a

similar fashion until it stops and the good is allocated.

A revelation search mechanisim a search mechanism in which each bidéiermessage
space is’s type space. A search mechanism, as a multistage gamgyiidrium feasiblef it has
a perfect Bayesian equilibrium (PBE). A revelation search mechanisrodsative feasibl€ it has
a PBE where every invited bidder participates and is truthful.

The next lemma allows us to restrict attention to revelation search mechanisms without loss.

Its proof is similar to the proof of the standard revelation principle and hence is omitted.

4We assume that a seller cannot make a buyer commit to a payment plan before the buyer knows his type. Other-
wise, the buyer would be besieged by dishonest sellers selling him fake projects or goods of no value whatsoever.



Lemma 1 (Revelation Principle for Search Mechanisms).There exists an incentive feasible
revelation search mechanism that replicates the equilibrium outcome of any equilibrium feasible

search mechanism.

2.4 The notations and sequential nature of search mechanisms

Let a revelation search mechanism be given. Suppose the realized stateXisand every invited
bidder participates and is truthful. Then the mechanism induces the following objects. (The formal

definitions are straightforward and hence are omitted for brevity.)

E'(z) := the set of potential bidders who enters the mechanism in period
¢i(x) := the probability with which playei (bidder or seller) consumes the good
pi(z) := the total payment made by biddediscounted back to the period

at which: enters the mechanism
H;(x) := the event (set of possible states) that biddarows has occurred
when: is entering the mechanism
7(z) := the period at which the search terminates

I'(x) = U._,E*(z) = the setof incumbents up to the end of period

A revelation search mechanism is denatel’)?°, , q, (p;, H;)ic1)- A search procedures the
operation-research part of a revelation search mechanism; it determines the set of entrants in each
period and the identity of the winner of the good but not how much to charge or what information

to disclose. Denote a search proceduré {#/):°,, q).°
The sequential nature of a search mechanism is formulated into the following constraints:
1. E'is constant on, i.e., the set of entrants in periads determined before any message is
sent.

2. If two realized states andz’ generate the same history up to period 1, i.e, E%(x) =

Es(z)foralls =1,...,t,and ifz; = 2/ for all incumbents € I*(x), thenz andz’ induce

°Note: ((E?)$ ) determines the period(z) in which the search endsi{z) = max{s = 1,2,...: E%(x) # 0}.
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the same decision for periadt 1:

a. The set of entrants in period-1 is the same and this set is a subset of potential bidders
who have not yet entered, i.&! " (z) = B (2') C T\ I'(x).

b. If t = 7(x), thenq(z) = ¢(«’) andp;(z) = p;(z’) for all potential biddet; i.e., if the
mechanism stops at periodthen the allocation rule is the same foandz’, and the
payment is the same farandz’.

c. For anyi who enters the mechanism in period- 1, H;(z) = H;(2'), i.e., the news

disclosed to entraritis the same fox: andz’.8

3. The good cannot go to bidders who do not participate in the mechanism, nor can the seller

collect payments from such bidders, ize¢ I7%) (z) = q¢;(x) = p;(z) = 0.

For each potential bidderc [ and everyt = 1,2,.. ., let

Ht .= the set of all states such that with strictly positive probability

bidderi enters in period + 1.

Naturally we assume:

4. For everyi who enters in period + 1, H;(z) C H.™, i.e., in addition to the rules of the

mechanism; knows at least the fact that he is a periog-1 entrant.

The functiong H;),; constitute the disclosure policy of the mechanism. hoa-disclosure
policy, a bidder upon entry learns only the fact that the mechanism is contacting him at the current
period, i.e..H;(x) = H for any stater, any periodt and any entrant In afull disclosurepolicy,
for any realized state and in any period, every entrant knows the sequerié€ (x))‘_, of entry

up to now, as well as the reported typeof every incumbenj € I*~*(z).

Whatever the disclosure policy, the bidders are told the mechanism. A bidder makes the
participation decision only after he has been informed of his type and whatever the disclosure
policy reveals to him, including all the rules of the mechanism.

6Constraint 2.c implies that a participant cannot learn about the types of those who have not participated. To prove
that, suppose at staiei enters in period + 1 and; has not entered by the end of periog 1 (i.e.,i € E'*!(z) and
j & I'"'(x)). For any possible type]; of j, denote(z_;, z;) for the state such that the type jois =/, and the type of

everyone else is the sameanBy 2.c, H;(z) = H;(z—;, ), hencei has no way to update abojis type.

7



2.5 Notions of optimal search mechanisms

Given any search procedufigs?):2,, q), if all invited bidders participate in the mechanism and are
truthful, and if the seller gets to extract the entire surplus, then the seller’s expected profit from the
viewpoint of periodl is equal to

II ((Et>fi1a q| (ui)iel) =E, |07 [Z qi(x) (us(z) — 950)] - Z5t_1 Z al. (1)
i€l t=1 i€eEt(x)
Note that there is no need to quantify the first sum by the restri¢tiod™ ) (z) (i.e., participates

in the mechanism) becausé i 17*)(z) theng;(x) = 0 by constraint 3 in the previous subsection.

In traditional search theory there is no asymmetric information once the search cost has been
incurred. Hence, optimal search amounts to maximiZingE*):2,, q | (u;):c;) over all search
procedures. We call this unconstrained maximization prolsmmetric-information search prob-
lem relative to payofféu,);cr and say that its solution ®/mmetric-information optimal relative to
payoffsu;. In our auction environment, by contrast, after the seller incurs a search cost and contacts
a bidder, the bidder becomes privately informed about his type. Hence the seller needs to design a
search mechanism that induces the bidders to reveal their private information truthfully. We call a
search procedurg E*)?°,, ¢) optimal (profit maximizing) if IT ((E*)°,, q | (us):er) 1S maximized
over all search procedures subject to interim participation and incentive compatibility constraints.

Similarly, a search mechanismagtimalif it implements an optimal search procedure.

3 Optimal search mechanisms

For every potential bidder € I and any possible realized state= (x;);c;, define the (ex post)

virtual utility of bidder: to be

Vi(z) :=x; — # + Z eij(z;). (2)
JEIN\i
Following most of the optimal auction literature, we make the following assumption which extends

the usual monotone hazard rate assumption to the case of interdependent values.



fi(@i)

tions ofz; on X;, their derivatives are uniformly bounded, afd (xl - 1}5;(:;1')) > eli(z;) > 0

Assumption 1. For any potential biddersandj, x; —

ande;;(z;) are differentiable func-

over the interior ofX;.

Theorem 1. If Assumption 1 holds, then (a) disclosure policies do not affect the seller’s expected
profit, and (b) there is an optimal search mechanism that uses the symmetric-information optimal

search procedure relative to virtual utility functiofi;);c;.

Theorem 1 says that a profit-maximizing seller just needs to soblistarted symmetric-
information search problepwhere real utilitiew;);c; are replaced by virtual utilitie§V;);c;.
Moreover, the seller can pick any disclosure policy ranging from non-disclosure to full disclosure.
Once he finds a search procedure that solves the distorted problem and arbitrarily picks a disclosure
policy, the seller just needs to implement them with a payment scheme specified by the familiar
envelope formula.

3.1 The proof of the theorem

We prove Theorem 1 in three steps. First, in Subsection 3.1.1, we show that the seller’s opti-
mal discounted expected profit is bounded from above by the optimal payoff from the distorted
symmetric-information search problem. Second, we show in Subsection 3.1.2 that the solution for
this distorted symmetric-information problem is incentive compatible given full disclosure policy.
Finally, based on step two, we show in Subsection 3.1.3 that the seller can achieve the upper bound
in step one via full disclosure. Since other disclosure policies cannot yield less expected profit
than full disclosure, any disclosure policy, coupled with a solution for the distorted symmetric-
information search problem, is optimal for the seller.

3.1.1 Step one: Finding necessary conditions for incentive feasibility and optimality

By Lemma 1, we can confine attention to revelation search mechanisms. Consider a revelation
search mechanism, described by the notatiéh®;, ¢;, H; andr introduced in Section 2.4.

Assume that biddei enters the mechanism in period Let H; be the news disclosed to

9



bidderi before he reports his type. If he reports that his type;jghen from the viewpoint of

periodt, the discounted expected value of his winning probability is
Qi(%; | Hy) = E,_, [5T(ii’$_i)_t%(i“ia z_;) | H; = Hy(Z,2-,)], (3)

and the discounted expected value of other bidders’ influence on hiddgility is

e_i(#; | Hy) =By, | 67007 g8, 020) Y eyilay) | Hi = Hi(@,2-) | - (4)
jel\i
The discounted expected value of biddsipayment from this viewpoint is calculated analogously
and denoted by’;(#; | H;). If bidderi’s realized type isc;, then his discounted expected utility
from the viewpoint of period is

wi (2 | w4, 1) = 2:Q4(25 | Hy) + e_i(2; | Hy) — P25 | Hy). (5)

Given the independence of bidders’ types, non&gfr; | H,), P;(z; | H;) ande_;(z; | H;)

vary with bidderi’s actual type. Thus, each biddés objective function takes the quasilinear
form x; A;(z;) + B;(Z;), standard in auction theory. This quasilinear form, coupled with standard
techniques (e.g., Myerson [11, Lemma 2]), yields the next lemma.

Lemma 2. The seller’s problem is equivalent to maximizing his discounted expected profit among
all pairs of search procedure§ E%):°,, ¢) and disclosure rule$H;);-; subject to the following
constraints for any € I, anyx; € X;, and anyH, in the range off; (i.e.,{H;(z) : x € X}):

the function®;(- | H;) is nondecreasing (6)
wion o) = wle |2, + [ Qe | Hds ™
wilz; | 2, H) = 0. 7 (8)

A revelation search mechanisttZ*):2,, (p;, H;)icr, q) is incentive feasible if (6) is satisfied and

the payment scheme satisfies the envelope formula,
Py | B) = 5iQias | H) + i | H) = [ QuCe | s ©)
foranyi € I, anyz; € X;, and anyH; in the range off{;.

The next lemma is similar to the “integration by parts” routine in optimal auction theory.

10



Lemma 3. If ((E")2,, (pi, Hy)ier, q) is incentive feasible and employs the non-disclosure policy,

then the seller’s discounted expected profit is equal {0F")>°,, ¢ | (V;)icr)-

Proof: Assume that bidderenters in period in a realized state. Given the non-disclosure rule,
the bidder merely knows the ned&, i.e., that he is a periotlentrant. By Egs. (5), (7), and (8),
the seller’'s expected net profit extracted from bidderewed from period, is

E., |(: — 20)Qi(i | H}) + e—i(z; | H;) —/ Q= | HYdz — Cz’] -
By a standard argument (e.g., Myerson [11, Lemma 3]), this is equal to
E, [67@,(x) (Vi(z) — x0) — ¢ | B! = Hy(x)]

where we used Egs. (2), (3), and (4). Viewed from peiflipthe periodt at which bidder enters
the mechanism is a random variable uniquely determined by the realized siais thet such

thati € E'(x). Thus, viewed from period, the seller’s expected profit extracted from bidder
B [E, 079 gi(2) (Vi(z) — o) — 8¢ | H} = Hy()]]

~E,

4 00) 4) )~ 55 | 10
t

Summing the right-hand side (10) over alt I, we get
E, |57 [Z gi(z) (Vi(x) — xo)] ST ST el (11)
i€l t=1 i€Et(z)
which is equal tdI ((E*),,q | (Vi)ier), defined in Eq. (1), with; replacingu;. m
Remark: We would have obtained the traditional recipe of optimal auction by now had search
costs been zero: for every statesetq;(x) := 1 for the bidderi whose virtual utility is highest

among all bidders and exceeds This, however, is in general infeasible for a search mechanism,

because the seller does not know the realized types of bidders who have not yet been contacted.

3.1.2 Step two: Verifying the incentive feasibility condition

The purpose of the second step is to show that the solution for the seller’'s distorted symmetric-

information problem is incentive compatible given full disclosure policy. To this end, recall that,

11



in the distorted symmetric-information search problem, the seller tries to maximize the discounted

expected value of virtual utility of the winner of the good minus search costs. Denote:

(E"°,,G) := asearch procedure that solves the distorted

symmetric-information search problem

Next, at any period, denote:

J = the set of bidders who have entered the mechanism
vy = (Ti)ies; _g = (xi)igéJ;
n(J,xz;) := the seller's optimal discounted expected payoff

given the state variable/, = ;);
my(J,z;) = the seller's optimal discounted expected payoff

from continuing the search gived, z ;)

= 0 max |E, m(JUK;z,,zx)— ch ) (12)

KCI\J
keK

The above objects are well defined because a straightforward proof by induction implies that the

search proceduré £)°,, §) exists and the function is well defined.

At each period, given the state varialflé = ;) for distorted symmetric-information search
problem, the seller’s alternatives, described relative to any incunibent, are: (i) sell the good
to i right now, gettingt, ,V;(x), (i) sell to another incumbent=£ i right now, getting, ,V;(z);
(iii) continue search thus getting, (/, z); or (iv) stop and consume the good, getting The
next lemma says that alternative (i) is more likely to be the best optidmtifpe x; is high.

Lemmad4.If i € J,thenE,_,Vi(z,,z_;)andr, (J,x ) are absolutely continuous functionsigf

whenever their derivatives exist,

0 0

a—xi]ELJVi(:l;J,:L‘_J) > o1, ;rel?ii]ELJVj(xJ,x_J) and (13)
i]E Vi(xs,x_y) > 0 m(J,xy) (14)
8$Z rT—_g¥e J? —J - axl + bl J bl

and if (14) holds with equality theB, ,V;(z;,z_,) > 7 (J, z;).

Proof: By Eq. (2)’%&4%(5‘7%1’—«1) = d% [xz — 1}%(?)} and, for allj # i, z; entersV;(z)

only throughe;;(x;). Hence Assumption 1 implies (13).

12



To prove (14), we use a revealed-preference argument./l e}) be given. Denote

Qr(z;) = the discounted expected probability tHaE" )5, §) awards (15)
the good to biddek (who need not has entered) giveh z ;).

Assume that the seller follows the search proced(f):,,G) as if the type of an incumbent

1 € Jisz; # x;. (The seller knows the realized valuexgtbecause this is a symmetric-information
search problem.) Let (J,x,, ;) be the expected payoff of the seller from this deviant plan,
discounted back to the current perigd:; entersr, (J, =5, z;) only in the term

Ee_, Z STENAT DT, (5, i, 2@ (2, T ).
kel

Hence (remember that is one component of ;)

. L d 1 — Fy(x)
axiﬂ-+(J’ .%'J,l'i) = Qz(mzaxJ\l)dxi |:xZ - fz(xz) :|

+ ) Quldswp)e(@).

kel\i

As ((Et)fgl, ¢) solves the dynamic programming problem given the state variable ),

7T+(‘]7 x]) = ﬁ-Jr(Ju L, i‘z) = HljiX’fT+<J, LJs ihz)
Thus, the Milgrom-Segal envelope theorem ([10]) implies thgt/, x ;) is an absolutely continu-
ous function ofr; and that, whenever its derivative exists,
) . .
w (], wg) = Qilw, wp)Gila) + Y Qulas, w.p)eg (). (16)

&ci )
kel\i

Thus, Assumption 1 implies (14). If (14) holds with equality, biddexins almost surely in
subsequent periods if the search were to continue. But since search is costly, this implies in turn
that awarding the good to biddenmmediately dominates the option of continuing the search.
HenceE, ,Vi(zj,z_;) > 7y (J,z;). m

We are now ready to prove the main lemma of this subsection.

Lemma 5. If Assumption 1 holds, then the search procedii#)>°,, ) operated under the full

disclosure policy satisfies the monotonicity condition (6), &e(; | H;) is nondecreasing.

Proof: Let.J C I be the set of incumbents and let .J. It suffices to prove thad;(z;), defined
by (15), is weakly increasing im;. We shall prove this claim by induction on the sizelof J.

13



The case o/ = I follows directly from (13). Pick any. = 1, 2, ... and suppose the claim is true
if the size of/ \ J is less than or equal toe — 1. We shall prove the claim wheh\ J is of sizen.
Since the search proceduié=")s°,, §) solves the problem

max {'%07 Ez_J‘G(xJa x*J)u %?%Em_J{fj(mJ? l',(]), 7T+(J7 l’])} )
J i

Lemma 4 implies that the probability that biddewins in the current period is weakly increasing
in z;. The induction hypothesis implies that the probability (discounted back to next period) that
he wins later, conditional on him not winning in the current period, is weakly increasing in

Thus, the total discounted winning probability of biddés weakly increasing in:;, as desiredm

3.1.3 Step three: The irrelevance of disclosure policies

To complete this final step of the proof, we show that the full-disclosure mechanism identified
in 3.1.2 is optimal among all incentive feasible mechanisms under any disclosure policy. That
is true because the full-disclosure mechanism by definition achieves the upper bound identified
in 3.1.1 if the mechanism is incentive feasible, and we have proved in 3.1.2 that it is indeed in-
centive feasible. Thus, disclosure policies are irrelevant because, as we will show below, other

disclosure policies cannot yield smaller expected profit than full disclosure.

Formally, denote:

IIyp, Hrp, lany := the seller’'s optimal discounted expected profit among all incentive
feasible search mechanisms using, respectivéely, F D, ANY;

ND,FD,ANY := non-disclosure, full disclosure, any disclosure palicy

Since bidders are assumed to be risk neutral, incentive feasibility with a fine disclosure policy
implies incentive feasibility with a coarse disclosure policy. (Incentive feasibility means a set of
inequalities, one for each event that the disclosure policy can possibly reveal to a bidder; integration

across these events preserves the direction of the inequalities.) Hence
lnp > Hany > Upp.

Lemma 3 implies thailyp is bounded from above by the optimal discounted expected payoff

in the distorted symmetric-information search problem. Si@(@);ﬁl, G) is a solution for this
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distorted problem, we have
I1 ((Et)?iu(j | (Vi)iel> > lyp.
Lemma 5, coupled with Lemma 2, implies that the search proced@rie:®,, §) is incentive fea-

sible when it is supplemented by the full disclosure policy. Hence
ep = 1 ((E)0 | (Vidier)
Thus, we obtain the equation that immediately implies the theorem:

IIyp = Hany =lpp =11 ((Et>§il7 q| (Vi)iel> .

3.2 An optimal mechanism with private values and no discounting

In this subsection we illustrate Theorem 1 by fully characterizing the optimal mechanism for the
case where the bidders have private valugs< 0 for all 7,5 € I) and there is no discounting

(6 = 1). Since the distributions of bidders’ types and the cost of contacting each bidder are not
necessarily the same across bidders, the results in this subsection generalize the results in McAfee

and McMillan [9] where the bidders are assumed to be ex ante identical.

By Theorem 1, the seller needs to solve the distorted symmetric-information search problem,
where his reward from selling the good to a bidder is the bidder’s virtual utility. With private values,
a bidder’s virtual utility depends only on his own type (hence we wirje;) instead ofV/;(x)):

1 — Fi(x;)

This symmetric-information search problem is similar to Weitzman’s [16] Pandora problem. In

Vz(%) =T; — (17)

that problem, Pandora searches for the highest reward #frdooxes under the assumption that

only one box can be opened in any single period and opening each box is costly. Weitzman proved
that the solution to Pandora’s problem is as follows. First, Pandora computes a cutoff value for
each box—this cutoff value depends only on the characteristics of the box itself. Then, if the
highest cutoff value falls short of Pandora’s initial fallback reward, Pandora does not search and
simply gets the fallback reward. Otherwise, Pandora opens the box with the highest cutoff value. In
every period, the search continues if the highest cutoff among all closed boxes exceeds the updated
fallback reward which is the maximum between the initial fallback reward and the highest reward

among all opened boxes. If seach ends, Pandora gets the updated fallback reward.
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In our case, the boxes are the potential bidders, and since they are privately informed about
their types after being contacted by the seller, the seller’s reward from each bidder is the bidder’s
virtual utility. The initial fallback reward is just,. Since we assume away discounting, there
is no loss of generality in inviting only one entrant (i.e., “opening one box”) in each period as

Weitzman’s Pandora problem. The relevant cutoff leyefior bidder: is the solution of
E,, [(Vi(z:) —vf)"] = c. (18)

This equation is analogous to Eq. (7) in Weitzman [16]. It says that, if the seller's updated fallback
payoff isv}, then the seller is indifferent between (i) stopping the search and geftimgmedi-

ately, and (ii) contacting bidderat a cost of;; and then stopping the search and getting a payoff
equal to eithel(z;) or v}, whichever higher. When the seller invites biddéo participate, the

bidder makes a repatt and commits to paying, in expected value, an amaufit; | H;) specified

by Eg. (9). The seller keeps searching as long as the highest cutoffs among all bidders who have
not yet been contacted exceeds the updated fallback reward. Otherwise the seller stops searching
and allocates the good to the bidder with the highest virtual utility among all incumbent bidders,

provided that this virtual utility exceeds the seller’s valug,or keeps the good otherwise.

Note that, in the above procedure, a participating biddan end the search and buy the good
immediately if he reports his type as such thafl;(z;) is greater than both the virtual utilities of
the incumbents and the cutoffs of those not yet contacted. Dehdoe the infimum of such types
Z;. We may call the expected paymdntz; | H;) specified by Eq. (9) thbuy-now priceas if the
bidder were given a buy-now offer to buy the good immediately at the price eqérlatp | H).

One way to construct such buy-now prices is as follows: Every participating bidder makes
a once-and-for-all bid. Bids are compared to one another in terms of virtual utilities. If a bidder
rejects the buy-now offer but eventually wins the good, his payment is equal to the amount which,
in terms of virtual utilities, matches the highest losing bid or the seller's own value, whichever is

larger. To compute the buy-now prices, suppose the bids collected up to the end of petiade

x1,...,T_1, With z, submitted by the period-entrant, biddek. The seller’s fallback reward is
v'! = max {xo, max Vs(a;'s)} .
s<t

Suppose that bidderenters in period. There are only two possible cases:

i. vy, < o' the cutoffv;,, for contacting the next bidder is below the seller’s current
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fallback rewardv’~!, so the search will end no matter what biddereports. If biddert
wants to win right now, all that he needs is to submit a:hiduch thatV;(z,) > v'1, i.e.,
x, >V, 1 (v'71).7 Hence the buy-now price for bidders V,~* (v ).

ii. vf,, > o' the cutoff for continuing the search is above the seller’s current fallback reward,
so the search may end or continue, depending on bidsleeport. If his virtual utility is
abovev;, ;, then biddet beats all incumbents and ends the search; yet if his virtual utility is
merely equal ta’'~!, the search will continue. Thus, the buy-now price, in terms of virtual
utilities, should lie between;, ; andv'~'. To compute it, first calculate the probabilif (=)
with which biddert eventually wins in the above search procedure if he repoiisen use
Eqg. (9) to obtain the buy-now price as

1 %71(U:+1)
Ve - [ G
Vi (vt
When all bidders have the same distribution for their types (although the search costs of con-
tacting them may be different), it is possible to implement the optimal search mechanism with a
sequence of second-price auctions with period-specific reserve prices. The next subsection illus-

trates this idea by a two-bidders example, whose extension to-théder case is straightforward.

A further special case in which the search costs are also the same across bidders (i.e., the
bidders are ex ante identical) has been analyzed by McAfee and McMillan [9]. Since the bidders
are ex-ante identical, the cutoffs defined by Eq. (18) are identical across bidders. Thus, unlike in
most of our paper, the sequence in which the bidders are contacted is irrelevant. Search continues
if and only if the highest virtual utility among all incumbent bidders is less than the cutoff. When

all bidders have been invited, the good is sold via a conventional second-price auction with reserve.

3.3 Atwo-bidder example with private values and no discounting

In this subsection we examine a specific two-bidder example that illustrates how the optimal mech-
anism can be computed. Suppose there are only two potential bidders and, 1] fori = 1, 2.

The cost of contacting bidderis ¢;, with ¢; < ¢y < i As in Section 3.2, we assume that

"The inverse functio’, ! exists by Assumption 1.
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e1s = e9; = 0 (private values), and = 1. Hence, the profit optimal search auction is a Weitzman

search procedure with the bidders’ values replaced by their virtual utilities
Vi(z) = 2z; — 1. (19)

The seller will not sell the good to biddeif V;(z) < 0; hence a bidder with; < 1/2 has a zero

probability of winning the good.

Using (18), the cutoffsy} andv; are defined by

1
ﬂ+1);[2x—1—vj]dx:ci, — v =1-2/c.

Sincec; < ¢ < 1/4,v7 > vi > 0, it is optimal to invite bidder 1 in period 1, and if the search

continues, to invite bidder 2 in pericd

Bidder 1 wins the good immediately ¥, (z,) > v3, i.e., ifz; > 1 — ,/c;. Otherwise, the
mechanism continues to peri@d and bidderl wins if and only if z; > max {z,1/2}. Since
x9 ~ [0, 1], the probability that biddet wins is0 if z; < 1/2, x; if % <z <1—,/cy, andl if
1 > 1—/c;. Using (9), the expected payment of bidder 1 is

x x2 .
Pi@) = o=y zde =3 g fl<ai<l-ya  (20)
xl—fll_‘/azdz—flxj\/adz: eyl if o >1- /6

Conditional on being invited to participate, biddewins the good if and only it5(z2) >
max {V;(z1),0}, i.e.,zy > max {z1, 1 }. By (9), the expected payment of bidder 2 is
0, if gmax{xl,%};

P2($2 1’1) = .
’ xg—fiix{mé}dz:max{xl,%}, if x2>max{x1,%}.

The optimal mechanism can be implemented with the following procedure. Bidder 1 is
offered the good at pricél — ¢;)/2 + 1/8 in period 1; if he rejects the offer, he and bidder
2 participate in period 2 in a second price auction with a reserve price equa2fo Since both

bidders bid their values in the second price auction, biddens if and only ifz, > max{x;,1/2}

8Note that the procedure is equivalent to a sequence of two second price auctions, with period-specific reserve

prices. The first auction in the sequence is degenerate as only higdeticipates.
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and his payment if he wins isax{x, 1/2}. Hence, we only need to verify that bidder 1's optimal

strategy in our procedure is aligned with the optimal mechanism.

In our procedure, biddelr has to pay at leadt/2 if he wins. Thus, ifz; < 1/2, he does not
want to win, and it is dominant to bid his true type in both periods. In period 2, biddens if

and only ifz; > max {z, 1}, and if he wins, he paysiax {5, 1 }; his expected payment is

1 o
/ —de‘Q‘l—/ $2dZL'2=
0 2 1
2

This expression is equal to the second line in Eq. (20).

D=

X

2
21
5

-
8

Finally, to verify that bidder 1 accepts the offer in period 1 if and only;it> 1 — ,/c;, we
note that bidder 1 has two options: (i) agree to é@%l + % and obtain the good immediately, or

(il) participate in the second price auction with biddeBidder1’s payoff from option (i) is

— 1—CQ+1
! 2 8/)

With option (ii), bidder 1 wins with probability:; and his expected payment%szré; his expected

141 9 3 —2 8

Comparing bidder 1's expected payoff under the two options shows that he will choose option (i)

payoff is

ifand only if z; > 1 — ,/c,. Hence bidder 1's strategy is consistent with the optimal mechanism.

4 Properties of profit maximizing search mechanisms

In standard auction theory, asymmetric information leads to inefficiencies in the form of no trade
in some states of nature, and, sometimes, biased allocations. In our search-theoretic framework,
asymmetric information leads to a third form of inefficiency: inefficient search procedures. In
Subsection 4.1, we show that the optimal mechanism may completely exclude some bidders who
would be invited to participate in the (socially) efficient mechanism. In Subsection 4.2, we show an
opposite effect: the optimal mechanism gives the seller an excessive incentive to search relative to
the efficient mechanism. In Subsection 4.3, we show that the order in which bidders are approached

need not be the same as the efficient mechanism.
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In order to explore these kinds of inefficiency, we shall consider the private values case where
e;; = 0 forall4,j € I and there is no discountifigGiven these assumptions, the seller's optimal
search mechanism is fully characterized in Subsection 3.2. In particular, the optimal search proce-
dure is generated by Weitzman'’s solution with the cutoffs being implicitly defined by Eqg. (18). By

contrast, the cutoffs for a (socially) efficient procedure are defined by the equation
E,, [z; — x;“]Jr =q. (21)

This difference arises because the payoff in the associated search problem is measured in virtual
utilities in the former mechanism and is measured in actual utilities in the lattereme2r Spiegel,
and Zheng [6] we proved that the efficient search procedure can always be implemented by a

perfect Bayesian equilibriuri¥.

4.1 Fewer participants

Because a bidder’s actual value exceeds his virtual utility, the benefit of inviting a bidder to partic-
ipate is lower in an optimal search mechanism for the seller than it is in an efficient mechanism for
the economy if the fallback payoffs are the same. In fact, the optimal mechanism may completely
exclude a bidder even before the search begins, even though that bidder has a positive probabil-
ity of participation in an efficient mechanism. The consequences of this fact are described in the

following proposition.

Proposition 1. From the standpoint of period 1, every biddé&r probability of participation in a
socially efficient mechanism is positive if his probability of participation in an optimal mechanism

is positive, but the converse is not necessarily true.

Proof: Forz < T;, E,, [Vi(z;) — 2]7 andE,, [z; — 2]* are strictly decreasing functions efand
E., [Vi(x;) — 2]7 < E,, [z; — 2]". Hence,v} < z: foralli € I. The proof is completed by
noting that a biddei has a positive probability of participating in the socially efficient mechanism

if 27 > x, and a positive probability of participation in the optimal mechanmsiy if v; > z,. m

9By continuity, the inefficiencies that we identify still hold if these assumptions are slightly relaxed.
10Although the participation constraint is ex ante in that paper, its efficiency result is applicable here because interim

participation constraints can always be satisfied by transfers from the seller.
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4.2 Longer search

As virtual utilities are below actual utilities, the seller’s fallback value in the optimal mechanism is
smaller than his fallback value in a socially efficient mechanism. This leads to an effect opposite

to the previous one, as the lower fallback value makes it more attractive to continue the search. A
simple case for this effect is that bidders’ types iard., so their virtual utility functions are the

same, say/, though their participation costs may still be different. While the cost of an additional
searching period is the same in both the efficient and optimal mechanisms, the gains are different.
To see that, suppose that an additional search increases the highest reported value and hence the
social surplus by\z. The resulting effect on the seller’s revenue, measured in virtual utilities, is
approximately/’(z)Az. Under Assumption 1V’(z) > 1. Thus, other things equal, the seller is

more willing to continue searching than a social planner would.

Proposition 2. Assume that types; are identically distributed across bidders, with denoting
their common virtual utility function (though their participation cosismay be different). If
Assumption 1 holds andif > x, for all ; € I, then an optimal search lasts at least as long as,

and with a positive probability strictly longer, a socially efficient search.

Proof: First, recall thatz; is the upper bound of the supportafand let

62) = [ ARG o) = [ Wil ~ Vi)

The solution ofp(z) = ¢; is V; ' (v}). By assumptiod/’ > 1, ¢’ < ¢' < 0 throughout their

7

common domain. Then the fact thatz;) = 0 = ¢(z;) impliesV ! (v}) > 2 forall i € I.

Second, the order of entry is the same in both mechanisms: with i.i.d. bidders,z; if
and only ifc; < ¢; if and only if v > v;. Thus, we can relabel the bidders so that> v; >
- >wvrandx} > of > --- > xf. Because; > x,, the optimal mechanism invites bidder 1
to participate. We show that it continues from perioi periodt + 1 with a higher probability
than the socially efficient procedure. To see that(det. . ., z;) be the sequence of realized values
up to periodt. If the efficient search continues to period- 1, thenmax{zo, z1,...,2:} < @},

becausé’~!(v;) > x} andv} > o,

Ury > max{xo, Vi(z1), ..., Vi(z)}.
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Hence the optimal search continues to pericd 1. Thus, it continues whenever the efficient

procedure continues. The converse, however, is false: when
—1
ry <max{zy,...,z ) <V (viy4),

which occurs with a positive probability, the efficient search stops while the optimal search proce-

dure continues. This proves the propositian.

4.3 Inefficient order of entry

Determined by different sets of cutoffs, the order in which the bidders enter the optimal mechanism
may differ from the order in the socially efficient mechanism. The following example shows
this distortion with two bidders. The seller’s valus,, is zero; bidderl’s type x; is uniformly
distributed onz,, 7;] and bidder’s type x, is drawn from an exponential distributidn,(z;) :=

1 — exp(—Az3). Given these assumptions, the virtual utility functions and cutoffs are

Vi(z1) = 221 — Ty; Va(zo) = 29 — 1/,
] =T —201(T1 — xy); xy = —In(Aeg) /A

UT =7 — 2 Cl(fl —El); U; = —(1+1n(>\02)) /)‘

Sincex; > v, there exist two numbersandb such thav] < a < b < zj. LetA :=1/(b—a) and
¢y = exp(—=Ab)/A. Thenzi > x5 andv] < v3: bidder 2 enters first in the optimal mechanism,

whereas bidder 1 enters first in the socially efficient mechanism.

4.4 Delayed participation of influential bidders

When bidders’ values are interdependent, we can address the following question: Ifilsitigjes

has a stronger influence on the valuations of other bidders than bigdgpe, should the seller

let i enter beforej or vice versa? For simplicity, we address this question under the assumption
that, for all j € I, there is a numbety; such thate;;(z;) = «;z; for all z; andi # j, with

a; € [0,1). We can therefore regard bidders with highés as more influential. We show that

the more influential bidders will enter later than less influential bidders. As we will see, this is a
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property linked to the sequential nature of the search mechanism, and not, as in Subsections 4.1

to 4.3, a distortion due to asymmetry of information.

Proposition 3. Assumé/; > 0 andz, > 0 for all ¢, andej;(z;) = a,x; for all j # i. Also assume
that search costs and type-distributions are identical acioss/. Then the largery; is, the later

and less probable igs entry in an optimal or a socially efficient search mechanism.

Proof: For every; € [ and everyr; € X;, let

1 - Bz

fi(ws)
Note thatV;(z) = Wi(z;) + >_,c; jz;. Thus, for any state variable, z;),

E, Vi(xy,x_y) > E, Vi(xs,x_;) <= Wi(z;) > W;(x;). (22)

SinceV; > 0 by assumption, the optimal mechanism never results in no sale. Hence (22) implies
that the search procedure is equivalent to a standard Weitzman seach with payoff from search being

Wi(x;). In this search procedure, the cutodf$ are implicitly defined by
E,, [Wi(z;) —wi]" = ¢,

E,, [Wi(x;) — w?]" is strictly decreasing im: andW;(x;) is strictly decreasingy; (sincex; > 0
by assumption). Thusy; is strictly decreasing in;, as claimed.

The proof for the socially efficient mechanism is analogous and can be deduced by simply

settingW;(x;) := x; — ayx; for everyi € I and everyr; € X;. m

The basic intuition for Proposition 3 is as follows: if there is a very influential bidder, a
change in his type will increase the value of other bidders nearly as much as it increases his own
value. Hence, inviting this bidder to participate in the mechanism early on will not reduce the set
of states of nature in which it would also be optimal to invite other bidders to participate and will
therefore not save on search costs. To illustrate, assume that there are two biddets,with
as = 0 andxy = 0. Bidder 1 is therefore “influencial” as a changerinhas a positive effect on
bidder 2’s value but not vice versa. Since bidder 2’s value+ =1, always exceeds bidder 1's
value, x4, it is clear that if the good is allocated, it is certainly allocated to bidder 2; thus, only

bidder 2 will be invited to participate. The influential bidder, bidder 1, is excluded.
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5 Conclusion

We have studied a single unit auction environment in which the set of bidders is endogenously
determined through a dynamic search process. We showed that with independent bidders’ types,
an optimal mechanism for the seller is equivalent to an optimal search with symmetric information,
where the utilities are replaced by virtual utilities. That is, the seller conducts a costly search for
the bidder with the highest virtual utility. In standard auction theory, the information rents that the
seller concedes to the bidders create inefficiencies in the form of no trade in some states of nature
and, sometimes, biased allocations. Our search-theoretic framework gives rise to a third form of
inefficiency: inefficient search procedures. In the case of private values with no discounting, this
inefficiency results in fewer participants, longer search conditional on the same set of participants,

and inefficient sequence of entry, relative to the socially efficient mechanism.
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