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1. Introduction

Many research studies, particularly in the social
sciences, deal with qualitative variables in addition to
quantitative variables. Such variables may be ordered or
unordered. For example, gex is an unordered (nominal)
dichotomous variable since it consists of two unordered
categories, namely, male and female. Social class is an
example of an ordered (ordinal) qualitative variable since
it classifies the population into ordered categories, say
upper, middle and lower social classes. Similarly, atti-
tudes are either unfavorable, neutral or favorable.

Working toward the ultimate goal of a unified approach
to data analysis, qualitative and quantitative variables
are tied together in sections 2 and 3, the connections
being established through the use of dummy variables and
the concept of variance. The variance of a qualitative
variable 1s defined in section 2. Quantitative wvariance
is shown to be a weighted version of qualitative variance.

Via joint wvariables and the concept of joint variance
introduced at the end of section 2, the generalization
from regression analysis to simultaneous equations 1is
immediate in the case of qualitative or discrete endogenous
variables.

Correlation ratios are derived 1n section 3. In the
case that interaction variables are not necessary, the
correlation ratio reduces to the square of the (linear)

correlation coefficient. It is shown how the interaction

variables can be defined in section 4.



A formulation for the analysis of qualitative variance,
MANQUOVA, 1is developed in section 4. The effect parameters
are (partial) regression coefficients from a "collapsed"
regression model. For a hypothetical example, it is shown
that these measures of effect have many very "intuitive"
properties.

In section 5 an estimation procedure is suggested
and it is shown how missing data can be handled in a

straightforward manner.

This research is the result of pursuing various
similarities between Goodman's qualitative regression model
(see e.g. Goodman (1972a, 1972b)) and the standard quanti-
tative model as characterized in econometrics (see e.g.

Goldberger (1964)).

2. The Variance of a Qualitative Variable

Variance is defined for quantitative data in terms
of deviations from the mean. For gqualitative (nominal or
ordinal) variables however, the mean is an undefined con-
cept. In this section dummy variables will be used to
define the "variation" associated with each category of
a gualitative polytomy. The variance is then defined as
the sum of these variations less the excess due to the
"overlap variance' among the categories. It is then shown
that quantitative variance is a weighted version of quali-

tative variance, the weights being a function of the values



assigned to the varilable.

The concept of joint variance is then introduced for
both qualitative and quantitative discrete variables.
Joint variance can be used in simultaneous equations models
in the same manner that wvariance is analyzed in regression
models.

Let A represent a polytomous variable classifying
the population into I distinct categories. The distribu-

tion of A is then given by the vector

A A A A A
Pt = (Pl,P2,...,Pi,...,PI) where
P? = the proportion of the population classified as A = Ai
Next, define the random dummy vector
A A A A A
AR (21’22""’21""’21) as follows
A {l if A = Ai
1 O otherwise

Thus, Zl for example indicates whether or not an observa-

tion is classified as A = Al (For convenience, at times
the superscripts will be omitted when there is no chance
of confusion.)

Each Zi has a Bernoulli distribution so that its

variance is



VAR(Zi) is a measure of the dispersion associated with
category A;. For A dichotomous (I =2), Z% and Zé provide

identical information, namely, each variable pinpoints

which category of A an individual is 1in, Al or Ag. Thus,
Zl and 22 are each information-equivalents for A. For

I = 2 we therefore define VAR(A) as VAR(Z?) or equivalently
as VAR(Zp)

VAR(A) = P (1 - P)
= P,(1 - P,)
= PP, (T = 2) (2)

Notice that this definition is consistent with the
variance of A attained by the usual methods of assigning
the values 1 and O or 1 and 2 to the two categories.

In general, for I > 2 categories, since any indivi-
dual is in one and only one category of A, the Zi‘s must
sum to one so that any Zi’ say Zi*’ can be expressed in

terms of the other Zi's as

ix-1 I )
2oy =1l- % 2.- = 2. (3
o i=1 b i=ixgl T

Since each Zi* is perfectly predicted from the others,
the variance of Zi* can be partitioned into a portion ex-
plainable by the categories preceding category Ai* and a

portion explainable by the categories followling category



Ai* respectively as follows
) i*-1 I
VAR(Z.,) = COV(Z,,, 1 - = Z, - =X Z.)
1 ¥ i=1 L+ qoixq1 1
i*-1 I
=P, = P, + P, s P, u
g T ogogxgn 1 &
i* 5 P« Py
= (= B,) — 1 - =
i=1 1 1 1
S Py S P
i=1 i=1 *
I P. P
+ (2 p)° thai 1 - tha
jmix 1 I I
= s P, s P,
i=ix  * i=ix *
1%
= (= P )2VAR(Z |z = Z = Z7_ = 0)
jo1 1 s L RN} i*42 I
I >
+ (iii* P.)VAR(Z;4 12, = 2, = «o. = 24 = 0O)

(5)
The total variance of A is defined here as the fol-
lowing composition of these categorical components. It is
the variation associated with Al plus the variation due to
A2 but unexplainable by Al’ plus the variation due to A3
but not explainable by the preceding categories Al and A2,

etc. By summing over the second term of (4) for all

categories, VAR(A) is thus



LI I
-2 iil & kil Y (6)
kA1
I
=% = P (1-P)
i=1 =
;I
= 5 i§l VAR(Z,) (7)
T
-3 - 2 B ®)

Notice that VAR(A) can be computed by summing the
VAR(Zi) and dividing by 2. Thus, this definition does not
depend upon the ordering of the categories. For ordinal
variables, although the ordering is not explicitly taken
into account, VAR(A) still provides a meaningful measure
of variation. In section 4 it is shown how order can be
included in the model. Also, various hypotheses regarding
order can either be tested or imposed on the data using the
estimation procedure given 1in section 5.

This definition for the variance of A has the fol-
lowing desirable properties.

1. For a fixed number of categories, VAR(A) is
maximized when the probability of being in each category
is equally likely.

2. Under the condition of equally likely probabil-
ities, VAR(A) approaches its maximum value of .5 as the

number of categories approaches infinity, i.e.,
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3. VAR(A) approaches its minimum value of zero as
the probability of being in any one particular category
approaches one.

Before examining the relationship between qualita-
tive and quantitative variables, consider partitioning

VAR(A) in the case of I = 4 categories. From (4) and (6)

we have
VAR(Z%) = PP, + PyPy + PiPy
VAR(Z) = PP, + PoPy + PPy
VAR(Z%) = PPy + BB + PiB)
VAR(Z,) = P B + P,P + P,B,
and

VAR(A) = P P, + PPy + PyBy + PyPy + PP + PPy (9)

Category A, accounts for the first 3 terms of VAR(A) via

1

l). Next, category A2 contributes P2P5 + PQPM’ PlP

having been already taken into account by category Al.

VAR(Z 5

P,P, is that portion of VAR(ZQ)

preceding A2, while P2P3 + P2P4 is explained by the

categories following A2. Category A3 contributes the

explained by the category



final term P3P4, the only part of VAR(ZB)

the preceding categories. Category A4 adds no new infor-

not explained by

mation, which follows from (3) with i* = 4. It can easily
be verified that VAR(A) remains unchanged under any re-
ordering of the 4 categories.

Gini (1912) proposed precisely the same formula for
VAR(A) uéing a very different approach. He first noted
that quantitative variance can be expressed solely as a
function of pairwise differences. Specifically, for a
discrete random variéble Y, taking on I posslble wvalues,

the variance 1is

1 1 2
VAR(Y) =5 = PP (Y; - Y) (10)
i=1 k=1
I I
1 2
=5 = = P.Pdj (11)
2 $21 =1 T k71ik
where
diy = lyi - Ykl (12)

Reasoning by analogy, for each of the (g) possible

pairs (Ai,A selected with replacement, define di as

k) k

d.,. =

1 if i # k
ik

0 if 1 = k

Analogous to (11), VAR(A) is then



1 I I
VAR(A) =5 = = PP
i=1 k=1
K#1
which is precisely the same as eq. (6). Thus, there are

at least two different Jjustifications for calculating the
variance of a qualitative wvariable by this formula.

In order to see the relationship between these ap-

proaches, define Zz as

14if Y = ¥,
7Y = { 1 (14)

1 O otherwise

and notice that Y can be expressed in the following

"

"algebraic-tree” form

1241 Fofpdp b oeee F Iply (15)

Calculating VAR(Y) directly from (15) we have

I
VAR(Y) = = COV(Y, Y, Z)
i=1 *
I 5 I
= iil [YiPi(l - Pi) - kil YiYKPiPk]
KA
1 I 5 ) I I I 5 : .
==z = Y.P.(1-P,)-2 = = Y.Y PP + = YP(lL-P
2 =1 11 1 i=1 k=1 = kK'i"k k=1 k™ k k
kA1
I I I I T I

= %[ 5 Y;P. ¥ P_ -2 % I Y.Y.P.P + 3 Y°p, = P. ]

_ i=1 k=1 i"k"i k k=1 k™" k =1 T
k#i k#1L i#k
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1 I 2 )2
=5 =z 3 (Y - Y.)°P.P
2 kel i=1 k i i "k
1 1 o
=5 iil P.(1 - POBL(Y - Y)Y # ¥.] (16)

Comparing (16) with (7) it is seen that qualitative
variance is the basic ingredient of guantitative variance.
Factoring out the qualitative portion from each term of
the guantitative wvariance converts from a fixed mean
formulation to a floating mean formulation where Yi serves
as the floating mean in the ith term.

Another convenient form for VAR(Y) is

VAR(Y) = s, P.P (Y, - Y,
1 1

1 k=1i+1

(17)

I MH

i

For Y continuous, letting g represent the density
for Y, VAR(Y) can also be expressed in terms of the mean

difference (for a proof see Kendall and Stuart (1963, p.
b))

Next, we introduce another polytomous variable, B,

classifying the population in J groups. The marginal

distribution for B is given by PP = (P?,PS,...,P?,...,P?)
and the joint distribution for A and B is given by

AB _ ,_AB _AB B
PP~ (P, PAR. P -
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The marginal and Jjoint distributions can be conven-
lently summarized in a 2-way table. The general I x J

table is illustrated in Table 1.

Define the dummy vector 7B - (Z?,ZS,...,Z?,...,Z?)
- AB _ , AB _AB AB AB
and the joint vector Z°° = (211’212""’Zij’""ZIJ) as
follows
B _ {1 if B = Bj
J 0 otherwise
and

VAR J

AB 1if A=A, and B = B,
13

0O otherwise

Notice that the Joint variable equals the product

of its marginal components
AB _ JA.B
.Z’ = Zizj (19)

The Jjoint distribution of A and B can be equivalently
thought of as the marginal distribution of the single joint
variable ABR. Viewing AB as a single polytomy with IJ

categories we then have from (1) and (9)

AB, _ _
VAR(Zij) = Pij(l Pij) (20)
and
1 I J
VAR(AB) = 5 2 % Pij(l - Pij) (21)



Table 1. The marginal and joint distribution

for A and B.
A\B B, B, ... B, TOTAL

p A
Ay b Pip ) Poo Pyg 1
A p p p ph
2 21 | Poo | -- 0J o
A 4 Py | Pro - | Prg Pé

B B B

roran PP B2, P
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Similarly, we introduce the discrete quantitative

X X

l, 2,-.., J.
Analogous to (19) define the joint variable YX as the

variable X taking on J possible values X

product of Y and X. We then have

I J
YX = 2 2 Y.X.Z¥X

; (22)
i=1 j=1 ~ I *J

and as in (16), the variance of the joint variable YX can
be expressed as
J

1_1351 Pij(l"Pij)E[(YX—Yin)gl(Y,X);é(yi,x_)]
(23)

=
| ™M H

VAR(YX) =

3. Derivation of the Correlation Ratios

The correlation ratio n2 measures the proportion of
the variance of the dependent variable explainable by the
independent variables. When the population regression of
the dependent wvariable is linear in the independent var-
lables, the correlation ratio equals the square of the
(linear) correlation coefficient p2.

In this section, the multiple correlation ratios are
derived when the independent variables are other than con-
tinuous. In the case of a qualitative or discrete (quanti-
tative) dependent variable, since this variable can be
viewed as a Jjoint variable, the generalization for

simultaneous equations to the "joint correlation ratio" is
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straightforward.

The variance of A will be partitioned into a portion
unexplainable by B and a portion explainable by B by par-

titioning VAR(Z?) and accumulating these two portions via

Ay _
VAR(Zi) =P, (1 -P)

J

= 5 P, (1 -P. .|P,+P .|P, - P,)
j=1 J 1J° J 1
J P, Py J P, . P,

=2 Pl -5+ 3 P (- By
J=1 J J J=1 J J
J J

= 3 P.VAR(Z,|B=B.) + = P.[VAR(Z,) - VAR(Z.|B = B.)]
5=1 i j=1 9 i i J

(24)
The first sum above, representing the portion of
variance of Z? unexplainable by B, equals zero corresponding
to perfect prediction of Zi from B if and only i1f the group
probability of being in category Ai equals one or zero for

each of the J groups. The second sum represents the
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explainable portion. It equals zero i1f and only if the
probability that A = Ai is the same for each Bj group.

From (7) and (8), the correlation ratio is thus

Light and Margolin (1971) developed this same measure
of association for samples (calling it Rg) by partitioning
Gini's varlance in a manner similar to that above using
conventional analysis of varlance techniques for this case
one one dependent and one independent variable.

This correlation ratio is identical to the Goodman-
Kruskal Tau-b, developed under somewhat different condil-
tions. Regarding this coefficient, Goodman and Kruskal
(1954, p. 760) write

It is clear that T, takes on values between

O and 1; it 1s O 1if ana only if there is inde-

pendence, and 1 if and only 1f knowledge of A,

completely determines By. Finally, Ty 1s indeter-

minate if and only if both independence and deter-

minism silultaneously hold, that is 1f all p b’s

but one are zero. :

Next suppose that there are M dependent (endogenous)
variables, the mth of which has Im categories and G
independent (exogenous) variables, the gth of which has

Jg categories. Then a 2 way table can be formed whose

1= Il X 12 X oee X IM rows represent all possible groupilngs
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of the dependent variables and whose J = J; X J5 X ... X J

1 2 G
columns represent all possible groupings of the independent
variables. Hence, any joint correlation ratio can be
calculated from the usual formulae treating the dependent
variables as one Jjoint dependent variable with I categories
and the independent variables as one joint independent
variable with J categories.

For example, Table 2 illustrates the 2-way table for
the case of two dichotomous dependent variables and two

dichotomous independent variables.

For this case we have

by by (P. . P..P, )
L P K4 2
2 _(1,3) (k8) ke 7 il (26)
"AB.CD S
2y i

Now consider the case of a gquantitative dependent
variable Y and either a qualitative or gquantitative dis-
crete independent variliable X. The regression of Y on X is

J
E(Y|X) = = W.Z (27)

where



Table 2.

The marginal and joint distribution for

AB and CD where A, B, C and D are

dichotomies

C1P1 CyPp G0y CoD,
Pi111 | Pi11e | Frien | Frieo
1P1211 Fio1o | Prop1 | Fiooe
:?2111 For12 | Fo1o1 | Poies
'&2211 Poo1o | Fooo1 | Fooog
w o

TOTAL

PAB

11

PAB

12

PAB

21

PAB

22

17
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From (17), withle in place of Y, we then have

J J
2
VAR[E(Y[X)] = 2 3 PLR (g -y (29)
J=1 k=j+1 J
and the correlation ratio 1s calculated from the usual
formula
2 _ VAR[E(Y|X)]
y.x T T VAR(Y) (30)

The correlation ratio is zero if and only 1f the
conditional expectation of Y given X is the same for all
values of X. It 1s unity if and only if Y is an exact
function of X. It can easily be verified that n2 is in-
variant with respect to any linear transformation of Y
and does not depend on X at all.

For Y discrete, “j can be written in terms of the

probabilities
I
Y= % Y70
i=1 *
so that
I J Pii oy
B(Y[X) = 3 ¥, 3 L7y
i=1 j=1 35 ¢
J I P.
- > 5 y, 24X
i P. J
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and thus from (27)

I P,
W, = 2 Y, =< (31)
U
For this case (29) becomes
J g T P P\|°
VAR[E(Y|X)] = = z PP Z |Vl -5 (32)
j=1 k=j+1 ¢ 1=1 j k

In the case that X is discrete (as opposed to quali-

tative) define q and Bj as

o = . where X., = 0
UJ* g%
and
Bj = u;-a for Xj #0

Then (27) becomes

_ X X X
E(Y|X) = a + B X 27 + BX, 25 + ..+ BX ZY (33)
In this case, the correlation ratio reduces to the square

of the coefficient of determination p2 iﬁ»the following

2 cases
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4. The Additive and Multiplicative Effects Models

The general simultaneous equation models developed

M

in Magidson (1975) consist of 2° - 1 endogenous variables

and 2G

- 1 exogenous variables. These represent all inter-
action variables in addition to the M first order endo-
genous and the G first order exogenous variables. The
endogenous variables are either 1) all quantitative and
discrete, 2) all qualitative or 3) one continuous variable.
The exogenous variables are either 1) quantitative and
discrete, 2) qualitative or 3) a mixture of these two.

In this section we consider the case of G = 2 first
order exogenous variables. The extension to the general
case for G > 1 1s direct. We first suppose that the
endogenous variables are qualitative.

Let A represent the joint variable composed of all
endogenous variables and let BC represent the joint wvar-

iable consisting of the 2 exogenous variables B and C.

Defining the regression of A on BC in terms of the infor-
BC

mation equilvalents ZA and 7 we have
70| 2°°
£(alBe) = B(z*2%) = B[ 222 (34)
Ay BC
zI|z

Thus, the regression of A on BC can be decomposed

into I separate sub-regressions. The ith sub-regression
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can be expressed in a form where the regression cceffilcients

are the group probabilities, as follows

J K
Ay BC BC
E(z;|z277) = = = B, .. 7. (35)
i j=1 k=1 ijk jk
where
P15k BC
By = P = Prob(A = AileK = 1) (36)

We wish to arrive at separate measures for the effect

of B, of C and theirinteraction on A. To accomplish this,l

consider having information regarding the values of the
BC BC BC

disjoint variables ij, ZJE’ and ij where
BC _ 1 if B = Bj and C # Ck
7% = (37)
J 0O otherwise

and
BC _ 1 if B # Bj and C = Ck
I = (38)
d O otherwise

. . . BC

Similarly, define ZEE by
BC 1 if B # Bj and C # Cy
J O otherwise

We then have the following '"collapsed" model

1
The approach taken in Magidson (1975) is different from the approach
given here and is consistent with the regression approach to ANOVA.

When all variables are dichotomous, the two approaches coincide.
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A, ,BC ,BC .BCy _ BC _BC _ BC
B(21250 2% 750 = Bylag + By grZa% + Byl
BC
" Py (+0)
where
P.. - P.. LT
B, = Pt = "1k (41)
ME T T e B
P., - P,. -
8.— = ik ijk _ Pijk (42)
ik P - P._ - P-
k Jk - jk
and
P, - P,. - P.. + P.. —
8. = 11 %J Plk 5 ijk _ PiJk (43)
13K " - P. - T P, = P
= 37 kT ik PIx

The 4 independent variables in (40) can be decomposed

symmetrically as follows

BC _ 1 B C BC
ij = 4(1 RS Xjk) (4lL)
BC _ 1 B _,C _BC
7o = 4(1 + Xy - X - X (45)
BC _1l,, B C _ ¢BC
73y = 4(1 X5+ Xy Xjk) (46)
and
BC _1l,, B _C BC
ZEE = 4(1 XJ X + Xjk) (47)

where
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s 14f 7ZB = 1
XD = J (48)
J -1 otherwise
. 1 if zg -1
X = (49)
-1 otherwise
and
BC _ B C
Xip = XjXg (50)

For an example with J = k = 1 for 2 trichotomies see
table 3. Substituting eqs. (44) - (47) in (40) and col-

lecting terms yilelds

A, BC ,BC _BCy _ .A AB. B Ac.C ABC.BC
E<Zi|ZJK’ZJE’ij) = AL+ Aijxj + ATRX Aijkxjk (51)
where

E_1

Mo p(Bisk T PigE t By T ByTR) (52)
AB _ 1

Mg =B~ Byt Bigx - Byaw) (53)
AC _ 1

Mg = 7(Bigk - Bigk t Py - Bysw) (54)

and
ABC _ 1
Mgk = 5 Pagk " Pigk - Pigk t PR (55)

The analysis of wvariance formulation induced by

model (51), called the collapsed version of MANQUOVA, is
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Table 3. Illustration of the decomposition of the
collapsed joint wvarilable
S T S T
11 1 0 0 0 1 1 1
12 O 1 O O 1 -1 -1
153 0 1 0 0 1 -1 -1
21 O O 1 O -1 1 -1
22 0 0 0 1 -1 -1 1
23 O O O 1 -1 ~1 1
51 0 0 1 o -1 1 -1
52 0 0 0 1 -1 -1 1
2 3 0 0 0 1 -1 -1 1
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A ,BC _ A, BB, ,AC , ,EBC (56)

i i3 7 Mkt Ak

Let us consider the example in table 4 where it is de-
sired to measure the effect of an advertisement on the
probability of buying a product. Since A is a single
first order variable, the simultaneous equations model
reduces to a regression model. Also, since A is dichoto-
mous (I = 2), model (34) simplifies to a single equation,

the second equation belng a restatement of the first. We

have
A, _BC BC BC C BC
B(Z712°7) = By1 277 + ByppZag + BipyZoy + BiopZos  (57)
and
\B - l(B + B + B + Binn) 6 (58)
1= 5WPy17 * Bygo + Biog + Byop
AB 1 _
M7 = 7(Bygy - Bioy + Bryp - Bipn) = 2325 (59)
Ac 1
M1 = 7By - Brip ¥ By - Bipp) = 4125 (60)
and
ABRC 1
A1 = 7(P111 ~ Prap  Pipg *F Bigp) = -0l (61)

_ ABC
12 7 TM11 12 = "h11 @ 1op = “A115 = “Aoy = Aqg

(62)

A _ ,AB ,EC _ ,AC _ . ,EBC _ _,ARC , ABC
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The main (overall) effect of that ad is given by
A%g. It equals the total difference in the purchase be-
havior of the experimentals over the controls for the two

sexes divided by 4, i.e., Kég = %(.05 + .45).

The interaction effect 1s given by X??i- A zero
interaction effect indicates that the difference in purchase
behavior between the experimentals and controls is the
same for both sexes. The interaction effect thus measures

the extent to which sex 1s relevant for measuring the

ABC _ 1
effect of the ad, Xlll = E(.OB - .45)._
XAC

Notice that 1f the main effect 11

117 were both zero, from (60) and (61) it

follows that the probability of buying for the experimentals

and the interac-

tion effect A
and controls is the same for each sex.

(XKC _ XEBC - 0) —> (B _ g

11 = M1~ 171 = Bypp and Bipy = Bioo)  (63)

The main or overall effect of the ad will be zero if
the ad increased the probability of buying for (say) males
the same amount as it decreased the probability of buying
for females. In this case, the interaction effect will be
nonzero, indicating that one needs to look at the effects
for males and females separately.

The classical formulation for the analysis of wvariance
is defined for a quantitative dependent variable Y. Taking
Y = z?, the classical ANOVA (see e.g., Scheffe” (1959, p. 91))
yields the identical effect parameters as MANQUOVA for this

example. In general, the two formulations do not coincide

even when all variables are dichotomous.
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A major difference between the two formulations occurs
when some of the variables have more than 2 categories. For
example, suppose that B represents marital status where By =
married, By = single and B3 = widowed/divorced. Equation (54)
leads to 3 measures for thé main effect of the ad corresponding
to the 3 levels of B. If the effect of the ad were positive
for the married group and negative by the same amount for the.
unmarried, the first measure would equal zero. Similarly, if
the effectwere positive for singles and negative by the same
amount for nonsingles, the second measure would equal zero.

The main effect of the ad is said to be zero if and only if all
3 measures are zero.

Notice that no arbitrary restrictions are imposed on the
MANQUOVA parameters such as certain parameters summing to zero.
For this reason, the MANQUOVA parameters are more easily inter-
pretable than those of ANOVA.

In table 5, the 2-way table is given in which the sex
variable is omitted. In this case, it appears as if the ad has
had a negative effect, reducing the probability of buying from
.82 to .54.

This spurious result is due to an omitted variable in a
quasi-experimental or nonexperimental design. When randomiza-
tion is possible, spurious results such as these can be avoided
(see Campbell and Boruch).

In the case that A is ordinal, one might also wish



Table 5. The 2-way table

29

1 Co
EXPERIMENTALS CONTROLS
() BUY 5950  (54%) 9050  (82%)
(A5) NO
BUY 5050  (46%) 1950 (18%)
11000 (100%) 11000 (100%)
.95(1000) + .50(10000)
EXPERIMENTALS 506 - .54
CONTROLS -90(10000) + .05(1000) _ g,

11000
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to use the following cumulative formulation along with (56)

j_*
A, .BC _ ~ BC _
E(iil zilzjk = 1) = Prob(A < Ai*lzjk = 1)
I L A?B + s x.g + s ABE
i=1 Y 41 o4 1 j=1 1Y
(65)

where the categories of A are ordered say from low to high.
Analogous to the additive effect models, a multipli-
cative effects model can be developed. The multiplicative

version of (51) is

A[ZBE’Z?E’Z§E> = Ti(Tij>XJ(Tik)XK(Tijk)XJK (66)
where
Ty = (BijkeijiﬁijkBiEE)l/u (67)
T3 = CanfiwPige ij'l?:')l/LL (68)
Tik = (By5Bi/PysiP 131<)1/LL | (69)
T = By 5P ise/By swPiie) (70)

A multiplicative effects model for the odds can then

be defined as follows

For A nominal, the model is



31

A, BC ,BC _BC
EBC _ (2,125 255 75y
ijk = T _ o, K . BC _BC _BC
1 E(zilzjk,zjk,zjk)
X X X,
_ J k Jk
where
_ 1/4
Y1 = (05 50 R0 30 TR
- 1/4
Yig = (0 50 5/ 03005 3%)
- 1/4
Yik = (93 56955% wiJEwijE)
- ¢, , /U4
Vige = (05 5003 3%/95 52055
. = Bisx
ijk 1 - i3k
B i3k
9Tk =TT o
J ®1Tk
ete.

In the case that all variables are dichotomous, (71)
is identical to Goodman's model (see Goodman (1972b)). In
the general case, the formulation is somewhat different
(see e.g. Goodman (1971)).

For A ordinal, one can also use the followlng formula-

tion which utilizes the ordering of A.
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7B c
B E( z lzBi, Bk,zﬁg)
ARC i=1 J J J (72)
1% Jk 1 SA| 7BC ,BC BC
B( 2 ZolZ00, 708, i)
i=1*+1 J J J

where the same notation from (71) applies except that

i*
Prob(A < Ai*lzgg -1 2 P )
@ . = =
TIE T prop(a > Ai*lz§§ = 1) : :
i=1*+1 1k
i*
Z1 Pidx
L = =L (74)
Wix3k T
% B,=
i=ix+1  LIE
etc.

For a discusslon of the conditions under which an
additive effects model will yield results similar to a
multiplicative effects model see Goodman (1974). For a
comparison of the results for certain data sets see Swan
(1975) .

When the endogenous variable(s) are quantitative we
have the same results, the regression coefficients again
being the group means. For Y a single continuous variable

or a Jjoint discrete variable we have
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J K
BC BC
E(Y|z™7) = jil Kil MyeZ3n (75)
where
My = E(le]j.)i = 1) (76)

Thus, for the MANQUOVA formulation, proceeding as

before, we define ij, ufk’ and W% as follows

Pu., - P,u.
_ = BC _ - _J-d jet gk
usg = BlZg = 1) = <5, (77)
J Jk
P P..u.
BC e T Ttk
— = E(Y|z% = 1) = (78)
Jjk jk Pk - ij
w - Ppu. - Pu_ +P e
= _ _ J K™k JK”jk
“jk = E(Y‘ij— 1) = T - P, = PK TP (79)
k
where
J K
W= S 2 P.u.
j=1 k=1 Je g
J
= > P.u.
j=1 99
K
= = P
ey KK

We then have
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_ _ B C BC
= 1) = A + kj + xk + kj (80)

where
A= i o by o)
Lk Jk Jk Jk
S %(UJK " M3 FUE - R
K}E = %(uJk T MR f MTy - uTE)
and K?i = %(UJK - BiE - M3, FoHTE)

5. A Suggested Estimation Procedure

Regarding the multiplicative effects model for the
odds, a maximum likelihood estimatlon algorithm can be
found in Goodman (1972a). Regarding additive effects models,
various estimation methods have been proposed. See e.g.

Cox (1970), Zellner and Lee (1965) and Nerlove and Press
(1973) for some discussion of these.
In this section a new estimation procedure is sug-

gested resulting in asympototically unbiased and normal

estimators. At the end of this section 1t is shown how
missing data can be handled in a straightforward manner
without making any assumptions.

Consider the regression of A on B where for simplicity
we assume A and B are qualitative. As in (35), for each

category of A we have
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J
Zo = 3 B..77 + e. (81)

where €5 is the orthogonal component of Zé with respect to
B, 1.e., the regression error term.

From (10), the error variance is

I
VAR(e) = 5 = VAR(e,) (82)
i=1
But

VAR)—§P16)2PP) B, .)°

(ej_ - j=1 [ lJ( - ij + ( j - ij (O - ij ]
3 e (1-8.)%+ (P, - P, .)B2.] (8%)

- 2 g 1 17 TPy

Thus far this discussion has been 1n terms of popula-
tions whereas in practice one deals with samples from

generally unknown populations. Given a sample of size N

?? represent the observed

from an unknown population let f
frequency of A = Ai and B = Bj’ The error sum of squares
from the sample as a function of B 1s then

J  __AB

_ 2 B oABy g2

Nof =
P M~

SSE(B) =

where
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J
f. = X f.. = observed frequency for A = Ai'

It can easily be verified that SSE(B) is convex in

B. Minimizing (84) directly ylelds the sample proportions

>
H

= _ll (85)

which in the saturated (unrestricted) model are the maximum
likelihood estimates for B.

Now suppose we wish to test the hypotheses given by
some unsaturated model Hk' Since the observed proportions
are consistent estimates of the true proportions under
mod el Hk’ we choose the estimates for B which solve the

following constrained minimization problem

min SSE(R)
B
subject to
1) H, is true
J
2) > f'BB.. = 8 for each 1
2 JUig i
j=1
I
3) 5 B,. =1 for each j
o P
1=1
and
4) 0« B..<1 for each (i,Jj)
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The second constraint fixes the marginal distribution
of A. f?/N can be considered to be the (prior) probability
that A = Ai; prior to receiving information B. Under
certaln circumstances, one might wish to use other wvalues
than £} for constraint 2.

The 3rd and 4th constraints incorporate known infor-
mation into the model, namely, that probabilities are be-
tween O and 1 and sum to 1. 1In the case that these con-
straints are binding, they improve the efficiency of the
estimators.

Under additive effects models such as the new ANOVA
formulation, most hypotheses correspond to linear restric-
tions. In this case, the estimates for B will be those
estimates which minimize the Lagrangian.

Expected frequencies are then calculated by

AB _ 5
Fig= T jsij (86)

and model Hk is tested using the usual chi-sguare goodness
of fit test or the likelihood ratio chi-square test. For
details on these tests see Goodman (1972a).

In the case of missing data (empty cells) we proceed
as follows. Suppose for example, the 1lst 3 cells in the
ith row of the I x J table are missing. This corresponds

B B B

to no information being provided regarding Zl’ 22 and Z5

toward the explanation of Z?. We thus have



A
E(z;12

where

B B

1o Zesens
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J
By _ B B B B
,ZJ) = Bij*(zl + Zg + ZB) + ji Bijzj
(87)
3
by P 5
_ J=1
Bygx = I3 (88)
S P,
j=1 9

Thus, missing data fits into the model by collapsing

the cells in each row having missing data and taking

J
f.., =14 - 5 f,. 89)
1j* 1 =l 1j (

0f course if other information is used regarding the

empty cells, (89) 1s revised accordingly.
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