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Abstract

We consider an environment with a single divisible good and two
bidders. The valiations of the bidders are private information but oue
bidder has a commonly known budget constraint. TFor this environ-
ment we derive the revenne maximizing subsidy free incentive compat-
ible anction. We also cxamine the case when the budget constraiut is

privale information but bidders must post a bond.
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1 Introduction

A seller facing a collection of budget constrained bidders recognizes that
such constraints limit the revenue she can generate from the sale of an item.
The most obvious limitation is the size of the budgets themsclves. They
also hinder compectition. If onc knows that a competitor cannot bid beyond
a certain amount, this reduces the bid onc needs to place to sccure the
object. To stimulate competition amongst the bidders, the seller must favor
some bidders and handicap others, perhaps by setting reserves or subsidics.
While such schemes may increase expected revenues they do so by imposing
greater risks on the scller. A reserve, for example, would mean that a trade is
sometimes not executed. Finding the right combination of carrots and sticks
in this environment to stimulate bidding is thercfore an important problern.
It is also a difficult one becanse an analysis must deal with the uncertainty in
both a bidders valuations and her budget constraint. The diflicultics are not
unique to this instance but arise in many environments where the private
information of a bidder is multi-dimensional (sce, for example, Rochet and
Chone (1998) and Rochet and Stole (2003). For this reason attention has
focused on special casces.

Laffont and Robert (1996) assnmec that valuations arc private but that all
bidders have the same common knowledge budget constraint. In this envi-
ronment they derive the subsidy free revenue maximizing Bayesian incentive
compatible auction. Since all bidders have the same budget constraint, the
analysis sheds no light on the balance between carrots and sticks. The same
cnvironment is assumed in Maskin (2000) where he examines constrained
cfficiency. Again, the symmetry in the budget constraints sheds no light on
how the scller should handicap one bidder at the expense of another.

In the same cnvironment as Laffont and Robert, Gavious, Moldovanu
and Scla (2000) compare the revenues to be realized from the standard
auction forms. Che and Gale (1996) assume the valuations to be common
knowledge but the budgets private information. In this environment they
compare the revermes to be realized by the standard anction forms. In
addition they examine policies like joint bidding and subsidies and conclude
such policies can help to increase the revenne over the standard auction
forms. Che and Gale (2000) assume a single buyer with private valuations

and a private budget constraint and derive a revenue maximizing, Baycsian



incentive compatible sclling mechanism. Since the model involves a single
bidder it sheds no light on the issue of competition amongst bidders.

In this paper we consider a problem with two bidders, independent pri-
vate valunations, bidding for a divisible good. One buyer has no liquidity
constraint (the nnconstrained bidder), while the other has onc. Further-
more, the identity and budget constraint of the constrained bidder is com-
mon knowledge. In this environment we derive two mechansims. One is
revenue maximizing, dominant strategy incentive compatible and ex-post
individually rational. The sccond is revenue maximizing, Bayesian incentive
compatible and interim individually rational. Tn addition, we cxtend the
analysis to the case when the budget is private information (but not the
identity of the constrained biddder) but the constrained bidder must post
a bond. In this casc we show how this casc reduces to the case when the
budget is common knowledge.

All the mechanisms considered arc subsidy free. However, as noted by
Zheng (2001), offering subsidiecs may be profitable for the seller. In our
model the effect of a subsidy can be computed by increasing the relevant
budget constraint and determining if the increase in expected revenue is
sufficient to cover the cost of the subsidy.

Two qualitative features of the derived mechanisins differ from the clas-
sic optimal mechanism of Myerson (1981) which assumes all bidders are
unconstrained. Under a monotone hazard assumption on the distribution of
types, Myerson shows that an optimal mechanism will allocate the good to
the agent with the highest non-negative virtual value. In the environment
considered here, the optimal mechanism may assign a portion of the good to

the agent with the lowest virtual value. !

Furthermore, the good, in some
cascs, is allocated to an agent with a negative virtual valuce.

What drives the first difference is the following observation. Supposc
the constrained bidder has a value/type i and a budget b. As long as one
can offer this bidder a quantity ¢ > b/i onc can charge her b. Notice that
no higher payment from the constrained bidder can be extracted by offering
morc than b/i. Hence, it may pay to allocate a portion to the unconstrained

bidder cven though she may have a lower virtnal value. For the second

'Although we assume the good is divisible, one can interpret a fractional allocation as
the probability of assiging an indivisible good. In this sense our results carry over to the
case of a single indivisible good.



difference, suppose the virtual value of both bidders is negative. It may still
be profitable to offer the constrained bidder at least ¢ > b/i becanse one can
cxtract b.

Perhaps the most important lesson to be learnt from the analysis is that
the scller must sometimes withold the good from the nnconstrained bidder
cven if she happens to be the highest bidder. In the event that the uncon-
strained bidder submits a bid that exceeds the budget of the constrained
bidder, the mechanisms derived here, require that the high bid must exceed
the budget by a fixed amount in order to sccure the good.

Ther remainder of this paper is divided into three sections. One de-
voted to the dominant strategy incentive compatible case, the second to the
Baycsian incentive compatible case and the third to the case of the budget
being private information. In a departure from custom we assume a discrete

type mvmco.m

This allows us to employ simple arguments involving lincar
program’s to derive the results. It is clear what the continuons analog’s of

our results arc.

2 The Dominant Strategy Incentive Compatible
Case

Let {1,2,...,m} be the set of possible types, f; > o the probability that a
bidder is of type 4, F(i) = M)Q.H_ fiand v; = 1~ ~ EAO) _ the virtual value
of type 1. We assume that virtual values arc W:o:oﬁo:o in types (the hazard
condition). We usc ¢ to denote the type of the unconstrained bidder and s
the type of constrained bidder. T.ct b be the known budget of the constrained
bidder.

Our goal is to derive the dominant strategy incentive compatible, ex-
post individually rational mechanism that maximizes expected revenue. As
is standard, we invoke the revelation principle to restrict attention to direct
revelation mechanisms. Let a(t, s) be the allocation to the unconstrained
bidder when the profile of reported types is (¢, s) and ap(t, s) the allocation
to the constrained bidder when the profile of reported types is (#,5). The
payment that each makes at the profile (¢, 5) is denoted by P(¢, s) and Py(t, s)

?Nevertheless this is consistent with the carly work on optimal mechanism design by
Harris and Raviv (1981).



respectively.
Dominant strategy incentive compatibility (IC) requires that

ta(t,s) — P(t,s) > ta(t',s) — P(t',s) V' # 1,

sap(t,s) — Py(t,s) > sa(t,s’) — Py(t,s') Vs' # s.

Introducing a dummy type ¢ = 0 and invoking the subsidy frec assumption
allows us to sct (0,s) = Py(t,0) = 0 and a(0,s) = as(t,0) = 0. This
cnables us to fold the individual rationality (IR) constraint into the (IC)
constraints.

The next two results are standard so proofs arc onnitted.

Theorem 1 An allocation rule is dominant strategy incentwe compatible iff
it is monotonic. That is a(t,s) > a(t',s) iff. t >t and ay(t,s) > ap(t,s)
iff. s> 8.

Theorem 2 All IC constraints are tmplicd by the following:

ta(t,s) — P(t,s) > ta(t — 1,s) — P(t - 1,5) Vi <,

ta(t,s) — P(t,s) > ta(t + 1,s) - Pt +1,s) V&t <m — 1

sap(t,s) — DPy(t, ) > sa(t,s — 1) — DPp(t,s — 1) ¥s <.

sap(t,s) — Py(t,s) > sap(t, s+ 1) - Py(t,s +1) Vs <m — 1

The problem of finding the optimal auction is formulated as a lincar

[



program below.

m

OPT)Z = max  SOS" LLIP(s) + Pyt o)

Pi(tys), Plt,s) 2 =

s.t. ta(t,s) — P(l,s) > ta(t — 1,8) — P(t — 1,5) VI <'m
ta(t,s) — P(t,s) > ta(t+1,5) =P+ 1,5) Vi <m — 1
sap(t,s) — Py(t,8) > sa(t,s — 1) — Py(t,s — 1) Vs <m
sap(t,s) — Py(t,8) > sap(t,s + 1) — Py(t,s + 1) Vs <m — 1
a(t,s) > a(t —1,s) Vt <1m,s

ap(t,s) > ay(t,s — 1) Vs <, it

Py(t,s) < b Vi, s

a(t,s) + ap(t,s) <1Vt s

a(t,s),ap(t,s) > 0 Vi, s

Fixing the a’s, ap’s and the type ¢ of the unconstrained bidder, P,(2,-)
can be expressed as a shortest path length in an appropriate network.

In this network there is one vertex for each type s of the constrained
bidder, including the dummy type. The vertex corresponding to the dummy
typeis called the source vertex. For cach type/vertex ¢ > 1 there is a directed
cdge (0,2) of length b (only the edge from source to vertex 4 is depicted).
Between the source and vertex {1} there are two parallel edges. One of
length ap(t, 1) and the other of length b.

Between ¢ and 72 + 1 there are two edges. One directed from i to i + 1
of length (i + 1)[ay(,7 + 1) — ap(2,7)]. Monotonicity of the allocation rule
implies this edge has non-negative length. The other edge is directed from
i+ 1 to 7 and of length 2{ap(t,2) — ap(t,7+ 1)] < 0. A portion of the network
is depicted in Figure 1 (the edge of length b from the source to vertex 1 is
not depicted.)



G+ Dlap(t, i+ 1) — ap(t,2)]

~i[ap(t, 7 + 1) — apft]1)]

Figure 1

The edges directed from left to right correspond to ‘downward’ 1C con-
straints while the edges in the opposte divections correspond to ‘upward’ IC
constraints. An implication of monotonicty of the ay’s is that there are no
negative cycles in the network.

The largest value that P(¢,7) can take is the length of the shortest path
from the source to vertex 2. The abscnce of negative length cycles means
these shortest path lengths are well defined. In this network there arc at
most two candidates for the shortest path from the source to 7 < m. One
from left to right and onc from right to left. Let L2(#) be the length of the
path from node 0 to node 7 that is from left to right, and R2(#) be the length
of the path from node 0 to node 7 that is from right to left. In particular
Li(t) = 0, L(1) = Y240 + Dlas(t,d + 1) - ap(t,5)] Vi > 0. Similarly
RY(t) = b Mwaum_ dlas(t, 5 + 1) — ap(t,5)] Vi < m and RE,(t) = b. Clearly,
Nquq Q = :::AN:QY NWAQVV

A similar network can be constructed to determine P(i,s). Tt will be
identical to the one in Figure 1 except the cdges of length b from the source

?

to cach vertex ¢ will be absent. It is casy to sce from an identical analysis



that

!
—_

P(i,s) = S G + Dlal +1,5) — a(j, )]

<.
Il
c

We can rewrite [OPT] as

TR T

Z = max MM&ZE?.& + Dy(t, 5)]

3 (1 ) 2
Py(t,5),0°(1.5) PR

s.t. Py(t,s) = min{L.2(1), R2(1)} ¥t, s
-1

P(t,s) = MC + Dalj + 1,s) —a(jg, s)] Vt,s

3=0
a(t,s) > a(t —1,5) Vi <m,s
ap(t,s) > ap(t,s — 1) Vs <m,t
a(t,s) + ap(t,s) < 1Vt,s
alt,s),ap(t,s) > 0 Vt, s

Straightforward algebra shows that

mooTn t—1
MM? bs) =3 > SO G+, 5)--a(h, ) Mzmbf

t=0 5=0 t=0 5=0 5=0 s=0  t=0
Substituting this into [OPT] to:

NH~ (t,s) :QJVM\.LM\.‘SD _+MM.§.\¢~V@ ;mv

s={) t=0 t=0 5=0

s.t. Py(t,s) — min{L.2(t), R°(t)} ¥, s

a(t,s) > a(t - 1,s) Vt <m,s
ap(t,s) > ap(t,s — 1) Vs <m,t
a(t,s) + ap(t,s) < 1Vt,s
a(t,s),ap(t,s) >0V, s

Monotonicity of the ay’s implies that 12(t) < NELA ) and b > R2(t) >
WSLA ) for all t. Hence the budget constraint is already incorporated into
the formulation.

$)|-



Consider now the following relaxation of [OPT] which we call [rOPT).

- AMSV..\UMN VM .\.LM .\.‘\GNQA? ¢v_ + M M .\.n.\.v.Nur:u .nv
biL,8),a(t,s s=0 =0 t=0 s=0

st Py(t,s) < Lb(1) vt, s

Py(t,s) < bhVi,s

a(t,s) > a(t —1,s) Vt <m,s

ap(t,s) > ap(t,s — 1) Vs <1, t
a(l,s) +ay(f,s) <1 Vi, s
a(t,s),ap(t,s) > 0 Vt,s

Lemma 1 There s an optimal solution to [rOPT) such that 12(t) < b for
all s and t.

Proof

Amongst all optimal solutinons to [rOPT]| (this forms a compact sct) pick
one that minimizes D = S max{L?%,(t) — b,0}. If D = 0, monotonicity of
the ap’s implics that L2(t) < L% (t) < b for all s and ¢ and the proof is com-
plete. Suppose therefore that D > 0. Hence there is a ¢ such that L2, (1) > b.
Let k be the smallest index such that ap(t, k) == ap(t, k+1) = ... = ap(t, m).
Notice that ap(t,m) > 0. Construct a new solution by reducing ay(s,t) for
all s > k by ¢ > 0. Obscrve that this docs not influence (¢, s) for all s.
For s < k we have that ay(t,s) < ap(t, k) and so for ¢ sufficiently small the
new solution is still monotonic in the allocation variables. Thus, we have a
new solution that is feasible, optimal but with a valuc of D that is reduced,
a contradiction. N

In view of lemma 1 and the monotonicity of the a’s we can write [rOPT]|



{a( nH:w.MnQ mvaM\a.\.L\SD “h + v Qcﬁ vhv_ ATV

s.t. a(t,s) <alt+1,s) Vi, s
ap(t,s) < ap(t,s+ 1) Vi, s
a(t,s) +ap(t,s) <1Vt s
a(t,s),ap(t,s) > 0V, s

m—1

> (s + Dlap(t, s+ 1) — ap(t,5)] < bV

$s=0
Notice that any solution to this last program is feasible for [OPT] as well.
This is becanse L2(1) < b= Li(2) < R4(3).

2.1 A Relaxation of problem (P)

We relax problem (P) by removing the monotonicity constraints on a.

{a(t,s) M:wwn& s)} M M fifslalts s) + vsap(t,5)] (1)

s.t. ap(t,s) < ap(t,s+ 1) Vi, s
a(t,s) + ap(t,s) <1Vt s
a(t,s),ay(t,s) > 0V, s

m—1

> (s 4 Dlos(t, s +1) — ap(t,5)] < b V2

5=0
We will solve (Pq) and it will be verified that the solution satisfies the
omitted monotonicity constraints. Thus the rclaxation is exact.
Problem (Py) itself can be decomposed into a collection of independent

sub-problems indexed by the type ¢ of the unconstrained bidder:

fslvalt,s) + vgap(t, s P
iy S Fel () ()

s.b. ap(t,s) <ap(t,s+1) Vs
a(t,s) + ap(t,s) <1Vs

3
Los

may(t,m) — ap(t,§) <b Vit

—

.

10



We divide the solution of (P;) into two cascs.

2.2 Solution of (P,) when v, > 0

We can deal with the monotonicity constraints on the ay’s by a change
of variables. Let ay(t,s) = > 7, A(t,4) where A(t,4) > 0 for all i. For
convenicnce set wy = Muwzuv fjv; for all 5. Replacing the ap’s by A’s in
problem (I?;) yiclds:

max fsmalt,s) + wA (L s 1.7
(e 58y 2 10 2) 4 2 A1) e
st a(t,s)+ Y A(t,i) < 1Vs
i=1
Mmb?i& <b
s=1

a(t,s), Alt,s) >0 Vs

Tt is casy to scc that there is an optimal solution to (I.PP;) such that a(t, s) +
S A(t7) = 1 for all s. If not, i.c. a(t,s) + > 7., A(t,i) < 1 for some s,
increasc a(t, s). Since v > 0 the objective function cannot decrcase. Given
this we can usc the cquation a(t, s) + Y., A(%,7) = 1 to substitute out the
a(t,s) variables. Specifically a(t,s) = 1 — 3.7 | A(t,2) for all 5. Thercfore
(I.P) becomes:

(ol :u_wwm . M fsv|l — M A(t,4)] + ME.,,DT; 5) (L.Py)
a(t,s),A(s,t

s5=1 i=1 s=1

st > A(td) < 1Vs

=1
™

M.J.DQ“ s) <b

A(t,s) >0 Vs

A second obscrvation is the constraints 37 | A(t,4) < 1foralls =1,... ,m—
1 arc all implicd by the constraint 307, A(t,7) < 1. This allows us to reduce

i=1

11



Arﬁumv to

m

max M Fsvel — M At )] + M wsA(t, ) (1.Py)
s=1

{a(t.5).8(s,)} i=1

T
st. > A(ti) <1
i=1

M sA(t s) <b

s=1

A(t,s) >0 Vs

Simplifying the objective function and introducing slack variables 1y and 1y
to make all constraints hold at cquality produces:

7

max D filvi —v)]AG, ) + > faon

B =1
s.t. M Alt,s) +up =1
s=1
m
M sA(L,8) +uz =b
s=1

AL, 8),u; >0 Vs, i

The extreme points of this last lincar program fall into onc of three

categories because it has only two constraints.
1. Exactly onc 7 such that A(t,4) > 0, 3 > 0, up = 0.
2. Exactly one ¢ such that A(¢,4) > 0, u; = 0, uy > 0.

3. Exactly onc pair (p,q) with p # q, p < b < gq, A(t,p), A(t,q) > 0 and
uy = ug = 0.

From cach category we choose the extreme point with largest objective fune-
tion valuc. The optimal solution must be the extreme point from the three
chosen with largest objective function valuc. The best extreme point of cach

type is listed below.

12



1. Category 1:

Let vl = arg maxgsp E
Sct DQLLV — e ,up =1 — M and uy = 0.
MU“.._LL Ji(ui—w) m
The objective ?:: tion valuc of this solution is b= ||.,.II+M.,.H_ .

2. ONHONOH% 2:
Let 7% = arg max,<p[d i, fi(vi—vy)]. In fact, by the monotone hazard
condition, when b < t, r9 = b and when b > ¢, ry =
Set A(t,7%) =1, u; = 0 and uy = b — r?
The objective function value of this solution is D7 o fi(ve — vy) +

Yo fevr
3. Category 3: Lot

T

) . - x \ o k)
() = fi ) 52 fil )+ = idmd > filwe )
t=p 1—q

mQDQ:ﬁJ, %wmwii DQ;QJ\ ﬁm.wtv N:LEH:NHC.
In fact we can pin down the category 3 solution even further. Sup-
pose first that b < ¢. Then, by the monotonc hazard condition,
ME fi(v; — ) is maximized when ¢ = ¢ and MS‘ fi(vi —wy) 1s max-
_::Noa when p = b. In this case the category 3 solution is A(t, p?) = 1
and A(t,4%) = 0,i.c. acategory 2 solution. A similar argument applics
in the casc when b > ¢

Thercfore, only category 1 and 2 solutions apply.

Theorem 3 Ifh >t then A(t, 1) = 1 is optimal. Ifb <t then A(t,r') = &
is optumnal.

Proof
Supposc first b > t. By the monotone hazard condition, %
non-increasing for s > t. Hence

by filvi — )

arg max =h.
s>b S5

In this casc the objective function value of the category 1 solutionis Y0, fo(vs—
vy). However the category 2 solution has objective function value MS fo(vs—
vy), which is larger.

13



Now supposc b < £. The catgeory 2 solution has objective function value
pI geory Jective
S, fs(vs —vy). But this is bounded above by max,>y, Eu ic.,

the category 1 solution is optimal. |
To summarize:

1. If b > t then ap(f,s) = 1,a(t,s) = 0 for all 5 > ¢ and ap(t,s) =
0,a(t,s) = 1 otherwise.

2. If b <t then ay(t, s) = WT@Q;.J.V =1-- ﬂvﬁ for all s > 7! and ay(t,s) —
0,a(t, s) = 1 otherwisc.

Using the expressions for for the payment variables in terms of path lengths
we can compute the payments bidders must make. The allocations are snm-
marized in the table below.

v 20 s>r! h<s<r! s<bh-—1
t>b | at,s) = (1 -%) | alt,s) =1 a(t,s) =1
ay(t,s) = & | ay(t,s) =0, ay(t, s) = 0
t<bh-1 a(t,s) =0 a(t,s) = 0, | usual auction rules
ap(t,s) =1 ap(t,s) =1

Examination of the table shows that a satisfics the omitted montonicity
constraint.

2.3 Solution of (P;) when v, <0

In problem (P;) if v, < 0 then a(t,7) = 0 for all 4 in any optimal solution.
Note that if v; < 0 for some 7 we cannot conclude that ap(t,7) = 0 In every
optimal solution because of the budget constraint. Problem (P;) becomes

m

max wtA(t, s Lr
(e ) (t,s) (T.P’)

=1

s.t. MDQ“& <1Vs
i=1

M sA(t, s) <b

s 1

A(t,s) >0 Vs

14



The similarity of (I.P%;) to (I.P’;) permits an identical analysis whose details

. . . by T w;
arc omitted. The conclusions are summarized below. Let b! = arg max s, ~2i=+"%

b

w1

L. It wy > b4 then ay(t,s) = 1,a(t,s) = 0 for all s > 1 and a(t, ) =
0,a(t,s) = 0 otherwisc.

.::L )

2. Tfwy < b5h then ay(t, s) = ;1,a(t,s) = 0 for all s > h! and ay(t, s) =
0,a(t,s) = 0 otherwisc.

Notice that the o satisfy the omitted monotonicity constraint.

3 The Bayesian Incentive Compatible Case

Here we derive the revenue maximizing anction that is Bayesian incentive
compatible and interim individnally rational. Let .\Aw be the expected quan-
tity of the good that the constrained agent receives when she reports type
1 and all other agents report truthfully. Let Ew be the expected payment
of the constrained agent who reports type 4. Similarly, A; and p; arc the
expected allocations and payments for the unconstrained agent who reports
type i. Notice that A2 = 37, fiap(t,i) and pb = 1%, f, Py(t,4) for all i.
Similar expressions hold for A; and p¥. Bayesian incentive compatibility
(BIC) for the constrained agent requires:

AL~ pl =i Al PG A

A similar inequality holds for the unconstrained agent.

Introducing a dummy type ¢ = 0 with pg,p§ = 0 and r:\»m = 0 al-
lows us to fold the interim individual rationality constraint into the (BIC)
constraints.

From now on statements about A; and p; arc to be read as applying to
\G and ﬁw as well.

The next two results arc standard.

Theorem 4 An allocation rule that is incentive compatible iff it is mono-
tonic. That isT < s iff A, < A forallk=1,...,m.

Theorem 5 All (BIC) constraints are implied by the following:

A —pi 2 iAo —pia Vi=1,...,m

tA; —pi 2 iA —pip Vi=1,...,m 1



We can formulate the problem of finding the optimal anction as:

m

P 1 7 — P ?
(BOPT| 7 = :&M.m fefs(pe+p0)

Pi P!

st A —p 2 iA g —piaa Vi=1,...,m

A —pi 2 A1 i Vi=1,...,m—1

A=Y feali,s) Vi

AL =Y fap(t,i) Vi
L

P = MU fiP(i,s) Vi

s=1
pt =" fiPy(t,i) Vi
t=1
a(t,s) + ap(t,s) <1Vt s

ﬁw < b Vi

The last constraint requires that the ezpected payment not exceed b.
As in the previous case there is a representation of the BIC constraints
that allows onc to interpret the I's as shortest path lengths in a network.

Specifically,
s—1 m—1
b =min{d (G + (A — AL b= Y 5%, - Al
3=0 =i
and
t—1
pe=Y (I + DA~ A)
§=0

16



for all 5,i. An analysis identical to the dominant strategy casc allows us to
write Twm:ui as

11 s—1
max MUC.N M JH (A — Aj)) + %AMC + HX.\JLL .\AUV_
7=0 7=0
i—1

s.t. Mu+~ u+_ vam~v<&Vo

A; EM%Q i,5) Vi
Mbnaxs

a(t,s) + ap A s) <1V, s
alt,s), ap(t,s) > 0 Vi, s

\A_HM .. < \»2~

Collecting like terms in the objective function together shows that

t—1 s—1
SRS G (A=A L GHD A=A = D A foALws).
st j=0 j=0 LR

The constraints MM\VC + :A.Lwt - .\Gv < b for all # > 0 can be rewritten
to read 1.4; < b+ MuT_ ;. For cach pair i label the constraint &.Lw
h+ MuT_ .\? as C;.

15.3_9: [BOPT] becomes:

7 = :‘_po_b.}S + &f\ﬁ.:.,._

s,t
i1
- ab b -
s.t. tAY < b+ M.\J Vi
j=1
0 mmkb_ <... Mm\biﬁ

.\FIM%E; s) Vi
.\r M\NE:’& ) Vi

a(t,s) + EA? 5) <1Vt s
a(t,s),ap(t,s) >0 Vi, s
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Lemma 2 Suppose in some optimal solution to [BOPT] one or more of the
C; are binding. Let s* be the smallest index for which C; is binding. Then
there is an optimal solution to [BOPT] such that

AL = ... = Al

™m

Proof

: SRR ; s9-1
Since Cy- is binding we have .ﬂ.hw. = b+ Mwn_ .Lw.. From Cy- 41 we have

s +1 \».r.. < b+ Ab = .Lm + .m*.hm. = (5" + C.L.m..
s*+1 ¥ 5

=1

But .Lwil > .Lw: which implies that .Lw.t = .Lm Thus Cy«41 is binding

and we repeat the argument for index s* + 2 and so on. [ ]

Supposc we knew the critical index s* from the lemma. Consider the
following optimization problem [BOPT(s%)]:

Z(s") = max M_b.}s + foAS]

s,t
st A< <A = =AY
.L_ MM.LS.

A= fsali,s) Vi
AL =3 fay(t,d) Vi
t

a(t,s) +ap(t,s) <1Vts
a(t, ), ap(1,5) > 0 Vs, 1

It is clear that Z = Z(s*). We will show that therc is an optimal solution
to [BOPT (s*)] such that ap(t, s) = ap(t,s*) for all t and s > s*. We do this



by examining a rclaxation of problem [BOPT(s*)] called [ROPT(s%)].

Z7(s") = max M_b.\b:: + \..,,.\AW.EL

s,k

st AL = =4

mn

A= feal(i,s) Vi
AL =" fion(t,i) Vi
t

a(t,s) +ap(l,s) <1V, s

a(t,s), ap(t,s) > 0 Vs, t
The relaxtion is obtained by removing the monontonicity constraints on A;
for all j, the monotonicity constraints on .Lw forj=1,...,8 —1. We show

that there is an optimal solution to the relaxation that satisfies the omitted

constraints, so making the relxation exact.

3.1 Solving [ROPT(s%)]

The Lagrangean dual of [ROPT(s*)] is problem (P,), shown below.

mn—1
Zx(s") = :Exmqﬁ.}s + foAlu,) + M \(.A.\bwi - .\AWV
5,1 j=s"

st A=Y fali,s) Vi
A = M frap(t,7) Vi
t

a(t,s) +ap(t,s) <1Vt,s
a(t,s),ap(t,s) > 0 Vs, t

By the duality theorem, Z7(s*) = miny Zx(s*).

The objective function of (P) can be written as

m s*—1 7

Ay As
M ftAw + M \..f\»we.,. + M fslvs + \. -~ |_.\bw
t=1 s=1 s5=5* i i
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where Age -1 = A, = 0. Substituting 4; = 3, fea(i, s) and .L@ > fras(t, i)
into this expression yields:

*—1 m

MM.\.Z:.\.,VQ L, S +M M.\.w .u.\.nQ t,s +MM.\.¢,?+ alnt _.\.n@? “vv

t=1 s=1 s=1 t=1 fs 5

To simplify, let hs(A) = vy + J.L — w. for 5 > s*. Thercfore

moom s*—1 m
Za(s") = max Y Y frnfualt,s) + Y Swvafras(ts) + M M? ) feas(t, )
t=1 s=1 s=1 t=1 s=s5°" t=1

s.t. alt,s) +ap(t,s) <1Vi,s
a(t,s),ap(t,s) > 0 Vs,t

This decomposes into a collection of subproblems, one subproblem for cach
profile (#,s) of types. When s < s* - 1 the subproblem is
ga(t, s) = maxwva(t, s) + vsap(t, s)
s.t. alt,s) +ap(t,s) <1
a(t,s),ap(t,s) >0
and when s > 5% 1t is
ga(t, s) = maxwua(t,s) + hy(Nap(t, s)
s.t.a(t,s) +ap(t,s) <1
a(t,s), ap(t,s) > 0
It is casy to sec that for s < s* — 1 that gx(¢,s) = max{wv,v,} and when
s> 5% ga(t,s) = Emﬁnﬁf hs(A)}.

Thercfore 7, (s*) = A\I):. fifsga(t, ). This allows us to formulate miny, Z5(s*)
as a linear program Q\Tyv”

min > fi f,W(t, 5)
t,s
s.t. W(t,s) > v Vi
W(t,s) > v, Vs <s" =1
W(t,s) > hy(A) Vs > 5"
Ase—1, Am =

20



Lemma 3 There is an optimal solution (W*, A\*) of (L.Py) such that v | <

. y. . !
hi. <...<h}, where b, = vs + wﬂ - .\VH for s > s*.

Proof

Denote the discrepancy of an optimal solution A* to (LPy) by max{vs._ —
hie, 0443 5 ey max{h]_ | —h},0}. Amongst all optimal solutions to (I.Py)
pick the one that has the smallest discrepancy. Tf the discrepancy is zero,
we are done. So, suppose not.

Case 1: There cxits at least onc j > s* 4+ 1, such that ﬁ\_ > :w, If
there exist more than onc j such that :ML > }m“ choose the largest g, for
which hl_; > ﬁ

Let 1 be the largest index such that b = h7 | = ... = hf <h'l+ 1. 3
Suppose I < m.

We construct a contradiction by considering a new set of { M.} . such
1 ’

=0
that
YN\ﬂ == yw\u AT .,nmn
X o= N e Yielgl],
A= XY Yie 1,5 - 2Jull+ 1, m].
Denote b = ¢ — _lll.“..ll@ - w.“ + yw L for all 2. This change results in the
following changes to the valucs of {h}}2:
7 * £
T\u\ﬁ —_ }u\~ - .\..u.\~u
;. * £
\NQ = }d + M..m“
. £
hp = by - i

Denote the change in the (I.Py) problem objective function from chang-
ing A* to X by AZy(s*). Consider the pairs (t,s), for which W(Z,s) arc
affected by this change.

For € > 0 sufficiently small, decreasing b} | by b.m[_ affcets W (s, t) only if

vy < h%_,. Similarly the decrease of A, by w_m+|~ affects W (t,s) if vy < by .

31t is possible that [ = j.
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For ¢ > 0 sufficiently small, increcasing r.w by mwm.. affects W (1, s) only if
2
() < \:.
Thercfore the change in the objective function AZy(s*) is:

AZy(s") < mm_Mfm cvp < hGY - lMTw s < b} - mMT@ cvy < (b 3]

Hence AZy(s*) < 0, and we conclude that ) is also an optimal solution to
(LPy).

Computing the change in discrepancy from A* to A we obscarve that
max{h; 2 — hj 1,0} can incrcasc by at most £/ f;_y, the term max{h;_; —
hj,0} gocs down by e/ fi_1 + 2¢/ f;, the termn max{h; — h; 1,0} gocs up by
2¢/ fj, and the term max{h;—hy41,0} goes down by £/ fi; 1. The contribution
to discrepancy from other terms is unchanged.* Notice that the discrepancy
changes by €/f; 1 — (¢/fj-1 + 22/ f;) + 22/ f; — €/ fiy1 < 0, contradicting
our choice of A* as the onc with the smallest discrepancy.

Now supposc that I = m. This implics that hy=hi y=..= h*..5

m

We construct a contradiction by considering a new sct of {A;}™ ), such
that

V,M = >M+m <~“m—.<.IHq3<\JH_u
N = A Vidgi—1,m—1].

1 Y . ) .
Denote b =14 — fm.bm — W, + J‘MI_ for all 2. This change results in the

following changes to the values of {hf}1

~

’ * -
Mo = hji— 5,
.\.u\_
! e, * —
\Nw«:. \Nﬂ:\ J_l .\- 7
m

R, = hl Vig{j—1,m}.

For £ > 0 suflicicntly small, decreasing h7_; by %m - affects W (¢, 5) only
i
if vy <hj_;. Increasing hy, by - affects W(t, s) only if v, < hj,.

The change in the objective function AZy(s*) is:

AZ\(s") < m_M:.N cuy < hr - mMT@ cvp < hj_(}] <0.

*the term max{h; — hj41,0} is also unchanged for a small cnough = > 0.

5Tt is possible that j = m.
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This contradicts the optimality of A* if AZ < 0, or implies that ) is also
an optimal solution to (I.P)) if AZy(s*) = 0. In the latter case, we compute
the change in discrepancy from A* to A’. Notice that max{h;_p — hj-1,0}
(or max{vs-—1 — hy-,0} if j = s* + 1) can increase by at most £/ f;_y, and
the term max{h;..1 —h;,0} goes down by e/ f;_1+¢/f;. The contribution to
discrepancy from other terms is unchanged. Hence the discrepancy changes
by ¢/ fi—1 — (e/ fi—1 + =/ f;) = —</ f; <0, contradicting our choicc of A* as
the optimal solution with ;o smallest discrepancy.

Case 2: hl. < F S < k%, but vg-_1 > hl.. Let I be the kargest
index such that AL, = hj. | =...=h <h'l+1.
We constrict a contradiction by considering a new sct of {AJ}",, such
that
X, o= MN—= Viecl[s%]],
A= A Veell,j—2JUl+1,m].
Dcnote b =i — TML — .ﬁ wl for all 7. This change results in the

following ar@:moﬁ to the valucs of {h}}I2

:m. = hi.+ —
! b
. £
hir = hiyg - i
B = Rl Vi¢g{s",l+1}.

Denote the change in the (I.Iy) problem objective function from chang-
ing A* to A by AZ)(s*). Consider the pairs (i, s), for which W(t,s) arc
affected 3% this change.

For £ > 0 sufficiently small, increasing h%. by

.ﬁ affects Wi, s) only if
vy < hg-. Similarly, the decrease of hf, | by bmi alfects W(t,s) if v, < by
Thercefore the change in the objective function AZy(s*) is:

AZy\(s") <« MT@ v < hi.} — m_MTm sop < hipg -

I+1-

Hence AZy(s*) < 0, and we conclude that A is also an optimal solution to
Computing the change in discrepancy from A* to A we observe that
[vg—1 — h}.] will decrease by £/ fs-. The term max{h%. — h}. ;,0} gocs up
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by €/ fs-. The term max{h; —h{, |, 0} goes down by £/ fi1. The contribution
to discrepancy from other terms is unchanged.

Notice that the discrepancy changes by e/ fg« — &/ fse — ¢/ fi41 <0, con-
tradicting our choice of A* as the one with the smallest discrepancy. [ |

Lemma 4 There is an optimal solution (W*, \*) to (LPy) such that for any
j=>st
{troe <hi}={t:v <hj,}

Proof
Let (W*,A*) be the optimal solution to (L.Iy) identified in Lemma 3. If

*
J
contradiction by considering a new sct of {\;}I" ), such that

the Lemma is false there is a § > 5™ such that r\w. < h%,;. We construct a

Moo= X e,
X, X Vi

. (G 4 A . . .
Denote B, = i — =F@ wp + ==L for all 4. This change results in the
T \\\d \\\u \\\u
following changes to the vatues of {hf}:
3
b, = hi4 —
J J d
Ji
Wepy = Ry — —
41 +1 J
’ ’ fi+

hy = hi Vig{jj+1}

Denote the change in the (I.IPy) problem objective function from chang-
ing M to X by AZ,(s*). Consider the pairs (t,s), for which W(t,s) are
affected by this change.

For ¢ > 0 sufficiently small, increasing r\w. by s% affects W(t, s) only if
b_wI affects W (2, s) if vy < hZ, 4.

Thercfore the change in the objective function AZy(s¥) is:

AZA(s7) < e[d Aoz ve <M - el {fe: v < hja)l

Since b} < k., the sct {2 : vy < hj} is a subset of {t: v, < A7} Ifit
is a strict subsct this would mean AZy(s*) < 0 contradicting optimality of
(W=, ). [

vy < ?w Similarly, the decrease of :wi by



Theorem 6 Let (W™, X\*) be the optimal solution identified in Lemina 4. There
is an optimal solution (a*,a}) to (Py-) such that

1. a*(t,s) <a™(t+1,s) forall t,

2. ap(t,s) <ap(t,s+ 1) for all 5, and

3. af(t,s*) =ap(t,s* + 1) = ... = a;(t,m).
Proof
Now
moom s*—1 m moom
Zoe(s") = max Y Y froifsaltys) + D > favsfon(ts) + 3 Y Skl fiou(t, s)
=1 s=1 s=1 t=1 s=s* t=1

s.t. a(t,s) +ap(t,s) < 1V s
a(t,s),op(t,s) > 0 Vs,t

This decomposcs into a collection of subproblems, one subproblem for cach
profile (¢,s) of types. When s < s* — 1 the subproblem is

o (1, 5) = maxwa(t,s) + vap(t, s)

s.t. a(t,s) +ap(t,s) <1
a(t,s),ap(t,s) >0

and when s > s* it is
aa-(t,8) = maxwa(t, s) + hiap(t, s)
s.t. a(t,s) +ap(t,s) <1

alt, ), ap(t, 5) > 0

For the case when s < s* — 1 the optimal solution is to award the good
to the agent with highest non-negative virtual value. We will break ties in
favor of the unconstrained bidder. Specifically, when s < $* — 1 we have the
following.

1. When vy > max{vg, 0} = a*(t,5) = 1.

2. When v, > max{v;,0} = aj(t,5) = 1.

o
[oha]



When s > s* we have the following.
1. When v, > max{h%,0} = a*(t,s) = L.
2. When A} > max{v,,0} = aj(t,s) = L.

Monotonicity of the virtual values and the A*’s (from Lemma 3) yield items
1 and 2 of the Theorem.
To prove item 3, supposec it is falsc. Then there is a j > s* and ¢ such
that
GG+ 1,0 = 140 = ai(G,0).

4, since {t vy <hj}={t:v <hi} [ |

This can happen only if }H <wum<h However, this contradicts Lemma

3.2 Solving [BOPT(s%)]

The optimal solution to (I?y-) satisfies the omitted monotonicity constraints
and is therefore an optimal solution to [BOPT(s*)]. In particular, Theorem
6 cstablishes there is an optimal solution to [BOPT(s*)] such that a,(t, s) =
ap(t, s*) for all ¢ and all 5 > s*.

This obscrvation allows us to rewrite [BOPT(s*)] as

Z(s") = max M:?»:; + N,.Lwdm_

5,

st A8 <. < A

A=Y fa(i,s) Vi

AL =Y fuan(t,i) Vi
t

ap(t,s") = ... = ap(t,m) Vvt
a(t,s) +ap(t,s) <1Vt s

alt, 5), ap(t, 5) = 0 V1, 5
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We will solve this version of [BOPT(s*)] by removing the monotonicity

constraints and arguing that the solution to the rclaxed problem satsifies

them.
F(s%) = EPAM_\_\»:& + foAlv,

s,t

s.t. A; = MU? i,5) Vi
Mb:vxﬁ

ap(t,s") = ... = ap(t,m) VI
a(t,s) +ap(t,s) < 1Vt s

a(t,s),ap(t,s) > 0V, s

This last program is cquivalent to

m T m T
F(s") = :ExMUMU fefsalt, s)vy + MU Mb\i‘; t,8)vs
t=1 s=1 t=1 s=1
s.t.oap(t,s™) = ... = ap(t,m) Vt

a(t,s) + ap(t,s) < 1Vt,s
a(t,s),ap(t,s) > 0 Vi, s

Eliminating the ap(t, s) variables for s > s* + 1 we can rewrite the program

as

moom m s"—1
F(s*) = EQMMMU\QV; , ) S._.M MU fifsan(t, s)v, +M \LMU fivjlap(t, s™)
t=1 s=1 t=1 s=1
s.t.a(t,s)+ap(t,s) <1Vi=1,...,mVs=1,...,5"
a,ap > 0

i=s® b\.,ﬁ.. Monotonicity of the v’s
Laj=s5" 42
= fj for j < s* -1 and

Sct wg = vy for s < 8% — 1 and wy =

implics that the w,’s arc monotone as well. Sct g;

gor = St Jy: Then

mos” m s°
F(s™) = max MU MU frgsa(t, s)vs + MU MU Srgsap(t, s)ws

t=1 s=1

t=1 s=1
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sit.a(t,s)+ap(t,s) <1Vt=1,... mVs=1...,s"
a(t,s),ap(t,s) >0Vvt=1,...,mVs=1,...,s"
This decomposes into a collection of subproblems one for cach profile (£, s):
max na(t,s) + wsop(t, s)
s.t. a(t,s) + ap(t,s) <1
a(t,s),ap(t,s) >0

Thercfore, if we know the threshold, s*, the optimal mechanism could

be described thus:

1. If v > max{w,, 0} then a(t,s) = 1 and ay(t,s) = 0.

2. If wy > max{w,0} then ay(t, s) = 1 and a(t, s) = 0.

3. If vy, wy < 0 sct ap(t,s) = a(t,s) = 0.

Monotonicity of the »’s and w’s ensures that the omitted monotonicity con-
straints arc satisficd.
To determine the payments we usc the fact that

s—1 5—1
ph=3"G+ 1), — A = sl - S
7=0 3=1
and
i—1 t—1
=2 U+ DA — Ay = 14— YA
j=0 j=1

for all s,1.

Let 74 be the smallest index such that v, >0 and r(s*) the smallest
index less than s* such that wp(y > 0. Then Ay = 0 when ¢ < 77 and
Ay =3 {fs : ws < v} = Pr(w, < v) when t > 7. Similarly, A% = 0 when
s < r(s*) and A% = ST{fy : v, < w,} = Pr(v, < w,). Thercefore, p? = 0 for
s < 7(s*) and

s—1
ﬁw = sPr(v <wy) — M Pr(v, <wj) Vs > 7(s7).
j=1

Similarly, p, = 0 for £ < r; and

t—1
pr = tPr(w, < ) — M Pr(wg <wv;) Vt > 71y,
j=1
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3.2.1 Dectermining s*

A condition that any candidate for the threshold $* must satsify is that

s*—1
bh> ﬁ.w. = 5" Pr(vy < wye) — M Pr(v, < wj).
j=1

For j < s* —1 we know that w; = v;. Thercfore s* can be chosen to be the
largest index s such that
o fivi

.m\H
.m.\dﬁﬂ.c“ M MU.S.|.\.V ] M\dﬁﬂda M éu.v M v.
1=sJ1 QHH

3.3 A Description of the Optimal Mechanism

The optimal mechanism can be described in a way that is very similar to

the description of the optimal mechanism in Myerson (1981).
1. First determine the optimal threshold s*.

2. Compute for cach type s of the constrained bidder a modified virtual

*

value w, as follows. If § < s* — 1 set wy = v, and if s > s* sct

3. Compute for cach type t of the unconstrained bidder its virtual value.

4. If the nnconstrained types virtual value exceeds the constrained types
modified virtual value and is non-negative award the good to the un-
constrained bidder. If the modified virtual value of the constrained
bidder is at lecast as large as the virtual value of the unconstrained
virtual value and is non-negative, award the good to the constrained
bidder.

For this reason we will call the mechanism the threshold mechanism.

4 Private Budget Constraint

We turn now to the case when the budget of the constrained bidder is private
information as well. In our mechanism the constrained bidder must post a

bond ecqual to their reported budget. This ensures that the constrained
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bidders payment cannot exceed their reported budget. In terms of incentive
compatability this will mean that we can ignore the possibility that the
constrained bidder will inflate her budget. This allows us to focus on the
casc of a constrained bidder with a large budget pretending to have a smaller
budget.

We discuss the Bayesian incentive compatible case only. Our goal will
be to reduce the problem to the onc considered in section 3 of this paper. A
similar analysis applies in the dominant strategy incentive compatible case.

Let Ajp be the expected allocation to the constrained agent when the
constrained agent reports (¢,h). Her expected payment will be pi. The
requirement that the constrained bidder must post a bond implics that the
constrained bidder can only underreport her budget. Therefore we only have
to consider downward incentive constraints with respect to the reported
budget, i.e.

iAp — pib > 1Ay — pay Y < b (DIC)

We arguc that the optimal mechanism in the casc of a private budget con-
straint under the bond requirement is implemented through a variation of
the threshold mechanism derived in section 3 of this paper. First, the bid-
ders post bonds, revealing their budget constraints,. Then the threshold
mechanism is implemented based on the revealed information about b. To

prove optimality of the procedure it sulffices to show that it satisfies (DIC).

Theorem 7 The optimal mechanism when the constrained bidder must post
a bond 1s:
A = .hv I -
b — .:Nv.rwlﬁ&..

Proof
It suffices to verify that (DIC) is satisficd. Let sy, s be the threshold
associated with budgets b and ¢ where b > ¢. Tt is casy to sce that s, > s..
If the constrained type is i, denote by Sw and w$ the modified virtnal valucs
associated with budgets b and ¢ respectively. We have three cases.

1. 7 < s,

Since w?

— C
D =,

Ap = Al = Pr(v, < w?) = Pr(v; < wf) = AS = As.

A similar argnment shows that p;, = pf = p¢ = pi.. Therefore (DIC)
holds.
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2. 5. <1< sy

As the threshold mechanism is incentive compatible with respect to
reports of the value i A4, — pap = N\G — Ew > &.\Awﬁ - %wn. Now

$e—1
- 4b b -, b . R b >) b
iA,, — Py, = iPr(vy < w, ) — [scPr(vy <y ) — M Pr(ve < wj)].
i=1
Since Sw = p; for all j < s and ‘Ew = wi = v, for all j < s, we have

that

Se—1

&.\Awﬁ - EWn =1Pr(v < wg.) — [sePr(vy < wg,) — M Pr(v, < wj)].
j=1

Since v, < w§_, the term on the right hand side 1s
Se—1

iPr(vy < v )+iPr(vs, < vy < wi )—[iPr(v,, < vy < wi )+sPr(vy <wg)— M Pr(vy < wj)]
Jj=1

Se—1

> iPr(v, <wi)—[iPr(v, < vy )~ M Pr(v <wj)| = iA;—p; = iAicPic.
j=1

3. 1> 8y
Incentive compatibility in the valuations and monotonicity of A? im-
plies
- - b b - ab b
iAip — pib = 1A;, — Py, > BAg, Py
Now

se—1

N..\Awn - Ew... =iPr(vy < wy,) — [iPr(v, <wy) — M Pr(v, < vy)]
j=1

se—1
= iPr(vy < wg ) — [iPr(v, < wf ) — M Pr(v, < vj)] = i A — pf.
=1
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