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Abstract

We consider an environment with a single divisible good and two
bidders. The valuations of the bidders are private information but one
bidder has a commonly known budget constraint. For this environ-
ment we derive the revenue maximizing subsidy free incentive compat-
ible auction. We also examine the case when the budget constraint is
private information but bidders must post a bond.
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1 Introduction

A seller facing a collection of budget constrained bidders recognizes that
such constraints limit the revenue she can generate from the sale of an item.
The most obvious limitation is the size of the budgets themselves. They
also hinder competition. If one knows that a competitor cannot bid beyond
a certain amount, this reduces the bid one needs to place to secure the
object. To stimulate competition amongst the bidders, the seller must favor
some bidders and handicap others, perhaps by setting reserves or subsidies.
While such schemes may increase expected revenues they do so by imposing
greater risks on the seller. A reserve, for example, would mean that a trade is
sometimes not executed. Finding the right combination of carrots and sticks
in this environment to stimulate bidding is therefore an important problem.
It is also a difficult one because an analysis must deal with the uncertainty in
both a bidders valuations and her budget constraint. The difficulties are not
unique to this instance but arise in many environments where the private
information of a bidder is multi-dimensional (see, for example, Rochet and
Chone (1998) and Rochet and Stole (2003). For this reason attention has
focused on special cases.

Laffont and Robert (1996) assume that valuations are private but that all
bidders have the same common knowledge budget constraint. In this envi-
ronment they derive the subsidy free revenue maximizing Bayesian incentive
compatible auction. Since all bidders have the same budget constraint, the
analysis sheds no light on the balance between carrots and sticks. The same
environment is assumed in Maskin (2000) where he examines constrained
efficiency. Again, the symmetry in the budget constraints sheds no light on
how the seller should handicap one bidder at the expense of another.

In the same environment as Laffont and Robert, Gavious, Moldovanu
and Sela (2000) compare the revenues to be realized from the standard
auction forms. Che and Gale (1996) assume the valuations to be common
knowledge but the budgets private information. In this environment they
compare the revenues to be realized by the standard auction forms. In
addition they examine policies like joint bidding and subsidies and conclude
such policies can help to increase the revenue over the standard auction
forms. Che and Gale (2000) assume a single buyer with private valuations
and a private budget constraint and derive a revenue maximizing, Bayesian
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incentive compatible selling mechanism. Since the model involves a single
bidder it sheds no light on the issue of competition amongst bidders.

In this paper we consider a problem with two bidders, independent pri-
vate valuations, bidding for a divisible good. One buyer has no liquidity
constraint (the unconstrained bidder), while the other has one. Further-
more, the identity and budget constraint of the constrained bidder is com-
mon knowledge. In this environment we derive two mechansims. One is
revenue maximizing, dominant strategy incentive compatible and ex-post
individually rational. The second is revenue maximizing, Bayesian incentive
compatible and interim individually rational. In addition, we extend the
analysis to the case when the budget is private information (but not the
identity of the constrained biddder) but the constrained bidder must post
a bond. In this case we show how this case reduces to the case when the
budget is common knowledge.

All the mechanisms considered are subsidy free. However, as noted by
Zheng (2001), offering subsidies may be profitable for the seller. In our
model the effect of a subsidy can be computed by increasing the relevant
budget constraint and determining if the increase in expected revenue is
sufficient to cover the cost of the subsidy.

Two qualitative features of the derived mechanisms differ from the clas-
sic optimal mechanism of Myerson (1981) which assumes all bidders are
unconstrained. Under a monotone hazard assumption on the distribution of
types, Myerson shows that an optimal mechanism will allocate the good to
the agent with the highest non-negative virtual value. In the environment
considered here, the optimal mechanism may assign a portion of the good to
the agent with the lowest virtual value. 1 Furthermore, the good, in some
cases, is allocated to an agent with a negative virtual value.

What drives the first difference is the following observation. Suppose
the constrained bidder has a value/type i and a budget b. As long as one
can offer this bidder a quantity q ≥ b/i one can charge her b. Notice that
no higher payment from the constrained bidder can be extracted by offering
more than b/i. Hence, it may pay to allocate a portion to the unconstrained
bidder even though she may have a lower virtual value. For the second

1Although we assume the good is divisible, one can interpret a fractional allocation as

the probability of assiging an indivisible good. In this sense our results carry over to the

case of a single indivisible good.
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difference, suppose the virtual value of both bidders is negative. It may still
be profitable to offer the constrained bidder at least q ≥ b/i because one can
extract b.

Perhaps the most important lesson to be learnt from the analysis is that
the seller must sometimes withold the good from the unconstrained bidder
even if she happens to be the highest bidder. In the event that the uncon-
strained bidder submits a bid that exceeds the budget of the constrained
bidder, the mechanisms derived here, require that the high bid must exceed
the budget by a fixed amount in order to secure the good.

Ther remainder of this paper is divided into three sections. One de-
voted to the dominant strategy incentive compatible case, the second to the
Bayesian incentive compatible case and the third to the case of the budget
being private information. In a departure from custom we assume a discrete
type space.2 This allows us to employ simple arguments involving linear
program’s to derive the results. It is clear what the continuous analog’s of
our results are.

2 The Dominant Strategy Incentive Compatible

Case

Let {1, 2, . . . , m} be the set of possible types, fi > 0 the probability that a
bidder is of type i, F (i) =

∑i
j=1 fi and vi = [i − 1−F (i)

fi
] the virtual value

of type i. We assume that virtual values are monotone in types (the hazard
condition). We use t to denote the type of the unconstrained bidder and s

the type of constrained bidder. Let b be the known budget of the constrained
bidder.

Our goal is to derive the dominant strategy incentive compatible, ex-
post individually rational mechanism that maximizes expected revenue. As
is standard, we invoke the revelation principle to restrict attention to direct
revelation mechanisms. Let a(t, s) be the allocation to the unconstrained
bidder when the profile of reported types is (t, s) and ab(t, s) the allocation
to the constrained bidder when the profile of reported types is (t, s). The
payment that each makes at the profile (t, s) is denoted by P (t, s) and Pb(t, s)

2Nevertheless this is consistent with the early work on optimal mechanism design by

Harris and Raviv (1981).
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respectively.
Dominant strategy incentive compatibility (IC) requires that

ta(t, s) − P (t, s) ≥ ta(t′, s) − P (t′, s) ∀t′ %= t,

sab(t, s) − Pb(t, s) ≥ sa(t, s′) − Pb(t, s′) ∀s′ %= s.

Introducing a dummy type i = 0 and invoking the subsidy free assumption
allows us to set P (0, s) = Pb(t, 0) = 0 and a(0, s) = ab(t, 0) = 0. This
enables us to fold the individual rationality (IR) constraint into the (IC)
constraints.

The next two results are standard so proofs are omitted.

Theorem 1 An allocation rule is dominant strategy incentive compatible iff
it is monotonic. That is a(t, s) ≥ a(t′, s) iff. t ≥ t′ and ab(t, s) ≥ ab(t, s′)
iff. s ≥ s′.

Theorem 2 All IC constraints are implied by the following:

ta(t, s) − P (t, s) ≥ ta(t − 1, s) − P (t − 1, s) ∀t ≤ m,

ta(t, s) − P (t, s) ≥ ta(t + 1, s) − P (t + 1, s) ∀t ≤ m − 1

sab(t, s) − Pb(t, s) ≥ sa(t, s − 1) − Pb(t, s − 1) ∀s ≤ m.

sab(t, s) − Pb(t, s) ≥ sab(t, s + 1) − Pb(t, s + 1) ∀s ≤ m − 1

The problem of finding the optimal auction is formulated as a linear
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program below.

[OPT ]Z = max
Pb(t,s),P (t,s)

m∑

t=0

m∑

s=0

ftfs[P (t, s) + Pb(t, s)]

s.t. ta(t, s) − P (t, s) ≥ ta(t − 1, s) − P (t − 1, s) ∀t ≤ m

ta(t, s) − P (t, s) ≥ ta(t + 1, s) − P (t + 1, s) ∀t ≤ m − 1

sab(t, s) − Pb(t, s) ≥ sa(t, s − 1) − Pb(t, s − 1) ∀s ≤ m

sab(t, s) − Pb(t, s) ≥ sab(t, s + 1) − Pb(t, s + 1) ∀s ≤ m − 1

a(t, s) ≥ a(t − 1, s) ∀t ≤ m, s

ab(t, s) ≥ ab(t, s − 1) ∀s ≤ m, t

Pb(t, s) ≤ b ∀t, s

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

Fixing the a’s, ab’s and the type t of the unconstrained bidder, Pb(t, ·)
can be expressed as a shortest path length in an appropriate network.

In this network there is one vertex for each type s of the constrained
bidder, including the dummy type. The vertex corresponding to the dummy
type is called the source vertex. For each type/vertex i ≥ 1 there is a directed
edge (0, i) of length b (only the edge from source to vertex i is depicted).
Between the source and vertex {1} there are two parallel edges. One of
length ab(t, 1) and the other of length b.

Between i and i + 1 there are two edges. One directed from i to i + 1
of length (i + 1)[ab(t, i + 1) − ab(t, i)]. Monotonicity of the allocation rule
implies this edge has non-negative length. The other edge is directed from
i + 1 to i and of length i[ab(t, i)− ab(t, i + 1)] ≤ 0. A portion of the network
is depicted in Figure 1 (the edge of length b from the source to vertex 1 is
not depicted.)
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Figure 1

The edges directed from left to right correspond to ‘downward’ IC con-
straints while the edges in the opposte directions correspond to ‘upward’ IC
constraints. An implication of monotonicty of the ab’s is that there are no
negative cycles in the network.

The largest value that Pb(t, i) can take is the length of the shortest path
from the source to vertex i. The absence of negative length cycles means
these shortest path lengths are well defined. In this network there are at
most two candidates for the shortest path from the source to i < m. One
from left to right and one from right to left. Let Lb

i(t) be the length of the
path from node 0 to node i that is from left to right, and Rb

i (t) be the length
of the path from node 0 to node i that is from right to left. In particular
Lb

0(t) = 0, Lb
i(t) =

∑i−1
j=0(j + 1)[ab(t, j + 1) − ab(t, j)] ∀i > 0. Similarly

Rb
i (t) = b −

∑m−1
j=i j[ab(t, j + 1) − ab(t, j)] ∀i < m and Rb

m(t) = b. Clearly,
Pb(t, i) = min(Li(t), Ri(t)).

A similar network can be constructed to determine P (i, s). It will be
identical to the one in Figure 1 except the edges of length b from the source
to each vertex i will be absent. It is easy to see from an identical analysis
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that

P (i, s) =
i−1∑

j=0

(j + 1)[a(j + 1, s) − a(j, s)].

We can rewrite [OPT ] as

Z = max
Pb(t,s),P (t,s)

m∑

t=0

m∑

s=0

ftfs[P (t, s) + Pb(t, s)]

s.t. Pb(t, s) = min{Lb
s(t), R

b
s(t)} ∀t, s

P (t, s) =
t−1∑

j=0

(j + 1)[a(j + 1, s) − a(j, s)] ∀t, s

a(t, s) ≥ a(t − 1, s) ∀t ≤ m, s

ab(t, s) ≥ ab(t, s − 1) ∀s ≤ m, t

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

Straightforward algebra shows that

m∑

t=0

m∑

s=0

ftfsP (t, s) =
m∑

t=0

m∑

s=0

ftfs(
t−1∑

j=0

(j+1)[a(j+1, s)−a(j, s)]) =
m∑

s=0

fs[
m∑

t=0

ftvta(t, s)].

Substituting this into [OPT ] to:

Z = max
Pb(t,s),a(t,s)

m∑

s=0

fs[
m∑

t=0

ftvta(t, s)] +
m∑

t=0

m∑

s=0

ftfsPb(t, s)

s.t. Pb(t, s) = min{Lb
s(t), R

b
s(t)} ∀t, s

a(t, s) ≥ a(t − 1, s) ∀t ≤ m, s

ab(t, s) ≥ ab(t, s − 1) ∀s ≤ m, t

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

Monotonicity of the ab’s implies that Lb
i(t) ≤ Lb

i+1(t) and b ≥ Rb
i (t) ≥

Rb
i+1(t) for all t. Hence the budget constraint is already incorporated into

the formulation.
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Consider now the following relaxation of [OPT ] which we call [rOPT ].

max
Pb(t,s),a(t,s)

m∑

s=0

fs[
m∑

t=0

ftvta(t, s)] +
m∑

t=0

m∑

s=0

ftfsPb(t, s)

s.t. Pb(t, s) ≤ Lb
s(t) ∀t, s

Pb(t, s) ≤ b ∀t, s

a(t, s) ≥ a(t − 1, s) ∀t ≤ m, s

ab(t, s) ≥ ab(t, s − 1) ∀s ≤ m, t

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

Lemma 1 There is an optimal solution to [rOPT ] such that Lb
s(t) ≤ b for

all s and t.

Proof
Amongst all optimal solutiuons to [rOPT ] (this forms a compact set) pick
one that minimizes D =

∑m
t=1 max{Lb

m(t)− b, 0}. If D = 0, monotonicity of
the ab’s implies that Lb

s(t) ≤ Lb
m(t) ≤ b for all s and t and the proof is com-

plete. Suppose therefore that D > 0. Hence there is a t such that Lb
m(t) > b.

Let k be the smallest index such that ab(t, k) = ab(t, k +1) = . . . = ab(t, m).
Notice that ab(t, m) > 0. Construct a new solution by reducing ab(s, t) for
all s ≥ k by ε > 0. Observe that this does not influence Pb(t, s) for all s.
For s < k we have that ab(t, s) < ab(t, k) and so for ε sufficiently small the
new solution is still monotonic in the allocation variables. Thus, we have a
new solution that is feasible, optimal but with a value of D that is reduced,
a contradiction.

In view of lemma 1 and the monotonicity of the a’s we can write [rOPT ]
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as

max
{a(t,s),ab(t,s)}

∑

t

∑

s

ftfs[vta(t, s) + vsab(t, s)] (P)

s.t. a(t, s) ≤ a(t + 1, s) ∀t, s

ab(t, s) ≤ ab(t, s + 1) ∀t, s

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

m−1∑

s=0

(s + 1)[ab(t, s + 1) − ab(t, s)] ≤ b ∀t

Notice that any solution to this last program is feasible for [OPT ] as well.
This is because Lb

s(t) ≤ b ⇒ Lb
s(t) ≤ Rb

s(t).

2.1 A Relaxation of problem (P)

We relax problem (P) by removing the monotonicity constraints on a.

max
{a(t,s),ab(t,s)}

∑

t

∑

s

ftfs[vta(t, s) + vsab(t, s)] (P1)

s.t. ab(t, s) ≤ ab(t, s + 1) ∀t, s

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

m−1∑

s=0

(s + 1)[ab(t, s + 1) − ab(t, s)] ≤ b ∀t

We will solve (P1) and it will be verified that the solution satisfies the
omitted monotonicity constraints. Thus the relaxation is exact.

Problem (P1) itself can be decomposed into a collection of independent
sub-problems indexed by the type t of the unconstrained bidder:

max
{a(t,s),ab(t,s)}

∑

s

fs[vta(t, s) + vsab(t, s)] (Pt)

s.t. ab(t, s) ≤ ab(t, s + 1) ∀s

a(t, s) + ab(t, s) ≤ 1 ∀s

mab(t, m) −
m−1∑

j=1

ab(t, j) ≤b ∀t
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We divide the solution of (Pt) into two cases.

2.2 Solution of (Pt) when vt ≥ 0

We can deal with the monotonicity constraints on the ab’s by a change
of variables. Let ab(t, s) =

∑s
i=1∆(t, i) where ∆(t, i) ≥ 0 for all i. For

convenience set ws =
∑m

j=s fjvj for all s. Replacing the ab’s by ∆’s in
problem (Pt) yields:

max
{a(t,s),∆(s,t)}

m∑

s=1

fsvta(t, s) +
m∑

s=1

ws∆(t, s) (LPt)

s.t. a(t, s) +
s∑

i=1

∆(t, i) ≤ 1 ∀s

m∑

s=1

s∆(t, s) ≤b

a(t, s),∆(t, s) ≥0 ∀s

It is easy to see that there is an optimal solution to (LPt) such that a(t, s)+∑s
i=1∆(t, i) = 1 for all s. If not, i.e. a(t, s) +

∑s
i=1∆(t, i) < 1 for some s,

increase a(t, s). Since vt ≥ 0 the objective function cannot decrease. Given
this we can use the equation a(t, s) +

∑s
i=1∆(t, i) = 1 to substitute out the

a(t, s) variables. Specifically a(t, s) = 1 −
∑s

i=1∆(t, i) for all s. Therefore
(LPt) becomes:

max
{a(t,s),∆(s,t)}

m∑

s=1

fsvt[1 −
s∑

i=1

∆(t, i)] +
m∑

s=1

ws∆(t, s) (LPt)

s.t.
s∑

i=1

∆(t, i) ≤ 1 ∀s

m∑

s=1

s∆(t, s) ≤b

∆(t, s) ≥0 ∀s

A second observation is the constraints
∑s

i=1∆(t, i) ≤ 1 for all s = 1, . . . , m−
1 are all implied by the constraint

∑m
i=1∆(t, i) ≤ 1. This allows us to reduce
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(LPt) to

max
{a(t,s),∆(s,t)}

m∑

s=1

fsvt[1 −
s∑

i=1

∆(t, i)] +
m∑

s=1

ws∆(t, s) (LPt)

s.t.
m∑

i=1

∆(t, i) ≤ 1

m∑

s=1

s∆(t, s) ≤b

∆(t, s) ≥0 ∀s

Simplifying the objective function and introducing slack variables u1 and u2

to make all constraints hold at equality produces:

max
{∆(t,s)}

m∑

s=1

[
m∑

i=s

fi(vi − vt)]∆(t, s) +
m∑

s=1

fsvt

s.t.
m∑

s=1

∆(t, s) + u1 =1

m∑

s=1

s∆(t, s) + u2 =b

∆(t, s), ui ≥0 ∀s, i

The extreme points of this last linear program fall into one of three
categories because it has only two constraints.

1. Exactly one i such that ∆(t, i) > 0, u1 > 0, u2 = 0.

2. Exactly one i such that ∆(t, i) > 0, u1 = 0, u2 > 0.

3. Exactly one pair (p, q) with p %= q, p ≤ b ≤ q, ∆(t, p),∆(t, q) > 0 and
u1 = u2 = 0.

From each category we choose the extreme point with largest objective func-
tion value. The optimal solution must be the extreme point from the three
chosen with largest objective function value. The best extreme point of each
type is listed below.
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1. Category 1:
Let r1 = arg maxs≥b

b
∑m

i=s fi(vi−vt)
s .

Set ∆(t, r1) = b
r1

, u1 = 1 − b
r1

and u2 = 0.

The objective function value of this solution is b
∑m

i=r1 fi(vi−vt)

s +
∑m

s=1 fsvt.

2. Category 2:
Let r2 = arg maxs≤b[

∑m
i=s fi(vi−vt)]. In fact, by the monotone hazard

condition, when b ≤ t, r2 = b and when b > t, r2 = t.
Set ∆(t, r2) = 1, u1 = 0 and u2 = b − r2.
The objective function value of this solution is

∑m
i=r2 fi(vi − vt) +∑m

s=1 fsvt.

3. Category 3: Let

(p3, q3) = arg max
p≤b≤q

[
(q − b)
(q − p)

m∑

i=p

fi(vi − vt) +
(b − p)
(q − p)

m∑

i=q

fi(vi − vt)].

Set ∆(t, p3) = (q3−b)
(q3−p3) , ∆(t, q3) = (b−p3)

(q3−p3) and u1 = u2 = 0.

In fact we can pin down the category 3 solution even further. Sup-
pose first that b ≤ t. Then, by the monotone hazard condition,∑m

i=q fi(vi − vt) is maximized when q = t and
∑m

i=p fi(vi − vt) is max-
imized when p = b. In this case the category 3 solution is ∆(t, p3) = 1
and∆(t, q3) = 0, i.e. a category 2 solution. A similar argument applies
in the case when b > t.

Therefore, only category 1 and 2 solutions apply.

Theorem 3 If b > t then ∆(t, t) = 1 is optimal. If b ≤ t then ∆(t, r1) = b
r1

is optimal.

Proof
Suppose first b > t. By the monotone hazard condition,

∑m
i=s fi(vi−vt)

s is
non-increasing for s ≥ t. Hence

arg max
s≥b

b
∑m

i=s fi(vi − vt)
s

= b.

In this case the objective function value of the category 1 solution is
∑m

s=b fs(vs−
vt). However the category 2 solution has objective function value

∑m
s=t fs(vs−

vt), which is larger.
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Now suppose b ≤ t. The catgeory 2 solution has objective function value∑m
s=b fs(vs − vt). But this is bounded above by maxs≥b

b
∑m

i=s fi(vi−vt)
s , i.e.,

the category 1 solution is optimal.
To summarize:

1. If b > t then ab(t, s) = 1, a(t, s) = 0 for all s ≥ t and ab(t, s) =
0, a(t, s) = 1 otherwise.

2. If b ≤ t then ab(t, s) = b
r1 , a(t, s) = 1 − b

r1 for all s ≥ r1 and ab(t, s) =
0, a(t, s) = 1 otherwise.

Using the expressions for for the payment variables in terms of path lengths
we can compute the payments bidders must make. The allocations are sum-
marized in the table below.

vt ≥ 0 s ≥ r1 b ≤ s ≤ r1 s ≤ b − 1
t ≥ b a(t, s) = (1 − b

r1 ) a(t, s) = 1 a(t, s) = 1
ab(t, s) = b

r1 ab(t, s) = 0, ab(t, s) = 0
t ≤ b − 1 a(t, s) = 0 a(t, s) = 0, usual auction rules

ab(t, s) = 1 ab(t, s) = 1

Examination of the table shows that a satisfies the omitted montonicity
constraint.

2.3 Solution of (Pt) when vt < 0

In problem (Pt) if vt < 0 then a(t, i) = 0 for all i in any optimal solution.
Note that if vi < 0 for some i we cannot conclude that ab(t, i) = 0 in every
optimal solution because of the budget constraint. Problem (Pt) becomes

max
{∆(s,t)}

m∑

i=1

wt
s∆(t, s) (LP’t)

s.t.
s∑

i=1

∆(t, i) ≤ 1 ∀s

m∑

s=1

s∆(t, s) ≤b

∆(t, s) ≥0 ∀s
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The similarity of (LP’t) to (LPt) permits an identical analysis whose details
are omitted. The conclusions are summarized below. Let h1 = arg maxs≥b

b
∑m

i=s wi

s .

1. If w1 ≥ b
wh1

h1 then ab(t, s) = 1, a(t, s) = 0 for all s ≥ 1 and ab(t, s) =
0, a(t, s) = 0 otherwise.

2. If w1 < b
wh1

h1 then ab(t, s) = b
h1 , a(t, s) = 0 for all s ≥ h1 and ab(t, s) =

0, a(t, s) = 0 otherwise.

Notice that the a satisfy the omitted monotonicity constraint.

3 The Bayesian Incentive Compatible Case

Here we derive the revenue maximizing auction that is Bayesian incentive
compatible and interim individually rational. Let Ab

i be the expected quan-
tity of the good that the constrained agent receives when she reports type
i and all other agents report truthfully. Let pb

i be the expected payment
of the constrained agent who reports type i. Similarly, Ai and pi are the
expected allocations and payments for the unconstrained agent who reports
type i. Notice that Ab

i =
∑

t ftab(t, i) and pb
i =

∑m
t=1 ftPb(t, i) for all i.

Similar expressions hold for Ai and pu
i . Bayesian incentive compatibility

(BIC) for the constrained agent requires:

iAb
i − pb

i ≥ iAb
j − pb

j ∀j %= i.

A similar inequality holds for the unconstrained agent.
Introducing a dummy type i = 0 with pu

0 , pu
0 = 0 and Ab

0,Au
0 = 0 al-

lows us to fold the interim individual rationality constraint into the (BIC)
constraints.

From now on statements about Ai and pi are to be read as applying to
Ab

i and pb
i as well.

The next two results are standard.

Theorem 4 An allocation rule that is incentive compatible iff it is mono-
tonic. That is r ≤ s iff Ar ≤ As for all k = 1, . . . , m.

Theorem 5 All (BIC) constraints are implied by the following:

iAi − pi ≥ iAi−1 − pi−1 ∀i = 1, . . . , m

iAi − pi ≥ iAi+1 − pi+1 ∀i = 1, . . . , m − 1
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We can formulate the problem of finding the optimal auction as:

[BOPT ] Z = max
pi,pb

i

m∑

s,t

ftfs(pt + pb
s)

s.t. iAi − pi ≥ iAi−1 − pi−1 ∀i = 1, . . . , m

iAi − pi ≥ iAi+1 − pi+1 ∀i = 1, . . . , m − 1

Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

pi =
m∑

s=1

ftP (i, s) ∀i

pb
i =

m∑

t=1

ftPb(t, i) ∀i

a(t, s) + ab(t, s) ≤ 1 ∀t, s

pb
i ≤ b ∀i

The last constraint requires that the expected payment not exceed b.
As in the previous case there is a representation of the BIC constraints

that allows one to interpret the Pi’s as shortest path lengths in a network.
Specifically,

pb
s = min{

s−1∑

j=0

(j + 1)(Ab
j+1 −Ab

j), b −
m−1∑

j=i

j[Ab
j+1 −Ab

j ]}

and

pt =
t−1∑

j=0

(j + 1)(Aj+1 −Aj)

16



for all s, t. An analysis identical to the dominant strategy case allows us to
write [BOPT ] as

max
∑

s,t

[ft(
t−1∑

j=0

(j + 1)(Aj+1 −Aj)) + fs(
s−1∑

j=0

(j + 1)(Ab
j+1 −Ab

j))]

s.t.
i−1∑

j=0

(j + 1)(Ab
j+1 −Ab

j) ≤ b ∀i > 0

A1 ≤ . . . ≤ Am

Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

Collecting like terms in the objective function together shows that

∑

s,t

[ft(
t−1∑

j=0

(j+1)(Aj+1−Aj))+fs(
s−1∑

j=0

(j+1)(Ab
j+1−Ab

j))] =
∑

s,t

[ftAtvt+fsAb
svs].

The constraints
∑i−1

j=0(j + 1)(Ab
j+1 −Ab

j) ≤ b for all i > 0 can be rewritten
to read iAi ≤ b +

∑i−1
j=1 Aj . For each pair i label the constraint iAb

i ≤
b +

∑i−1
j=1 Ab

j as Ci.
Problem [BOPT ] becomes:

Z = max
∑

s,t

[ftAtvt + fsAb
svs]

s.t. iAb
i ≤ b +

i−1∑

j=1

Ab
j ∀i

0 ≤ A1 ≤ . . . ≤ Am

Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

17



Lemma 2 Suppose in some optimal solution to [BOPT ] one or more of the
Ci are binding. Let s∗ be the smallest index for which Ci is binding. Then
there is an optimal solution to [BOPT ] such that

Ab
m = . . . = Ab

s∗ .

Proof
Since Cs∗ is binding we have s∗Ab

s∗ = b +
∑s8−1

j=1 Ab
j . From Cs∗+1 we have

(s∗ + 1)Ab
s∗+1 ≤ b +

s∗∑

j=1

Ab
j = Ab

s∗ + s∗Ab
s∗ = (s∗ + 1)Ab

s∗ .

But Ab
s∗+1 ≥ Ab

s∗ , which implies that Ab
s∗+1 = Ab

s∗ . Thus Cs∗+1 is binding
and we repeat the argument for index s∗ + 2 and so on.

Suppose we knew the critical index s∗ from the lemma. Consider the
following optimization problem [BOPT (s∗)]:

Z(s∗) = max
∑

s,t

[ftAtvt + fsAb
svs]

s.t. Ab
1 ≤ . . . ≤ Ab

s∗ = . . . = Ab
m

A1 ≤ . . . ≤ Am

Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀s, t

It is clear that Z = Z(s∗). We will show that there is an optimal solution
to [BOPT (s∗)] such that ab(t, s) = ab(t, s∗) for all t and s ≥ s∗. We do this
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by examining a relaxation of problem [BOPT (s∗)] called [ROPT (s∗)].

Zr(s∗) = max
∑

s,t

[ftAtvt + fsAb
svs]

s.t. Ab
s∗ = . . . = Ab

m

Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀s, t

The relaxtion is obtained by removing the monontonicity constraints on Aj

for all j, the monotonicity constraints on Ab
j for j = 1, . . . , s∗ − 1. We show

that there is an optimal solution to the relaxation that satisfies the omitted
constraints, so making the relxation exact.

3.1 Solving [ROPT (s∗)]

The Lagrangean dual of [ROPT (s∗)] is problem (Pλ), shown below.

Zλ(s∗) = max
∑

s,t

[ftAtvt + fsAb
svs] +

m−1∑

j=s∗

λj(Ab
j+1 −Ab

j)

s.t. Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀s, t

By the duality theorem, Zr(s∗) = minλ Zλ(s∗).
The objective function of (Pλ) can be written as

m∑

t=1

ftAtvt +
s∗−1∑

s=1

fsAb
svs +

m∑

s=s∗

fs[vs +
λs−1

fs
− λs

fs
]Ab

s

19



where λs∗−1 = λm = 0. Substituting Ai =
∑

s fsa(i, s) and Ab
i =

∑
t ftab(t, i)

into this expression yields:

m∑

t=1

m∑

s=1

ftvtfsa(t, s)+
s∗−1∑

s=1

m∑

t=1

fsvsftab(t, s)+
m∑

s=s∗

m∑

t=1

fs[vs+
λs−1

fs
−λs

fs
]ftab(t, s).

To simplify, let hs(λ) = vs + λs−1

fs
− λs

fs
for s ≥ s∗. Therefore

Zλ(s∗) = max
m∑

t=1

m∑

s=1

ftvtfsa(t, s) +
s∗−1∑

s=1

m∑

t=1

fsvsftab(t, s) +
m∑

s=s∗

m∑

t=1

fshs(λ)ftab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀s, t

This decomposes into a collection of subproblems, one subproblem for each
profile (t, s) of types. When s ≤ s∗ − 1 the subproblem is

gλ(t, s) = max vta(t, s) + vsab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1

a(t, s), ab(t, s) ≥ 0

and when s ≥ s∗ it is

gλ(t, s) = max vta(t, s) + hs(λ)ab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1

a(t, s), ab(t, s) ≥ 0

It is easy to see that for s ≤ s∗ − 1 that gλ(t, s) = max{vt, vs} and when
s ≥ s∗, gλ(t, s) = max{vt, hs(λ)}.

Therefore Zλ(s∗) =
∑

t,s ftfsgλ(t, s). This allows us to formulate minλ Zλ(s∗)
as a linear program (LPλ):

min
∑

t,s

ftfsW (t, s)

s.t. W (t, s) ≥ vt ∀t

W (t, s) ≥ vs ∀s ≤ s∗ − 1

W (t, s) ≥ hs(λ) ∀s ≥ s∗

λs∗−1,λm = 0
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Lemma 3 There is an optimal solution (W ∗,λ∗) of (LPλ) such that vs∗−1 ≤
h∗

s∗ ≤ . . . ≤ h∗
m where h∗

s = vs + λ∗
s−1

fs
− λ∗

s
fs

for s ≥ s∗.

Proof
Denote the discrepancy of an optimal solution λ∗ to (LPλ) by max{vs∗−1 −
h∗

s∗ , 0}+
∑

i≥s∗+1 max{h∗
i−1−h∗

i , 0}. Amongst all optimal solutions to (LPλ)
pick the one that has the smallest discrepancy. If the discrepancy is zero,
we are done. So, suppose not.

Case 1: There exits at least one j ≥ s∗ + 1, such that h∗
j−1 > h∗

j . If
there exist more than one j such that h∗

j−1 > h∗
j , choose the largest j, for

which h∗
j−1 > h∗

j .
Let l be the largest index such that h∗

j = h∗
j+1 = . . . = h∗

l < h∗l + 1. 3

Suppose l < m.
We construct a contradiction by considering a new set of {λ′

i}m
i=0, such

that

λ′
j−1 = λ∗

j−1 + ε,

λ′
i = λ∗

i − ε ∀i ∈ [j, l],

λ′
i = λ∗

i ∀i ∈ [1, j − 2] ∪ [l + 1, m].

Denote h′
i = i − 1−F (i)

fi
− λ′

i
fi

+ λ′
i−1

fi
for all i. This change results in the

following changes to the values of {h∗
i }m

i=0:

h′
j−1 = h∗

j−1 −
ε

fj−1
,

h′
j = h∗

j + 2
ε

fj
,

h′
l+1 = h∗

l+1 −
ε

fl+1
,

h′
i = h∗

i ∀i %∈ {j − 1, j, l + 1}.

Denote the change in the (LPλ) problem objective function from chang-
ing λ∗ to λ′ by ∆Zλ(s∗). Consider the pairs (t, s), for which W (t, s) are
affected by this change.

For ε > 0 sufficiently small, decreasing h∗
j−1 by ε

fj−1
affects W (s, t) only if

vt < h∗
j−1. Similarly the decrease of h∗

l+1 by ε
fl+1

affects W (t, s) if vt < h∗
l+1.

3It is possible that l = j.
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For ε > 0 sufficiently small, increasing h∗
j by 2 ε

fj
affects W (t, s) only if

vt ≤ hj .
Therefore the change in the objective function ∆Zλ(s∗) is:

∆Zλ(s∗) ≤ 2ε[
∑

{ft : vt ≤ h∗
j}] − ε[

∑
{ft : vt < h∗

j−1}] − ε
∑

{ft : vt < (h∗
l+1}].

Hence ∆Zλ(s∗) ≤ 0, and we conclude that λ′ is also an optimal solution to
(LPλ).

Computing the change in discrepancy from λ∗ to λ′ we observe that
max{hj−2 − hj−1, 0} can increase by at most ε/fj−1, the term max{hj−1 −
hj , 0} goes down by ε/fj−1 + 2ε/fj , the term max{hj − hj+1, 0} goes up by
2ε/fj , and the term max{hl−hl+1, 0} goes down by ε/fl+1. The contribution
to discrepancy from other terms is unchanged.4 Notice that the discrepancy
changes by ε/fj−1 − (ε/fj−1 + 2ε/fj) + 2ε/fj − ε/fl+1 < 0, contradicting
our choice of λ∗ as the one with the smallest discrepancy.

Now suppose that l = m. This implies that h∗
j = h∗

j+1 = ... = h∗
m.5

We construct a contradiction by considering a new set of {λ′
i}m

i=0, such
that

λ′
i = λ∗

i + ε ∀i ∈ [j − 1, m − 1],

λ′
i = λ∗

i ∀i %∈ [j − 1, m − 1].

Denote h′
i = i − 1−F (i)

fi
− λ′

i
fi

+ λ′
i−1

fi
for all i. This change results in the

following changes to the values of {h∗
i }m

i=0:

h′
j−1 = h∗

j−1 −
ε

fj−1
,

h′
m = h∗

m +
ε

fm
,

h′
i = h∗

i ∀i %∈ {j − 1, m}.

For ε > 0 sufficiently small, decreasing h∗
j−1 by ε

fj−1
affects W (t, s) only

if vt < h∗
j−1. Increasing h∗

m by ε
fm

affects W (t, s) only if vt ≤ h∗
m.

The change in the objective function ∆Zλ(s∗) is:

∆Zλ(s∗) ≤ ε[
∑

{ft : vt ≤ h∗
m}] − ε

∑
{ft : vt < h∗

j−1}] ≤ 0.

4the term max{hj − hj+1, 0} is also unchanged for a small enough ε > 0.
5It is possible that j = m.
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This contradicts the optimality of λ∗ if ∆Z < 0, or implies that λ′ is also
an optimal solution to (LPλ) if ∆Zλ(s∗) = 0. In the latter case, we compute
the change in discrepancy from λ∗ to λ′. Notice that max{hj−2 − hj−1, 0}
(or max{vs∗−1 − hs∗ , 0} if j = s∗ + 1) can increase by at most ε/fj−1, and
the term max{hj−1−hj , 0} goes down by ε/fj−1+ε/fj . The contribution to
discrepancy from other terms is unchanged. Hence the discrepancy changes
by ε/fj−1 − (ε/fj−1 + ε/fj) = −ε/fj < 0, contradicting our choice of λ∗ as
the optimal solution with the smallest discrepancy.

Case 2: h∗
s∗ ≤ h∗

s∗+1 ≤ . . . ≤ h∗
m but vs∗−1 > h∗

s∗ . Let l be the largest
index such that h∗

s∗ = h∗
s∗+1 = . . . = h∗

l < h∗l + 1.
We construct a contradiction by considering a new set of {λ′

i}m
i=0, such

that

λ′
i = λ∗

i − ε ∀i ∈ [s∗, l],

λ′
i = λ∗

i ∀i ∈ [1, j − 2] ∪ [l + 1, m].

Denote h′
i = i − 1−F (i)

fi
− λ′

i
fi

+ λ′
i−1

fi
for all i. This change results in the

following changes to the values of {h∗
i }m

i=0:

h′
s∗ = h∗

s∗ +
ε

fj
,

h′
l+1 = h∗

l+1 −
ε

fl+1
,

h′
i = h∗

i ∀i %∈ {s∗, l + 1}.

Denote the change in the (LPλ) problem objective function from chang-
ing λ∗ to λ′ by ∆Zλ(s∗). Consider the pairs (t, s), for which W (t, s) are
affected by this change.

For ε > 0 sufficiently small, increasing h∗
s∗ by ε

fs∗
affects W (t, s) only if

vt ≤ hs∗ . Similarly, the decrease of h∗
l+1 by ε

fl+1
affects W (t, s) if vt < h∗

l+1.
Therefore the change in the objective function ∆Zλ(s∗) is:

∆Zλ(s∗) ≤ ε[
∑

{ft : vt ≤ h∗
s∗}] − ε[

∑
{ft : vt < h∗

l+1}].

Hence ∆Zλ(s∗) ≤ 0, and we conclude that λ′ is also an optimal solution to
(LPλ).

Computing the change in discrepancy from λ∗ to λ′ we observe that
[vs∗−1 − h∗

s∗ ] will decrease by ε/fs∗ . The term max{h∗
s∗ − h∗

s∗+1, 0} goes up
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by ε/fs∗ . The term max{h∗
l −h∗

l+1, 0} goes down by ε/fl+1. The contribution
to discrepancy from other terms is unchanged.

Notice that the discrepancy changes by ε/fs∗ − ε/fs∗ − ε/fl+1 < 0, con-
tradicting our choice of λ∗ as the one with the smallest discrepancy.

Lemma 4 There is an optimal solution (W ∗,λ∗) to (LPλ) such that for any
j ≥ s∗

{t : vt ≤ h∗
j} = {t : vt < h∗

j+1}.

Proof
Let (W ∗,λ∗) be the optimal solution to (LPλ) identified in Lemma 3. If
the Lemma is false there is a j ≥ s∗ such that h∗

j < h∗
j+1. We construct a

contradiction by considering a new set of {λ′
i}m

i=0, such that

λ′
j = λ∗

j − ε,

λ′
i = λ∗

i ∀i %= j

Denote h′
i = i − 1−F (i)

fi
− λ′

i
fi

+ λ′
i−1

fi
for all i. This change results in the

following changes to the values of {h∗
i }m

i=0:

h′
j = h∗

j +
ε

fj
,

h′
j+1 = h∗

j+1 −
ε

fj+1
,

h′
i = h∗

i ∀i %∈ {j, j + 1}.

Denote the change in the (LPλ) problem objective function from chang-
ing λ∗ to λ′ by ∆Zλ(s∗). Consider the pairs (t, s), for which W (t, s) are
affected by this change.

For ε > 0 sufficiently small, increasing h∗
j by ε

fj
affects W (t, s) only if

vt ≤ h∗
j . Similarly, the decrease of h∗

j+1 by ε
fj+1

affects W (t, s) if vt < h∗
j+1.

Therefore the change in the objective function ∆Zλ(s∗) is:

∆Zλ(s∗) ≤ ε[
∑

{ft : vt ≤ h∗
j}] − ε[

∑
{ft : vt < h∗

j+1}].

Since h∗
j < h∗

j+1 the set {t : vt ≤ h∗
j} is a subset of {t : vt < h∗

j+1}. If it
is a strict subset this would mean ∆Zλ(s∗) < 0 contradicting optimality of
(W ∗,λ∗).
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Theorem 6 Let (W ∗,λ∗) be the optimal solution identified in Lemma 4.There
is an optimal solution (a∗, a∗b) to (Pλ∗) such that

1. a∗(t, s) ≤ a∗(t + 1, s) for all t,

2. a∗b(t, s) ≤ a∗b(t, s + 1) for all s, and

3. a∗b(t, s
∗) = a∗b(t, s

∗ + 1) = . . . = a∗b(t, m).

Proof
Now

Zλ∗(s∗) = max
m∑

t=1

m∑

s=1

ftvtfsa(t, s) +
s∗−1∑

s=1

m∑

t=1

fsvsftab(t, s) +
m∑

s=s∗

m∑

t=1

fsh
∗
sftab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀s, t

This decomposes into a collection of subproblems, one subproblem for each
profile (t, s) of types. When s ≤ s∗ − 1 the subproblem is

gλ∗(t, s) = max vta(t, s) + vsab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1

a(t, s), ab(t, s) ≥ 0

and when s ≥ s∗ it is

gλ∗(t, s) = max vta(t, s) + h∗
sab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1

a(t, s), ab(t, s) ≥ 0

For the case when s ≤ s∗ − 1 the optimal solution is to award the good
to the agent with highest non-negative virtual value. We will break ties in
favor of the unconstrained bidder. Specifically, when s ≤ s∗− 1 we have the
following.

1. When vt ≥ max{vs, 0} ⇒ a∗(t, s) = 1.

2. When vs > max{vt, 0} ⇒ a∗b(t, s) = 1.
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When s ≥ s∗ we have the following.

1. When vt ≥ max{h∗
s, 0} ⇒ a∗(t, s) = 1.

2. When h∗
s > max{vt, 0} ⇒ a∗b(t, s) = 1.

Monotonicity of the virtual values and the h∗’s (from Lemma 3) yield items
1 and 2 of the Theorem.

To prove item 3, suppose it is false. Then there is a j ≥ s∗ and t such
that

a∗b(j + 1, t) = 1 %= 0 = a∗b(j, t).

This can happen only if h∗
j ≤ vt < h∗

j+1. However, this contradicts Lemma
4, since {t : vt ≤ h∗

j} = {t : vt < h∗
j+1}.

3.2 Solving [BOPT (s∗)]

The optimal solution to (Pλ∗) satisfies the omitted monotonicity constraints
and is therefore an optimal solution to [BOPT (s∗)]. In particular, Theorem
6 establishes there is an optimal solution to [BOPT (s∗)] such that ab(t, s) =
ab(t, s∗) for all t and all s ≥ s∗.

This observation allows us to rewrite [BOPT (s∗)] as

Z(s∗) = max
∑

s,t

[ftAtvt + fsAb
svs]

s.t. Ab
1 ≤ . . . ≤ Ab

m

A1 ≤ . . . ≤ Am

Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

ab(t, s∗) = . . . = ab(t, m) ∀t

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s
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We will solve this version of [BOPT (s∗)] by removing the monotonicity
constraints and arguing that the solution to the relaxed problem satsifies
them.

F (s∗) = max
∑

s,t

[ftAtvt + fsAb
svs]

s.t. Ai =
∑

s

fsa(i, s) ∀i

Ab
i =

∑

t

ftab(t, i) ∀i

ab(t, s∗) = . . . = ab(t, m) ∀t

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

This last program is equivalent to

F (s∗) = max
m∑

t=1

m∑

s=1

ftfsa(t, s)vt +
m∑

t=1

m∑

s=1

ftfsab(t, s)vs

s.t. ab(t, s∗) = . . . = ab(t, m) ∀t

a(t, s) + ab(t, s) ≤ 1 ∀t, s

a(t, s), ab(t, s) ≥ 0 ∀t, s

Eliminating the ab(t, s) variables for s ≥ s∗ + 1 we can rewrite the program
as

F (s∗) = max
m∑

t=1

m∑

s=1

ftfsa(t, s)vt+
m∑

t=1

s∗−1∑

s=1

ftfsab(t, s)vs+
m∑

t=1

ft[
m∑

j=s∗

fjvj ]ab(t, s∗)

s.t. a(t, s) + ab(t, s) ≤ 1 ∀t = 1, . . . , m ∀s = 1, . . . , s∗

a, ab ≥ 0

Set ws = vs for s ≤ s∗ − 1 and ws∗ =
∑m

j=s∗ fjvj∑m
j=s∗ fj

. Monotonicity of the vs’s
implies that the ws’s are monotone as well. Set gj = fj for j ≤ s∗ − 1 and
gs∗ =

∑m
j=s∗ fj . Then

F (s∗) = max
m∑

t=1

s∗∑

s=1

ftgsa(t, s)vt +
m∑

t=1

s∗∑

s=1

ftgsab(t, s)ws
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s.t. a(t, s) + ab(t, s) ≤ 1 ∀t = 1, . . . , m ∀s = 1, . . . , s∗

a(t, s), ab(t, s) ≥ 0 ∀t = 1, . . . , m ∀s = 1, . . . , s∗

This decomposes into a collection of subproblems one for each profile (t, s):

max vta(t, s) + wsab(t, s)

s.t. a(t, s) + ab(t, s) ≤ 1

a(t, s), ab(t, s) ≥ 0

Therefore, if we know the threshold, s∗, the optimal mechanism could
be described thus:

1. If vt > max{ws, 0} then a(t, s) = 1 and ab(t, s) = 0.

2. If ws ≥ max{vt, 0} then ab(t, s) = 1 and a(t, s) = 0.

3. If vt, ws < 0 set ab(t, s) = a(t, s) = 0.

Monotonicity of the v’s and w’s ensures that the omitted monotonicity con-
straints are satisfied.

To determine the payments we use the fact that

pb
s =

s−1∑

j=0

(j + 1)(Ab
j+1 −Ab

j) = sAb
s −

s−1∑

j=1

Ab
j

and

pt =
t−1∑

j=0

(j + 1)(Aj+1 −Aj) = tAt −
t−1∑

j=1

Aj

for all s, t.
Let rf be the smallest index such that vrf ≥ 0 and r(s∗) the smallest

index less than s∗ such that wr(s∗) ≥ 0. Then At = 0 when t < rf and
At =

∑
{fs : ws < vt} = Pr(ws < vt) when t ≥ rf . Similarly, Ab

s = 0 when
s < r(s∗) and Ab

s =
∑

{ft : vt ≤ ws} = Pr(vt ≤ ws). Therefore, pb
s = 0 for

s < r(s∗) and

pb
s = sPr(vt ≤ ws) −

s−1∑

j=1

Pr(vt ≤ wj) ∀s ≥ r(s∗).

Similarly, pt = 0 for t < rf and

pt = tPr(ws < vt) −
t−1∑

j=1

Pr(ws < vj) ∀t ≥ rf .
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3.2.1 Determining s∗

A condition that any candidate for the threshold s∗ must satsify is that

b ≥ pb
s∗ = s∗Pr(vt ≤ ws∗) −

s∗−1∑

j=1

Pr(vt ≤ wj).

For j ≤ s∗ − 1 we know that wj = vj . Therefore s∗ can be chosen to be the
largest index s such that

sPr(vt ≤
∑m

i=s fivi∑m
i=s fi

) −
s−1∑

j=1

Pr(vt ≤ vj) ≤ b.

3.3 A Description of the Optimal Mechanism

The optimal mechanism can be described in a way that is very similar to
the description of the optimal mechanism in Myerson (1981).

1. First determine the optimal threshold s∗.

2. Compute for each type s of the constrained bidder a modified virtual
value ws as follows. If s ≤ s∗ − 1 set ws = vs and if s ≥ s∗ set
ws =

∑m
j=s∗ fjvj∑m

j=s∗ fj
.

3. Compute for each type t of the unconstrained bidder its virtual value.

4. If the unconstrained types virtual value exceeds the constrained types
modified virtual value and is non-negative award the good to the un-
constrained bidder. If the modified virtual value of the constrained
bidder is at least as large as the virtual value of the unconstrained
virtual value and is non-negative, award the good to the constrained
bidder.

For this reason we will call the mechanism the threshold mechanism.

4 Private Budget Constraint

We turn now to the case when the budget of the constrained bidder is private
information as well. In our mechanism the constrained bidder must post a
bond equal to their reported budget. This ensures that the constrained
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bidders payment cannot exceed their reported budget. In terms of incentive
compatability this will mean that we can ignore the possibility that the
constrained bidder will inflate her budget. This allows us to focus on the
case of a constrained bidder with a large budget pretending to have a smaller
budget.

We discuss the Bayesian incentive compatible case only. Our goal will
be to reduce the problem to the one considered in section 3 of this paper. A
similar analysis applies in the dominant strategy incentive compatible case.

Let Aib be the expected allocation to the constrained agent when the
constrained agent reports (i, b). Her expected payment will be pib. The
requirement that the constrained bidder must post a bond implies that the
constrained bidder can only underreport her budget. Therefore we only have
to consider downward incentive constraints with respect to the reported
budget, i.e.

iAib − pib ≥ iAib′ − pib′ ∀b′ < b. (DIC)

We argue that the optimal mechanism in the case of a private budget con-
straint under the bond requirement is implemented through a variation of
the threshold mechanism derived in section 3 of this paper. First, the bid-
ders post bonds, revealing their budget constraints,. Then the threshold
mechanism is implemented based on the revealed information about b. To
prove optimality of the procedure it suffices to show that it satisfies (DIC).

Theorem 7 The optimal mechanism when the constrained bidder must post
a bond is:

Aib = Ab
i , pib = pb

i .

Proof
It suffices to verify that (DIC) is satisfied. Let sb, sc be the threshold
associated with budgets b and c where b > c. It is easy to see that sb ≥ sc.
If the constrained type is i, denote by wb

i and wc
i the modified virtual values

associated with budgets b and c respectively. We have three cases.

1. i < sc

Since wb
i = wc

i ,

Aib = Ab
i = Pr(vt ≤ wb

i ) = Pr(vt ≤ wc
i ) = Ac

i = Aic.

A similar argument shows that pib = pb
i = pc

i = pic. Therefore (DIC)
holds.
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2. sc ≤ i < sb

As the threshold mechanism is incentive compatible with respect to
reports of the value iAib − pib = iAb

i − pb
i ≥ iAb

sc
− pb

sc
. Now

iAb
sc
− pb

sc
= iPr(vt ≤ wb

sc
) − [scPr(vt ≤ wb

sc
) −

sc−1∑

j=1

Pr(vr ≤ wb
j)].

Since wb
j = vj for all j < sb and wb

j = wc
j = vj for all j < sc we have

that

iAb
sc
− pb

sc
= iPr(vt ≤ vsc) − [scPr(vt ≤ vsc) −

sc−1∑

j=1

Pr(vt ≤ wc
j)].

Since vsc ≤ wc
sc

, the term on the right hand side is

iPr(vt ≤ vsc)+iPr(vsc < vt ≤ wc
sc

)−[iPr(vsc < vt ≤ wc
sc

)+scPr(vt ≤ vsc)−
sc−1∑

j=1

Pr(vt ≤ wc
j)]

≥ iPr(vt ≤ wc
sc

)−[iPr(vt ≤ vsc)−
sc−1∑

j=1

Pr(vt ≤ wc
j)] = iAc

i−pc
i = iAic−pic.

3. i ≥ sb

Incentive compatibility in the valuations and monotonicity of Ab im-
plies

iAib − pib = iAb
sb
− pb

sb
≥ iAb

sc
− pb

sc
.

Now

iAb
sc
− pb

sc
= iPr(vt ≤ vsc) − [iPr(vt ≤ vsc) −

sc−1∑

j=1

Pr(vt ≤ vj)]

= iPr(vt ≤ wc
sc

) − [iPr(vt ≤ wc
sc

) −
sc−1∑

j=1

Pr(vt ≤ vj)] = iAc
i − pc

i .
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