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1 Introduction

An important question in economic theory is how information is transmitted be-

tween strategic agents with differing goals, and what type of mechanisms govern (or

induce optimal) information transmission between such parties. In particular, one

fascinating topic is the relationship between consultants (professional advisors) and

their clients: How do consultants “create value,” and what characterizes optimal

contracts between them and their clients?

In this paper, we put forward a model where a consultant (she) is able to reveal

signals to her client (him) that refine the client’s original private estimate regarding

the profitability of a project. The client’s action as to whether he undertakes the

project is contractible, but the information disclosed by the consultant is not. In-

deed, we assume that only the client can observe (evaluate) the additional signals

disclosed by the consultant, so the consultant does not know a priori whether her

advice made the project look more or less profitable to the client. She may only

make inferences from the client’s action.

We characterize the optimal contract between the consultant and the client.

The optimal contract can be represented by a menu that consists of pairs of trans-

fers specifying payments between the two parties contingent on whether or not the

project is undertaken by the client. If the client chooses an item from the menu, the

consultant agrees to release to him whatever information she has, and the transfers

take place according to the client’s action.1 In the optimal menu, there may be items

where the client pays a fee to the consultant upon undertaking the project, as well

as items where the consultant pays the client whenever the project is carried out.

The client’s choice among the different pairs of transfers depends on how optimistic

or pessimistic he is regarding the profitability of the project prior to listening to the

advice of the consultant. In interesting special cases, the client pays the consultant

a positive fee exactly when her advice changes the client’s mind as to whether or not

to undertake the project. Intuitively, the consultant’s advice is valuable because it

may induce the client to take the action opposite to what he has planned.

The main result of the paper is that, while the consultant cannot observe the

“new information” disclosed by her, she can design a contract in which she obtains

1A contract, in general, could be more complicated (for example, it could involve lotteries),
however, we show that the optimal contract has this simple form.
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the same profit as if she could. In other words, in the optimal contract, the client

only enjoys information rents for the information he already has prior to meeting the

consultant. The client does not get any rents from the information whose release

is controlled by the consultant, even though that information becomes his (the

client’s) private information when released. We also show that the optimal contract

does entail inefficiencies, that is, the first-best is not achieved.

Our way of modeling “professional advice”–where the advisor may disclose in-

formation that only the client can interpret–is new, perhaps unusual, but we believe

is accurate in many instances. For a concrete example, think of the client as a po-

tential buyer of a good (e.g., a car, or a firm’s shares) who is uncertain of various

characteristics of the good (e.g., the features of the car, the covariance of the stock’s

return with other assets’ returns, etc.). Then, the consultant can be thought of as an

expert who has additional information regarding the good’s characteristics. Natu-

rally, the consultant does not know the buyer’s original value-estimate; neither does

she know by how much her information increases or decreases the buyer’s willing-

ness to pay for the good, because that is also part of the buyer’s private information

(e.g., what features he values in a car, what his existing portfolio consists of, etc.).

Our question is: What is the consultant’s optimal contract, if the buyer’s action

(whether or not he buys the good) is contractible, but the effect of the consultant’s

information on the client’s valuation is not?

More broadly, our model of consultancy is motivated by the widely held belief

that the role of strategy and management advisors is to help uncover their clients’

own ideas so that the clients can realize what they are capable of.2 Consultants often

only talk about the correct general criteria to be used in decision making (what types

of trade-offs to consider, common fallacies, etc.), instead of the particularities of the

client’s decision problem. By discussing general ideas, industry trends, or similar

cases, they provide useful information to the client: his private knowledge regarding

his project becomes more nuanced. Nevertheless, the consultant may never learn

exactly what effect her advice has had on the client’s objective function. In many

cases, it is conceivable that only the client’s actions are observable and contractible.

This is the type of potential information transmission that we attempt to model in

2For example, Accenture (a consultancy) advertises on its website the firm’s “ability to act as
a catalyst” to “bring [clients’] ideas to life”.
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the paper.3

The literature on information transmission between experts and client-customers

(see Milgrom and Roberts (1986), Pitchik and Schotter (1987), Wolinsky (1993),

Emons (1997) and the references therein) often treats the expert’s information dis-

closure as cheap talk (à la Crawford and Sobel (1982)). The advisor has unverifiable

information, and the question is how precisely she can reveal it if the interests of

the parties are not perfectly aligned, and the client’s actions are not contractible.

Ours has not much in common with cheap-talk models as in our setup the expert

does not know what effect her signal has on the client’s action, but that action is

contractible.

There are other models of professional advice (e.g., the attorney-client relation-

ship) that our approach and results are more related to. This literature is motivated

mostly by the observation that attorneys are paid contingent fees: payments that

substantially differ depending on the success or failure of the client’s case. The lit-

erature (see Dana and Spier (1993) and the references therein) offers several types

of economic explanations for such contracts, among them risk sharing, liquidity

constrained clients, and moral hazard problems associated with the attorney. Con-

tingent fee contracts may also be optimal when there is asymmetric information

between the attorney and the client. In the model of Scotchmer and Rubinfeld

(1990), the attorney has private information about her own ability, while the client

is better informed regarding the merits of the case. In Dana and Spier (1993), the

attorney obtains superior information regarding the merits of the client’s case after

having offered the client a contract. In both models, contingent-fee contracts arise

in equilibrium.

Our research contributes to this literature by considering an advisor (or attorney)

that can make her client better informed about the client’s project (or legal case),

without becoming better informed herself. As we already said, our most interesting

result is that it does not matter whether or not the consultant also becomes better

informed as she discloses signals to the client, she gets the same expected payoff

in both cases. The optimal contract in our model resembles those found in this

3It may be the case that the client intentionally restricts the consultant’s ability to evaluate the
client’s options, and this is why only the client can interpret the consultant’s advice. For example,
the client may fear that the consultant would use her knowledge of the client’s problem to advise
his competitors.
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literature; the main differences are that in our case, it is a menu of contingent fees,

and that the transfers are conditional on the client’s observable action (e.g., whether

he decides to pursue the case).

Besides shedding light on issues concerning information disclosure and the ap-

propriation of information rents, our model describes features of real-world con-

tracts as well. As the literature cited above points out, attorneys often work under

contingent-fee contracts (where the contingencies may represent the client’s actions,

such as settling or proceeding with the case), and the exact terms of the contracts

vary across clients. This observation is consistent with our model, in which the opti-

mal contract is a menu of contingent transfers that the client chooses from according

to his assessment of the merits of the case prior to talking to the lawyer.

In other real-world examples of professional advice, such as management or IT

consulting and real-estate advising, we also observe fees that are contingent on the

client’s action. In mergers, for example, it is customary for the consultant of the

buyer to demand a “success fee” due upon the completion of the deal. Since the

decision to acquire the target is ultimately the client’s decision, we may interpret

such success fees as action-contingent transfers. A buyer’s agent (e.g., in a real

estate transaction) may end up with a lower commission after the client has listened

to her advice (e.g., the client buys the cheaper condo when he learns that the other

unit, while more luxurious, has features that he finds appalling). Our model shows

that this may be the outcome of an optimal contract between the advisor and her

client: The buyer’s agent should disclose as much information as she has even if she

is unaware of its impact on the client’s preferences.

In a related paper of ours (Eső and Szentes (2002)) we analyze the auction design

problem where a monopolist can disclose, without observing, private signals to the

buyers that refine their initial private valuation estimates for the object being sold.

That paper characterizes the revenue-maximizing selling mechanism and show that

in the optimal mechanism the seller discloses all available signals (which only the

buyers can observe) and attains the same revenue as if she could directly observe

the realizations of these signals. This result is similar to the one we obtain in the

present paper, where the consultant obtains the same profit as if she could observe

the effect of her signal on the client’s valuation for the project. The problem is very

different here, however, because it is not the seller, but a third party, that controls

information relevant for the buyer (here, the client).
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The analysis of the optimal contract in our model is similar to that of a Principal-

Agent model where the value of the Agent’s outside option depends on his type.4

Principal-Agent models with type-dependent outside option have been studied in the

literature by Lewis and Sappington (1989), Klibanoff and Morduch (1995), Maggi

and Rodriguez (1995), and most generally by Jullien (2000). None of the above

treatments applies directly in our framework, but the solutions exhibit certain com-

mon features. Also, naturally, in this literature the question whether the consultant

could gain by directly observing the signals that she controls does not arise, because

that is a question very specific to our actual model.

The paper is structured as follows. In the next section, we outline the model

and introduce the necessary notation. In Section 3, we derive the optimal contract

for the consultant. In Section 4, we compare the results with those obtained in a

“benchmark” case, where the consultant can observe (upon release) the signal that

she controls. We show that her payoff is the same in either optimal contract. Section

5 concludes.

2 The Model

2.1 The Environment

There are two risk neutral agents in the model: a consultant (she) and her client

(he). The client can undertake a project at a cost r, where r ∈ R is commonly

known. The project generates a stochastic ex-post monetary benefit, V = v + s,

where v is the client’s estimate of V , and s is an error term. Note that the additive

structure is not an assumption, rather, s ≡ V − v is the definition of the error term.

While v is the client’s private information, s is a signal that only the consultant

can disclose him, without the consultant directly observing it. Notice that since s

is not observed by the consultant (and neither is v), it does not matter whether she

reveals without observing V or s, because in the latter case the client can compute

the value of V = v + s. It is important to understand that this assumption–that

4The client can undertake the project without asking the consultant for advice. If his original
value-estimate (type) is below the project’s cost then the client’s outside option is worth zero. If
his estimate exceeds the project’s cost then the client’s outside option is the project’s net profit,
which is increasing in his type.
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the sender of s does not observe s while the receiver does–is just the way we model

the situation where the consultant is unaware of the effect of her information on the

client’s initial value-estimate.

We assume that v is drawn from a distribution F on the unit interval5 with a

positive density f that is twice differentiable and logconcave (i.e., d2 ln f(v)/dv2 ≤
0). Logconcavity is an important, though standard, assumption in the literature

on contracting with incomplete information. It implies, among other things, that

the distribution satisfies certain monotone hazard rate conditions. In particular, for

all b ∈ [0, 1], (b − F )/f is weakly decreasing.6 Many widely used density functions

satisfy logconcavity (see Bagnoli and Bergstrom (1989)).

The other component of the client’s ex-post valuation, s, is drawn from a distrib-

ution G with full support on (−∞,+∞).7 We assume that s and v are independently
distributed, and that the expected value of s is zero. This means that the noise in

the client’s value-estimate is unrelated to the estimate itself. In other words, the

client’s original private signal, v, is an unbiased estimator of his expected valuation,

and he has no other private information, for example, regarding the precision of this

estimator. This assumption is made for the sake of conceptual clarity. In Appendix

2 we show under what conditions and how the analysis can be generalized when the

error term (s ≡ V − v) is correlated with v.

What is the “value” of the consultant’s services to the client? Intuitively, the

closer v is to the cost of undertaking the project (r), the more valuable it is for the

client to know V precisely. Formally: If the client observes s then he undertakes the

project if and only if v + s ≥ r, and his profit becomesZ ∞

r−v
(v + s− r)dG(s). (1)

When v ≤ r, the client would not undertake the project without knowing s, which

5The normalization that the project’s expected gross profit, v, falls between 0 and 1 is innocuous
as r can be either positive, negative, or zero. All that this assumption implies is that the project’s
expected profit is bounded.

6This result is due to Prékopa (1971). For references, see also Fudenberg and Tirole (1991) and
Jullien (2000).

7Intuitively, the full support assumption ensures that no realization of V (small or large) can
be excluded given a particular estimate v. This assumption is made solely for ease of exposition.
All our results go through (with more cumbersome notation) if the support of the distribution of
s is not the whole real line.
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would then yield zero profit; therefore, for him the value of knowing s is exactly (1).

When v ≥ r, the client would undertake the project without the consultant, and his

expected profit would be v − r. By learning the value of s from the consultant, his

payoff becomes (1), therefore his gain from knowing s is
R∞
r−v(v+s−r)dG(s)−(v−r).

Therefore, the client’s willingness to pay for the consultant’s information is

w(v) =

Z ∞

r−v
(v + s− r)dG(s)− (v − r)1v≥r, (2)

where 1 is the indicator function. The function w(v) is strictly increasing for v < r

and strictly decreasing for v > r. Intuitively, the closer is the client’s estimate, v,

to r, the more uncertain he is whether or not to undertake the project, and hence

the more valuable it is for him to learn his actual valuation more precisely.

The release of information costs K ≥ 0 to the consultant in monetary terms.

We assume that K is less than the “value” of the consultant’s information to any

type of the client, that is, w(0) ≥ K and w(1) ≥ K. This assumption means that

it is always socially desirable for the consultant to release her information to the

client. However, the consultant does not always do so in the optimal (second-best)

contract, as we show in Section 3.

The simplest situation that corresponds to the model’s formalism is where the

client is the management of a firm contemplating the acquisition of another firm.

The takeover price is r (commonly known); the client’s initial estimate about the

target’s value is v (privately known). The consultant is an expert on mergers. She

can help (at cost K ≥ 0) the client learn the value of the target firm without her

actually learning anything about the value of her advice. In the remaining part

of this section, we turn to the description of contracts between the consultant and

her client when the client’s choice of undertaking the project is contractible but the

consultant’s information is not.

2.2 Feasible Contracts

In the interim stage (when the client already knows v) the consultant can offer

a contract to the client. Naturally, the terms of the contract cannot depend on

the realization of s; however, the client’s decision whether or not to undertake the

project is contractible. After a contract is offered by the consultant, the client may
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accept or reject it. The contract can specify whether or not the consultant will

provide advice (disclose s) to the client, and in either case, transfers between the

two parties that may be contingent on the client’s action.8

The general revelation mechanisms that we consider in this section consist of

four real-valued functions on the domain of types (the unit interval): a, c, p, and

q. The consultant commits to a mechanism {a, c, p, q}, and the client, if he wants
to participate in it, reports his type. For a reported type v ∈ [0, 1], the client pays
the consultant an up-front transfer of c(v) ∈ R. (We normalize the direction of
transfer payments from the client to the consultant; of course, transfers may be

positive, negative, or zero.) The consultant discloses s to the client with probability

a(v) ∈ [0, 1]. If s is not disclosed then the client has to undertake the project with
probability q(v) ∈ [0, 1]. If s is disclosed then the client can decide whether or not
to undertake the project, but if he does then he pays the consultant an additional

premium, p(v) ∈ R. Note that p determines whether or not the client undertakes
the project when s is disclosed: he carries it out whenever v + s ≥ r + p(v).9

Contracts with more complex transfer schemes can be rewritten in this simple form.

For example, a mechanism in which the consultant requires a payment when s is not

disclosed can be simplified without altering the client’s incentives (or participation)

by incorporating the expected value of that payment in the upfront fee.10

In our setup, the consultant acts as a monopolist when offering a contract to the

client. This is an abstraction of the fact that advice is a differentiated product and

consultants enjoy limited market power. In reality, contracts are negotiated between

consultants and clients, and usually neither party has a complete advantage in the

process. However, any situation where the bargaining power is shared between the

consultant and the client can be modeled such that at time 0, a lottery determines

who has the right to make the offer. If the client gets to offer a contract, the optimal

contract is simple: he asks the consultant to give him advice in exchange for a

transfer of K. In the rest of the paper, we focus on the case where the bargaining

8The consultant may offer to use a lottery to decide whether or not to disclose s to the client,
but she cannot garble s (change its value if disclosed). Garbling the advice is not a practical
possibility for real-world consultants, and it would trivialize the theoretical analysis.

9From the consultant’s perspective (i.e., disclosing, but not knowing s), a client with type v
undertakes the project with probability 1−G(r + p(v)− v).
10One of our results, Theorem 2, directly implies that no contract can perform better for the

consultant than the optimal revelation mechanism of the form {a, c, p, q}.
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power is delegated to the consultant, which should be thought of as a subgame of

the larger game describing the negotiation process.

The willingness-to-pay function in (2), together with the distribution of v, could

be used to compute the monopoly price for the consultant’s services, that is, an

optimal flat fee that she could charge for disclosing (without observing) her infor-

mation. However, the purpose of this paper is to investigate what (how much more)

can be done when the client’s action as to whether or not he undertakes the project

is contractible. We will see that flat-fee contracts are not optimal.

A contract {a, c, p, q} is incentive compatible if no type v of the client is strictly
better off reporting v0 6= v, and it is individually rational if the payoff of type v from

truthful reporting exceeds his payoff from not contracting at all with the consultant.

The profit of the client with type v reporting v0 is

π(v, v0) = a(v0)
Z ∞

r+p(v0)−v
[v + s− r − p(v0)] dG(s)

+ (1− a(v0)) q(v0) (v − r)− c(v0). (3)

Denote the indirect profit function of type v in the mechanism by Π(v) = π(v, v).

Note that without a contract, the client undertakes the project if and only if v ≥ r,

hence his outside option is worth max{0, v− r}. Therefore, a mechanism {a, c, p, q}
is incentive compatible and individually rational for type v ∈ [0, 1], if and only if,

Π(v) ≥ max{π(v, v0), v − r, 0} for all v0 ∈ [0, 1]. (4)

In what follows, we will not distinguish individual rationality from incentive com-

patibility, and say that the mechanism is incentive compatible if and only if (4)

holds for all v ∈ [0, 1].

3 The Consultant’s Optimal Contract

We turn to the derivation of the optimal contract of the consultant. The consultant’s

problem is to find an incentive compatible mechanism {a, c, p, q} that maximizes
her ex-ante expected profit. We first characterize the client’s profit in incentive

compatible mechanisms. Then we derive the solution to the consultant’s problem
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in special cases (Subsection 3.2). This provides the foundation for the general case,

which we solve in Subsection 3.3. At the end of the section we illustrate our findings

by numerical examples.

3.1 Incentive Compatible Mechanisms

Let X(v) denote the probability that client type v, reporting his type truthfully,

undertakes the project in mechanism {a, c, p, q}. That is,

X(v) = a(v) [1−G(r + p(v)− v)] + (1− a(v)) q(v). (5)

In the following lemma, first, we provide necessary conditions for the incentive com-

patibility of a mechanism. It turns out that in any incentive compatible contract,

the client’s indirect profit can be expressed in a familiar way as the profit of the

lowest type plus the integral, over types lower than the client’s actual type, of the

probability of undertaking the project. We also provide (stronger) conditions that

are sufficient for the incentive compatibility of a mechanism. We will use the results

of the lemma by looking for the optimal mechanism among all mechanisms that

satisfy the necessary conditions of incentive compatibility, and then we show that

the optimal contract satisfies the sufficient conditions.11

The proofs of all lemmas are collected in Appendix 1.

Lemma 1 If a mechanism {a, c, p, q} is incentive compatible then X is weakly in-

creasing, and for all v ∈ [0, 1],

Π(v) = Π(0) +

Z v

0

X(z)dz, (6)

and

Π(v) ≥ max{0, v − r}. (7)

Conversely, if a = 1v∈[v,v̄] with v < r < v̄, p is weakly decreasing, q = 1v≥r, and

(6)—(7) hold, then the mechanism is incentive compatible.

11It may be interesting to note that (6), (7) and the monotonicity of X are not sufficient for
incentive compatibility. For example, one can show that if a(v) = 1 for all v in a ball around r
then p has to be weakly decreasing at r.
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Notice that the premium function, p, may introduce distortion in the client’s

decision. When s is disclosed to the client, he undertakes the project if and only

if v + s exceeds r + p(v), which results in inefficiency whenever p(v) 6= 0. (When

s is not disclosed, a similar distortion is introduced if q(v) 6= 1v≥r for some v.) A
decreasing premium function discriminates among different types of the client in a

particular way: a higher type with the same ex-post valuation may undertake the

project while a lower type may not. The lemma also states that the client’s profit

function must start at v = 0 from a non-negative level Π(0), and must never go below

his participation constraint: Π(v) ≥ max{0, v − r} for all v ∈ [0, 1]. By incentive
compatibility, the slope of Π at any point v must coincide with the probability that

client type v undertakes the project. For example, if the client reporting v gets to

learn s for sure (a(v) = 1) then the slope of Π at v is X(v) = 1−G(r + p(v)− v).

The significance of the lemma is that with its help (using the necessary condi-

tions), we can characterize the expected payoff of the consultant in any incentive

compatible mechanism. First, we can calculate the expected payoff of the client asZ 1

0

Π(v)dF (v) = Π(0) +

Z 1

0

Z v

0

X(z)dzdF (v).

The second term, using integration by parts, can be written as
R v
0
X(z)dzF (v)

¯̄1
v=0
−R 1

0
F (v)X(v)dv, henceZ 1

0

Π(v)dF (v) = Π(0) +

Z 1

0

(1− F (v))X(v)dv.

The consultant’s expected payoff is the difference between the social surplus and the

client’s profit. The interim social surplus is Es

£
(v + s− r)1v+s≥r+p(v)

¤ − K when

s is disclosed, and q(v)(v − r) when it is not. Therefore, in the mechanism the

consultant’s expected payoff is

W =

Z 1

0

µ
a(v)

·Z ∞

r+p(v)−v
(v + s− r) dG(s)−K

¸
+ (1− a(v))q(v) (v − r)

¶
dF (v)

−
Z 1

0

(1− F (v))X(v)dF (v)−Π(0).
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Using (5) for X, this can be rewritten as

W =

Z 1

0

µ
a(v)

·Z ∞

r+p(v)−v

µ
v + s− r − 1− F (v)

f(v)

¶
dG(s)−K

¸
+(1− a(v)) q(v)

µ
v − r − 1− F (v)

f(v)

¶¶
dF (v)−Π(0). (8)

In the proofs of Lemma 2 and Theorem 2 we will refer to this formula for the

consultant’s expected payoff, while in the proof of Lemma 3 we will derive a different

one based on the results of Lemma 1.

In the rest of the section, using the results of Lemma 1, we replace c (the fee

function) with Π (the client’s indirect profit function). Converting {a,Π, p, q} back
into the form {a, c, p, q} is straightforward, and we will do that after deriving the
optimal mechanism.

3.2 Preliminary Analysis of the Consultant’s Problem

We now characterize the consultant’s optimal contract in certain special cases, which

include cases when either r ≥ 1 or r ≤ 0 (see Lemmas 2 and 3 below). The results
for these special cases form the basis of the derivation of the optimal contract for

the general case (r ∈ R) in Subsection 3.3.
In order to discuss the special cases, we introduce the following notation. Let

v∗ ∈ [0, 1]. For all v ∈ [0, v∗], define

FL(v) =
F (v)

F (v∗)
, (9)

and for all v ∈ [v∗, 1], define

FH(v) =
F (v)− F (v∗)
1− F (v∗)

. (10)

That is, FL and FH are the cumulative distribution functions of the client’s valuation

conditional on v falling into the intervals L = [0, v∗], and H = [v∗, 1], respectively.

Also, let fL = f/F (v∗) on L and fH = f/(1− F (v∗)) on H, that is, fL and fH are

the conditional densities on the respective domains. These densities are logconcave

because f is logconcave.
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In the proof of Theorem 1 (Subsection 3.3), we will need general formulas for

the consultant’s expected payoff coming from client-types v ∈ [0, v∗] and v ∈ [v∗, 1]
for an appropriate v∗, when the mechanism is incentive compatible for all v ∈ [0, 1].
To this end, we now characterize mechanisms that are incentive compatible for all

v ∈ [0, 1] and maximize the consultant’s expected payoff conditional v belonging to
L (and H, respectively) in certain cases. Since we require incentive compatibility on

the whole unit interval, we can use the results of Lemma 1. However, we compute

and maximize the consultant’s profit as if she faced a buyer with v ∈ L and v ∈ H,

respectively. (For the purposes of this subsection, one may think of v∗ as one of the

endpoints of the unit interval. We exploit the fact that v∗ can take intermediate

values only in the proof of Theorem 1.)

Lemma 2 Let v∗ ∈ [0, 1]. Suppose that r ≥ 0 andZ v∗

v

·
1−G

µ
r +

1− FL(v)

fL(v)
− v

¶¸
dv ≥ max{0, v∗ − r}. (11)

Then, the mechanism that is incentive compatible for all v ∈ [0, 1] and maximizes
the consultant’s payoff conditional on v ∈ [0, v∗] is characterized by a = 1v∈[v,v∗] with

v = min
n
v ∈ [0, v∗] : R∞

r+p(v)−v [v + s− r − p(v)] dG(s) ≥ K
o
, (12)

p = (1− FL)/fL, q = 1v≥r, and (6) with Π(0) = 0 and X defined by (5).

If condition (11) holds then the solution to the problem can be summarized in

words as follows. The signal is disclosed with probability one to high types of the

client (v > v) and is never disclosed to low types (v < v). If s is not disclosed then

the client is instructed to carry out the project whenever v ≥ r (i.e., the consultant

does not interfere with his choice). In contrast, if s is disclosed, the premium function

introduces some distortion as it equals the inverse hazard rate of the distribution of

v, which is positive and weakly decreasing in v.

When v∗ = 1 and r ≥ 1, inequality (11) automatically holds. Therefore, we have
found the solution to the consultant’s problem for the special case when r ≥ 1.
The optimal mechanism when r ≥ 0 and (11) hold, characterized by Lemma 2

with v∗ = 1, is illustrated in Figure 1. The figure depicts the indirect profit function

of the client together with his type-dependent participation constraint.
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Figure 1: Client’s profit in the optimal mechanism, p = (1− F )/f

In the situation shown in Figure 1, those types of the client that fall below the

threshold v do not get so observe s, never undertake the project, and get zero

profit. If the client’s original value-estimate is above the threshold, v > v, then the

consultant discloses s to him, and the probability that he undertakes the project

becomes 1−G(r+(1−F (v))/f(v)−v). This is also the slope of the client’s indirect
profit function. Since the slope is between zero and one and (11) holds, the profit

function never falls below the value of the outside option.

Now we derive the optimal contract in another special case.

Lemma 3 Let v∗ ∈ [0, 1]. Suppose that r ≤ 1 and

v̄ − r −
Z v̄

v∗

·
1−G

µ
r − FH(v)

fH(v)
− v

¶¸
dv ≥ max{0, v∗ − r}. (13)

Then, the mechanism that is incentive compatible for all v ∈ [0, 1] and maximizes
the consultant’s payoff conditional on v ∈ [v∗, 1] is characterized by a = 1v∈[v∗,v̄] with

v̄ = max
n
v ∈ [v∗, 1] : R r+p(v)−v−∞ (r + p(v)− v − s) dG(s) ≥ K

o
, (14)

p = −FH/fH, q = 1v≥r, and (6) with Π(1) = 1− r and X defined by (5).

In words, if condition (13) holds then the solutions is the following. The signal is

always disclosed to low types of the client (v < v̄) and is never disclosed to high types

(v > v̄). If s is not disclosed then the client is instructed to carry out the project

whenever v ≥ r. If s is disclosed, the premium at which the client can undertake

15



the project is negative and weakly decreasing in v as it equals −F (v)/f(v).
When r ≤ 0 and v∗ = 0, (13) automatically holds. Therefore, we have found the

solution to the consultant’s problem for the special case when r ≤ 0.
The optimal mechanism when r ≤ 1 and (13) hold, characterized by Lemma 3

with v∗ = 0, is illustrated in Figure 2. The figure depicts the indirect profit function

of the client together with his type-dependent participation constraint.

-
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Figure 2: Client’s profit in the optimal mechanism, p = −F/f

In the situation shown in Figure 2, those types of the client that are above the

threshold v̄ do not get so observe s, yet always undertake the project, and get an

expected profit of v−r. If the client’s original value-estimate is below the threshold,
v < v̄, then the consultant discloses s to him, and the probability that he undertakes

the project becomes 1−G(r− F (v))/f(v− v). This is also the slope of the client’s

indirect profit function. Since the slope is between zero and one, and (13) holds, the

profit function never falls below the value of the outside option.

The solutions to the consultant’s contract design problem when r ≥ 1, and

r ≤ 0, respectively, are quite insightful and interesting on their own. When r ≥ 1,
the client is originally “pessimistic” in the sense that his estimate regarding the

profitability of the project is always non-positive. He would never undertake the

project without the consultant’s advice (i.e., without learning that s is sufficiently

large and positive). Note that in this case, the client has to pay the consultant if he

decides to undertake the project: p(v) > 0 for all v < 1. On the other hand, when

r ≤ 0, the client’s original profitability estimate is always “optimistic,” v ≥ r for all

v, and without the consultant’s advice he would always undertake the project. In

this case, it is the consultant who pays the client in case he undertakes the project:
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p(v) < 0 for all v > 0. In other words, when r ≤ 0, the client pays more to the
consultant if he does not undertake the project than if he does.

In these special cases, the client has to make a net payment to the consultant

when the consultant’s advice makes the client change his mind : if he undertakes the

project while v ≤ r for all v, or if he does not undertake the project while v ≥ r

for all v. Of course, in general (when r ∈ R) the consultant does not know a priori
which of the two actions of the client signify that he has changed his mind. In the

next subsection, we see how the contract is structured in this case.

3.3 The Optimal Contract in the General Case (r ∈ R)
We now complete the analysis of the consultant’s problem by deriving the terms of

the optimal contract for any r ∈ R. We will show that the consultant always discloses
s to types between certain thresholds (denoted by vb and v̄b), and never discloses it

to any other types. If s is not disclosed then the consultant lets the client undertake

the project whenever his original estimate exceeds the project’s cost (v ≥ r, no

interference). If s is disclosed then the premium function is p = (b− F ) /f for some

b ∈ [0, 1]. Note that when r ≥ 1, we have already established b = 1, while for r ≤ 0,
we have found b = 0 (see Lemmas 2 and 3). The optimal contract is structured

so that the client is indifferent between his offer and his outside option at either

endpoint of the range [vb, v̄b], except possibly at one of the endpoints, when that

point is on the boundary of [0, 1]. Finally, the consultant is indifferent between

excluding and including the boundary types in the optimal contract whenever these

boundary points are inside the unit interval. Figure 3 depicts the client’s indirect

profit function in the optimal mechanism in a situation where 0 < vb < v̄b < 1.

For all b ∈ [0, 1], let pb(v) = (b− F (v))/f(v), and define

vb = min

½
v ∈ [0, 1] :

Z ∞

r+pb(v)−v
(v + s− r − pb(v)) dG(s) ≥ K

¾
, (15)

v̄b = max

(
v ∈ [0, 1] :

Z r+pb(v)−v

−∞
(r + pb(v)− v − s) dG(s) ≥ K

)
. (16)

If the premium function is set to pb = (b − F )/f then client type v that learns s

from the consultant undertakes the project if and only if v + s − r − pb(v) is non-

negative, and earns a profit that equals this value. Hence the interpretation of vb is
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Figure 3: Client’s profit in the optimal mechanism, p = (b− F )/f

that it is the lowest client type whose expected profit (before learning s, given that

the premium is pb) exceeds the cost of the consultant. Similarly, v̄b is the highest

client type whose expected profit (under the same conditions) exceeds the cost of

the consultant.

Lemma 4 For all b ∈ [0, 1], vb < v̄b are well-defined by (15) and (16); moreover,

F (vb) ≤ b ≤ F (v̄b), and both vb and v̄b are continuous and weakly increasing in b

with v0 = 0 and v̄1 = 1.

The particular value of b that is used in the optimal mechanism is determined

as follows:

If
Z 1

v1

·
1−G

µ
r +

1− F (v)

f(v)
− v

¶¸
dv ≥ 1− r then b = 1; otherwise, (17)

if
Z v̄0

0

·
1−G

µ
r − F (v)

f(v)
− v

¶¸
dv ≤ v̄0 − r then b = 0; otherwise (18)

let b any solution to v̄b − r −
Z v̄b

vb

·
1−G

µ
r +

b− F (v)

f(v)
− v

¶¸
dv = 0.(19)

The integrand in (19), 1−G(r+pb(v)−v), equals the probability that type v of the

client that learns the value of s undertakes the project when the premium function

is pb. Intuitively, in (19), b is set so that among the client-types that the consultant

contracts with, the “number” (Lebesgue-measure) of client-types that undertake the

project under premium function pb is the same as the “number” of client-types that

would have undertook the project without learning s. The other two lines, (17)—(18),

18



take care of corner solutions.

In order to see that there exists b ∈ [0, 1] satisfying (17)—(19), first note that the
left-hand side of (19) is continuous in b. If (17) does not hold then this expression

is positive at b = 1 (since v̄1 = 1 by Lemma 4). If (18) does not hold then the same

expression is negative at b = 0 (since v0 = 0 by Lemma 4). Therefore, if neither (17)

nor (18) holds then, by the Intermediate Value Theorem, there exists a b ∈ (0, 1),
not necessarily unique, that satisfies (19).

Theorem 1 Define b by (17)—(19), vb and v̄b by (15)—(16). In the consultant’s

optimal contract, for all v ∈ [0, 1], a(v) = 1v∈[vb,v̄b], q(v) = 1v≥r, and

p(v) =
b− F (v)

f(v)
. (20)

The client’s profit function is, for all v ∈ [0, 1],

Π(v) = Π(0) +

Z v

0

X(z)dz, (21)

where X is defined by (5). Furthermore, if vb > 0 or v̄b = 1 then Π(v) = 0 for all

v ∈ [0, vb], while if vb = 0 or v̄b < 1 then Π(v) = v − r for all [v̄b, 1].

Proof. If r ≥ 1 or r ≤ 0 then the theorem is established by Lemmas 2 and 3.

In the rest of the proof, suppose r ∈ (0, 1). We consider three cases: b = 1, b = 0,
and b ∈ (0, 1).
If b = 1 then v1 ≤ r (because the left-hand side of the inequality in (17) does

not exceed 1− v1), and v̄1 = 1 by Lemma 4. Let v∗ = 1, hence FL ≡ F . Note that

(12) is equivalent to (15) at b = 1, therefore v1 = v as defined in (12). Condition

(11) coincides with (17), therefore Lemma 2 applies: In the optimal mechanism,

a = 1v∈[v1,1], q = 1v≥r, and p = (1 − F )/f as in (20). Moreover, Π satisfies (6),

which is equivalent to (21), and Π(0) = 0, which implies Π(v) = 0 for all v ∈ [0, v1].
This completes the proof for the case b = 1.

If b = 0 then v0 = 0 by Lemma 4, and v̄0 ≥ r because the left-hand side of

the inequality in (18) is non-negative. Let v∗ = 0, hence FH ≡ F . Note that

(14) is equivalent to (16) at b = 0, therefore v̄0 = v̄ as defined in (14). Condition

(13) coincides with (18), therefore Lemma 3 applies: In the optimal mechanism,

a = 1v∈[0,v̄0], q = 1v≥r, and p = −F/f as in (20). Moreover, Π satisfies (6), which is
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equivalent to (21), and Π(1) = 1− r, which implies Π(v) = v − r for all v ∈ [v̄0, 1].
This completes the proof for the case b = 0.

Finally, suppose that b ∈ (0, 1). First we establish that the mechanism proposed
in the theorem is incentive compatible. Note that vb < r < v̄b because the integrand

in (19) is always between zero and one, and hence the value of the integral is be-

tween zero and v̄b − vb. Also note that p = (b − F )/f is weakly decreasing by the

logconcavity of f . If we set a, q, and p according to the statement of the theorem,

then

X(v) =


0 for v < vb,

1−G
³
r + b−F (b)

f(b)
− v
´

for v ∈ [vb, v̄b],
1 for v > v̄b.

By setting Π(0) = 0, (21) implies that Π(v) = 0 for all v ∈ [0, vb]. Combining (21)
and (19), we get Π(v̄b) = v̄b − r, which implies Π(v) = v − r for all v ∈ [v̄b, 1],
moreover,

Π(v) ≥ max{0, v − r} for all v ∈ (vb, v̄b). (22)

Therefore, the mechanism satisfies the sufficient conditions for incentive compatibil-

ity provided in Lemma 1. The only remaining question is whether it is optimal for

the consultant.

Define v∗ = F−1(b), that is, F (v∗) = b. Since F (vb) ≤ b < F (v̄b) by Lemma 4,

we have vb ≤ v∗ ≤ v̄b. Note that by (9)—(10) and b = F (v∗),

b− F (v)

f(v)
=


1− FL(v)

fL(v)
for all v ∈ [0, v∗],

−FH(v)

fH(v)
for all v ∈ [v∗, 1].

Therefore, (12) is equivalent to (15), and similarly, (14) is equivalent to (16), hence

vb = v and v̄b = v̄. By Π(vb) = 0, Π(v̄b) = v̄b − r, (21), and (19),

Π(v∗) =
Z v∗

v

·
1−G

µ
r +

1− FL(v)

fL(v)
− v

¶¸
dv

= v̄ − r −
Z v̄

v∗

·
1−G

µ
r − FH(v)

fH(v)
− v

¶¸
dv. (23)
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By (22),

Π(v∗) ≥ max{0, v∗ − r}. (24)

But then, by (23) and (24), (11) holds, and Lemma 2 applies: by setting p = (1−
FL)/fL = (b− F )/f we maximize the consultant’s payoff conditional on v ∈ [0, v∗].
Similarly, by (23) and (24), (13) holds, and Lemma 3 applies: p = −FH/fH =

(b − F )/f is optimal conditional on v ∈ [v∗, 1]. Since the proposed mechanism
maximizes the consultant’s payoff conditional on v ∈ [0, v∗] and conditional on

v ∈ [v∗, 1], it is unconditionally optimal.

Remark 1 If K = 0 then from (15)—(16) it follows that the consultant discloses s

to all types of the client.

The up-front fee-schedule, c, can be determined from the definition of the client’s

profit, (3) with v0 = v, combined with the equations characterizing the same in the

optimal mechanism, a = 1v∈[vb,v̄b], q = 1v≥r, (20), and (21). Alternatively, we may

proceed as follows. If v /∈ [vb, v̄b], then c(v) = 0 because the client does not get to

observe s and q(v) = 1v≥r. If v ∈ [vb, v̄b] then a(v) = 1, hence from a deviation to

v0 ∈ [vb, v̄b] the client’s profit is

π(v, v0) =
Z ∞

r+p(v0)−v
[v + s− r − p(v0)] dG(s)− c(v0).

Local incentive compatibility, that is, the first-order condition of the maximization

of π(v, v0) in v0 (note that p = (1−F )/f is differentiable) and v0 = v in the maximum

yield, for all v ∈ [vb, v̄b],

c0(v) = −p0(v) (1−G(r + p(v)− v)) . (25)

This differential equation with a boundary condition for either c(vb) or c(v̄b) (whichever

is more convenient) determines c. If Π(vb) = 0, which is the case if vb > 0 or v̄b = 1,

then c(vb) = w(vb), while if Π(v̄b) = v̄b − r, which is the case if v̄b < 1 or vb = 0,

then c(v̄b) = w(v̄b).

Since the resulting fee function, c, is non-decreasing, while p is non-increasing,

a lower premium (paid in case the project is undertaken, chosen by better client

types) requires the payment of a higher up-front fee, and vice versa. We quantify

this relationship in numerical examples in the next subsection.
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3.4 A Numerical Example

Assume that v is uniform on [0, 1], that is, F (v) = v and f(v) = 1 on the domain.

Let r ∈ (0, 1), and, for simplicity, set K = 0. This implies a ≡ 1 and that we can
ignore q. Suppose that s is drawn from a uniform distribution on [−ε, ε], with ε > 0,
so

G(s) =


0 if s < −ε
(s+ ε)/(2ε) if − ε ≤ s ≤ ε

1 if s > ε

. (26)

The density, g, is zero outside [−ε, ε], and equals 1/(2ε) on it.
According to Theorem 1, in the consultant’s optimal contract,

p(v) =
b− F (v)

f(v)
= b− v,

where b can be calculated by solvingZ 1

0

G(r + b− 2v)dv = r, (27)

and “snapping” the resulting value of b to 0, or 1, whenever it falls below 0, or

above 1, respectively. In order to find the value of b, first define α = (r + b− ε) /2

and ᾱ = (r + b+ ε) /2, the two thresholds of v where r + b− 2v equals −ε and ε,

respectively. Since G(r + b− 2v) is monotone decreasing in v, we have

G(r + b− 2v) =


1 if v ∈ [0, α)
(r + b+ ε− 2v)/(2ε) if v ∈ [α, ᾱ]
0 if v ∈ (ᾱ, 1]

.

Case 1: r < ε/2. Suppose r + b < ε. Then α < 0 < ᾱ < 1, andZ 1

0

G(r + b− 2v)dv = G(0)ᾱ

2
=
(r + b+ ε)2

8ε
.

Equation (27) is satisfied by b =
√
8rε − ε − r. (Note that if r < ε/2 then b <√

4ε2 − ε − r = ε − r, so indeed, r + b < ε, as assumed.) It can be checked that

b ≥ 0 if and only if r ≥ (√2− 1)2ε.
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Case 2: r ∈ [ε/2, 1− ε/2]. Suppose r + b ∈ [ε, 2− ε]. Then 0 ≤ a < ᾱ ≤ 1, andZ 1

0

G(r + b− 2v)dv = α+
ε

2
=

r + b

2
.

Equation (27) is satisfied by b = r, and indeed, r + b ∈ [ε, 2− ε] as assumed.

Case 3: r > 1− ε/2. Suppose r + b > 2− ε, r > ε/2. Then 0 < α < 1 < ᾱ, andZ 1

0

G(r + b− 2v)dv = 1− (1− α)(1−G(1))

2
= 1− (2 + ε− r − b)2

8ε
.

Equation (27) is satisfied by b = 2+ ε− r−p8(1− r)ε. (Note that by r > 1− ε/2,

i.e., (1 − r) < ε/2, we have b > 2 + ε − r −√4ε2 = 2 − ε − r.) It can be checked

that b ≤ 1 if and only if r ≤ 1− (√2− 1)2ε.
To summarize: if r < (

√
2− 1)2ε then b = 0; if r > 1− (√2− 1)2ε then b = 1;

otherwise

b =


√
8rε− ε− r if r ∈ £(√2− 1)2ε, ε/2¤

r if r ∈ [ε/2, 1− ε/2]

2 + ε− r −p8(1− r)ε if r ∈ £1− ε/2, 1− (√2− 1)2ε¤ .

From now on, let us focus on the case where r is inside the unit interval and ε

is small relative to r, specifically r ∈ [ε, 1 − ε], so in the optimal contract of our

example p(v) = r− v. Then, we can easily determine the upfront fee in the optimal

contract, c(v). For v = 0, we need Π(0) = 0 ⇔ c(0) =
R ε
r
(s − b − r)g(s)ds. Since

r ≥ ε, the integral is empty, so c(0) = 0. For v > 0, we use (25), which can be

rewritten as c0(v) = 1 − G(2r − 2v). Straightforward integration of this equation,
with G defined in (26), yields,

c(v) =


0 if v < r − ε/2

(v − r + ε/2)2/(2ε) if r − ε/2 ≤ v ≤ r + ε/2

v − r if r + ε/2 < v

.

Note that client types v < r − ε/2 or v > r + ε/2 are essentially not served by the

consultant, but all other types are.

Our example with uniformly distributed v and small, uniformly distributed ε

(such that r ∈ [ε, 1− ε]) illustrates the interesting relationship between the upfront
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fee, c, and the premium, p, in the optimal menu offered by the consultant. The

upfront fee that client type v is supposed to choose is strictly increasing in v. All

client types that may benefit from knowing s = V − v pay their fee and learn

the realization of the shock. In exchange, the client agrees to paying a premium,

which is decreasing in his type, in case he undertakes the project. Furthermore, this

premium is positive for v < r and negative for v > r. Therefore, in this particular

example with r ∈ [ε, 1 − ε], when the undecided client undertakes the project, he

pays the consultant “extra” whenever learning the value of the additional signal

changes his mind, and conversely, the consultant pays him back whenever it does

not.12 This happens in the optimal mechanism despite the fact that the consultant

cannot observe directly whether her release of information actually changed the

client’s mind.

4 Main Result: Comparison with a Benchmark

In this section we derive the optimal contract when the consultant can in fact verify

the realization of the signal s ≡ V − v as she releases it (i.e., in case she decides

to reveal it to the client).13 We show that her payoff is the same as in the optimal

contract of the previous section, where she could not observe s but could only

contract on the client’s action. This result, Theorem 2, is the main result of the

paper.

When the consultant can verify the value of s as it is released by her, and can

contract on the client’s action as well, we can represent a contract by a truthful

revelation mechanism consisting of four functions, d∗ : [0, 1] → R, a∗, q∗ : [0, 1] →
[0, 1], and x∗ : [0, 1] × R → [0, 1]. In this mechanism, first, the client reports his

type, v, and gives an unconditional transfer d∗(v) to the consultant. The consultant

checks the value of s (incurring cost K) with probability a∗(v), and instructs the

client to undertake the project with probability either q∗(v), in case she did not learn

s, or x∗(v, s), in case she did, respectively.14 Incentive compatibility of a mechanism

12We made the same observation in the general model for r > 1, and r < 0, when we found that
p = −F/f < 0, and p = (1− F )/f > 0, in these two cases respectively.
13The benchmark case is somewhat similar (at least in spirit, if not in the details) to the model

of Dana and Spier (1993), where the attorney becomes more informed than the client after the
contract is signed.
14We will use “starred” symbols throughout this section to avoid confusion with notation used
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{a∗, d∗, x∗, q∗} means that no client type v has an incentive to report v0 6= v, for all

v, v0 ∈ [0, 1].
Define the client’s overall probability of undertaking the project with truthfully

reported type v as

X∗(v) = a∗(v)
Z

x∗(v, s)dG(s) + (1− a∗(v))q∗(v). (28)

Denote the client’s deviation payoff when he has type v and reports v0 by

π∗(v, v0) = a∗(v0)
Z

x∗(v0, s)(v+s−r)dG(s)+(1− a∗(v0)) q∗(v0)(v−r)−d∗(v0). (29)

Finally, let Π∗(v) = π∗(v, v) denote the client’s indirect profit function.

Incentive compatibility with participation requires Π∗(v) ≥ max{π∗(v, v0), v −
r, 0} for all v, v0 ∈ [0, 1]. We have the following counterpart to Lemma 1 for the case
when the consultant can verify the realization of s.

Lemma 5 Assume the consultant can observe and contract on s ≡ V − v. A mech-

anism {a∗, d∗, x∗, q∗} is incentive compatible if and only if X∗ is weakly increasing

and for all v ∈ [0, 1],
Π∗(v) = Π∗(0) +

Z v

0

X∗(z)dz, (30)

and also

Π∗(v) ≥ max{0, v − r}. (31)

This lemma allows us to characterize the consultant’s expected payoff in any

incentive compatible mechanism. First, the client’s ex-ante expected profit in an

incentive compatible mechanism can be written asZ 1

0

Π∗(v)dF (v) = Π∗(0) +
Z 1

0

Z v

0

X∗(z)dzdF (v)

= Π∗(0) +
Z 1

0

Z 1

z

X∗(z)dF (v)dz

= Π∗(0) +
Z 1

0

(1− F (z))X∗(z)dz.

in the previous section.
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The consultant’s expected payoff, which is the difference between the social surplus

and the client’s profit, equals

W ∗ =
Z 1

0

½
a∗(v)

·Z ∞

−∞
(v + s− r)x∗(v, s)dG(s)−K

¸
+ (1− a∗(v)) q(v)(v − r)

¾
dF (v)

−
Z 1

0

(1− F (v))X∗(v)dF (v)−Π∗(0),

which can be rewritten, using (28), as

Z 1

0

½
a∗(v)

·Z ∞

−∞

µ
v + s− r − 1− F (v)

f(v)

¶
x∗(v, s)dG(s)−K

¸
+

(1− a∗(v))
µ
v − r − 1− F (v)

f(v)

¶
q∗(v)

¾
dF (v)−Π∗(0). (32)

The final step before characterizing the optimal mechanism in the benchmark is

to prove

Lemma 6 Assume the consultant can observe and contract on s. In the optimal

mechanism, for all v ∈ [0, 1] with a(v) > 0, there exists sv ∈ (−∞,∞) such that
x∗(v, s) = 1s≥sv almost everywhere.

In words, for a given type-announcement of the client, the consultant will ask him

to carry out the project with a sufficiently high realization of s and not otherwise.

The intuition behind this result is that once the client is induced to (truthfully) re-

port v, the consultant has no reason to ban the client from undertaking a high-value

(high-s) project while asking him to undertake a less valuable (low-s) one, because

she can appropriate the efficiency gains due to directly knowing the realization of s.

The interesting consequence of the last lemma is the following. For all v ∈ [0, 1]
with a(v) > 0, there exists p∗(v) such that

x∗(v, s) =

(
1 if s ≥ r + p∗(v)− v,

0 otherwise.
(33)

That is, in the optimal mechanism the rule specifying whether or not the client

should undertake the project can be implemented via a premium function–a trans-

fer that takes place whenever the client undertakes the project and is contingent

only on the client’s type (and not the realization of s).
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Now we are ready to prove our main result. We show that the consultant cannot

be made better off (relative to her optimal contract seen in Section 3) even if she

finds out the value of s as she reveals it. In other words, compared to the optimal

contract with unobservable s (see Theorem 1), the consultant cannot obtain a higher

expected payoff even if the signal that she can release becomes observable.

Theorem 2 Assume that the consultant can observe and contract on s. In the

optimal mechanism, the consultant’s expected payoff is the same as in the optimal

mechanism where the realization of s is only observable to the client, but the consul-

tant controls the disclosure of s and the client’s action is contractible.

Proof. Suppose that mechanism {a∗, d∗, x∗, q∗} is incentive compatible and in-
dividually rational under observable and contractible s. The consultant’s expected

payoff, (32), can be rewritten using (33) as

W ∗ =
Z 1

0

½
a∗(v)

·Z ∞

r+p∗(v)−v

µ
v + s− r − 1− F (v)

f(v)

¶
dG(s)−K

¸
+

(1− a∗(v))
µ
v − r − 1− F (v)

f(v)

¶
q∗(v)

¾
dF (v)−Π∗(0).

This expression is equivalent to W in (8), which is the consultant’s payoff in any

mechanism that satisfies the necessary conditions of incentive compatibility under

unobservable s given in Lemma 1. From Theorem 1, we know that this is maximized

in a∗, p∗, q∗ and Π∗(0) by setting a∗ = 1v∈[vb,v̄b], p
∗ = (b − F )/f , q∗ = 1v≥r, and

Π∗(0) where b satisfies (17)—(19), and vb, v̄b are given by (15)—(16). Set x
∗(v, s)

according to (33), which implies by (28)

X∗(v) = a∗(v) (1−G(r + p(v)− v)) + (1− a∗(v))q∗(v),

and let

d∗(v) = c(v) + (1−G(r + p(v)− v))p(v). (34)

The necessary conditions of incentive compatibility of any mechanism under ob-

servable and contractible s (see Lemma 5) are the same as those given in Lemma

1 under unobservable s. Therefore, the mechanism {a∗, d∗, p∗, q∗} maximizes the
consultant’s objective among all incentive compatible mechanisms under observable
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and contractible s, and yields the same payoff for the consultant as the optimal

mechanism of Theorem 1.

The only remaining question is whether the mechanism defined above is incentive

compatible under observable and contractible s. This is clear, however, as the

conditions given in Lemma 5, which this mechanism satisfies, are both necessary

and sufficient for incentive compatibility. This completes the proof.

5 Conclusions

We analyzed a model of the advisor—client relationship where the role of the advisor

is that she can disclose “clues” to the client that only he (the client) can understand.

These clues, or signals, refine the client’s original private estimate regarding the

profitability of the client’s project. We assumed that the client’s action (whether or

not he undertakes the project) is contractible, therefore the consultant can offer a

deal where the client pays her differently depending on whether he undertakes the

project upon evaluating her advice. We derived the consultant’s optimal contract,

which can be thought of as a menu of such transfer pairs. Some items on the menu

may require the client to pay more if he undertakes the project, other items may

require higher payments if he does not. The consultant discloses the additional

signals only if the client agrees to one of the items.

In general, in the optimal contract, only clients with value estimates between

certain thresholds take up the consultant’s offer. Among those that do, clients with

higher estimates choose transfer pairs where the signed difference between what they

have to pay upon undertaking the project and upon not undertaking it are smaller.

In interesting special cases of the model the optimal contract can be interpreted as

one where the client pays the consultant more whenever her advice has made him

change his mind whether to undertake the project.

The most interesting finding, we believe, is that the consultant’s payoff in the

optimal contract is the same as if she could in fact “decipher her own clues”, that

is, as if she knew how the client’s value estimate changed by her advice. Even if the

consultant is ignorant regarding how her advice affects her client, as long as she has

the power to design their contract and can condition it on the decision of the client,

she can do just as well as if she understood the precise effect of her advice.
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Appendix 1: Omitted Proofs

Proof of Lemma 1. (Necessity.) Assume {a, c, p, q} is incentive compatible. In
the rest of the proof, consider arbitrary v, v0 ∈ [0, 1] such that v < v0. Note that (7)

is the participation constraint, which is necessary for all v.

Rewrite the definition of π(v, v0) as follows:

π(v, v0) = a(v0)
Z ∞

r+p(v0)−v0
[v0 + s− r − p(v0)]dG(s)

+(1− a(v0))q(v0) (v0 − r)− c(v0)

+(v − v0) [a(v0) (1−G(r + p(v0)− v0)) + (1− a(v0))q(v0)]

−a(v0)
Z r+p(v0)−v

r+p(v0)−v0
(v + s− r − p(v0))dG(s)

≥ Π(v0)− (v0 − v)X(v0).

The first two lines of the above expression for π(v, v0) give exactly Π(v0), the third

line equals (v− v0)X(v0), and the fourth line is nonnegative, hence the inequality on

the last line holds.

Similarly,

π(v0, v) = a(v)

Z ∞

r+p(v)−v
(v + s− r − p(v))dG(s)

+(1− a(v))q(v)(v − r)− c(v)

+(v0 − v) [a(v)(1−G(r + p(v)− v)) + (1− a(v)) q(v)]

+a(v)

Z r+p(v)−v

r+p(v)−v0
(v0 + s− r − p(v))dG(s)

≥ Π(v) + (v0 − v)X(v).

Incentive compatibility requires Π(v) ≥ π(v, v0) and Π(v0) ≥ π(v0, v), therefore

(v0 − v)X(v) ≤ Π(v0)−Π(v) < (v0 − v)X(v0).

Cross-dividing by (v0 − v) > 0, we have for all v, v0 ∈ [0, 1] and v < v0,

X(v) ≤ Π(v0)−Π(v)

v0 − v
≤ X(v0). (35)
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From this, X is weakly increasing, and Π is differentiable with dΠ(v)/dv = X(v)

almost everywhere. Since X(v) ∈ [0, 1] for all v, Π is Lipschitz-continuous by (35),

therefore Π is integrable, and (6) follows.

(Sufficiency.) Assume that (6)—(7) hold, a = 1v∈[v,v̄] for some v < r < v̄, q =

1v≥r, and p is weakly decreasing.

Note that π(v, v0) = max{0, v − r} for all v0 /∈ [v, v̄], therefore, by (7), no type
v ∈ [0, 1] has an incentive to deviate to any v0 /∈ [v, v̄].
In the rest of the proof, let v, v0 ∈ [0, 1] such that v < v0. If v0 ∈ [v, v̄] then by

(3)

π(v, v0) =
Z ∞

r+p(v0)−v
(v + s− r − p(v0)) dG(s)− c(v0).

Rewrite π(v, v0) as follows:

π(v, v0) =

Z ∞

r+p(v0)−v0
(v0 + s− r − p(v0))dG(s)− c(v0)

−
Z
1v0+s−r−p(v0)≥0(v0 + s− r − p(v0))dG(s)

+

Z
1v0+s+v−v0−r−p(v0)≥0(v0 + s+ v − v0 − r − p(v0))dG(s)

= Π(v0)−
Z Z s

s+v−v0
1v0+σ−r−p(v0)≥0dσdG(s),

where, on the last line, we used the identity (true for all v0 and s0 ≤ s)

1v0+s−r−p(v0)≥0(v0 + s− r − p(v0))− 1v0+s0−r−p(v0)≥0(v0 + s0 − r − p(v0))

=

Z s

s0
1v0+σ−r−p(v0)≥0dσ.

However,Z Z s

s+v−v0
1v0+σ−r−p(v0)≥0dσdG(s) =

Z Z 0

v−v0
1v0+s+x−r−p(v0)≥0dxdG(s)

=

Z 0

v−v0

Z
1v0+s+x−r−p(v0)≥0dG(s)dx

=

Z 0

v−v0
(1−G(r + p(v0)− v0 − x)) dx,
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therefore

π(v, v0) = Π(v0)−
Z 0

v−v0
(1−G(r + p(v0)− v0 − x)) dx.

On the other hand, by (6),

Π(v) = Π(v0)−
Z v0

v

(1−G(r + p(ν)− ν)) dν

= Π(v0)−
Z 0

v−v0
(1−G(r + p(v0 + x)− v0 − x)) dx

≥ Π(v0)−
Z 0

v−v0
(1−G(r + p(v0)− v0 − x)) dx

= π(v, v0),

where the inequality holds because p(v0+x) ≥ p(v0) for all x ≤ 0 by the monotonicity
of p. Therefore, client type v has no incentive to imitate v0 > v such that v0 ∈ [v, v̄].
Similarly, for v ∈ [v, v̄], v ∈ [0, 1], and v < v0 we can rewrite π(v0, v) as

π(v0, v) =

Z ∞

r+p(v)−v
(v + s− r − p(v))dG(s)− c(v)

−
Z
1v+s−r−p(v)≥0(v + s− r − p(v))dG(s)

+

Z
1v+s+v0−v−r−p(v)≥0(v + s+ v0 − v − r − p(v))dG(s)

= Π(v) +

Z Z s+v0−v

s

1v+σ−r−p(v)≥0dσdG(s).

Furthermore,Z Z s+v0−v

s

1v+σ−r−p(v)≥0dσdG(s) =

Z Z v0−v

0

1v+s+x−r−p(v)≥0dxdG(s)

=

Z v0−v

0

Z
1v+s+x−r−p(v)≥0dG(s)dx

=

Z v0−v

0

(1−G(r + p(v)− v − x)) dx,

therefore

π(v0, v) = Π(v) +

Z v0−v

0

(1−G(r + p(v)− v − x)) dx.
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On the other hand, by (6),

Π(v0) = Π(v) +

Z v0

v

(1−G(r + p(ν)− ν)) dν

= Π(v) +

Z v0−v

0

(1−G(r + p(v + x)− v − x)) dx

≥ Π(v) +

Z 0

v−v0
(1−G(r + p(v)− v − x)) dx

= π(v0, v),

where the inequality holds because p(v+ x) ≤ p(v) for all x ≥ 0 by monotonicity of
p. Therefore, a client type v0 has no incentive to imitate v < v0 such that v ∈ [v, v̄].
We conclude that the mechanism is indeed incentive compatible.

Proof of Lemma 2. Steps identical to those that established formula (8)

in the text yield the following characterization of the consultant’s expected payoff,

conditional on v ∈ L, in any incentive compatible mechanism:

WL =

Z v∗

0

µ
a(v)

·Z ∞

r+p(v)−v

µ
v + s− r − 1− FL(v)

fL(v)

¶
dG(s)−K

¸
+(1− a(v)) q(v)

µ
v − r − 1− FL(v)

fL(v)

¶¶
dFL(v)−Π(0). (36)

We will now choose a, p, q and Π(0) to maximize (36) pointwise (for all v), and

then check whether the sufficient conditions of incentive compatibility in Lemma 1

hold. Set Π(0) = 0 and hence minimize the last term. For a given v and a(v), the

integrand in (36) is maximized by choosing p(v) = (1 − FL(v))/fL(v) and q(v) =

1v≥r+p(v). Since fL is logconcave, the inverse hazard rate of the distribution, p, is

weakly decreasing, hence v − r − p(v) is strictly increasing in v. Call η the unique

threshold where q changes from zero to one, that is, η = r+p(η). In order to choose

a(v) optimally, set a(v) = 1 if the bracketed expression multiplying a(v) exceeds the

expression multiplying (1 − a(v)), and set a(v) = 0 otherwise. That is a(v) = 1 if

and only ifZ ∞

r+p(v)−v
[v + s− r − p(v)] dG(s)−K ≥ [v − r − p(v)]1v≥r+p(v), (37)
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where p(v) = (1− FL(v)) /fL(v). This inequality holds for v ∈ [v, v∗] with v < η.

To see this, note that at v = v∗, inequality (37) holds because p(v∗) = 0 and w(v∗),

defined by (2) as
R∞
r−v∗ (v

∗ + s− r) dG(s)− (v∗− r)1v∗≥r, exceeds K by assumption.

If r < v∗ then the inequality continues to hold for all v ∈ [η, v∗] as well because p, the
inverse hazard rate of FL, is weakly decreasing by the logconcavity of fL, and as v

decreases from v∗ to η, the right-hand side of (37) falls faster than the left-hand side

does.15 As we decrease v further, the opposite is true, so we either find v > 0 where

(37) holds as equality with the right-hand side being zero, or v = 0. Therefore, it is

optimal to set v̄ = v∗ and v according to (12).

Note that (11) implies v < r. Also note that the value of q(v) only matters if

the realization of s is not disclosed to client type v, that is, for v < v. Since v < r

and q = 1v≥r+p(v), no type v below v is asked to undertake the project, and we may

as well set q = 1v≥r.

The conditions on a, p, and q imposed by the sufficient conditions of Lemma

4 clearly hold. The only remaining sufficient condition of overall incentive com-

patibility is that the client’s profit, defined by (6) and rewritten using Π(v) = 0

as

Π(v) =

Z v

v

·
1−G

µ
r +

1− FL(z)

fL(z)
− z

¶¸
dz,

has to meet or exceed the value of his outside option, max{0, v − r}. Since X(z) ∈
[0, 1] for all z ∈ [0, 1], it is sufficient to check whether Π(v∗) ≥ max{0, v∗ − r}. But
this condition is satisfied by (11) in the hypothesis of the lemma.

Proof of Lemma 3. The client’s ex-ante expected profit conditional on v ∈ H

is Z 1

v∗
Π(v)dFH(v) = Π(1)−

Z 1

v∗

Z 1

v

X(z)dzdFH(v)

= Π(1)−
Z 1

v∗

Z z

v∗
X(z)dFH(v)dz

= Π(1)−
Z 1

v∗

FH(z)

fH(z)
X(z)dFH(z).

The consultant’s expected payoff conditional on v ∈ H is the difference between the

15When p (which is weakly decreasing) is differentiable, the derivative of the left-hand side of (37)
with respect to v is [1− p0(v)] [1−G(r + p(v)− v)] while that of the right-hand side is [1− p0(v)].
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social surplus and the client’s profit conditional on v ∈ H,

WH =

Z 1

v∗

µ
a(v)

·Z ∞

r+p(v)−v
(v + s− r) dG(s)−K

¸
+ (1− a(v)) q(v)(v − r)

¶
dFH(v)

+

Z 1

v∗

FH(v)

fH(v)
X(v)dFH(v)−Π(1),

which can be rewritten, using (5) for X(v), as

WH =

Z 1

v∗

µ
a(v)

·Z ∞

r+p(v)−v

µ
v + s− r +

FH(v)

fH(v)

¶
dG(s)−K

¸
+(1− a(v))q(v)

µ
v − r +

FH(v)

fH(v)

¶¶
dFH(v)−Π(1). (38)

This expression can be used to study the optimal solution conditional on v ∈ H.

We will choose a, p, q and Π(1) to maximize (38) pointwise, and then check incentive

compatibility of the resulting mechanism. First, set the profit of the highest client

type equal to the value of this type’s outside option, Π(1) = 1 − r (recall that

r < 1). For any given v and a(v), the integrand in (38) is maximized by choosing

p(v) = −FH(v)/fH(v) and q(v) = 1v≥r+p(v). Note that by the logconcavity of fH , the

ratio fH/FH is weakly decreasing, therefore p is weakly decreasing. Since v−r−p(v)
is strictly increasing in v, there exists a unique threshold, η0, where q switches from

zero to one, that is, η0 = r + p(η0). In order to set a(v) optimally, let a(v) = 1 if

the bracketed term multiplying a(v) exceeds the term multiplying (1 − a(v)), and

let a(v) = 0 otherwise. That is, a(v) = 1 whenever (37) holds with p = −FH/fH ,

and a(v) = 0 otherwise. The inequality (37) holds at v = v∗ (by w(v∗) −K ≥ 0),
and for all v ∈ [v∗, η0] as well because for v ≤ η0, the left-hand side of the inequality

is increasing while the right-hand remains zero. For v > η0, the right-hand side of

(37) may eventually rise faster than the left-hand side does, therefore there exists

a v̄ ≤ 1 such that (37) holds on the domain v ∈ [v∗, 1] if and only if v ∈ [v∗, v̄].
Therefore, set a(v) = 1 for v ∈ [v∗, v̄], where

v̄ = max
n
v ∈ [v∗, 1] : R∞

r+p(v)−v [v + s− r − p(v)] dG(s)−K ≥ v − r − p(v)
o
.

This definition is equivalent to (14). By (13), v̄ > r. All types above v̄ are asked to

undertake the project in this mechanism, and for v < v̄ we can set q(v) freely, hence
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we may as well let q = 1v≥r.

The only condition of incentive compatibility that remains to be checked is that

the client’s profit in the mechanism, given by Π(v) = v̄ − r − R v̄
v
X(z)dz or

Π(v) = v̄ − r −
Z v̄

v

·
1−G

µ
r − FH(z)

fH(z)
− z

¶¸
dz,

must not fall below the value of the client’s outside option, max{0, v − r}. Since
X(z) ∈ [0, 1] for all z ∈ [0, 1], it is sufficient to check whether this condition holds
at v = v∗. By assumption (13), it does.

Proof of Lemma 4. To see existence, let v∗ = F−1(b), that is, F (v∗) = b.

The left-hand side of the first inequality in (15) is continuous and strictly increas-

ing in vb. At vb = v∗, the expression becomes
R∞
r−v∗ (v

∗ + s− r) dG(s), which

equals w(v∗) + 1v∗>r(v∗ − r) by (2). However, w(v∗) > K by assumption, so

indeed there exists vb such that (15) holds. Similarly, the left-hand side of the

inequality in (16) is continuous and strictly decreasing in v̄b. At v̄b = v∗, it be-

comes
R r−v∗
−∞ (r − v∗ − s) dG(s) =

R∞
r−v∗(v

∗ + s − r)dG(s) + r − v∗, which equals

w(v∗) +1r>v∗(r− v∗) by (2), and w(v∗) > K by assumption. From this argument it

is also clear that F (vb) ≤ b ≤ F (v̄b), which then implies v0 = 0 and v̄1 = 1.

It is easy to see that vb and v̄b are continuous in b (no matter what the distribution

of s is). Since the integral in (15) is strictly decreasing in b, and the integral in (16)

is strictly increasing in b, both vb and v̄b are weakly increasing in b.

Proof of Lemma 5. Suppose first that the mechanism is incentive compatible,

and v, v0 ∈ [0, 1], v < v0. Then, by the definition of π∗,

π∗(v, v0) = Π∗(v0)− (v0 − v)X∗(v0) ≤ Π∗(v)

and

π∗(v0, v) = Π∗(v) + (v0 − v)X∗(v) ≤ Π∗(v0),

where the inequalities follow from incentive compatibility. Therefore,

(v0 − v)X∗(v) ≤ Π∗(v0)−Π∗(v) ≤ (v0 − v)X∗(v0),

and hence X∗ is weakly increasing on [0, 1], moreover, dΠ∗/dv = X∗. Since Π∗
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is continuous everywhere (which follows from the continuity of π∗(v, v0) in v and

incentive compatibility), we get (30). Since the other conditions were established in

the text, this concludes the proof of necessity.

Now assume that (30)—(31) hold and X∗ is weakly increasing. If v, v0 ∈ [0, 1] and
v0 < v then

Π∗(v) = Π∗(v0) +
Z v

v0
X∗(z)dz

≥ Π∗(v0) +
Z v

v0
X∗(v0)dz

= Π∗(v0) + (v − v0)X∗(v0) = π∗(v, v0),

where the inequality follows because X is weakly increasing. If v0 > v then similarly,

Π∗(v) = Π∗(v0)−
Z v0

v

X∗(z)dz

≥ Π∗(v0)−
Z v0

v

X∗(v0)dz

= Π∗(v0)− (v0 − v)X∗(v0) = π∗(v, v0).

Therefore, the mechanism is indeed incentive compatible.

Proof of Lemma 6. The idea of the proof is that if x∗(v, s) does not equal a

step-function, 1s≥sv for some sv given v, then the consultant can gain (weakly) by

removing positive values of x∗(v, s) at low realizations of s and reallocating them to

higher realizations of s with x∗(v, s) < 1.

Let µG denote the measure generated by G on R. Notice that if the claim of the
lemma is not true then there is a type v ∈ [0, 1] with a∗(v) > 0 and there exists a

subset of R, A, such that
R
A
x∗(v, s)dµG ∈ (0, 1). Moreover, there exist subsets of

A, call them B and C, such that B ≤ C, andZ
B

x∗(v, s)dµG =
Z
C

x∗(v, s)dµG ∈ (0, 1).

We now show that the consultant can do weakly better by defining a new allocation
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rule x̂ as follows.

x̂∗(v, s) = 0 if s ∈ B,

x̂∗(v, s) = 1 if s ∈ C, and

x̂∗(v0, s) = x∗(v0, s) if v0 6= v or s0 /∈ B ∪ C.

Also, define X̂∗ according to (28) and Π̂∗ according to (30) so that Π̂∗(0) = Π∗(0).

Note that since X̂∗(v) = X∗(v) for all v, the indirect profit function did not change

either, Π̂∗ = Π∗. Hence the mechanism {a∗, x̂∗, q∗, d∗} is incentive compatible. How-
ever, in the consultant’s objective function, the termZ ·µ

v + s− r − 1− F (v)

f(v)

¶
x∗(v, s)−K

¸
dG(s)f(v)

≤
Z ·µ

v + s− r − 1− F (v)

f(v)

¶
x̂∗(v, s)−K

¸
dG(s)f(v)

Hence x∗ can be replaced by x̂∗ without decreasing the consultant’s objective func-

tion.
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Appendix 2 (for online publication only):

Extension to Correlated Signals

In this online appendix we show that our results extend to the case where the client’s

ex-post valuation for the project, V , cannot necessarily written as the sum of his

interim valuation, v, and an independent error term, s. Recall that the error term,

or equivalently V , is the signal that the consultant may reveal to the client without

the consultant directly observing its value.

A2.1 Equivalent formalizations of the general model
Since the error term can always be defined as the difference between V and v,

the most general model to consider is one where V = v + z, but z (the signal or

error term that the consultant can disclose) may be correlated with v. Suppose that

the conditional cdf of z given v is Gv(z) ≡ G(z|v), and call this version the model
with “additive, correlated signals.”

Alternatively (and equivalently), the general model can be written so that V =

u(v, s) for some u : R2 → R, and s (the signal that the consultant can disclose) is

independent of v. The model with additive, correlated signals can be transformed

into this form by letting s = Gv(z) and u(v, s) = v + G−1v (s). Note that s is a

random variable that is independent of v as it is distributed uniformly on [0, 1]

no matter what v is.16 We call this formalization as the model with “orthogonally

normalized signals.” Obviously, the distibution of V conditional on v is the same in

both versions of the model, as, by definition, u(v, s) ≡ v + z.

In what follows, we will first generalize the results of the paper using the formal-

ization with orthogonally normalized signals (and general u). We derive the optimal

contract for this case. Our most interesting result, namely, that the consultant can

do just as well in the case where she cannot observe the signal controlled by her as

if she could observe it remains true (under certain conditions) about the signal s,

the orthogonally normalized part of the error term. This makes a lot of sense as the

only “new” information in V − v for the client is the part that is orthogonal to his

private information, v. In order to obtain the results, we impose mild conditions on

u. Essentially, we require that the client’s original signal and the orthogonal part

16If X is a random variable with continuous cdf F then F (X) is distributed uniformly on [0,1]
because for all y ∈ [0, 1], Pr(F (X) ≤ y) = Pr(X ≤ F−1(y)) = F (F−1(y)) = y.
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of the consultant-controlled signal be substitutes. In the last part of this appendix

we show what these conditions imply in the model of additive, correlated signals in

terms of the conditional distribution of z given v.

A2.2 Generalizaton of the results
Suppose that the client’s ex post valuation for the project is V = u(v, s). Recall

that v is distributed on [0, 1] with log-concave pdf f , and s is distributed on (−∞,∞)
with pdf g > 0, and assume that v and s are statistically independent. (As we

pointed out above, independence of v and s is not a restriction, just a normalization.)

We assume that all functions are at least twice differentiable, and partial deriv-

atives of functions are denoted by subscripts. For example, u1 = ∂u(v, s)/∂v.

We impose the following conditions on the shape of the u function (whose argu-

ments are the orthogonally normalized v and s).

1. u1 > 0, u2 > 0 (strictly increasing in both arguments),

2. u12 ≤ 0 (v and s are substitutes)

3. u11/u11 ≤ u12/u2 (v and s are substitutes along iso-value curves).

Assumption 2 states that v and s are substitutes in the sense that as v increases,

the marginal value of s (∂u/∂s) decreases. To see the meaning of Assumption

3 note that the total differential of u01 (the change in the marginal value of the

client’s type) is u0011dv + u0012ds. Keeping u constant (moving along an iso-value

curve) means ds = −u01/u02dv. Substituting this into the total differential of u01 yields
(u0011 − u0012u

0
1/u

0
2)dv. This expression is non-positive for dv > 0 iff u0011/u

0
1 ≤ u0012/u

0
2.

In words, Assumption 3 states that an increase in v, even if compensated by an

decrease in s to keep u constant, weakly increases the marginal value of s.

In order to simplify the analysis, assume that the consultant’s cost of disclosing

s to the client is zero (K = 0), and that she is required to contract with the client,

i.e., a ≡ 1. (It can be shown that a ≡ 1 actually follows from the assumption that

information disclosure is costless.) As a result, we can ignore q. For notational

convenience, normalize v so that it is an unbiased estimator of V , that is, the expec-

tation of u(v, s) with respect to s (given v) is v. We can represent the consultant’s

contract by the pair (p, c), where c : [0, 1]→ R is the up-front fee the client pays to

the consultant upon contracting with her; p : [0, 1] → R is the “premium” he pays

if he undertakes the project after getting the consultant’s advice.

The client that learns the consultant advice undertakes the project if and only
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if u(v, s) ≥ r, while a client that doesn’t contract with the consultant undertakes it

whenever v ≥ r. Define σ(p, v) so that

u(v, σ(p, v)) ≡ p+ r. (39)

Note that σ is increasing in p and decreasing in v. Moreover, if v increases,

u01(v, σ(p, v)) decreases by Assumption 3 on the u-function.

The client’s expected payoff with type v facing an up-front fee c and a premium

p can be written as

Ũ(p, c, v) =

Z ∞

σ(p,v)

[u(v, s)− r − p] dG(s)− c. (40)

The consultant’s payoff from the same can be written as

W̃ (p, c, v) = [1−G(σ(p, v))] p+ c. (41)

Note that the structure of the problem is very similar to that of an adverse selection

(Principal-Agent) model with quasilinear utilities. Here c should be interpreted as

the “transfer” and p as the “contractible action”. The Agent’s type has a positive

impact on his utility,
∂Ũ

∂v
=

Z ∞

σ(p,v)

u01(v, s)dG(s) > 0,

and the Spence-Mirrlees single-crossing condition holds because

∂2Ũ

∂p∂v
= −σ0p(p, v)u01(v, σ(p, v))g(σ(p, v)) < 0. (42)

In contract (p, c), define the deviation payoff of client-type v for a report v̂ as

U(v, v̂) =

Z ∞

σ(p(v̂),v)

[u(v, s)− r − p(v̂)] dG(s)− c(v̂). (43)

Incentive compatibility of the contract means U(v, v̂) ≤ U(v, v) for all v, v̂ ∈ [0, 1].
We now characterize all incentive compatible contracts in the model. Define the

client’s indirect payoff function as U(v) ≡ U(v, v).
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We claim that incentive compatibility of (p, c) is equivalent to

dU(v)

dv
=

Z ∞

σ(p(v),v)

u01(v, s)dG(s), (44)

and p(v) monotonically non-increasing.

We only sketch the proof, and assume differentiability throughout.

Necessity: By the envelope theorem,

dU(v)

dv
=

∂U(v, v̂)

∂v

º
v̂=v

=

Z ∞

σ(p(v),v)

u01(v, s)dG(s).

The first-order condition of maximizing (43) in v̂ and obtaining the maximum at

v̂ = v is

FOC(v, v̂) = −p0(v̂) [1−G(σ(p(v̂), v))]− c0(v̂) = 0 for v̂ = v.

The necessary second-order condition is that ∂FOC(v, v̂)/∂v̂ ≤ 0 at v̂ = v, equiva-

lently, ∂FOC(v, v̂)/∂v ≥ 0 at v̂ = v, that is,

−p0(v)g(σ(p(v), v)) ≥ 0,

so p(v) is non-increasing.

Sufficiency: It follows from the first-order condition and the single-crossing con-

dition.

Besides incentive compatibility, the indirect payoff function, U(v), must also

satisfy individual rationality (participation),

U(v) ≥ max{v − r, 0}. (45)

It is easy to see that this constraint either binds at v = 0, or v = 1, or both. The

reason is that by equation (44), dU/dv is between 0 and 1.

The consultant’s expected payoff in an incentive compatible mechanism (p, c) is

W =

Z 1

0

{[1−G(σ(p(v), v))] p(v) + c(v)} dF (v).
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Using the definition of the client’s indirect payoff function, (43) with v̂ = v, this can

be rewritten as

W =

Z 1

0

½Z ∞

σ(p(v),v)

[u(v, s)− r] dG(s)− U(v)

¾
dF (v). (46)

The consultant chooses U : [0, 1] → R and p : [0, 1] → R to maximize (46)

subject to incentive compatibility and individual rationality. We solve this problem

using optimal control, where the control variable is p, the state variable is U . We will

ignore the constraint that p is non-increasing and verify it at the end. We will also

ignore the two IR constraints (at v = 0 and v = 1) and use them as transversality

conditions to pin down certain parameters at the end.

Assign multiplier µ(v) to the law of motion for U . The Hamiltonian becomes,

H =

µZ ∞

σ(p(v),v)

[u(v, s)− r] dG(s)− U(v)

¶
f(v) + µ(v)

Z ∞

σ(p(v),v)

u01(v, s)dG(s).

By Pontryagin’s Maximum Principle, the derivative of the Hamiltonian with re-

spect to the control variable must be zero, ∂H/∂p = 0. Taking the derivative and

simplifying terms yield

[u(v, σ(p(v), v))− r] f(v) + µ(v)u01(v, σ(p(v), v)) = 0. (47)

Also, −∂H/∂U = µ̇, that is,

µ0(v) = f(v). (48)

Integrating (48) gives µ(v) = F (v)−B where B is a constant. Substituting this and
u(v, σ(p(v), v))− r ≡ p(v) into (47), we get

p(v)

u01(v, σ(p(v), v))
=

B − F (v)

f(v)
. (49)

Note that for u(v, s) = v+ s, (49) simplifies to p(v) = (B−F (v))/f(v). In the case

of a general u function, however, we only have an implicit solution for p(v).

Transversality conditions (corresponding to the IR constraints) pin down the

value of B. Indeed, if U(0) > max{−r, 0} then µ(0) = 0 and hence B = 0. If U(1) >
max{1− r, 0} then µ(1) = 0 and hence B = 1. Finally, if U(v) = max{v − r, 0} for
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both v = 0 and v = 1, then B ∈ [0, 1] is determined by U(0) = 0 and U(1) = 1− r,

that is, Z 1

0

·Z ∞

σ(p(v),v)

u01(v, s)dG(s)
¸
dv = 1− r.

By log-concavity of f , (B−F (v))/f(v) is decreasing in v for all B ∈ [0, 1]. This,
and the conditions imposed on u together imply that p(v) as defined by (49), is

weakly decreasing. This is so because if p(v) were weakly increasing at v, then the

ratio on the left-hand side of (49) would be weakly increasing as the denominator is

weakly decreasing in v (as v goes up, if p(v) goes up weakly then u01(v, σ(p(v), v))

goes down weakly by Assumptions 2 and 3 imposed on u).

Our main (and perhaps most interesting) result is that the consultant cannot do

better than she does in this mechanism even if she is able to observe s as she reveals

it to the client.

When s is observable by the consultant, we can represent any mechanism where

all types of the client must be served as follows: the client reports his type, v, and

pays the consultant d∗(v); the consultant observes s, and instructs him to undertake

the project with probability x∗(v, s). If a client with type v reports type v̂ then his

payoff is

U∗(v, v̂) =
Z
(u(v, s)− r) x∗(v̂, s)dG(s)− d∗(v̂).

Let U∗(v) = U∗(v, v). From the first-order conditions of incentive compatibility we

get
d

dv
U∗(v) =

Z
u1(v, s)x

∗(v, s)dG(s).

The second-order condition is that
R
u1(v, s)x

∗(v, s)dG(s) is weakly increasing in v.

The consultant’s payoff is the difference between the social surplus and the

client’s payoff. The client’s expected payoff isZ 1

0

U∗(v)dv = U∗(0) +
Z 1

0

Z v

0

µZ
u1(z, s)x

∗(z, s)dG(s)
¶
dzdF (v)

= U∗(0) +
Z 1

0

(1− F (v))

Z
u1(v, s)x

∗(v, s)dG(s) dv,

where we used integration by parts to get the second line. Therefore, the consultant’s

43



expected payoff can be written as

W ∗ =

Z 1

0

·Z
(u(v, s)− r)x∗(v, s)dG(s)− U∗(v)

¸
dF (v)

=

Z 1

0

Z µ
u(v, s)− r − 1− F (v)

f(v)
u1(v, s)

¶
x∗(v, s)dG(s)dF (v)− U∗(0).

We want to maximize W ∗ by choosing x∗(v, s) ∈ [0, 1] and U∗(0) ∈ R subject
to the type-dependent participation constraint and the second-order conditions of

incentive compatibility. Clearly, in the optimum, for all v ∈ [0, 1], x∗(v, ·) must
be a step-function that equals 0 for s < sv and 1 for s > sv, almost every-

where. If it were not then we could reduce x∗(v, s) on a positive measure of low

s’s and increase it on a positive measure of high s’s (for a fixed v) without changing

dU∗(v)/dv =
R
u1(v, s)x

∗(v, s)dG(s), yet increasing W ∗. That is, we could increase

the consultant’s expected payoff while keeping the mechanism incentive compatible,

which is not possible in the optimum.17

Since x∗(v, s) = 1s≥sv a.e., we can rewrite W
∗ as

W ∗ =
Z 1

0

Z ∞

sv

µ
u(v, s)− r − 1− F (v)

f(v)
u1(v, s)

¶
dG(s)dF (v)− U∗(0). (50)

The consultant’s expected payoff under unobservable s is given in equation (46).

Using (44), the client’s expected payoff under the same assumption can be written

as Z 1

0

U(v)dv = U(0) +

Z 1

0

Z v

0

µZ ∞

σ(p(z),z)

u01(z, s)dG(s)
¶
dz dF (v)

= U(0) +

Z 1

0

(1− F (v))

Z ∞

σ(p(v),v)

u01(v, s)dG(s)dv,

where the second line is obtained after integration by parts. Substituting this into

(46) yields,

W =

Z 1

0

Z ∞

σ(p(v),v)

·
u(v, s)− r − 1− F (v)

f(v)
u1(v, s)

¸
dG(s)dF (v)− U(0). (51)

17This result corresponds to Lemma 6 in the model of the paper.
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Note that (50) and (51) are equivalent. Therefore, W ∗ is maximized subject to

the incentive and participation constraints by choosing sv = σ(p(v), v) where σ is

defined by (39) and p by (49), and U∗(0) = U(0). It is easy to check that the

sufficient conditions of incentive compatibility hold in this mechanism, therefore we

have found the maximum.

We conclude that the solution to the “benchmark” problem, where the consultant

can observe the realization of s, is the same as that of our original problem. This

result corresponds to Theorem 2 in the paper.

A2.3 The additive-correlated model
In this section of the appendix we translate the conditions imposed on the func-

tion u(v, s) ≡ V in the model with orthogonally normalized signals (see Assumptions

1-3 in section A.2) into conditions on the joint distribution of v and the error term,

z ≡ V − v. Recall that the assumptions made on u were easy to interpret, and

meant, roughly speaking, that the client’s original information, v, and the orthogo-

nal part of the consultant-controlled signal, s, are substitutes in the client’s ex-post

valuation. The conditions imposed on the joint distribution of v and z express ex-

actly the same assumptions. We provide them only for the sake of completeness,

there really is no new insight to be gained from this transformation.

Recall that the conditional cdf of z conditional on v is denoted by Gv, and its

positive density by gv. Differentiating the identity u(v, s) ≡ v +G−1v (s) yields

∂u (v, s)

∂v
= 1 +

∂G−1v (s)

∂v
(52)

∂u (v, s)

∂s
=

∂G−1v (s)

∂s
=

1

gv (G−1v (s))
.

Since gv > 0, the second line is always positive. As far as the first line is

concerned, we first show that for s = Gv(z),

∂G−1v (s)

∂v
= −∂Gv (z) /∂v

gv (z)
. (53)

To see this, fix s and define ez(v) implicitly by s = Gv (ez (v)). Differentiating this
identity according to v and rearranging it we get
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dez (v)
dv

= −∂Gv (ez (v)) /∂v
gv (ez (v)) .

On the other hand, G−1v (s) = ez (v), hence
dez (v)
dv

=
∂G−1v (s)

∂v
.

So, from (52) and (53) we can conclude that the assumption that u is increasing in

v in the independent model translates to

1− ∂Gv (z) /∂v

gv (z)
> 0 (54)

in the correlated linear model.

From the second line of (52), using the rule for derivatives of inverse functions

and the chain rule we get,

∂2u (v, s)

∂s∂v
=

∂2G−1v (s)

∂s∂v
=

∂ (1/gv (G
−1
v (s)))

∂v
(55)

= − 1

g2v (G
−1
v (s))

Ã
∂gv (z)

∂v

º
z=G−1v (s)

!
∂G−1v (s)

∂v
.

Using (53) we can further rewrite it as

∂2u (v, s)

∂s∂v
=

1

g3v (z)

∂gv (z)

∂v

∂Gv (z)

∂v

º
z=G−1v (s)

.

Since the density gv is positive, the assumption u12 ≤ 0 in the independent model
translates into

∂gv (z)

∂v

∂Gv (z)

∂v
≤ 0 (56)

in the correlated linear model.

From (52) and (53)

∂2u (v, s)

∂v2
= − ∂ [∂Gv (z) /∂v] /gv (z)

∂v

º
z=G−1v (s)

= − gv (z) ∂
2Gv (z) /∂v

2 − [∂gv (z) /∂v] [∂Gv (z) /∂v]

g2v (z)

º
z=G−1v (s)

.
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Therefore, for z = G−1v (s),

∂2u (v, s)

∂v2
/
∂u (v, s)

∂v
=

−gv (z) ∂
2Gv (z) /∂v

2 − [∂gv (z) /∂v] [∂Gv (z) /∂v]

g2v (z)
/

·
1− ∂Gv (z) /∂v

gv (z)

¸
= −gv (z) ∂

2Gv (z) /∂v
2 − [∂gv (z) /∂v] [∂Gv (z) /∂v]

g2v (z)
/

·
gv (z)− ∂Gv (z) /∂v

gv (z)

¸
= −gv (z) ∂

2Gv (z) /∂v
2 − [∂gv (z) /∂v] [∂Gv (z) /∂v]

gv (z) (gv (z)− ∂Gv (z) /∂v)
.

And, by (55) and (52),

∂2u (v, s)

∂v∂s
/
∂u (v, s)

∂s
=

1

g2v (z)

∂gv (z)

∂v

∂Gv (z)

∂v

º
z=G−1v (s)

.

Hence the assumption u11/u1 ≤ u12/u2 in the independent model translates to

−gv (z) ∂
2Gv (z) /∂v

2 − [∂gv (z) /∂v] [∂Gv (z) /∂v]

gv (z) (gv (z)− ∂Gv (z) /∂v)
≤ 1

g2v (z)

∂gv (z)

∂v

∂Gv (z)

∂v
.

After multiplying both sides by gv (z) (gv (z)− ∂Gv (z) /∂v) , which is non-negative

by (54),

∂gv (z)

∂v

∂Gv (z)

∂v
− gv (z)

∂2Gv (z)

∂v2
≤ (gv (z)− ∂Gv (z) /∂v)

gv (z)

∂gv (z)

∂v

∂Gv (z)

∂v

=
∂gv (z)

∂v

∂Gv (z)

∂v
− (∂Gv (z) /∂v)

2

gv (z)

∂gv (z)

∂v
.

Notice that the first term is the same on both sides of the inequality. Hence, As-

sumption 3 is equivalent to

∂2Gv (z) /∂v
2

(∂Gv (z) /∂v)
2 ≥

∂gv (z) /∂v

g2v (z)
. (57)

Summary:

Assumption 1: u1, u2 > 0⇔ 1− ∂Gv (z) /∂v

gv (z)
> 0
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Assumption 2: u12 ≤ 0⇔ ∂gv (z)

∂v

∂Gv (z)

∂v
≤ 0,

Assumption 3:
u11
u1
≤ u12

u2
⇔ ∂2Gv (z) /∂v

2

(∂Gv (z) /∂v)
2 ≥

∂gv (z) /∂v

g2v (z)
.

The meaning of the latter two conditions, as we discussed above, is the same as that

of Assumptions 2 and 3: The client’s original signal, v, and the component of the

error term that is orthogonal to v, are substitutes in V . It seems to us that the

equivalent formulation where the signals are orthogonally normalized (as described

in section A.2.2) show this interpretation much more clearly.
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