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Abstract

We consider an example of a Markov game with lack of information
on one side, that was �rst introduced by Renault (2002). We compute
both the value and optimal strategies for a range of parameter values.
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1 Introduction

Zero-sum repeated games with incomplete information on one side were in-
troduced by Aumann and Maschler (1968, 1995) in a seminal work. In such
games, two players play repeatedly a zero-sum matrix game, whose payo¤
matrix depends on a state of nature that is drawn prior to the beginning of
the game. One of the players is informed about the outcome of the state
of nature, while the other is not. During the game, the players�moves are
observed, but not the corresponding payo¤. Such games model long-term
interactions with asymmetric information. The main issue is to what extent
the informed player should use his private information, and how. Aumann
and Maschler prove the existence of the (uniform) value and characterize
both the value and the optimal strategies of the players.
Recently, Renault (2002) extended this model to include situations in

which the state of nature follows a Markov chain, with exogenous transition
function, thereby allowing for situations where the private information of the
informed player gets renewed at random times. For such games, Renault
proved the existence of the uniform value. However, no explicit formula for
the value nor a characterization of optimal strategies is available. Neyman
(2004) provided an alternative proof to Renault�s results, using a reduction
to the case of repeated games with incomplete information on one side a la
Aumann and Maschler.
We here provide a number of results on a speci�c simple game due to

Renault (2002).

2 Model and Main Results

2.1 The game

We �rst de�ne the game. There are two possible states of nature, s and s.
The payo¤ matrices in the two states are given by:

B

T

L R L R
s s

0

1

0

0

0

0

1

0
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We denote by gs(i; j) the payo¤ in state s induced by the action pair (i; j).
The actual state sn in stage n � 1 follows a Markov chain with transition
function P(sn+1 = snjsn) = p, where p 2 [0; 1] is a parameter of the game.
That is, irrespective of the current state, there is a probability 1� p that the
game will move to the other state at the next stage. We denote by �1 the
probability that s1 is s.
The game proceeds in in�nitely many stages. At each stage n � 1,

player 1 and player 2 choose simultaneously a row in 2 fT;Bg and a column
jn 2 fL;Rg. When doing so, both players are fully informed of the actions
i1; j1; : : : ; in�1; jn�1 that were chosen in previous stages. In addition, player
1 is fully informed of past and current states s1; : : : ; sn.
We denote this game by �p. Observe that, for p = 1=2, the states (sn)

are independent variables. In e¤ect, the two players then face a sequence
of independent, identical, one-shot games with incomplete information. At
the other extreme, for p = 1, the current state is �xed throughout the game,
and thus �1 coincides with the leading example of Chapter 1 in Aumann and
Maschler (1995).

2.2 Main results

2.2.1 Background de�nitions

A strategy of the (uninformed) player 2 is a function � : [n2N(I � J)n�1 !
[0; 1]; where �(h) is the probability assigned to L after the sequence h of
actions. We describe a strategy of player 1 as a function

� : [n2N(I � J � S)n�1 ! [0; 1]� [0; 1];

with the interpretation that � assigns to each sequence of past actions and
past states a pair of mixed moves, to be used in states s and s respectively:
that is, denoting (xn; yn) = �(s1; i1; j1; : : : ; sn�1; in�1; jn�1), xn (resp. yn) is
the probability assigned to T if sn = s (resp. sn = s).
Given a strategy pair (�; �), we denote by P�;� the induced probability

measure over the set of in�nite plays, and we denote by E�;� the correspond-
ing expectation operator.
For a given stage N 2 N,


N(�; �) =
1

N
E�;�

"
NX
n=1

gsn(in; jn)

#
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is the average payo¤ in the �rst N stages. We denote by vN the value of the
N -stage game �i.e., the value of the game with payo¤ function 
N .
A real number v is the (uniform) value if there are strategies that (ap-

proximately) guarantee vN in all long games. To be speci�c:

De�nition 1 The real number v is the value of the game if, for every " > 0
there is N0 2 N and a pair of strategies (��; � �) such that for every N � N0


N(�
�; �) + " � v � 
N(�; �

�)� "; 8�; �: (1)

Renault (2002) proves that the game �p has a value vp for each p 2 [0; 1]
and that moreover, vp is independent of the initial distribution �1. It is easy
to check that, in the present game, �� and � � can be chosen independently
of ".
For various values of p we will exhibit strategies �� and � � and a real

number v such that lim inf 
N!1(��; �) � v and lim sup 
N!1(�; � �) � v,
for each � and � . Such strategies will be called optimal strategies. It can
be checked that the strategies �� and � � satisfy the uniformity condition (1),
but we will leave this issue out of the present note.

2.2.2 Main Results

We �rst introduce strategies for both players, that will turn to be optimal
strategies for a range of parameter values.
We start with player 1, and let � � 1=2. It is readily checked that the

mixed action �� of player 1 that assigns probability (1 � �)=� to T in state
s, and probability 1 to B in state s, is an optimal strategy of player 1 in the
one-shot game with incomplete information in which player 1 is informed of
the state of nature, while player 2 is not.1

1� 1��
�

1��
�

1

� 1� �

0

1

0

0

0

0

1

0

For � � 1=2, by symmetry, we de�ne �� to assign probability 1 to T in
state s, and �=(1� �) to B in state s.

1If � < 1=2, it is not the unique optimal strategy. However, it is the only one that
renders player 2 indi¤erent between playing L or R.
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We de�ne �� as the strategy that plays the mixed move ��n in stage n,
where �n is the conditional probability that sn = s, given past actions of
player 1. In other words, �n is the belief held by player 2 in stage n, when
facing the strategy ��.2 To be speci�c, letting �s;�n(i) be the probability
assigned by ��n to move i in state s, one has by Bayes�rule,

�n+1 = p� �s;�n(i)�n
�s;�n(i)�n + �s;�n(i)(1� �n)

+ (1� p)� �s;�n(i)(1� �n)

�s;�n(i)�n + �s;�n(i)(1� �n)
:

The �rst fraction is the conditional probability that sn = s, given that
player 1 just played i. In that event, there is probability p that sn+1 = s.
The second fraction is the conditional probability that sn = s, given that
player 1 just played i. In that event, there is probability 1� p that sn+1 = s.
In e¤ect, �� plays optimally in a myopic way. It maximizes the current

payo¤under the constraint that player 2 be indi¤erent between L and R, not
taking into account the information on the current state that is transmitted
to player 2.

We now describe a strategy � � of player 2. It is an automaton with two
states, labelled �0; �1. Transitions are given by:

(�0; T )! �1; (�1; T )! �1;

(�0; B)! �0; (�1; B)! �0:

That is, the automaton moves to �0 (resp. to �1) whenever B (resp. T ) is
played. In state �0 (resp. in state �1), the automaton plays L (resp. R) with
probability 2p

4p�1 .
Graphically, � � looks as follows.

x x
�1 �2

2p
4p�1

2p�1
4p�1

-
T

� B


	�� T

��
-B

2There is no circularity here, since the computation of �n involves only the strategy of
player 1 in the �rst n� 1 stages.
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Figure 1: The strategy of player 2

In this �gure, below each state appears its name, and above the state
appears the probability to play L at that state. Transitions are indicated by
arrows.

We now summarize our main results.

Theorem 2 The following results hold:

1. One has vp = v1�p for each p 2 [0; 1];

2. vp =
p

4p�1 , for p 2 [1=2; 2=3], and vp �
p

4p�1 for p � 2=3.

3. Let p� be the unique real solution of 9p3 � 13p2 + 6p � 1 = 0: (p �
0:75891). One has vp� =

p
1�3p+6p2 w 0:348291466.

4. The strategy �� is optimal for all p 2 [1=2; 2=3].

5. The strategy � � is optimal for all p 2 [1=2; 2=3].

Actually, the second statement provides an upper bound on vp. In Section
6, we will provide a lower bound as well.
Independently of us, and using di¤erent tools, Marino (2005) proved that

vp =
p

4p�1 for p 2 [1=2; 2=3] .
The proof is organized as follows. We start below by establishing the

�rst claim in Theorem 2. In Section 3, we recall the so-called Average Cost
Optimality Equality from the theory of MDP, and we derive a number of
implications for the game under study. In Section 4, we derive the properties
of � �. In Section 5, we prove the claims relative to player 1. Section 6
provides a lower bound on vp.

2.3 vp = v1�p

Here we argue that the symmetries in the game imply vp = v1�p for every
p 2 [0; 1]. Thus, it is enough to study vp for p 2 [1=2; 1]. Given a strategy �
of player 1, we de�ne a mirrored strategy �0, obtained by mirroring actions
and states at even stages. That is, given a �nite history h, we �rst construct
h0 by changing at all even stages every appearance of T (resp. B, L, R, s, s)
to B (resp. T , R, L, s, s), and we de�ne �0(h) to be �(h0).
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Given a strategy � for player 2, we de�ne its mirrored version � 0 in a
similar way. It is immediate to check that the average payo¤ induced by
(�0; � 0) in the game �1�p is equal to the average payo¤ induced by (�; �) in
�. This readily implies our claim.

3 The Average Cost Optimality Equality

The following Proposition is a version of the well-known Average Cost Op-
timality Equation (ACOE) for general Markov Decision Problems (MDP�s).
For a proof, see e.g. Feinberg and Shwartz (2002).

Proposition 3 Let (S;A; r; q) be an MDP with a compact metric space S,
compact action set A, continuous payo¤ function r : S � A ! R, and tran-
sition rule q : S �A! �(S) such that q(� j s; a) has �nite support for every
(s; a) 2 S � A.
If there is a bounded function V : S ! R such that

v + V (s) = max
a2A

 
r(s; a) +

X
s02S

q(s0 j s; a)V (s0)
!
for each s 2 S; (2)

then v is the value of the MDP, for each initial state s 2 S. Moreover, a
stationary strategy � = (�(s)) is optimal as soon as, for every s 2 S, �(s)
attains the maximum in (2).
On the other hand, if, for some s� 2 S, the sequence n (vn(�)� vn(s

�))
has a point-wise limit V , and if the value v is independent of the initial state,
then

v + V (s) = sup
a2A

 
r(s; a) +

X
s02S

q(s0 j s; a)V (s0)
!
for each s 2 S: (3)

In this proposition, �(S) stands for the set of probability distributions
over S. The value v is the supremum over all policies � of the payo¤ func-
tion 
(�) := lim inf E�[

1
N

PN
n=1 r(sn; an)]. Observe that the function V is

determined up to an additive constant.
We will apply this result in two ways. Let �rst a strategy � be given,

that can be implemented with a �nite automaton with state space � and
deterministic transitions. The best-reply of player 1 when facing � reduces
to a Markov decision problem with state space � � fs; sg. Indeed, in any
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stage, player 1 will be able to infer from the past history the current state of
player 2�s automaton �and knows in addition the current state. We will use
this remark to prove that � � guarantees p=(4p� 1) in the game �p.
Proposition 3 can be used to analyze player 1�s optimal behavior in the

game �p. By Renault (2002) player 1 has an optimal strategy that does not
depend on player 2�s actions. Facing such a strategy �, at any stage player
2 will simply compute her posterior belief, and play the action that yields
the minimal current payo¤, given her posterior belief and the mixed moves
x and y used by player 1 in states s and s. Hence, the sup inf of �p can
be computed under the assumption that player 2 always plays a best reply
to player 1�s current mixed move, given player 2�s posterior belief over the
current state. In other words, the value of the game �p coincides with the
value of the following auxiliary Markov Decision Problem, both for the �nite
and in�nite horizon versions:

� the current state �n 2 [0; 1] corresponds to player 2�s current posterior
belief;

� the decision maker chooses a pair (x; y) of mixed moves;

� the current payo¤ is min fx�n; (1� y)(1� �n)g;

� with probability x�n+ y(1� �n), (resp. (1�x)�n+(1� y)(1� �n)) the
decision maker plays T (resp. B), and the next state is the conditional
distribution �n+1 of sn+1, given the action played by the decision maker.

Moreover, the value vn of the n-stage version of the above MDP coincides
with the value of the n-stage version of the game �p and it can be checked
that the sequence n (vn(�)� vn(�

�)) has a point-wise limit V , for each choice
of the initial state. It is known that the value vn of the n-stage version of
�p is concave w.r.t. the initial distribution �. Thus, V is also concave, hence
continuous on (0; 1). Therefore, for each � 2 (0; 1), one has

vp + V (�) = max
x;y2[0;1]

fmin (x�; (1� y)(1� �))

+ (�x+ (1� �)y)� V

�
p

x�

x� + (1� �)y
+ (1� p)

y(1� �

x� + (1� �)y

�
+ (�(1� x) + (1� �)(1� y))

�V
�
p

(1� x)�

(1� x)� + (1� �)(1� y)
+ (1� p)

(1� y)(1� �

(1� x)� + (1� �)(1� y)

��
:
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The �rst term is the current payo¤. In the second term, �x+ (1� �)y is the
probability that T will be played, while the argument of V is the induced
posterior belief. We will denote by Wx;y the term between braces in the
right-hand side.

Lemma 4 There is an optimal strategy �� such that player 2 is always in-
di¤erent between L and R.

Proof. We will prove that, for each �, the maximum of Wx;y is achieved
for some x�; y� 2 [0; 1] such that �x� = (1� �)(1� y�). W.l.o.g., we assume
that � � 1=2. Let x; y 2 [0; 1] be a mixed action pair such that �x 6=
(1 � �)(1 � y). We will exhibit a pair x0; y0, with �x0 = (1 � �)(1 � y0) and
Wx0;y0 � Wx;y.
We will treat the case in which �x > (1 � �)(1 � y). The discussion of

the other case is similar and therefore omitted. Assume �rst that y � x. Set
x0 = y0 = 1� � so that �x0 = (1� �)(1� y0). Observe that

Wx0;y0 = �x0 + V (�):

Note that min f�x0; (1� �)(1� y0)g > min f�x; (1� �)(1� y)g. By concav-
ity of V , it therefore follows that Wx0;y0 > Wx;y.
Assume now that y < x. Set y0 = y and decrease x to x0 that satis�es

�x0 = (1��)(1�y0). The current payo¤is not a¤ected: min f�x0; (1� �)(1� y0)g =
(1� �)(1� y). On the other hand, less information about the current state
is transmitted when using (x0; y0) than when using (x; y). By concavity of V ,
this will imply that Wx0;y0 � Wx;y. To be speci�c, the sum of the last two
terms in Wx;y is a convex combination ax;yV (�Tx;y) + (1 � ax;y)V (�

B
x;y), with

ax;y�
T
x;y + (1� ax;y)�

B
x;y = �, and a similar observation holds for (x0; y0). It is

readily veri�ed that �Bx;y < �Bx0;y0 � � � �Tx0;y0 < �Tx;y. The claim follows.

By the previous lemma, it follows that the function V : [0; 1]! R satis�es
V (�) = V (1 � �) for each � and the functional equation below, for each
� � 1=2:

vp+V (�) = max
x2[0;1]

�
�x+ (1� �)V

�
1� p+ (2p� 1) �

1� �
x

�
+ �V (p� (2p� 1)x)

�
:

(4)
Besides, any function x� that achieves the maximum in (4) for each � yields
an optimal stationary strategy for player 1.
As an illustration, we provide below the graphs of V for three di¤erent

values of p, obtained by numerical simulation.
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4 Player 2

We here prove the results relative to player 2.

Lemma 5 The strategy � � of player 2 guarantees p=(4p�1) for all p � 1=2.

Proof. As player 1 knows the state of the automaton of player 2 and
the true state of the game, in e¤ect he faces a MDP with four states: S =
f(s0; �0); (s1; �0); (s0; �1); (s1; �1)g. In each one of these four states he has two
available actions, T and B, and the payo¤ is:

r((s0; �0);T ) =
2p

4p� 1 ; r((s0; �0);B) = 0;

r((s1; �0);T ) = 0; r((s1; �0);B) =
2p� 1
4p� 1 ;

r((s0; �1);T ) =
2p� 1
4p� 1 ; r((s0; �1);B) = 0;

r((s1; �1);T ) = 0; r((s1; �1);B) =
2p

4p� 1 :

By the ACOE, v = p
4p�1 is the value if and only if there is a function V :

S ! R that satis�es:

v + V (s0; �0) = max

�
2p

4p� 1 + pV (s0; �1) + (1� p)V (s1; �1);

pV (s0; �0) + (1� p)V (s1; �0)g ; (5)

v + V (s1; �0) = max fpV (s1; �1) + (1� p)V (s0; �1);

2p� 1
4p� 1 + pV (s1; �0) + (1� p)V (s0; �0)

�
; (6)

v + V (s1; �1) = max

�
2p

4p� 1 + pV (s1; �0) + (1� p)V (s0; �0);

pV (s1; �1) + (1� p)V (s0; �1)g ; (7)

v + V (s0; �1) = max fpV (s0; �0) + (1� p)V (s1; �0);

2p� 1
4p� 1 + pV (s0; �1) + (1� p)V (s1; �1)

�
: (8)

These equations are symmetric. One can verify that these equations imply
that V (s0; �1) = V (s1; �0) and V (s1; �1) = V (s0; �0), and so Eqs. (??) to (5)
can be omitted.
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One can now verify that the following is a solution to these equations:

v =
p

4p� 1 ;

V (s0; �0) = V (s1; �1) = 0;

V (s1; �0) = V (s0; �1) = �
1

4p� 1 :

5 Player 1

We here prove the results relative to player 1. We will �rst prove that ��

guarantees p=(4p � 1) whenever p 2 [1=2; 2=3]. Together with the results of
the previous section, this yields vp = p=(4p�1) and implies that �� is indeed
optimal for that range of values of p.
Next, we analyze the case where p = p� w 0:75891. We will prove that

�� is optimal, and we also exhibit an optimal strategy for player 2.
Finally, we prove that the range of values of p for which �� is an optimal

strategy of �p, is an interval, thereby completing the proof of Theorem 2.

5.1 The case p 2 [1=2; 2=3]
We here prove that �� is optimal in �p, for all p 2 [1=2; 2=3]. Under ��, and
when the posterior probability of s is � � 1

2
, player 1 plays as follows:

0

1

�
1��

1� �
1��

L R L R
s s

� 1� �

0

1

0

0

0

0

1

0

Observe that the probability that the action B is played is �, so that the
probability that the action T is played is 1� �.

Lemma 6 The strategy �� guarantees p=(4p� 1), for each p 2 [1=2; 2=3].

Proof. Recall the optimality equation (4). In order to prove that the
strategy �� yields p=(4p�1), we need to �nd a function V , symmetric around

11



1=2, such that the equality

p

4p� 1 + V (�) = � + (1� �)V

�
1� p+ (2p� 1) �

1� �

�
+ �V (1� p)

holds for each � � 1=2.
Observe that one has 1� p+ (2p� 1) �

1�� � 1=2, whenever p 2 [1=2; 2=3]:
under ��, the posterior probability is either p, 1� p, or jumps from one half
of the posterior space [1� p; p] to the other.
Therefore, we need only �nd a function V : [1� p; 1=2]! R, such that

p

4p� 1 + V (�) = � + (1� �)V

�
p� (2p� 1) �

1� �

�
+ �V (1� p):

One can verify that the function V (�) =
�

4p� 1 is a solution. The result
follows.

5.2 The case p = p� w 0:75891
We here analyze the case where p = p�, the unique real solution of the
equation

9p3 � 13p2 + 6p� 1 = 0:
We show that vp =

p
1�3p+6p2 w 0:34829 by showing that it is an equilib-

rium payo¤. Since the game is zero-sum, the equilibrium consists of optimal
strategies.
We are going to show that the following pair of strategies is an equilib-

rium:

� For player 1 we take the strategy � that is de�ned in Section 2.2.

� For player 2 we take the following strategy that can be implemented
by the following automaton with four states, 1� p, 1� �, � and p.

x x x x
1� p 1� � � p

�1 �2 1� �2 1� �1

-
T

-
T

-
T

� B � B � B


	�� T

��
-B

Figure 3: The strategy of player 2
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In Figure 2, below each state appears its name, and above it appears the
probability that the action L is played.
Denote � = p

3p�1 w 0:5944. One can verify that the following equations
are satis�ed.

� = �(p j B) = 2p� 1
p

p+
(1� p)2

p
= p� (2p� 1)� 1� p

p
;

1� � = �(� j B) = 2� � 1
�

p+ (1� p)

�
1� 2� � 1

�

�
= p� (2p� 1)� 1� �

�
:

(9)

Whenever player 1 plays B, the posterior belief of player 2 evolves as follows:
(i) from p it moves to �, (ii) from � it moves to 1 � � whereas (iii) from
either 1� � or 1� p and player 1 plays B, it moves to 1� p. By symmetry
arguments, this implies that the transitions of the automaton of player 2
mimic the evolution of his posterior belief, provided player 1 follows ��.
When player 1 follows ��, player 2 is always indi¤erent between playing T

or B. Since �� is independent of player 2�s moves, the payo¤ is independent
of player 2�s strategy. In particular, player 2�s automaton is a best reply to
��.
We now turn to the optimization problem of player 1. In e¤ect he faces

a MDP with 8 states. Each state is composed of the actual state of nature
(2 alternatives) and the state of the automaton of player 2 (4 alternatives).
So that �� is the best response against the strategy of player 2, and 
 is the
value, the ACOE implies that there should be a function V that satis�es the
following.

v + V (s0; 1� p) = �1 + pV (s0; 1� �) + (1� p)V (s1; 1� �)

� pV (s0; 1� p) + (1� p)V (s1; 1� p);

v + V (s0; 1� �) = �2 + pV (s0; �) + (1� p)V (s1; �)

� pV (s0; 1� p) + (1� p)V (s1; 1� p);

v + V (s0; �) = 1� �2 + pV (s0; p) + (1� p)V (s1; p)

= pV (s0; 1� �) + (1� p)V (s1; 1� �);

v + V (s0; p) = 1� �3 + pV (s0; p) + (1� p)V (s1; p)

= pV (s0; �) + (1� p)V (s1; �):

Since V is determined up to an additive constant, we can set V (s0; p) = 0,
and then this system contains 6 equations in 6 variables. The unique solution
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is

v =
p

1� 3p+ 6p2 w 0:348291466;

�1 =
4p� 1

1� 3p+ 6p2 w 0:934232129;

�2 =
2p

1� 3p+ 6p2 w 0:696582932;

V (s0; 1� p) =
6p� 2

1� 3p+ 6p2 w 1:171881327;

V (s0; 1� �) =
2p

1� 3p+ 6p2 w 0:696582932;

V (s0; �) =
2p� 1

1� 3p+ 6p2 w 0:237649197;

V (s0; p) = 0:

One can verify that the incentive constraints are satis�ed in this case.

6 A lower bound on vp

Item 2 in Theorem 2 provides an upper bound on vp for p � 2=3. We here
illustrate how to compute a lower bound on vp, and numerically investigate
the tightness of these bounds.
We will obtain a lower bound by computing the payo¤ 
p induced by ��.

By the ACOE, 
p is the unique real number such that there is a function V
(symmetric around 1=2) that satis�es


p + V (�) = � + (1� �)V

�
1� p+ (2p� 1) �

1� �

�
+ �V (1� p) � � 1=2


p + V (�) = 1� � + �V

�
p� (2p� 1)1� �

�

�
+ (1� �)V (p) � � 1=2:

As V can be determined up to an additive constant, set V (1 � p) = 0. Set
�0 = 1� p, and for each k

�k+1 = min

�
1� p+ (2p� 1) �k

1� �k
; p� (2p� 1) �k

1� �k

�
:

14



Then �k 2 [1� p; 1=2], and


p + V (�k) = �k + (1� �k)V (�k+1) + �kV (1� p):

Using V (1� p) = 0, and given the boundedness of V , it follows that:


p =
�0 + (1� �0)�1 + (1� �0)(1� �1)�2 + � � �
1 + (1� �0) + (1� �0)(1� �1) + � � �

:

It is convenient to introduce the sequence (un), with u0 = 1 and un+1 =
1� �n, so that (un) satis�es the recursive equation:

un+1 = max

�
3p� 1� 2p� 1

un
; 2� 3p+ 2p� 1

un

�
:

With these notations, the payo¤ 
p is

1


p
=

u0 + u0u1 + u0u1u2 + � � �
1� u1 + u1 (1� u2) + u1u2 (1� u3) + � � �

= u0 + u0u1 + u0u1u2 + � � �

This last formula provides a method of computing 
p for any p. We do not
know how to explicitly solve for the sequence (un) in general, and no simple
explicit formula 
p seems to hold. For some values of p however, a closed
formula can be obtained. Observe indeed that the recurrence equation on
(un) writes

un+1 = maxf (un); 1�  (un)g;

where  (u) := 3p � 1 � 2p� 1
u

is increasing. Let u� be a solution to u =

1 �  (u). It is immediate to check that u� � 1=2, hence  (u�) � u�, for
otherwise, the inequality 2u� <  (u�) + 1 �  (u�) = 1 would hold. In
particular, if uN = u� for some N , then the sequence (un) is stationary from
that stage on.
Next, consider the sequence (wn) de�ned by w0 = 1 = u0 and

wn+1 = 3p� 1�
2p� 1
wn

: (10)

We claim that if wN = u� (and wn 6= u� for n < N), then un = wn for
each n < N and un = u� for each n � N . To prove this claim, it is enough
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to check that 1 �  (wn) �  (wn) for n = 1; 2; � � � ; N � 1. To see why
this holds, observe �rst that the sequence (wn) is decreasing. We argue by
contradiction, and assume that wk+1 =  (wk) < 1�  (wk) for some k < N .
Since wk > wk+1 � wN , this yields wN < 1 �  (wk). Since  is increasing,
one obtains wN < 1�  (wN) �a contradiction.
As a result, the computation of 
p is easy for those values of p with the

property that wn = u� for some n.
The solution to (10) is

wn =
p
2p� 1cos ((n+ 1)� � �)

cos (n� � �)
; (11)

where

tan� =

p
(1� p) (9p� 5)
(3p� 1) ; tan� =

3(1� p)p
(1� p) (9p� 5)

:

Using standard manipulations, the following appears. Given N , there exists
a unique p such that N is the smallest integer for which uN�1 = uN . This p
solves the following polynomial equation:

tan((N + 1)�) =

r
9p� 5
1� p

� 2p� 1
1� 3p+

p
p(9p� 4)

:

For instance, (i) p w :7589 for N = 2, which is the special case already
studied, (ii) p w :8583 for N = 3, (iii) p w :9073 for N = 4, (iv) p w :9348
for N = 5, etc.
From the expression of wn, one deduces

w0 � � �wn = (2p� 1)(n+1)=2
cos ((n+ 1)� � �)

cos�

It follows that

1


p
= 2

 
1� (2p� 1)(N+1)=2

p
2(3p� 1�

p
p(9p� 4))p

p(1� p)(3
p
p�

p
9p� 4)(5p� 2�

p
p(9p� 4))

!
:

For instance, 
p w :2880 for p w :8583 (more precisely, 
p is the unique
real root of �162 + 1737x � 7279x2 + 15002x3 � 15276x4 + 6169x5 = 0 for
p the unique real root of �4 + 37x � 136x2 + 248x3 � 225x4 + 81x5 = 0),
and 
p w :2460 for p w :9073, etc. It is readily veri�ed that the equation

p =

p
1�3p+6p2 , valid for p w :7589, is not valid on any open interval.
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We draw below a graph that features simultaneously the upper bound
p=(4p�1), and the functions vp and 
p. The latter two graphs were obtained
numerically.
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